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We show that the time evolution of a thermal phase state of an anharmonic oscillator with logarithmic energy
spectrum is intimately connected to the generalized Riemann ζ function ζ (s,a). Indeed, the autocorrelation
function at a time t is determined by ζ (σ + iτ,a), where σ is governed by the temperature of the thermal phase
state and τ is proportional to t . We use the JWKB method to solve the inverse spectral problem for a general
logarithmic energy spectrum; that is, we determine a family of potentials giving rise to such a spectrum. For
large distances, all potentials display a universal behavior; they take the shape of a logarithm. However, their
form close to the origin depends on the value of the Hurwitz parameter a in ζ (s,a). In particular, we establish
a connection between the value of the potential energy at its minimum, the Hurwitz parameter and the Maslov
index of JWKB. We compare and contrast exact and approximate eigenvalues of purely logarithmic potentials.
Moreover, we use a numerical method to find a potential which leads to exact logarithmic eigenvalues. We discuss
possible realizations of Riemann ζ wave-packet dynamics using cold atoms in appropriately tailored light fields.
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I. INTRODUCTION

Factorization of numbers using a quantum computer [1],
security of codes due to the use of single photons [2], and
the similarity [3] of the statistics of the energy levels of a
billiard and the zeros of the Riemann ζ function point to
an intimate connection between quantum mechanics [4] and
number theory [5]. In the present article we connect two central
ingredients of both theories: (i) The autocorrelation function
[6], which describes the time evolution of a wave packet in
quantum theory, and (ii) the Riemann ζ function [7], which
plays a crucial role in number theory due to the connection [5]
between its nontrivial zeros and the distribution of the primes.
We show that the autocorrelation function describing the time
evolution of a thermal phase state [8] of an anharmonic
oscillator with a logarithmic energy spectrum is determined by
the generalized Riemann ζ function [9] introduced by Adolf
Hurwitz. In particular, we derive the form of the potential
within the semiclassical (JWKB) approximation [10] and a
numerical exact method and discuss possible realizations using
cold atoms and light forces [11].

A. Inverse spectral problem

The development of ultrashort laser pulses [12] together
with the progress in ion trap technology [13] and cavity
quantum electrodynamics [14] has opened a new avenue in the
observation of the time evolution of wave packets. Indeed, the
motion of a Rydberg electron [15], the center-of-mass motion
of an ion stored in a Paul trap [16] or an atom in a standing wave
[17] together with the periodic exchange of excitation between
an atom and the photon field in a high-Q cavity [18] represent
only a few examples of wave packets which are now almost
routinely realized experimentally in many laboratories around
the world. Central to these observations is the autocorrelation
function representing the time-dependent overlap between the
time-evolved state and the initial state of the quantum system

of interest. All experiments aforementioned have relied on the
measurement of the autocorrelation function. Therefore, it is
safe to say that this quantity is readily available.

In quantum mechanics the potential determines uniquely
the energy spectrum. How can we determine the potential
which generates a predetermined spectrum? This important
question constitutes the so-called inverse problem [19] and has
attracted much attention throughout the history of quantum
mechanics. Today it is often attacked by constructing the
unknown potential energy function from an analytical function
with several adjustable parameters. The parameters are then
varied until a satisfactory agreement between experimental
and calculated energy levels or scattering phase shifts has been
attained. If, however, a semiclassical description is judged to
be sufficiently accurate, then explicit analytical methods are
available. They have their origin in molecular spectroscopy of
diatomic molecules and have been refined over the years. The
basic semiclassical approach for solving the inverse problem
is the Rydberg-Klein-Rees (RKR) method [20–22].

In the present article we pursue both approaches: We
first use the RKR technique to obtain a potential implied by
our logarithmic energy spectrum. Since this potential is only
approximate, we then follow the numerical approach and find
the exact potential using an iterative scheme based on the
Hellmann-Feynman theorem [23–25].

B. Outline

Our article is organized as follows. In Sec. II we show that
the autocorrelation function of a thermal phase state evolving
in an anharmonic oscillator potential with a logarithmic energy
spectrum

En ≡ h̄ω ln[γ (n + a)] = h̄ω ln(n + a) + h̄ω ln γ (1)

is determined by the generalized Riemann ζ function. Here the
constant ω has the units of a frequency, and the dimensionless
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parameter γ plays the role of a constant offset of the energy.
The quantity a will later be connected to the Maslov index [26]
of JWKB.

We then turn to the inverse spectral problem and determine
a potential which gives rise to such a spectrum. Here we
pursue analytical as well as numerical methods. In particular,
in Sec. III we obtain within the JWKB approximation in
one space dimension a family of potentials giving rise to an
energy spectrum of the form of Eq. (1). In the neighborhood
of the origin the potential can be approximated by that of a
harmonic oscillator, but for large distances it is characterized
by a logarithmic behavior. The value V0 of the potential at the
origin, scaled in units of h̄ω, is connected to the parameter γ

and to the Maslov index.
In Sec. IV we focus on a purely logarithmic potential and

compare and contrast the desired energy eigenvalues given
by Eq. (1) with the approximate ones. We find the familiar
excellent agreement for large quantum numbers, but significant
deviations for small quantum numbers, as expected by the
limitations of the semiclassical approximation. This feature is
unfortunate for our goal of realizing the generalized Riemann
ζ function, since the probability amplitudes corresponding to
a thermal phase state put more weight on the small quantum
numbers. For this reason we construct in Sec. V a potential
leading to logarithmic energy eigenvalues using numerical
methods starting from the JWKB potential. In Sec. VI we
give a brief discussion of possible experimental realizations of
Riemann ζ wave-packet dynamics.

We conclude in Sec. VII with a summary of our results
and an outlook. Here we emphasize that our approach is based
on the Dirichlet representation of the Riemann ζ function,
which is only valid for the domain of complex space to the
right of the line Re s = 1. As a consequence, the realization of
the Riemann ζ function by wave-packet dynamics is limited
to this region only. We briefly outline an approach [27] for
extending our considerations into the critical strip where the
nontrivial zeros of the Riemann ζ function are located. Here the
entanglement of two quantum systems will play a crucial role.

In order to keep the article self-contained, we have intro-
duced several appendixes which summarize concepts most
relevant to the topic of our article. Although we focus on
the quantum system of a nonrelativistic particle moving in a
one-dimensional potential, we emphasize in Appendix A that
our considerations are more general and can be applied to many
different physical systems. For example, the atomic dynamics
in the Jaynes-Cummings model [10] leads to expressions
which under appropriate conditions [27] can be cast into
the Riemann ζ function. In Appendix B we briefly address
the mathematical question of the uniqueness of the solution
of the inverse spectral problem. Here we rely mainly on
Ref. [28]. Moreover, Appendix C represents a brief summary
of the RKR method. We rederive a closed-form expression for
the excursion of the particle in terms of the spectral density.
A crucial ingredient of the RKR method is the solution of
the Abel integral equation. For the sake of completeness, we
review in Appendix D its derivation and present two alternative
but completely equivalent formulations. They provide us with
a compact expression for the excursion in complete agreement
with the results of Appendix C. In Appendix E we high-
light important features of the purely logarithmic potential.

Moreover, we use Appendix F to review the Hellmann-
Feynman theorem [23–25], which is at the very heart of the
numerical work of Sec. V.

II. RIEMANN STATE

In the present section we connect the concept of the autocor-
relation function with the Riemann ζ function. In particular,
we show that for a quantum system with a logarithmic energy
spectrum and an initial thermal phase state the autocorrelation
function C is given by the generalized [9] Riemann ζ function.

A. An intriguing connection

Throughout this article we consider the model system of a
nonrelativistic particle of mass µ moving in a potential V =
V (x) of one space coordinate x. The energy eigenstates |n〉
with energies En are assumed to form a discrete set numbered
by n = 0,1,2, . . ..

The time evolution of a superposition

|ψ (0)〉 =
∞∑

n=0

ψn|n〉 (2)

of such energy eigenstates with probability amplitudes ψn

reads

|ψ (t)〉 =
∞∑

n=0

ψne
−iEnt/h̄|n〉. (3)

As a consequence, the autocorrelation function

C(t) ≡ 〈ψ(0)|ψ(t)〉 (4)

takes the form

C(t) =
∞∑

n=0

|ψn|2e−iEnt/h̄, (5)

where Wn ≡ |ψn|2 denotes the occupation probability of the
nth energy level of the quantum system.

For the special example of the logarithmic energy spectrum
[Eq. (1)], the autocorrelation function C given by Eq. (5) takes
the form

C(t) =
∞∑

n=0

|ψn|2e−iωt ln[γ (n+a)] (6)

or

C(t) = e−iϕ(t)
∞∑

n=0

|ψn|2 1

(n + a)iωt
, (7)

with

ϕ(t) ≡ ωt ln γ. (8)

It is interesting to compare this expression to the Dirichlet
representation [9],

ζ (s,a) ≡
∞∑

n=0

1

(n + a)s
, (9)

of the generalized Riemann ζ function of complex-valued
argument s and the Hurwitz parameter a with 0 < a � 1. This
sum is convergent [9] for 1 < σ ≡ Re s.
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For the special choice

ψn ≡ NR(n + a)−σ/2 (10)

of the probability amplitudes giving rise to the quantum state

|ψR〉 ≡ NR

∞∑
n=0

1

(n + a)σ/2
|n〉, (11)

we find the autocorrelation function

C(t) = |NR|2e−iϕ(t)
∞∑

n=0

1

(n + a)σ+iωt
; (12)

that is,

C(t) = |NR|2e−iϕ(t)ζ (σ + iωt,a). (13)

Hence, the time evolution of |ψR〉 expressed by the
autocorrelation function C(t) and given by Eq. (13) reads out
the generalized Riemann ζ function along a line Re s = σ in
complex space which is parallel to the imaginary axis. For this
reason we have included a subscript R on the state |ψR〉 and
refer to it as Riemann state.

The normalization constant NR follows from the relation

〈ψR|ψR〉 = |NR|2
∞∑

n=0

1

(n + a)σ
= |NR|2ζ (σ,a) = 1 (14)

and is determined by the real part σ of the argument s of ζ .
When we substitute |NR|2 from Eq. (14) into Eq. (13), we

find the compact expression

C(t) = e−iωt ln γ ζ (σ + iωt,a)

ζ (σ,a)
(15)

for the autocorrelation function of the Riemann state.

B. Thermal phase states

In order to gain more insight into the Riemann state |ψR〉,
we express the probability amplitudes ψn given by Eq. (10) in
terms of the logarithmic energy spectrum En determined by
Eq. (1). For this purpose we note the identity

ψR = NRe
σ
2 ln γ e− σ

2 ln[γ (n+a)] (16)

and the Riemann state [Eq. (11)] takes the form

|ψR〉 = N
∞∑

n=0

exp

(
−1

2

σ

h̄ω
En

)
|n〉, (17)

where N ≡ NR exp( σ
2 ln γ ).

We note that this state has been extensively discussed [8,29]
in the context of a harmonic oscillator. Indeed, the thermal
phase state

|ψph〉os ≡ Nph

∞∑
n=0

exp

(
−1

2

h̄ω

kBT
n

)
|n〉os (18)

of temperature T which is a superposition of energy eigenstates
|n〉os of the harmonic oscillator can be cast in the form

|ψph〉os ≡ N (os)
∞∑

n=0

exp

(
−1

2

1

kBT
E(os)

n

)
|n〉os, (19)

with the energies

E(os)
n = h̄ω

(
n + 1

2

)
. (20)

Here N (os) ≡ Nph exp( h̄ω
4kBT

) and kB denotes the Boltzmann
constant.

Obviously, the Riemann state [Eq. (17)] is a thermal phase
state in the anharmonic oscillator with the logarithmic energy
spectrum [Eq. (1)]. This analysis even allows us to attribute a
physical meaning to the real part σ of the argument s of the
Riemann ζ function. Indeed, a comparison between Eqs. (17)
and (19) provides us with the identification

σ ≡ h̄ω

kBT
. (21)

Hence, σ is the ratio of the energy unit h̄ω of the anharmonic
oscillator to the thermal energy kBT .

It is important to distinguish the pure Riemann state |ψR〉
defined by Eq. (17) and giving rise to the density operator

ρ̂R = |N |2
∞∑

m,n=0

exp

[
−Em + En

2kBT

]
|m〉〈n| (22)

from the mixed thermal state

ρ̂th ≡ |N |2
∞∑

n=0

exp

(
− En

kBT

)
|n〉〈n|. (23)

Both density operators enjoy the same diagonal elements.
However, the Riemann state is a coherent superposition and
therefore ρ̂R also contains off-diagonal elements. They reflect
a preferred direction in phase space. Indeed, the main positive
contribution of the Wigner function is aligned along the x axis.
In contrast, the thermal state [Eq. (23)] is an incoherent
superposition and does not have a preferred direction in phase
space. For this reason the thermal state does not undergo
any time evolution in the anharmonic oscillator, whereas the
Riemann state does.

We conclude by noting that apart from their different
eigenstates, |n〉os versus |n〉, and their different normalization
constants, NR versus Nph, the thermal phase states

|ψR〉 = NR

∞∑
n=0

exp

[
− σ

2
ln(n + a)

]
|n〉 (24)

and

|ψph〉os = Nph

∞∑
n=0

exp

[
− σ

2
n

]
|n〉os (25)

of the anharmonic and the harmonic oscillator following from
Eqs. (11) and (18) transform into each other when we make
the substitution n → ln(n + a).

III. CONSTRUCTION OF POTENTIAL:
SEMICLASSICAL APPROACH

Next we address the question of how to find a quantum
system which displays the logarithmic energy spectrum
[Eq. (1)]. For this purpose we consider the quantum motion of
a particle of mass µ in a one-dimensional potential V = V (x)
and determine V such that a logarithmic energy spectrum
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emerges. Our main tool is the RKR method [20] of JWKB
as summarized in Ref. [21] and Appendix C .

A. Implicit expression for potential

We start by recalling from Appendix C the relation

X(E) =
√

2h̄2

µ

∫ E

V0

dE′ 1√
E − E′

dn(E′)
dE′ (26)

connecting the excursion

X(E) ≡ x2(E) − x1(E) (27)

of the motion between the two turning points x1(E) < x2(E) of
the particle of energy E with the inverse spectrum n = n(E).
Here V0 is the value of V (x) at the bottom of the potential
well. Moreover, we assume that V has a single minimum and
grows monotonically on each side.

When we substitute the inverse spectrum

n(E) = 1

γ
eE/h̄ω − a, (28)

following from Eq. (1), into Eq. (26) and perform the
differentiation, we find

X(E) = 1

γ

√
2h̄2

µ

∫ E

V0

d

(
E′

h̄ω

)
eE′/(h̄ω)

√
E − E′ , (29)

which with the substitution

θ2 ≡ E − E′

h̄ω
(30)

leads us to

X(E) = 1

γ κ
eE/h̄ωerf

(√
E − V0

h̄ω

)
. (31)

Here we have introduced the abbreviation

κ ≡
√

µω

2πh̄
(32)

and have recalled the error function

erf(y) ≡ 2√
π

∫ y

0
dθ e−θ2

. (33)

Equation (31) provides us with the excursion X for a given
energy E. Since X is the separation of the two turning points,
this dependence on E yields the potential V (x).

It is important to note that the excursion does not determine
the potential uniquely. We have still some degrees of freedom,
which do not alter the semiclassical energy levels. Indeed,
when we assume the potential to be symmetric around x = 0,
the excursion is twice the coordinate x and the potential V

follows from the implicit equation

2γ κ|x| = eV (x)/h̄ωerf

(√
V (x) − V0

h̄ω

)
. (34)

In this relation the parameters ω and γ of the logarithmic
energy spectrum [Eq. (1)] reappear. Moreover, the constant κ

containing the properties of the particle such as the mass µ

multiplies the coordinate x. It is interesting that the constant a

of the spectrum is missing in Eq. (34) but the value V0 of the

potential at the origin is present. Since no condition restricts
V0, Eq. (34) defines a family of potentials V parameterized by
V0. In order to bring out this fact most clearly, we denote the
potential as V (x; V0).

B. Explicit approximate expressions for potential

Next we derive explicit but approximate expressions for the
potential V defined so far only implicitly by Eq. (34). For this
purpose we consider two limiting cases of V .

When V − V0 � h̄ω we can approximate the exponential
function in Eq. (34) as exp[V0/(h̄ω)] and the error function as
erf(y) ∼= 2y/

√
π . As a result, Eq. (34) leads us to

V (x; V0) ∼= V0 + 1
2µω2

eff x2. (35)

Hence, the potential V close to the origin is that of a harmonic
oscillator with the effective frequency

ωeff(V0) ≡ γ e−V0/h̄ωω (36)

determined by γ and the minimal energy V0.
In the case of h̄ω � V − V0 we can approximate erf(y) ≈ 1,

which yields

V (x) ∼= h̄ω ln(2γ κ|x|). (37)

For large distances the potential behaves like a logarithm.
In the intermediate regime of x we need to solve the implicit

equation [Eq. (34)] by numerical methods to arrive at the
potential V (x; V0) shown in Figs. 1 and 2.

-1.0
-0.5

0.0
0.5

1.0

γκx

1

0

−1

V (x;V0)
�ω

−∞

− ln 2

0

V0/�ω

FIG. 1. (Color online) Potential V = V (x; V0) for a nonrelativis-
tic particle of mass µ giving rise to a logarithmic energy spectrum
En = h̄ω ln[γ (n + a)] according to the RKR method. Here we
display V in units of h̄ω in its dependence on the dimensionless
position γ κx and the value V0/h̄ω of V at x = 0. The parameters
γ and a of the spectrum determine via Eq. (40) the value V0.
At the origin the potential is approximately quadratic. For large
values of γ κ|x| it increases logarithmically. In the limit of V0 →
−∞ we obtain a purely logarithmic potential with a singularity
at x = 0.
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FIG. 2. Comparison between the RKR potential V (x; V0) de-
termined from Eq. (34) (depicted by the solid curve) and the
approximations for small or large values of the dimensionless position
γ κx given by Eqs. (35) or (37) (represented by dashed or dotted
lines, respectively). The potential is scaled in units of h̄ω and we have
chosen a value of V0 = −h̄ω ln 2.

C. Connection among V0, a, and α

In Appendix C we show that the minimal value V0 of V is
connected to the Maslov index α of the JWKB approximation
by the relation

n(V0) + α = 0, (38)

which for the logarithmic spectrum Eq. (1) with Eq. (28) takes
the form

1

γ
eV0/h̄ω − a + α = 0. (39)

Since the potential determined by Eq. (34) is symmetric, each
turning point contributes to the Maslov index with 1/4 leading
to α = 1/2. As a consequence, we arrive at

V0

h̄ω
= ln

[
γ

(
a − 1

2

)]
, (40)

which when substituted into the implicit expression Eq. (34)
for the potential yields

2γ κ|x| = eV (x)/h̄ωerf

(√
V (x)

h̄ω
− ln

[
γ

(
a − 1

2

)])
. (41)

Now all parameters of the energy spectrum [Eq. (1)] appear in
this equation and the potential is uniquely determined.

We conclude by noting that, due to Eq. (40), the effective
frequency ωeff [Eq. (36)] of the harmonic oscillator potential
near x = 0 takes the form

ωeff = ω

a − 1/2
. (42)

For a → 1/2 this frequency approaches infinity.

D. Tuning the Hurwitz parameter

So far we have considered the inverse spectral problem;
that is, we have started from the logarithmic spectrum
[Eq. (1)] and have obtained the potential V (x) by the implicit
equation [Eq. (41)]. We came across this problem because of
the connection [Eq. (15)] between the generalized Riemann

ζ function ζ = ζ (s,a) defined by Eq. (9) and the autocorre-
lation function [Eq. (4)] of an anharmonic oscillator with a
logarithmic spectrum.

In ζ (s,a) the Hurwitz parameter a makes its appearance. It
is possible to use the constraint Eq. (40) to tune a by choosing
the minimal value V0 of the potential; that is,

a = 1

2
+ 1

γ
eV0/h̄ω. (43)

Since the second term in this equation is always positive,
we can cover the domain of 1/2 � a. We find a = 1/2 for
V0 = −∞.

In order to also get access to the range 0 < a < 1/2, we
note [9] the relation

ζ (s,a) = 1

as
+ ζ (s,a + 1), (44)

which follows from the definition [Eq. (9)] of ζ (s,a).
We conclude by noting that Eq. (39) suggests another

method of tuning a. This idea relies on constructing a quantum
system in which the Maslov index α can be “engineered,” that
is, chosen at will. Indeed, we recall from Ref. [30] that in
appropriate potentials the Maslov index can be different from
the one predicted by the straightforward application of JWKB.
However, the implementation of this approach to construct
the appropriate potential which would achieve the generalized
Riemann ζ function goes beyond the scope of the present
article.

IV. PURELY LOGARITHMIC POTENTIAL

We now consider the time-independent Schrödinger equa-
tion for the potential which emerges from the implicit
definition [Eq. (34)] of V (x; V0) for V0 → −∞. In this limit
the argument of the error function becomes infinite and the
error function takes on the value of unity. As a result we can
now solve Eq. (34) for V , which takes the form

V (x; −∞) ≡ U (x) = h̄ω ln(2γ κ|x|). (45)

We note that U (x) is identical to V (x; V0) for large values of x.
However, in contrast to V (x; V0) the potential U (x) is singular
at the origin.

In this section we discuss the eigenvalue spectrum of the
time-independent Schrödinger equation[

h̄2

2µ

d2

dx2
+ E − h̄ω ln(2γ κ|x|)

]
u(x) = 0 (46)

corresponding to U . For this purpose we first solve Eq. (46)
numerically and then compare the so-obtained eigenvalues
with the ones obtained from a JWKB analysis. For a summary
of some of the unusual properties of the solution of the
Schrödinger equation [Eq. (46)] for this purely logarithmic
potential, we refer to Appendix E .

A. Numerically exact eigenvalues

Many numerical techniques for integrating a Schrödinger
equation with a singular potential offer themselves. We employ
the Störmer-Numerov method [31] to obtain the exact energy
spectrum corresponding to U .
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TABLE I. Comparison between the energy eigenvalues of the
purely logarithmic potential [Eq. (45)], obtained by different methods
and in two distinct spatial domains accessible to the particle. Starting
from the left, the second and third columns correspond to a particle
experiencing the complete position axis. The fourth and fifth columns
correspond to a particle being restricted to the positive axis only.
The second column summarizes exact eigenvalues Ẽ(ex)

n obtained by
numerically integrating Eq. (48). The third column represents the
JWKB approximation Ẽ(−+)

n of these energies given by Eq. (51). For
the confined particle, only the odd eigenfunctions of the unrestricted
particle survive. Here we summarize two calculations: In the fourth
column we present the expression Ẽ(+)

s , given by Eq. (53), and the fifth
column shows the energies Ẽ(L)

s resulting from a numerical calculation
in JWKB approximation after the addition of a repulsive centrifugal
potential, as suggested by a Langer correction [Eq. (54)].

n Ẽ(ex)
n Ẽ(−+)

n Ẽ(+)
s Ẽ(L)

s s

0 −1.795 524 −1.386 294
1 −0.221 179 −0.287 682 −0.287 682 −0.212 045 0
2 0.192 559 0.223 144
3 0.581 930 0.559 616 0.559 616 0.585 290 1
4 0.796 917 0.810 930
5 1.024 103 1.011 600 1.011 600 1.025 946 2
6 1.169 875 1.178 655
7 1.330 198 1.321 755 1.321 755 1.331 394 3
8 1.440 630 1.446 919
9 1.564 416 1.558 144 1.558 144 1.565 276 4

21 2.377 198 2.374 905 2.374 905 2.377 464 10
41 3.033 586 3.032 546 3.032 546 3.033 689 20
61 3.426 543 3.425 889 3.425 889 3.426 602 30
81 3.707 925 3.707 455 3.707 455 3.707 964 40
101 3.927 275 3.926 911 3.926 911 3.927 304 50
201 4.612 807 4.612 642 4.612 642 4.612 818 100

For this purpose we first introduce the scaled energy Ẽ ≡
E/h̄ω and the dimensionless position

ξ ≡
√

µω

h̄
x, (47)

leading to the equation[
1

2

d2

dξ 2
+ Ẽ − ln

(√
2

π
γ |ξ |

)]
u(ξ ) = 0. (48)

In Table I we list the energy eigenvalues Ẽ(ex)
n obtained for

γ = 1/2 by numerically integrating Eq. (48).

B. Approximate eigenvalues

Next we compare the numerically exact eigenvalues Ẽ(ex)
n

with the ones predicted by JWKB. We start by recalling
that Eq. (39) connects the parameter a of the desired energy
spectrum [Eq. (1)] to the Maslov index α and the potential
energy V0 at the origin. For V0 = −∞ Eq. (39) reduces to

a = α, (49)

and we obtain the expression

Ẽn = ln[γ (n + α)] (50)

for the energy spectrum with n = 0,1,2, . . ..

1. Unrestricted motion

The Schrödinger equation [Eq. (48)] has a singularity at
ξ = 0. When we allow the particle to cross this singularity,
we have two turning points resulting in a Maslov index α =
2 × 1/4 = 1/2. In this case the energy spectrum for a particle
probing the negative as well as the positive axis predicted by
the JWKB expression [Eq. (50)] reads

Ẽ(−+)
n = ln

[
γ

(
n + 1

2

)]
. (51)

In the third column of Table I we list the eigenvalues Ẽ(−+)
n

for γ = 1/2. We note that in general the agreement with the
exact ones is rather poor.

2. Restricted motion

In the JWKB method it is dangerous [32] to ignore the
singularity at ξ = 0 and to extend ξ toward negative values.
The variable ξ must be confined to the interval 0 � ξ < ∞.
The poor man’s way to treat the singularity is to set up a hard
wall. The intelligent way is to invoke the Langer correction
[33]. We now discuss both cases.

a. Hard wall. The boundary condition u(ξ ) = 0 at ξ = 0
selects from Eq. (50) only the odd values of n, that is, n =
2s + 1. As a result, the energy spectrum becomes

Ẽ(+)
s = ln

[
2γ

(
s + 1

2
+ α

2

)]
, (52)

with s = 0,1,2, . . ..
Since α = 1/2 we arrive at the energy spectrum

Ẽ(+)
s = ln

[
2γ

(
s + 3

4

)]
(53)

predicted by JWKB for the motion of a particle restricted to
the positive ξ axis only. In the fourth column of Table I we list
the dimensionless eigenvalues Ẽ(+)

s for γ = 1/2.
b. Langer correction. We obtain a much better agree-

ment when we include the Langer correction [33], which
corresponds to adding the repulsive potential h̄2/(8µx2)
to the Schrödinger equation [Eq. (46)]. The corresponding
Schrödinger equation in dimensionless units then reads[

1

2

d2

dξ 2
+ Ẽ(+) − 1

8ξ 2
− ln

(√
2

π
γ |ξ |

)]
u(ξ ) = 0. (54)

In the fifth column of Table I we present the dimensionless
eigenvalues Ẽ(L)

s obtained by the JWKB method including the
Langer correction. Now we obtain a much better agreement
with the exact values corresponding to the odd wave functions.

V. CONSTRUCTION OF POTENTIAL:
NUMERICAL APPROACH

In Sec. III we use the RKR method to determine the
potential which leads to the logarithmic energy spectrum
given by Eq. (1). Since this method is approximate, we
use in the present section a perturbation theory based on
the Hellmann-Feynman theorem to obtain numerically the
exact potential which provides us with the desired logarithmic
energy spectrum. For more details on this method, see
Appendix F .
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A. Outline of the algorithm

Our starting point is the approximate potential V (j )(x). Here
the superscript j denotes the j th iteration.

Next we solve the time-independent Schrödinger equation{
d2

dx2
+ 2µ

h̄2

[
E(j )

m − V (j )(x)
]}

ϕ(j )
m (x) = 0 (55)

for the energy wave functions ϕ
(j )
m and the eigenvalues E

(j )
m .

In order to obtain the desired energy spectrum E(d)
m , we add

a correction potential δV (x; β (j )) parameterized by the vector
β(j ) to V (j )(x). We determine the components β

(j )
n of β (j ) from

the linear system of equations∑
n

M (j )
mnβ

(j )
n = E(d)

m − E(j )
m (56)

with the matrix

M (j )
mn ≡

∫
dx

∣∣ϕ(j )
m (x)

∣∣2 ∂

∂βn

δV (x; β)

∣∣∣∣
β=0

. (57)

These parameters determine the new potential

V (j+1)(x) = V (j )(x) + δV (x; β(j )), (58)

which serves as the input for the j + 1 iteration.
We still have to determine an appropriate parametrization

of the correction potential. For the present problem it is
convenient to choose the form

δV (x; β) =
∑

l

βl

∣∣ϕ(j )
l (x)

∣∣2
, (59)

which leads to the symmetric matrix

M (j )
mn =

∫
dx

∣∣ϕ(j )
m (x)

∣∣2∣∣ϕ(j )
n (x)

∣∣2
. (60)

Indeed, it is useful to parametrize the potential δV in terms
of the probability density |ϕ(j )

l |2 rather than the probability
amplitudes ϕ

(j )
l . In this case the matrix M

(j )
mn is symmetric.

B. Application: Logarithmic spectrum

We illustrate the algorithm introduced in the preceding
section to obtain the potential corresponding to the logarithmic
energy spectrum [Eq. (1)] for the choice of the parameters
a = γ = 1. In this case we have the eigenvalues

En = h̄ω ln(n + 1), (61)

with n = 0,1,2, . . .. Such a spectrum has also been investi-
gated [34] on the basis of partial supersymmetries.

We start the iteration with the RKR potential V (0) discussed
in Sec. III. Our algorithm converges toward the potential shown
in Fig. 3. We note a substantial deviation between the RKR
potential and the numerically exact one, which, however, for
larger values of x ceases to exist.

VI. SCENARIOS FOR AN EXPERIMENTAL REALIZATION

We now briefly address the question of how to create a
logarithmic potential in an experiment. Here the number D

of dimensions the particle is allowed to experience will play

FIG. 3. Comparison between the numerically exact potential
(solid line) leading to the energy spectrum En = h̄ω ln(n + 1) and
the RKR potential (dashed line). The two potentials are substantially
different. However, for larger distances the deviation becomes less
important, as shown by the inset. Here we have chosen the parameters
V0 = −h̄ω ln 2 and a = γ = 1. Moreover, we have expressed the
potentials in units of h̄ω. The dimensionless position variable is given
by κx.

an important role, as discussed for the case of the purely
logarithmic potential in Appendix E .

We start by recalling that light forces acting on cold
atoms are a promising tool in realizing arbitrary predescribed
potentials. Indeed, a laser field with an intensity profile of the
form of the desired potential interacting nonresonantly with an
atom enforces this very potential on its center-of-mass motion.
Holographic optical beam shapers can create [35] a wide
variety of mode functions for the laser field. This technique is
now used routinely in laboratories.

Another possibility for creating a logarithmic potential is to
take advantage of the Coulomb potential in D = 2 dimensions.
Here the solution of the Poisson equation is not a 1/r potential
but rather displays a logarithmic dependence on the radius. In
the field of electron optics the electron biprism [36] relies on
such a two-dimensional logarithmic potential.

Unfortunately, we have to include also a centrifugal
potential with 1/r2 dependence. Even for a vanishing angular
momentum do we obtain a nonvanishing 1/r2 potential which
in this case is even attractive [37]. Thus, the case of D = 2
automatically provides the logarithmic potential together with
the hard wall at r = 0 but also brings in an unwanted term
which dominates the logarithmic behavior for short distances.

However, we recall that in D = 3 the centrifugal potential
vanishes for quantum states of zero angular momentum, that
is, for s waves. The hard wall at r = 0 is still present due to the
spherical symmetry of the problem. However, we now need
to create the three-dimensional logarithmic potential using an
appropriate laser intensity distribution, as discussed before.
This approach seems to be possible with current technology.

VII. SUMMARY AND OUTLOOK

There exists extensive literature on the problem [38] of
constructing a Hamiltonian whose eigenvalues are determined
by the nontrivial zeros of the Riemann ζ function. However,
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these attempts to verify the Hilbert-Pólya conjecture [39] are
fundamentally different from our approach to connect quantum
mechanics and the Riemann ζ function. Indeed, our goal was to
construct an analog computer for the Riemann ζ function. For
this purpose, we have studied the autocorrelation function C
of a quantum state propagating in an anharmonic oscillator
potential. The connection to the Riemann ζ function is
made through its Dirichlet representation. Indeed, a direct
comparison between the expressions for C and ζ leads to the
logarithmic energy spectrum of the oscillator, as well as the
probability amplitudes of the evolving thermal phase state.

It is interesting to note that the thermal phase state has
already once played an important role in quantum optics. In
the context of the old question [40] of a Hermitian operator
corresponding to the phase variable, thermal phase states
have provided substantial insight into the variational problem
of minimizing the phase uncertainty for a given number of
photons [41]. Optimal phase states [42] arise in interferometric
measurements at the quantum limit.

We have then devoted a substantial portion of our article
to the problem of finding the oscillator potential with a
logarithmic spectrum. In this sense our approach is reminiscent
of the one of Hilbert and Pólya. We also have to solve an
inverse spectral problem. Indeed, we search for a Hamiltonian
whose eigenvalues depend logarithmically on the quantum
number. Obviously, this spectrum is distinctly different from
the sought-after Hilbert-Pólya one given by the nontrivial zeros
of the Riemann ζ function.

We emphasize that our ansatz of an analog computer for ζ

rests on the Dirichlet representation. However, this sum is only
convergent for arguments s of ζ with 1 < Re s. In our language
of evolving quantum states the requirement of convergence
translates into the normalization condition of the state. In
particular, the occupation probabilities of the individual energy
eigenstates of the anharmonic oscillator have to add up to unity.

As we approach the line Re s = 1 from the right, energy
states of larger and larger quantum numbers participate in the
time evolution. For this reason our realization of the Riemann
ζ function is confined to the rather uneventful domain of
1 < Re s of complex space. In particular, we are not able to
build in this way an analog computer which can simulate
the Riemann ζ function in the critical strip, that is, for
0 < Re s < 1, where the nontrivial zeros are located.

It is worthwhile to identify the feature which prevents
us from conquering this domain. Obviously, we have to
satisfy the normalization condition of the quantum state. This
requirement is strongly linked to the fact that throughout
our article we have taken advantage of the interference
property of quantum mechanics. However, we have exclusively
concentrated on quantum systems with a single degree of
freedom only. In principle, we could have also followed our
program for realizing the Riemann ζ function using classical
light, beam splitters and phase shifters. Here the conservation
of intensity prevents us from crossing the line Re s = 1.

One possibility [43] for circumventing the normalization
requirement is offered by the use of two entangled quantum
systems and a joint measurement. This approach is particularly
intriguing since then the counterpart of the technique of
analytical continuation of complex analysis would be played
by the phenomenon of entanglement in quantum mechanics.

Indeed, one of the many seminal contributions of Riemann
to the field of analytical number theory was to start from the
Dirichlet representation of ζ and obtain an analytical con-
tinuation of ζ to the left of Re s = 1. Moreover, according to
Erwin Schrödinger, entanglement is the trademark of quantum
mechanics. Unfortunately, the answer to the question of how
to connect these two topics central to quantum physics and
complex analysis goes beyond the scope of the present article.
It suffices to say that in a forthcoming article [27] we interpret
the Riemann-Siegel formula of the Riemann ζ function as a
superposition of two quantum states with opposite phases. For
the harmonic oscillator, such Schrödinger cat states [44] have
been realized in cavity QED [45] and ion trap [46] experiments
using entanglement and joint measurements. It is fascinating to
translate this well-established formalism to the thermal phase
states which are at the very heart of the Riemann ζ function. In
this interpretation the nontrivial zeros of ζ are a consequence
of a Schrödinger cat.
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APPENDIX A: ANALOGY TO
JAYNES-CUMMINGS MODEL

Sums of the type given by Eq. (5) are not restricted to
mechanical oscillators and to the notion of the autocorrelation
function. They also appear in many other quantum systems
and then represent different physical quantities.

For example, in the Jaynes-Cummings model [10] describ-
ing the interaction of a single mode of the electromagnetic field
in a high-Q cavity with a two-level atom the atomic dynamics
is governed by the sum

S(t) ≡
∞∑

n=0

Wne
−iωnt , (A1)

where ωn ≡ f (n)g. Here g is the vacuum Rabi frequency and
Wn denotes the photon statistics of the field. The dependence
of the function f (n) can [10] be “engineered.” For a resonant
interaction we find f (n) = √

n, whereas in the limit of strong
detuning we obtain f (n) = n.

The experiments with the one-atom maser summarized in
Ref. [47] have studied the resonant interaction of the atom with
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the cavity field in a thermal state of temperature T and make
use of the thermal photon statistics

Wn = W0e
−σn. (A2)

We emphasize that although the time dependence of the
atomic population in the Jaynes-Cummings model [Eq. (A1)]
is governed by a sum of the type of the autocorrelation [Eq. (5)],
it does not originate from the time evolution of a single
quantum system but of two interacting ones. In particular,
Eq. (A1) cannot be derived [10] following the approach of
Sec. II A.

The fact that two quantum systems rather than a single one
are involved shall play an important role when we extend our
ideas of realizing the Riemann ζ function ζ = ζ (s,a) into the
critical domain [7] of complex space, that for Re s < 1. Indeed,
as briefly mentioned in Sec. VII and is further detailed in
Ref. [27], we take advantage of entanglement of two quantum
systems to implement the corresponding representation of ζ

obtained in complex analysis by the method of analytical
continuation.

APPENDIX B: UNIQUENESS OF INVERSE
SPECTRAL PROBLEM

In this appendix we briefly recall the central aspects
of the elementary Sturm-Liouville problem defined by the
differential equation

−u′′
n(x) + q(x)un(x) − λnun(x) = 0. (B1)

The operator L̂,

L̂[u] ≡ −u′′ + qu, (B2)

is Hermitian on the interval b < x < d with the boundary
conditions

εu(b) + βu′(b) = 0 (B3)

and

νu(d) + δu′(d) = 0. (B4)

The time-independent Schrödinger equation

d2

dx2
ψn(x) + 2µ

h̄2 [En − V (x)]ψn(x) = 0 (B5)

defines such a Sturm-Liouville problem, with β = δ = 0
(Dirichlet boundary conditions).

The Sturm-Liouville problem has a direct spectral problem
and an inverse spectral problem associated with it. The direct
problem consists of determining the eigenvalue spectrum λ0 <

λ1 < λ2 . . . for a given q(x). In the case of the Schrödinger
equation this becomes the problem of determining the energies
E0 < E1 < E2 . . . for a given potential V (x). The inverse
problem consists of determining the operator L̂ from the eigen-
value spectrum. The direct problem is thoroughly discussed
in almost any textbook in quantum mechanics. Interest in the
inverse problem has been more modest, but it has been steadily
increasing and is now developing rapidly [48].

A fairly comprehensive discussion of the inverse problem
was given by the Swedish mathematician Göran Borg in
1946 [49]. He proved that, in general, two sets of eigenvalues

for different boundary conditions uniquely determine the
potential q(x). For a case like that of Eq. (B5), with the simple
Dirichlet boundary conditions, a symmetric potential V (x) is
uniquely defined by all eigenvalues En. Many others [50–53]
considerably improved and generalized these results.

In scattering theory this solution, known as the Borg-
Marchenko theorem, plays an important role [54] in deter-
mining the potential of the half-line Schrödinger operator. All
proofs have in common that they rely on local potentials which
fulfill the inequality∫ d

b

x|q(x)| dx < ∞. (B6)

However, we face the inverse spectral problem with an infinite
potential. A proof of its uniqueness is not known to us and
would probably exceed the topic of this article.

APPENDIX C: INVERSE SPECTRAL PROBLEM IN JWKB

In this appendix we summarize the essential ingredients of
the RKR method in JWKB. Here we consider the quantum
motion of a particle of mass µ in a one-dimensional potential
V = V (x) and determine V such that a predescribed discrete
energy spectrum En emerges. Expressions similar to ours have
been derived in Refs. [55,56]. However, we emphasize that
these authors have put the value V0 of the minimum of V

equal to zero. In our treatment we tie V0 to the phase change of
the JWKB-wave function for the energy E = V0. Moreover,
we illustrate the RKR technique using the example of the
harmonic oscillator.

A. From potential to energy spectrum

For simplicity, we consider a potential with a single
minimum. We choose the origin of the coordinate axis to be at
this minimum, that is, V (0) ≡ V0.

The quantity central to our considerations is the phase
change

F (E) ≡
√

2µ

h̄2

∫ x2(E)

x1(E)
dx

√
E − V (x) (C1)

of the JWKB-wave function corresponding to the classical
motion of energy E caught between the two turning points
x1(E) < x2(E).

Our goal is to replace the integration variable x in Eq. (C1)
with the potential V (x) ≡ E′. For this purpose we have to
decompose the integration region into domains where V (x) is
monotonous, that is, x1 � x � 0 and 0 � x � x2. The limits
of the first integration then correspond to E and V0, whereas
in the second integral they are V0 and E, giving rise to the
integral

F (E) =
√

2µ

h̄2

∫ E

V0

dE′√E − E′
[
dx2(E′)

dE′ − dx1(E′)
dE′

]
.

(C2)

When we introduce the excursion

X(E) ≡ x2(E) − x1(E) (C3)
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of the classical motion corresponding to the energy E, we find

F (E) =
√

2µ

h̄2

∫ E

V0

dE′√E − E′ dX

dE′ , (C4)

which after partial integration takes the form

F (E) =
√

2µ

h̄2 [X(E′)
√

E − E′]EV0

+
√

2µ

h̄2

∫ E

V0

dE′ X(E′)
2
√

E − E′ . (C5)

At the minimum of the potential, that is, at x = 0, the
excursion vanishes, that is,

X(V0) = 0. (C6)

As a result, the boundary term in Eq. (C5) due to the lower
limit E′ = V0 vanishes. Likewise, the upper part is zero due to
the square root.

Hence, the phase change is solely expressed by the integral

F (E) =
√

µ

2h̄2

∫ E

V0

dE′ X(E′)√
E − E′ (C7)

over the excursion.
We note that at the minimum of the potential the phase

change vanishes, that is,

F (V0) = 0. (C8)

Quantization is obtained by the familiar JWKB condition [4]

F (En) = π (n + α), n = 0,1,2, . . . (C9)

on the phase change where α is the Maslov index [26].
The allowed energies En are finally obtained by inverting

the function n = n(E) given by Eq. (C9).

B. From energy spectrum to potential

In the preceding section we have started from a given
potential V and have expressed the phase change F (E) in
terms of the excursion X and a square root of the energy.
When we quantize F (E) and invert this relation, we obtain the
quantized energies En.

We now follow this path in the opposite direction. Indeed,
we start from the energy spectrum, that is, we know En and
find the potential by inverting the expression [Eq. (C7)] for the
phase change F to obtain the excursion X.

Collocating the n values allows us to construct a continuous
function n = n(E), which when inserted into the expres-
sion (C9) gives us the phase change F (E), that is,

π [n(E) + α] = F (E) (C10)

or

π [n(E) + α] =
√

µ

2h̄2

∫ E

V0

dE′ X(E′)√
E − E′ . (C11)

Here we have made use of the expression [Eq. (C7)] for F .
The left-hand side of Eq. (C11) is known. We now need to

search for the excursion X(E) which appears in the integral
on the right-hand side. Consequently, Eq. (C11) represents an
integral equation, which is of the Abel type [57,58].

In Appendix D we briefly review a method of inverting the
Abel integral equation and derive the expression

X(E) =
√

2h̄2

µ

∫ E

V0

dE′ 1√
E − E′

dn(E′)
dE′ (C12)

for the excursion. However, for the present discussion it
suffices to show that Eq. (C12) is a solution of Eq. (C11).

For this purpose we substitute Eq. (C12) into the right-hand
side of Eq. (C11) and find the integral

I ≡
∫ E

V0

dE′ 1√
E − E′

∫ E′

V0

dE′′ 1√
E′ − E′′

dn(E′′)
dE′′ , (C13)

which after interchanging the order of integrations yields

I =
∫ E

V0

dE′′ dn(E′′)
dE′′

∫ E

E′′
dE′ 1√

E − E′√E′ − E′′ . (C14)

With the help of the substitution

y ≡ 2E′

E − E′′ − E + E′′

E − E′′ , (C15)

the integral over E′ can be performed and yields∫ E

E′′
dE′ 1√

E − E′√E′ − E′′ =
∫ 1

−1
dy

1√
1 − y2

= π.

(C16)

As a consequence, we arrive at

I = π

∫ E

V0

dE′′ dn(E′′)
dE′′ = π [n(E) − n(V0)]. (C17)

The condition Eq. (C8) on the phase change to vanish at the
bottom of the potential creates a relation between n(V0) and
the Maslov index α. Indeed, we find from Eq. (C10), with the
help of Eq. (C8), the identity

n(V0) + α = 0. (C18)

When we substitute this result into Eq. (C17), we arrive at
the left-hand side of Eq. (C11). As a result, the excursion given
by Eq. (C12) is the potential.

Needless to say, the so-constructed potential leads via the
JWKB quantization to the energy spectrum we have started
from. Moreover, we emphasize that in this derivation we have
neglected the implicit uncertainty in the function F (E) due to
making n(E) a continuous function.

C. Example: Harmonic oscillator

Next we illustrate the RKR method summarized by the
expression for the excursion [Eq. (C12)], together with the
supplementary condition [Eq. (C18)] with the example of an
equidistant energy spectrum,

E(os)
n ≡ h̄ω

(
n + 1

2

)
, (C19)

corresponding to the harmonic oscillator.
When we invert the spectral relation [Eq. (C19)], we find

n(E) = E

h̄ω
− 1

2
, (C20)
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which, together with Eq. (C12), yields the excursion

X(E) = 2
(

1
2µω2

)−1/2√
E − V0 (C21)

and the potential

V (x; V0) = V0 + 1
2µω2x2. (C22)

This potential creates the energy spectrum

En = V0 + h̄ω(n + α). (C23)

In order to be consistent with the energy spectrum (C19)
we have started from, we need V0 = 0 and α = 1/2. For
this purpose we first recall [21] that the Maslov index α

of a potential with two turning points each providing a
contribution +1/4 is given by α = 1/2. Hence, we find from
the supplementary condition [Eq. (C18)] with the help of
Eq. (C20) the identity

V0

h̄ω
− 1

2
+ 1

2
= 0, (C24)

which implies V0 = 0.

APPENDIX D: ABEL INTEGRAL TRANSFORM

In this appendix we briefly review the derivation of the Abel
integral transform and obtain two equivalent representations.
Moreover, we apply these results to rederive the expression
Eq. (C12) for the excursion.

A. General method

We consider the equation

f (E′) =
∫ E′

V0

dE′′ g(E′′)√
E′ − E′′ , (D1)

with the goal to express the function g = g(E) in terms of the
function f = f (E).

For this purpose we multiply both sides of Eq. (D1) by
π−1(E − E′)−1/2 and integrate over E′ from V0 to E, which
results in

1

π

∫ E

V0

dE′ f (E′)√
E − E′

= 1

π

∫ E

V0

dE′ 1√
E − E′

∫ E′

V0

dE′′ g(E′′)√
E′ − E′′ ≡ I. (D2)

Next we interchange the order of the integrations in the double
integral and arrive at

I =
∫ E

V0

dE′′g(E′′)
1

π

∫ E

E′′
dE′ 1√

E − E′√E′ − E′′ , (D3)

which with the help of the integral formula [Eq. (C16)]
leads to

I =
∫ E

V0

dE′′g(E′′). (D4)

As a consequence, Eq. (D2) reduces to

1

π

∫ E

V0

dE′ f (E′)√
E − E′ =

∫ E

V0

dE′′g(E′′). (D5)

When we differentiate both sides with respect to E, we find

g(E) = 1

π

d

dE

[∫ E

V0

dE′ f (E′)√
E − E′

]
≡ 1

π

d

dE
J (E). (D6)

We emphasize that we have to differentiate J (E) with respect
to the variable E which appears in the upper limit of the
integration as well as in the square root underneath the
integral. These differentiations lead to divergent expressions.
Therefore, it is useful to first integrate by parts before
performing the differentiation; that is,

J (E) = −2
√

E − E′f (E′)|EV0
+ 2

∫ E

V0

dE′√E − E′ df (E′)
dE′ .

(D7)

The boundary term simplifies since at the upper limit the square
root vanishes. As a result we find the identity

J (E) = 2
√

E − V0f (V0) + 2
∫ E

V0

dE′√E − E′ df (E′)
dE′ .

(D8)

Now we differentiate with respect to E and note that the
dependence of the upper limit of the integral does not
contribute due to the vanishing of the square root, which leads
us to

g(E) = 1

π

[
f (V0)√
E − V0

+
∫ E

V0

dE′ 1√
E − E′

df (E′)
dE′

]
. (D9)

This expression is completely equivalent to the one in
Eq. (D6).

B. Application to excursion

Next we apply Eq. (D9) to rederive the expression Eq. (C12)
for the excursion using the Abel integral equation

π [n(E) + α] =
√

µ

2h̄2

∫ E

V0

dE′ X(E)√
E − E′ . (D10)

A comparison with Eq. (D1) immediately provides us with the
identifications f ≡ π [n(E) + α] and g ≡ X

√
µ/(2h̄2), which

when substituted into Eq. (D9) yields

X(E) =
√

2h̄2

µ

[
n(V0) + α√

E − V0
+

∫ E

V0

dE′ 1√
E − E′

dn(E′)
dE′

]
.

(D11)

With the help of the supplementary condition Eq. (C18), we
arrive indeed at Eq. (C12).

APPENDIX E: MORE ON LOGARITHMIC POTENTIALS

In Sec. IV we compare and contrast the JWKB energy
eigenvalues of a purely logarithmic potential to the exact ones
obtained by a numerical method. This discussion is motivated
by the problem of obtaining the potential which provides
us with a logarithmic energy spectrum. However, the purely
logarithmic potential

U (x) = U0 ln
(x

b

)
(E1)
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leads to many unusual features that make it interesting to
study it independent of the inverse spectral problem. We
dedicate the present appendix to highlight some of these
properties. Throughout this appendix we restrict the coordinate
x to positive values, that is, 0 � x < ∞. Moreover, U0 ≡ h̄ω

denotes the strength of the potential and b is a chosen
characteristic length.

A. Average kinetic energy is independent of mass

The virial theorem [4] states that twice the expectation
value 〈p̂2/(2µ)〉 of the kinetic energy operator is identical to
the expectation value 〈x̂ dV (x̂)

dx
〉 of the product of the operators

of the position x̂ and the derivative of the potential V̂ = V (x̂),
that is,

2

〈
p̂2

2µ

〉
=

〈
x̂

dV̂

dx

〉
. (E2)

For a potential of the form V (x) = Axn, where A is a
constant, the virial theorem predicts

2

〈
p̂2

2µ

〉
= n〈V̂ 〉. (E3)

However, for the logarithmic potential U defined by Eq. (E1)
we get

2

〈
p̂2

2µ

〉
= U0. (E4)

Thus, the expectation value of the kinetic energy is the same
for all stationary states. It is also independent of the mass of
the particle. This is a remarkable result.

B. Level spacing is independent of mass

The unusual feature Eq. (E4) has its origin in a scaling
property of the Schrödinger equation[

h̄2

2µ

d2

dx2
+ E(µ) − U0 ln

(
x

b

)]
u(x) = 0 (E5)

in the mass µ unique to the logarithmic potential. For the
present discussion it is useful to indicate the mass dependence
of the energy eigenvalue E = E(µ).

For a different mass µ′ the Schrödinger equation[
h̄2

2µ′
d2

dy2
+ E(µ′) − U0 ln

(
y

b

)]
v(y) = 0 (E6)

for the eigenfunctions v = v(y) with energy eigenvalues E(µ′)
is connected to one with mass µ by the scaling transformation

x ≡
√

µ′

µ
y (E7)

of the coordinates.
The functional relation

ln
x

b
≡ ln

(√
µ′

µ

y

b

)
= 1

2
ln

µ′

µ
+ ln

y

b
(E8)

of the logarithm yields the identification

v(y) ≡ u

(√
µ′

µ
y

)
(E9)

and the connection formula

E(µ′) = E(µ) − 1

2
U0 ln

(
µ′

µ

)
(E10)

of the energies E(µ′) and E(µ) corresponding to the masses
µ′ and µ, respectively.

Since Eq. (E10) must hold for any pair of corresponding
energy levels, the energy difference between the ith and the
j th level reads

Ei(µ
′) − Ej (µ′) = Ei(µ) − Ej (µ). (E11)

Hence, the level spacing is independent of the mass.

C. From potential to energy levels

Next we verify that within the JWKB approximation the
purely logarithmic potential U = U (x) given by Eq. (E1)
indeed leads to a logarithmic energy spectrum. Obviously, this
fact is guaranteed by the uniqueness of the Abel transform.
Nevertheless, it is instructive to perform the relevant steps of
the calculation since in this way we can connect the parameters
of the motion of a particle in a potential such as mass with the
parameters of the energy spectrum.

We substitute the excursion

X(E) = beE/U0 (E12)

for the purely logarithmic potential given by Eq. (E1) into
Eq. (C7) for the phase change F = F (E) and find

F (E) =
√

µ

2h̄2 b

∫ E

−∞
dE′ eE′/U0

√
E − E′ . (E13)

Here we have also recalled that V0 = −∞ for the purely
logarithmic potential.

With the help of the new integration variable

η ≡ −E′

E
, (E14)

Eq. (E13) takes the form

F (E) =
√

µ

2h̄2 b
√

E

∫ ∞

−1
dη

exp
(− E

U0
η
)

√
1 + η

, (E15)

which reduces with the integral formula [59]∫ ∞

−1
dη

e−qη

√
1 + η

= eq

√
π

q
(E16)

valid for 0 < q to

F (E) =
√

µ

2h̄2 b
√

πU0e
E/U0 . (E17)

The quantization condition Eq. (C9) finally yields

En = U0 ln

[√
2πh̄2

µb2U0
(n + α)

]
. (E18)
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When we compare this expression for the JWKB energy in the
purely logarithmic potential to the desired energy spectrum
Eq. (1), we can make the identifications

a = α (E19)

and

γ ≡
√

2πh̄2

µb2U0
. (E20)

It is worth mentioning that the identity [Eq. (E19)] between the
Hurwitz parameter a and the Maslov index α also follows from
Eq. (39) in the limit of V0 → −∞. Since Eq. (E20) implies
the scaling law

γ (µ′) =
√

µ

µ′ γ (µ), (E21)

we find from Eq. (E18) the mass dependence

En(µ′) = En(µ) + 1

2
U0 ln

(
µ

µ′

)
= En(µ) − 1

2
U0 ln

(
µ′

µ

)
(E22)

of the JWKB energy eigenvalues En in complete agree-
ment with the scaling law [Eq. (E10)] following from the
Schrödinger equation [Eq. (E5)].

D. Uniqueness

One might wonder if the remarkable dependence of the
energy on the mass of the particle expressed by Eq. (E10)
is unique to the purely logarithmic potential. Indeed, we can
trace this property back to the functional relation

ln(c1c2) = ln c1 + ln c2 (E23)

of the logarithm, which has allowed us to obtain the decom-
position [Eq. (E8)] of the mass contributions. Since Eq. (E23)
defines the logarithmic function uniquely, we must conclude
that the purely logarithmic potential U = U (x) defined by
Eq. (E1) is the only potential giving rise to the energy-mass
scaling of Eq. (E10).

It is interesting to note that Eq. (39), which connects V0 to
γ , a, and α ensures that the energy in the potential V implicitly
defined by Eq. (41), does not satisfy the scaling property
[Eq. (E10)]. We recall that the RKR method constructs this po-
tential within the JWKB approximation such that the emerging
energy spectrum is given by the desired logarithmic eigenvalue
distribution [Eq. (1)]. However, at this point it is not clear how
the mass of the particle makes its appearance in Eq. (1).

Since the parameter κ [Eq. (32)] is proportional to the
square root of the mass, we find the scaling relation

κ(µ′) =
√

µ′

µ
κ(µ). (E24)

In Eq. (41) the parameter κ appears only on the left-hand side
of the equation in a product with γ . It is therefore tempting
to redefine γ in the way suggested by Eq. (E21). However,
due to the constraint Eq. (39), the parameter γ also appears
on the right-hand side of Eq. (41) and prevents in this way the
rescaling of the equation for the potential. Only in the limit

of V0 → −∞ do we achieve the scaling property [Eq. (E10)],
since in this case the right-hand side of Eq. (41) is independent
of γ .

E. From one to three dimensions: Quarkonium

In three dimensions the potential as well as the Schrödinger
equation [Eqs. (E1) and (E5)] are replaced by

U (r) = U0 ln

(
r

b

)
, (E25)

with 0 < r < ∞ and[
h̄2

2µ

d2

dr2
+ E − h̄2�(� + 1)

2µr2
− U0 ln

(
r

b

)]
u(r) = 0.

(E26)

Here r ≡
√

x2 + y2 + z2 and � denote the radial variable and
the angular momentum quantum number, respectively, and
u = u(r) is the reduced radial function. For s states, where
� = 0, Eqs. (E5) and (E26) become formally identical.

With r being the distance between two particles interacting
through central forces and µ being the reduced mass of the
two particles, Eq. (E26) may be interpreted as the radial
Schrödinger equation for the relative motion of two such
particles. The preceding findings about kinetic energy and
level spacings remain valid in three dimensions. They are
in harmony with the experimentally found properties of
quarkonium, which is built from a quark and an antiquark.
The logarithmic potential has accordingly been considered
a possible candidate for the interaction potential in this
composite particle [60].

This application has stimulated the interest in Eq. (E26) and
its solutions. Some authors have presented numerical solutions
of Eq. (E26) for several values of � and the radial quantum
number n. A nonexhaustive list includes work using the shifted
1/N expansion [61], the standard variation technique [62],
and a generalized pseudospectral method [63]. Especially
noteworthy is in this case the approach of Refs. [64,65] based
on a perturbation expansion.

F. Two dimensions: A hydrogen-atom model

In two dimensions the logarithmic potential reads

U (ρ) = U0 ln

(
ρ

a

)
, 0 < ρ < ∞, (E27)

and is thus identical to Eq. (E25), but with ρ ≡
√

x2 + y2.
Moreover, the radial Schrödinger equation becomes[

h̄2

2µ

d2

dρ2
+ E − h̄2(m2 − 1/4)

2µρ2
− U0 ln

(
ρ

b

)]
u(ρ) = 0,

(E28)

where u = u(ρ) denotes the radial wave function and m is the
angular-momentum quantum number. Because of the so-called
anticentrifugal potential −h̄2/8µρ2 [66], Eq. (E28) is formally
different from Eq. (E5) for m = 0.

Equation (E28) has attracted some attention in the liter-
ature as a possible radial Schrödinger equation for a two-
dimensional hydrogen atom, and solutions have been obtained
for several levels, by means of the variational method [67,68].
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The structure of the three-dimensional hydrogen atom is, of
course, determined by the well-known Coulomb potential,
and that potential has also been used in the description of
a hypothetic two-dimensional hydrogen atom. It has, however,
been argued that the potential should be chosen with reference
to Gauss’ theorem. In three dimensions, this theorem is
satisfied by the Coulomb potential, and in two dimensions
by the logarithmic potential. This is the rationale behind the
interest in the two-dimensional logarithmic potential.

APPENDIX F: EIGENVALUE CORRECTIONS

In Sec. III we have found a potential which in JWKB ap-
proximation provides us with a logarithmic energy spectrum.
However, when we solve in Sec. IV the Schrödinger equation
in the presence of this potential in an exact way we do not
arrive at this predescribed spectrum. Therefore, we need to
obtain an improved potential using perturbation theory as well
as an iteration algorithm. In the present appendix we briefly
summarize the perturbative approach, which is based on the
Hellmann-Feynman theorem [23–25].

We consider the Hamiltonian

Ĥβ ≡ Ĥ (0) + δV (x̂; β), (F1)

consisting of the Hamiltonian

Ĥ (0) = p̂2

2µ
+ V (0)(x̂), (F2)

with the potential V (0)(x̂) obtained by the RKR method
discussed in Appendix C and a small correction potential
δV (x; β). Here the vector β consists of the components βn,
which describe the shape of the correction. For β → 0 the
correction potential vanishes.

The states |ϕm〉 satisfy the energy eigenvalue equation

Ĥβ |ϕm〉 = Em|ϕm〉, (F3)

where the energies Em and the eigenstates |ϕm〉 depend on β.
We can express Em with a Taylor series

Em = Em|β=0 +
∑

n

∂Em

∂βn

∣∣∣∣
β=0

βn + O(β2) (F4)

around β = 0.
The energies Em at β = 0 are the eigenvalues E(0)

m of
the Hamiltonian Ĥ0. Moreover, we obtain the derivatives of

Em with respect to the parameters βn by differentiating the
definition

Em ≡ 〈ϕm|Ĥβ |ϕm〉, (F5)

which yields

∂Em

∂βn

=
(

∂

∂βn

〈ϕm|
)

Ĥβ |ϕm〉 + 〈ϕm|
(

∂

∂βn

Ĥβ

)
|ϕm〉

+ 〈ϕm|Ĥβ

(
∂

∂βn

|ϕm〉
)

. (F6)

The eigenvalue equation (F3) allows us to combine the first and
the third term in Eq. (F6) as the derivative of the state vector
with respect to βn. According to Eq. (F1) the differentiation of
Ĥβ with respect to βn only includes the potential δV , which
leads us to

∂Em

∂βn

= Em

∂

∂βn

〈ϕm|ϕm〉 + 〈ϕm|
(

∂

∂βn

δV (x̂; β)

)
|ϕm〉. (F7)

When we assume that the eigenstates |ϕm〉 are normalized,
Eq. (F7) reads

∂Em

∂βn

= 〈ϕm|
(

∂

∂βn

δV (x̂; β)

)
|ϕm〉. (F8)

In the limit of β = 0 this expression reduces to

∂Em

∂βn

∣∣∣∣
β=0

= 〈
ϕ(0)

m

∣∣ ∂

∂βn

δV (x̂; β)

∣∣∣∣
β=0

∣∣ϕ(0)
m

〉
, (F9)

where |ϕ(0)
m 〉 denote the energy eigenstates of the unperturbed

Hamiltonian Ĥ (0) with energy eigenvalue E(0)
m .

When we substitute the expression for the first deriva-
tive of Em with respect to βn given by Eq. (F9) into
the Taylor series (F4), we arrive at the linear system of
equations ∑

n

Mmnβn = Em − E(0)
m (F10)

for the parameters βn with the matrix

Mmn ≡ 〈
ϕ(0)

m

∣∣ ∂

∂βn

δV (x̂; β)

∣∣∣∣
β=0

∣∣ϕ(0)
m

〉
. (F11)

Hence, we have derived a matrix equation in which the
variation of the energies En − E(0)

n determines the parameters
β of the correction potential δV (x; β).
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D. Rockmore, Stalking the Riemann Hypothesis (Pantheon
Books, New York, 2005), or J. Derbyshire, Prime Obsession
(Pinguin Books, New York, 2004).

[40] See, for example, the special issue on Quantum Phase and Phase
Dependent Measurements, edited by W. P. Schleich and M. S.
Barnett, Phys. Scr. T 48 (1993).

[41] I. Bialynicki-Birula, M. Freyberger, and W. P. Schleich, Phys.
Scr. T 48, 113 (1993).

[42] J. P. Dowling, Opt. Commun. 86, 119 (1991).
[43] For another approach, see J. Twamley and G. J. Milburn, New

J. Phys. 8, 328 (2006). They transform the coordinate system
into a hyperbolic space. Then the connection between the new
position and momentum variables is given by a Mellin transform,
which is central to the analytical continuation of the Riemann
ζ function.

[44] W. Schleich, M. Pernigo, and F. L. Kien, Phys. Rev. A 44, 2172
(1991).
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