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Abstract
We consider Feshbach scattering of fermions in a one-dimensional optical
lattice. By formulating the scattering theory in the crystal momentum basis, one
can exploit the lattice symmetry and factorize the scattering problem in terms of
centre-of-mass and relative momentum in the reduced Brillouin zone scheme.
Within a single-band approximation, we can tune the position of a Feshbach
resonance with the centre-of-mass momentum due to the non-parabolic form
of the energy band.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

It is well known from solid state theory [1, 2], x-ray defraction [3] or the atomic motion in laser
fields [4] that the presence of a periodic potential requires a modification of the conventional
concepts of scattering theory [5]. In the context of ultra-cold quantum gases, this has led to a
tremendous outburst of activities during the past few years. Today, it is possible to examine
the interplay of many-body physics at the lowest attainable temperature, in the presence
of designable optical lattices [6] for bosons [7–10], fermions [11–14], bose–fermi mixtures
[15, 16] and to manipulate simultaneously the interaction among particles [17–21], as well as
collective states [22].

In the present paper, we will discuss binary Feshbach resonance scattering in the presence
of a lattice, as a particular aspect of the aforementioned general theme. When one approaches
the topic of binary atomic scattering in homogeneous space and in a periodic lattice, one
needs to highlight the similarities and differences, first. In homogeneous space the scattering
process connects asymptotical free states, which are plane waves |q〉. The accessible relative
kinetic energy q2 > 0 forms a simple continuum, which has a lower bound, but no upper
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one. Furthermore, a binary scattering event in homogeneous space is translational invariant.
As a consequence, one obtains the separation of the centre-of-mass motion from the relative
dynamics, hence a significant simplification of the problem. In optical lattices in contrast, we
have to use the eigenstates of a lattice, i.e. Bloch states |q, n〉 with a quasi-momentum q and
band-index n. Due to the periodic potential, we find a structured energy continuum εL(q, n),
which consists of several bands n of increasing width (defining upper and lower band edges),
as well as forbidden gaps. The density of states also varies accordingly.

The discrete translational symmetry of the lattice can be exploited for the scattering
problem by introducing a crystal momentum basis [23], which is formed by two-particle
free Bloch states |q1, n1〉 ⊗ |q2, n2〉. They are labelled by the centre-of-mass momentum
Q = q1 + q2 modulo the crystal momentum kL, which remains a good quantum number. In
this way, the coupled two-particle scattering simplifies again and we can introduce a scattering
amplitude to measure the strength of the binary interaction.

By introducing the Feshbach coupling, in addition to the normal pairing potential between
two fermions, we will be able to enhance the strength of binary interactions via an external
magnetic field [24]. Being in a lattice, we can consider interband interactions in addition
to the intraband transitions. This will be important if the strength of the Feshbach coupling
is comparable to the interband separation. For simplicity, we will consider here only very
narrow resonances, such that a single-band description is sufficient. Extensions to multi-band
configurations are straightforward in the present formulation, if necessary [25].

In this paper, we present the principle of a scattering calculation for two fermions in a one-
dimensional lattice. In section 2, we will start from the current form of the many-body theory
that is pursued by many groups. We will simplify this by considering only two fermions and
a compound bosonic molecule to obtain a two-component two-particle Schrödinger equation
for the molecule and fermion-pair wavefunction. In section 3, we will briefly review the basic
concept of the scattering phase, the transmission probability and discuss the simplest model
for a Feshbach resonance in homogeneous space. This will be generalized to two-particle
Feshbach scattering in a one-dimensional lattice in section 4. We present numerical results for
Feshbach resonance within a single-band approximation and demonstrate that it can be tuned
selectively with the centre-of-mass momentum, due to the non-parabolic energy band.

2. Reducing many-body physics to two atoms and a molecule

Currently, much effort is devoted to the many-body description of resonance superfluidity
and the BEC–BCS crossover [26–28]. Thus, we will briefly introduce the fundamental model
Hamiltonian [29, 30]. Then, we will apply it to the situation of only two fermions and a bosonic
molecule, now, trapped in the same periodic one-dimensional optical lattices. The periodic
trapping of both molecular and atomic components is beneficial to the overall interaction cross
section as both components will tend to be localized at the anti-nodes of the optical potential,
thus be constantly available for scattering.

In the language of second quantization, we describe the many-body system with fermionic
fields ψ̂σ (x), which remove a single-fermionic particle from position x in internal state
σ = {↑,↓}, and molecular bosonic fields φ̂i(x), which annihilate a composite bound two-
particle excitation from the centre-of-mass space-point x in internal configuration i. These
field operators and their adjoints satisfy the usual fermionic anti-commutation rules{

ψ̂σ1
(x1), ψ̂

†
σ2

(x2)
} = δ(x1 − x2)δσ1σ2 ,

{
ψ̂σ1

(x1), ψ̂σ2
(x2)

} = 0, (1)

and bosonic commutation rules[
φ̂i1

(x1), φ̂
†
i2
(x2)

] = δ(x1 − x2)δi1i2 ,
[
φ̂i1

(x1), φ̂i2
(x2)

] = 0, (2)
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respectively. We want to consider only bound molecular excitations by choosing a high
dissociation threshold energy. Effectively this closes this decay channel and allows only
for collision-induced processes. These are the basic ingredients of a Feshbach resonance
as originally invented by Fermi, Fano and Feshbach [31–33]. Hence, we can present the
composite molecular field also with respect to the individual coordinates (x1, x2) of the dimer,
i.e.

φ̂ (x1, x2) =
∑

i

φ̂i ((x1 + x2)/2)〈x2 − x1|i〉. (3)

The dynamics of the multi-component gas is governed by a total system Hamiltonian

Ĥ = ĤL + V̂ (4)

ĤL =
∫

d3x
∑

σ={↑,↓}
ψ̂ †

σ (x)HL(x, p)ψ̂σ (x) +
∫

d6x φ̂†(x1, x2)HL(x1, p1, x2, p2)φ̂(x1, x2),

(5)

V̂ =
∫

d6x
{
vq(x1 − x2)φ̂

†(x1, x2)φ̂(x1, x2) + [g∗(x1 − x2)φ̂
†(x1, x2)ψ̂↓(x2)ψ̂↑(x1) + H.c.]

+ vp(x1 − x2)ψ̂
†
↑(x1)ψ̂

†
↓(x2)ψ̂↓(x2)ψ̂↑(x1)

}
. (6)

It consists of the lattice Hamiltonian ĤL and the interactions V̂ between atoms and molecules.
We assume that the free dynamics of the atoms and molecules is determined by their kinetic
and potential energy in a quasi-1d optical lattice

HL(x, p) = − h̄2

2m
∇2 + UL(x) + U⊥(y, z), (7)

where x = (x, y, z) and p = −ih̄∇ are canonically conjugate variables in the position
representation, m is the atomic mass and UL(x) is a one-dimensional optical lattice potential.
Furthermore, we want to assume that the motion in the perpendicular (y, z) direction is
effectively frozen out by a tight confinement potential U⊥(y, z). Supposedly, the lattice
energy is identical for the fermionic atoms of both kinds and twice that for the molecules, i.e.

HL(x1, p1, x2, p2) = HL(x1, p1) + HL(x2, p2). (8)

The binary interaction potential vp accounts for the non-resonant interaction of ‘spin-up’ and
‘spin-down’ fermions, the coupling strength g converts free fermionic particles into bound
bosonic molecular excitations and vq is the molecular potential with at least one bound state.
One can further simplify matters by considering only even parity binary interaction potentials
vq, vp and g. Moreover, we have neglected the interactions among the molecules, since we
will focus on the case of just two fermions.

The essence of the resonant scattering physics in this many-body Hamiltonian can be
brought out most clearly, if we consider only two interacting fermionic atoms with field
amplitude ψ and a bosonic molecule with amplitude φ, i.e.

|�(t)〉 =
∫

d6x
{
φ(x1, x2, t)φ̂

†(x1, x2) + ψ(x1, x2, t)ψ̂
†
↑(x1)ψ̂

†
↓(x2)

}|0〉. (9)

According to the Pauli principle, the bosonic and fermionic part of the total wavefunction must
be symmetric and anti-symmetric under particle exchange. Thus, if we limit the discussion to
the fermionic singlet channel, we need to have a symmetric spatial amplitude ψ(x1, x2, t) =
ψ(x2, x1, t), as well as a symmetric molecular wavefunction φ(x2, x1, t) = φ(x1, x2, t).
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In this restricted few-particle Fock space with the imposed constraints on the interaction
channels, finally one finds a two-component Schrödinger equation for the state vector
χ(x1, x2, t) = (φ(x1, x2, t), ψ(x1, x2, t))

	

ih̄∂tχ = [HL(x1, p1, x2, p2) ⊗ 11 + V (x1 − x2)] χ,

V (x) =
(

vq(x) g(x)

g∗(x) vp(x)

)
.

(10)

In the following, we will also abandon the three-dimensional character of the problem and
restrict the discussion to a quasi one-dimensional situation, when all dynamics takes place
along the x-direction.

3. Scattering in free space

The previously introduced two-component Hamiltonian contains the essential ingredients of
Feshbach scattering, but lacks the full translational invariance of homogeneous space, due
to the presence of the lattice potential. We will therefore briefly review the scattering phase
and the prerequisites for the appearance of a Feshbach resonance in free space with a contact
potential for later reference.

3.1. Scalar potential scattering

The energy of two particles on a line

H = H0(p1) + H0(p2) + V (x1 − x2), (11)

consists of kinetic energy H0 = p2/2m and the short-range binary potential energy V .
Obviously, all parts of this Hamiltonian are translational invariant. This symmetry can be
exploited by introducing a centre-of-mass coordinate X and a relative coordinate x, as well as
their conjugate momenta P, p as

X = (x1 + x2)/2, x = x1 − x2, (12)

P = p1 + p2, p = (p1 − p2)/2. (13)

The total momentum P is the conserved quantity that is associated with the symmetry
generating displacement operator D12(a) = exp[iaP/h̄]. It shifts the whole system by a
distance a in the e12 = e1 + e2 direction and commutes with the Hamiltonian

[H,D12(a)] = 0. (14)

Thus, the total two-body wavefunction χ2(x1, x2) can be expressed in terms of centre-of-mass
and relative coordinates with a product ansatz χ2(x1, x2) = θ(X)χ(x). Here, we assume that
θ(X) = exp(iQX) is a plane wave in the centre-of-mass coordinate with momentum Q and
the relative wavefunction is denoted by χ(x). This reduces the corresponding two-particle
Schrödinger equation with total energy E to the standard form [5] of an effective single-particle
problem [

d2

dx2
+ ε − V (x)

]
χ(x) = 0, (15)

where we have also rescaled all dimensional quantities, like length x → xkL, in terms of
the wave-number kL of an optical lattice photon (see equation (25)), as well as energies or
potentials V → V/εL, in terms of the recoil energy εL = h̄2k2

L

/
m. Adopting such units will
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facilitate the comparison with the lattice case discussed in section 4. Then, the relative energy
ε becomes synonymous with the free space dispersion relation

ε(k) = k2 = E − Q2

4
> 0. (16)

As any second-order differential equation, equation (15) admits two linearly independent
scattering solutions χ

(±)
k (x) for the same energy ε(k). By comparing them to non-interacting

plane waves, one can introduce reflection and transmission amplitudes R(k) and T (k), i.e.

lim
x→−∞ χ(+)(x, k) = eikx + R e−ikx

= eiδe cos(kx − δe) + i eiδo sin(kx − δo), (17)

lim
x→∞ χ(+)(x, k) = T eikx

= eiδe cos(kx + δe) + i eiδo sin(kx + δo) (18)

as well as even and odd scattering phase shifts δe(k) and δo(k). The transmission and reflection
probabilities are given by

|T |2 = cos2(δe − δo), |R|2 = sin2(δe − δo), (19)

and unitarity demands current conservation, which is mathematically paraphrased as
|T |2 + |R|2 = 1.

3.2. Two-component Feshbach resonances with a contact potential

The quintessential mechanism for a Feshbach resonance occurs, when one couples two internal
states χ = (χq, χp)	 to the external motion of the one-dimensional, two-particle Hamiltonian
of equation (11). The closed q-channel needs an attractive delta potential to support a bound
state and a localized coupling matrix element is required to provide an interaction with the
open p-channel [34]. A simple, analytically solvable model for this is

H = H0(p1, p2) ⊗ 11 + V (x1 − x2),

V (x) =
(

u + vδ(x) gδ(x)

gδ(x) 0

)
.

(20)

The parameters of the potential matrix V are the threshold energy u > 0, the strength of the
closed channel potential v < 0 and the channel coupling parameter g. As in the scalar case,
all contributions to the Hamiltonian are translationally invariant and a product ansatz for the
wavefunction χ2(x1, x2) = exp(iQX)χ(x) leads to the Schrödinger equation for the relative
wavefunction [

d2

dx2
+ ε − V (x)

]
χ(x) = 0. (21)

Here, we have again introduced rescaled potentials, energies and length mentioned in the
context of equation (15).

For relative scattering energies 0 < ε(k) = k2 < u, smaller than the threshold energy
u, the closed channel asymptotic wavefunction χq(x) vanishes exponentially, while the open
channel wavefunction χp(x) propagates outwards freely. Due to the even parity of the contact
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0

0.5
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1.5
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δ e(k
),

 |T
(k

)|2

Figure 1. Even scattering phase δe(k) (solid line) and transmission probability |T |2 (dashed line)
of a Feshbach resonance as a function of energy ε = k2 with a resonance at εres = 6. Parameters:
u = 10, v = −4 and g = 1.

potential, we can also choose wavefunctions of definite parity, i.e.

lim
x→±∞ χ(e)

q (x, k) ∼ e−q|x|, q(k) =
√

u − k2, (22)

lim
x→±∞ χ(e)

p (x, k) ∼ cos(kx ± δe). (23)

Odd wavefunctions do not accrue any phase shift, as they vanish at the point of interaction.
By integrating the coupled Schrödinger equation (21) over an infinitesimal strip around

the discontinuity, one obtains the necessary boundary conditions to compute the scattering
phase of the even wavefunction. After some minor algebra, one obtains the phase shifts

tan(δe) = − g2

2k(2q(k) + v)
, δo = 0. (24)

This phase shift and the corresponding transmission probability |T |2 of equation (19) are de-
picted in figure 1. One clearly observes the Feshbach resonance with a π -phase jump at εres =
k2

res = u − v2/4. The position of the resonance energy is usually controlled by changing the
dissociation threshold energy u via magnetic fields or via the depth of the bound state potential
v, which is a property of the considered atomic element and, thus, harder to modify. The
width of the resonance is primarily determined by the coupling strength g [35]. Due to the
vanishing odd phase shift, the total reflection T = 0 also occurs at the same energy, when the
even phase shift reaches δe(kres) = π/2. It is also important to note that the phase can be well
approximated by a Breit–Wigner curve in the vicinity of the resonance.

In figure 2, we present the same scattering phase δe(k(E,Q)) of equation (24), now as
a function of the two-particle energy E and the centre-of-mass momentum Q, according
to (16). This representation emphasizes the parabolic form of the resonance energy
Eres = εres + Q2/4 > 0, as a function of Q. The Feshbach resonance is always present
for εres > 0 and for all Q, or it disappears if εres < 0. As we will show in the following
sections, this fundamental behaviour can be changed by considering Feshbach scattering
in a lattice where centre-of-mass and relative motion are coupled. Results can be seen in
figures 11 and 12.
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Figure 2. Even scattering phase δe(k(Q, E)) versus energy E and momentum Q. The Feshbach
resonances are located on a free space parabola as a function of Q. Parameters as in equation (32).

4. Scattering on a one-dimensional lattice

4.1. Bloch states and periodic boundary conditions

Studying physics in periodic structures immediately leads to the consideration of Bloch
states [2, 36], which reflect the discrete translation symmetry D(la) = exp[ilap/h̄] of
the Hamiltonian [HL,D(la)] = 0 with l ∈ N . We have already introduced a quasi-one-
dimensional lattice Hamiltonian in equation (7) and will disregard from now on the transverse
degrees of motion, i.e.

HL(x, p) = p2

2m
+ UL(x), UL(x) = UL cos2 (kLx/2). (25)

The lattice potential UL(x + a) = UL(x) is characterized by a lattice constant a, which in turn
defines the crystal momentum kL = 2π/a. Thus, the eigenstates of the Schrödinger equation

HL|q, n〉 = εn
L(q)|q, n〉, (26)

can be classified as Bloch states |q, n〉 with quasi-momentum −π/a � q < π/a, and energy
bands εn

L(q), labelled by band index n. According to the Bloch theorem

〈x|q, n〉 = eiqxun
q(x), un

q(x + a) = un
q(x). (27)

Such an energy eigenfunction can be decomposed into a plane-wave phase factor and a lattice
periodic function un

q . Subjected to translation to the next lattice site, the wavefunction acquires
a complex phase

〈x + a|q, n〉 = eiqa〈x|q, n〉. (28)

The periodic continuation in momentum space has its subtleties and attention needs to be paid
to the vanishing of the wavefunction at the centre or edge of the first Brillouin zone [36].
However, the generic case is simply given by 〈x|q + kL, n〉 = 〈x|q, n〉.

In practice, it is usually necessary to work with a discrete subset of Bloch states, which
are found by considering a periodically continued, finite lattice with an even number of wells
N = 2M . The Born–von-Karman periodic boundary conditions then require that

〈x + L|q, n〉 = eiqL〈x|q, n〉 = 〈x|q, n〉 (29)
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Figure 3. Magnitude |u0
q (x)| (a) and phase γ (x) (b) of the lowest band Bloch function

〈x|q, n = 0〉 = |un
q(x)| exp[iγ (x)], versus dimensionless position −π/2 � x < π/2, for a

few momenta q = (−1,−0.5, 0, 0.5, 0.992). In this shallow potential the Bloch waves are almost
plane and deviations are only seen at the band edge q ≈ ±1. Parameters are as in equation (32).

where the total length L = Na. This can only be true if there are exactly N distinct momenta
ql in each band

−π

a
� ql = 2πl

L
= kL

l

N
<

π

a
, −N

2
� l <

N

2
. (30)

We choose the following orthogonalization for the Bloch states on a finite lattice:

〈q1, n1|q2, n2〉 = Nδq1,q2δn1,n2 ,

∫ a

0
dx|〈x|q, n〉|2 = 1. (31)

The general behaviour of the Bloch states is shown in figure 3. There we have selected a
few Bloch eigenfunctions for some momenta q within the Brillouin zone, which exemplify the
modified plane-wave behaviour. A typical energy-band structure in coordinate and momentum
space is presented in figures 4 and 5, respectively. In here and all of the following calculations,
we use dimensionless parameters for a shallow lattice that only supports one band below the
barrier, i.e.

UL = −(6/5)2, a = π, N = 28. (32)

4.2. Scalar two-particle scattering in lattices

We will now consider the scattering of two particles in the presence of a lattice. Thus, we
have a two-particle lattice Hamiltonian and a binary interaction V

H = HL(x1, p1) + HL(x2, p2) + V (x1 − x2). (33)

By forming two-particle basis states out of single-particle Bloch waves one obtains two-
dimensional Bloch states



Resonant Feshbach scattering of fermions in one-dimensional optical lattices 2711

Figure 4. Lattice potential UL(x) (solid line) versus position x, superimposed on the top of two
allowed energy bands ε0

L(q) and ε1
L(q) (shaded grey). Parameters as in equation (32).

0 0.5 1

0

1

2

3

q

ε

Figure 5. Energy bands ε0
L(q) (solid) and ε1

L(q) (dashed) versus quasi-momentum q in the first
Brillouin zone −1 � q < 1.

|Q, q, n1, n2〉 = |q1(Q, q), n1〉 ⊗ |q2(Q, q), n2〉 (34)

Q = q1 + q2, q = (q1 − q2)/2 (35)

q1 = Q/2 + q, q2 = Q/2 − q. (36)

The corresponding reciprocal momentum space for two particles in a one-dimensional
lattice is depicted in figure 6. One can see the individual single-particle momenta q1 and q2,
as well as the centre-of-mass momentum Q and relative momentum q. This set of symmetry
adjusted basis states can be used to represent a general quantum state with quasi-momentum
Q as

|χ,Q〉 =
∑

q,n1,n2

χ
(n1,n2)
Q (q)|Q, q, n1, n2〉 (37)

D12(la)|χ,Q〉 = eilaQ|χ,Q〉. (38)
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Figure 6. Reciprocal momentum space for two particles in a one-dimensional lattice consisting
of only N = 4 wells. The Cartesian axes represent the individual momenta in the reduced zone
scheme −1 � q1, q2 < 1. The 45◦ rotated grid lines correspond to the contours of centre-of-mass
−1 � Q < 1 and relative momentum −1 � q < 1.

From the discrete translation symmetry of the system, one finds the selection rule

0 = 〈χ,Q|[H,D12(la)]|χ,Q′〉 = 〈χ,Q|H |χ,Q′〉(eila(Q′−Q) − 1), (39)

which implies Q′ = Q mod kL. In the following, we will consider only transitions within
the lowest energy band, i.e. n1 = n2 = 0 and simplify the notation to χ

(0,0)
Q (q) ≡ χQ(q),

consequently.
Within these assumptions, one can represent the Schrödinger equation to equation (33) as

0 =
∑
q ′

{[
ε0
L(q1) + ε0

L(q2) − E
]
δqq ′ + VQ(q, q ′)

}
χQ(q ′), (40)

where q1 = q1(Q, q) and q2 = q2(Q, q). If we let our perturbation tend to zero, then we are
left with the two-dimensional energy surface

EL(Q, q) = ε0
L(q1) + ε0

L(q2). (41)

The contour lines of which are depicted in figure 7. The marked intersections show that there
are two linearly independent two-particle quantum states labelled by (q1, q2) and (q2, q1) that
have the same total energy E and centre-of-mass momentum Q. It it interesting to note that in
general there are no straight contour lines at Q = ±1 or q = ±1, as would be the case in the
tight binding limit |UL| � 1. The energy range that is covered by the two-particle energy can
be seen in figure 8. It shows the projections along the Q and q momentum lines.

Now, if we turn to the evaluation of the matrix element VQ(q, q ′), then it is best expressed
in centre-of-mass coordinates. Moreover, the algebra simplifies considerably if we use a
zero-range contact potential for the binary potential V (y) = vδ(y) and obtain

V (Q, q, q ′) = vvQ(q, q ′), (42)

vQ(q, q ′) =
∫ a

0

dx

N
{u∗

Q/2+q(x)u∗
Q/2−q(x)uQ/2+q ′(x)uQ/2−q ′(x)}. (43)
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Figure 7. Energy contours EL(Q, q) for the non-interacting two-particle system in momentum
space. The superimposed Q = const. line (solid black) has two intersections with another E =
const. contour (dark grey), which are at q (circled) and −q (boxed).
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Figure 8. Projections of the two-dimensional energy surface EL(Q, q) versus momentum Q
(a) and q (b).

The shape of this potential matrix can be calculated quite accurately with localized Wannier
functions in the Gaussian approximation. In general, this agrees well with the numerical
results shown in figure 9. In this picture, we have chosen a value of Q = 0 for the centre-of-
mass momentum. For other values Q �= 0, one obtains a modest variation of the shape of the
matrix element at the momentum edges, but it remains predominantly constant inside.

4.3. Two-component Feshbach scattering in lattices

Having established the basic notions and concepts in the previous sections, we can now turn
to the Feshbach resonance scattering phenomenon in a lattice. The basic Hamiltonians have
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Figure 9. Interaction matrix element vQ(q, q ′) in reciprocal momentum space for Q = 0, other
parameters as in equation (32).

been already introduced in equations (10), (20) and (33). Explicitly, we have the motion in
the lattice Hamiltonian HL, as well as the Feshbach potential V

H = HL(x1, p1, x2, p2) ⊗ 11 + V (x1 − x2)

V (x) =
(

u + vδ(x) gδ(x)

gδ(x) 0

)
.

(44)

Here we have deliberately disregarded the pairing potential vp = 0, as it only provides a
modification to the Feshbach phenomenon. The state of the coupled two-component system
in the lowest Bloch band n = 0 is now defined as

|χ,Q〉 =
∑

q

(
φQ(q)

ψQ(q)

)
|Q, q〉, (45)

where we have characterized the state with the momentum Q and labelled the open and closed
channels by the molecular φ and two-fermion wavefunction ψ as in (10).

In order to obtain the Bloch representation of the Schrödinger equation to (44)

E|χ,Q〉 = H |χ,Q〉, (46)

we project it on the two-particle Bloch eigenstate and get

E

(
φQ(q)

ψQ(q)

)
=

∑
q ′

{[
ε0
L(q1(Q, q)) + ε0

L(q2(Q, q))
]
δqq ′

+ δqq ′

(
u 0
0 0

)
+ vQ(q, q ′)

(
v g

g 0

)} (
φQ(q ′)
ψQ(q ′)

)
. (47)

We have numerically diagonalized this Schrödinger equation for the lattice parameters
of (32) and the Feshbach parameters u = 1.5, v = −7, g = 0.03. Due to the parity of the
Hamiltonian, one can sort the resulting 2N eigenstates into even and odd states and assign
them a positive or negative quantum index −N � ν < N . By turning off the coupling between
the manifolds i.e. g = 0, one can distinguish easily the eigenvalues Eν(Q, g = 0) that belong
to the molecular (q-channel) or the open fermionic spectrum (p-channel). We have depicted a
few representative values in (figure 10(a)). It can be seen clearly that there is a single bound
state embedded in the allowed energy band of the open p-channel. In figure 10(b), we present
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Figure 10. Discrete eigenenergies Eν(Q, g) versus quantum number −N � ν < N for momentum
Q = 0.41. Negative quantum numbers label odd states, while positive numbers count even states.
(a) Energies of uncoupled system Eν(Q, g = 0). Note the location of the bound state (∗) of the
molecular manifold (♦, �) is inside the fermionic spectrum marked by (×, ◦). (b) All interacting
eigenenergies Eν(Q, g = 0.03) versus quantum index ν. Odd states (solid) and even states (dashed
dotted). The bound state is now an admixture of molecular and fermionic manifolds.

the interacting eigenvalues Eν(Q, g = 0.03), which are now formed by admixtures of both
manifolds and can only be distinguished by the parity of the state.

In order to describe the scattering resonance, we use the standing wave version of the
Lippmann–Schwinger equation [5]

|χ(s),Q, q〉 = ep ⊗ |Q, q〉 + G
(s)
L (E)V |χ(s),Q, q〉, (48)

where ep ⊗ |Q, q〉 represents a non-interacting Bloch wave in the asymptotically open p-
channel ep = (0, 1)	. For the lattice Hamiltonian HL, one obtains a standing wave Green’s
function G

(s)
L from the usual retarded and advanced Green’s functions G

(±)
L by

G
(s)
L (E) = 1

2

(
G

(+)
L (E) + G

(−)
L (E)

)
, (49)

G
(±)
L (E) = lim

ε→0+

1

E ± iε − HL

. (50)

Finally, the effect of scattering is measured by the off-shell Heitler- or K-matrix element

KQ(q ′, q) = 〈Q, q ′|e	
p V |χ(s),Q, q〉. (51)

We assign an even on-energy shell scattering phase shift

tan[δe(Q,E)] = KQ(q, q ′), E = E(Q, q) = E(Q, q ′). (52)

We have evaluated this phase shift for two differently strong bound molecular states and
varied the centre-of-mass momentum of the two-particle collision. In figure 11, one can see
the Feshbach resonance cutting into the energy band and disappearing once it is outside. This
is modified in figure 12, which has a lesser bound resonance, and therefore does not leave at
the lower band edge.
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Figure 11. Even scattering phase shift δe(E, Q) of a two-particle Bloch wave versus energy E
and momentum Q. One can see clearly Feshbach resonances symmetrically located around the
Q-axis, which disappears when the bound state is outside the band. Parameters: u = 1.5, v = −7,

g = 0.03.
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Figure 12. Even scattering phase shift δe(E, Q) of a two-particle Bloch wave versus energy E and
momentum Q. With a less deeply bound state the resonances remain above the lower band edge.
Parameter: u = 1.5, v = −5, g = 0.03.

This has to be compared with the Feshbach scattering in homogeneous space according
to equation (24) and has been presented already in figure 2. There, the resonance energy
E = εres + Q2/4 > 0 is on a simple parabola as a function of Q. If we tune the Feshbach
resonance energy εres < 0, it either disappears completely or is always present.

5. Experimental considerations

Starting from a dilute Fermi gas, atoms can be loaded adiabatically into the lowest energy
band of the lattice. For quasi-momenta not too close to the band edge, this requires that the
Fermi energy remains clearly below the atomic recoil energy h̄ωr , corresponding to 2π ×
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8.4 kHz and 2π × 74 kHz for the 40K and 6Li D2-lines respectively4. To ensure that the
Feshbach resonance provides coupling only within a single-energy band, its width has to be
sufficiently narrow, i.e. below a value of about h̄ωr/�µ, where �µ denotes the difference of
the atomic and the molecular states magnetic moments respectively. For typical parameters,
we arrive at a required width of the Feshbach resonance below 10–100 mG. We are aware that
the investigation of such weak Feshbach resonances requires a high magnetic field stability.
On the other hand, three-body losses, which for free space experiments are a mayor second
experimental constraint in the study of narrow Feshbach resonances, are expected to be reduced
in the presence of the lattice potential due to atom localization in the micropotentials.

For an experimental verification of the relative atomic momentum dependence of the
Feshbach resonance, as indicated in figures 11 and 12, one could study such scattering
resonances for a variable filling of the lowest energy band in the lattice. In this way, due to the
Pauli exclusion principle, for an increased band filling different regions of the relative atomic
quasi-momentum are subsequently filled up. The variation of the lineshape of the Feshbach
resonance is determined by the collisional properties of atoms in the lattice. For example,
if we take the situation of figure 11, for small atom filling the scattering resonance would
disappear. The Feshbach resonance here could only be observed for a large atom filling.

6. Conclusions and outlook

We have considered Feshbach scattering of two Fermions in a one-dimensional optical
lattice. Due to the reduction of translation invariance, the relative and centre-of-mass
motion are coupled and we present the scattering theory in the crystal momentum basis.
Within a single-band approximation, we have calculated numerically Feshbach resonances
and demonstrate that the position of the Feshbach resonance depends selectively on the
centre-of-mass momentum, due to the non-parabolic shape of the energy band. The simple
resonance structure suggests that a semi-analytical calculation based on an effective-mass
approximation should be applicable and is currently pursued.

In the present paper, we have only considered Feshbach resonances that are much weaker
than the interband separation. Thus, we could limit the discussion to a single-energy band.
Wider Feshbach resonances will involve the coupling of several bands. Going beyond the
single-band approximations will provide interesting new physics as already advanced in [25]
for the case of potential scattering. This will be examined, based on the present formulation,
in a forthcoming publication.
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