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Abstract. We examine ground state correlations for repulsive, quasi
one-dimensional bosons in a harmonic trap. In particular, we focus on the few
particle limit N = 2, 3, 4, . . ., where exact numerical solutions of the many
particle Schrödinger equation are available, by employing the multi-
configuration time-dependent Hartree method. Our numerical results for
the inhomogeneous system are modeled with the analytical solution of
the homogeneous problem using the Bethe ansatz and the local density
approximation. Tuning the interaction strength from the weakly correlated
Gross–Pitaevskii to the strongly correlated Tonks–Girardeau regime reveals
finite particle number effects in the second-order correlation function beyond
the local density approximation.
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1. Introduction

Observing strongly correlated atomic quantum gases in situ and in real time is quite an
achievement [1]–[8]. By controlling the trapping geometry, one can effectively adjust the
‘degree’ of dimensionality, by feeding in more particles one can approach the thermodynamic
limit, a central concept of our macroscopic world, and by controlling the coupling constant one
can switch between universal classes of physical systems. Maybe all of this was once envisioned
by the great minds who have conceived the very few exactly solvable models of many-body
physics [9]–[14], but witnessing the merger of expectation and experiment proves to be an
exciting period, today.

In the present paper, we have explored a particular aspect of this rich topic, by focusing on
the quantum properties of the ground state containing only a few bosonic particles, i.e. N = 2, 3
and 4, inside a harmonic, one-dimensional (1D) trap. This situation is akin to the atomic or
nuclear physics limit of a condensed matter system. There the implied granularity of fermionic
matter appears as a shell structure in the energy configuration or on energy surfaces through the
appearance of magic quantum numbers. This was unheard of in the field of uncharged gaseous
matter until recently with the experimental use of neutral, repulsive, bosonic atoms ([15] and
references therein).

A striking example here is given by the 1D Bose gas. Its closed-form solution has been
given for the homogeneous system using Bethe’s ansatz in the pioneering work of Lieb and
Liniger [11], which focused on the thermodynamic limit (N → ∞ at fixed density). These
results have been extended to include finite particle numbers [16] and effects due to a slowly
varying trapping potential [17, 18], in the sense that the thermodynamic-limit results for the
homogeneous system still hold locally even in the presence of an inhomogeneity. However,
for small atom numbers N , the trapped system can be solved in a numerically exact fashion,
without resort to such a local density approximation (LDA) [19]–[23]. This is the starting point
of our paper, which aims at a detailed comparison of the exact correlation functions of N trapped
bosons with those obtained in a finite-size homogeneous system under a LDA. That way we map
out intrinsic confinement effects and discuss the validity of the LDA for small atom numbers.

This is in clear contrast with previous publications, e.g. [22], where two of the authors
have investigated, among other quantities, the numerically exact two-body density for N atoms
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in a 1D harmonic trap. Here the two-body correlation function is normalized, so as to map out
trap effects, and then compared with the LDA based on the finite-size Bethe ansatz. This allows
us to investigate the transition from the Gross–Pitaevskii (GP) regime to the Tonks–Girardeau
(TG) regime for a few particles not only with numerically exact results, but also using analytical
expressions, thereby enhancing the insights.

Following this motivation, we will present the basic model of N particles trapped in
1D in section 2. Next, we introduce our physical observables and computational methods in
section 3. The homogeneous limit of this system is the Lieb–Liniger model, which represents
our benchmark. Its basic notions will be reviewed briefly in section 4 and used in section 5 to
discuss our numerical results and analytical modeling of a few harmonically trapped particles.

2. Model

Let us consider a gas of N 1D bosons with repulsive, short range interactions in a harmonic
trap [20], [23]–[25]. Then, the dynamics is given by the dimensionless Hamiltonian

H =

N∑
j=1

(
−

1

2
∂2

j +
1

2
x2

j

)
+

N∑
j<l=1

gδ(x j − xl), (1)

where we have measured energy in units of h̄ω, length in multiples of the harmonic oscillator
length a0 =

√
h̄/mω and used the short-hand notation ∂ j = ∂/∂x j . For example, such an

effective 1D description can be obtained by starting with real 3D bosonic atoms of mass m
in a strongly anisotropic external trapping potential V (r) =

1
2mω2x2 + 1

2mω2
⊥
(y2 + z2). If the

transverse level spacing is much larger than in the axial direction β = ω⊥/ω � 1, we can
integrate out two dimensions by assuming that the 2D (yz)-subsystem only occupies the ground
state. This procedure leads to the quasi-1D coupling constant g = 2βas/a0, where as denotes
the s-wave scattering length of the bosons.

Nowadays, this situation can be realized experimentally [15] and it is possible to investigate
quantum correlations in situ. In particular, we are interested in the properties of the ground
state of a few interacting bosons, i.e. N = 2, 3, 4, . . . , and we will explore their quantum
correlations. In a homogeneous system of length L = a0` with a dimensionless scale `, the
linear number density n = N/` is translation invariant and the qualitative behavior of the ground
state strongly depends on the correlation parameter γ = g/n. This was first described by Lieb
and Liniger [11]. In the thermodynamic limit limN ,`→∞N/` = n, it turns out that the state of
the homogeneous gas of bosons is completely characterized by this parameter. It is customary
to call bosons weakly correlated for γ � 1 (the GP regime) and strongly correlated for γ � 1
(the TG regime).

The LDA extends this description to weakly inhomogeneous systems under the assumption
that the variation of the ground state follows parametrically the spatial variation of the single
particle density. In the following, this assertion will be probed by explicitly constructing the
N -body wave function with the Bethe ansatz. We will analyze the behavior of the state over
the whole range of interaction strengths for an increasing particle number (N = 2, 3 and 4) in
order to investigate the transition towards the thermodynamic limit. The correlation functions of
the ground state strongly depend on the particle number and this effect is most significant for a
few bosons. This analysis will provide a profound understanding of the inhomogeneous system,
which can only be solved numerically otherwise.
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3. Observables and computational methods

Assuming we have complete knowledge of the symmetrized and normalized N -particle wave
function 9(x) = 9(x1, . . . , xN ), then we need to extract relevant information about its behavior
in terms of experimentally accessible observables [26, 27]. Most relevant for this purpose are
the number density n(x) = Nρ(x), which is proportional to the single particle density

ρ(x) =

∫
dx2 · · · dxN |9(x, x2, . . . , xN )|2, (2)

the first-order correlation function measuring phase coherence

g(1)(x, y) =

∫
dx2 · · · dxN9∗(x, x2, . . . , xN )9(y, x2, . . . , xN )

√
ρ(x)ρ(y)

(3)

and the diagonal of the second-order correlation function measuring density fluctuations

g(2)(x, y) =
N − 1

N

∫
dx3 · · · dxN |9(x, y, x3, . . . , xN )|2

ρ(x)ρ(y)
. (4)

We will focus on the behavior of the second-order correlation function as it is a more sensitive
probe for quantum statistical correlations in the system. Theoretically, much attention has
already been directed towards second-order correlation functions [17, 25], [28]–[33], but the
discussions were mostly concerned with their properties in the thermodynamic limit. In contrast,
our interest is directed towards the detailed behavior of the second-order correlation function
for few-boson systems, which differs from the thermodynamic limit.

The next subsection is devoted to a brief introduction to the multi-configuration time-
dependent Hartree (MCTDH) method, which is used to calculate the N -body ground state of
the Hamiltonian in the presence of a trap in (1).

3.1. Multi-configuration time dependent Hartree method

The numerically exact MCTDH method [34, 35] is a quantum-dynamics tool that has been
applied successfully to systems of few identical bosons [21, 22], [36]–[39]. It solves the time-
dependent N -body Schrödinger equation (ih̄∂t − H)9(x, t) = 0 as an initial-value problem by
expanding the solution

9(x, t) =

∑
J∈C

aJ (t)8J (x, t), (5)

in terms of direct (or Hartree) product states 8J (x, t) =
∏N

i=1 φ j i (xi , t) and summing over
all admissible configurations C = {J = ( j1, . . . , jN )|16 ji 6 s}. In turn, the still unknown,
best single-particle functions {φ j(x, t)|16 j 6 s} are represented in a fixed primitive basis
implemented on a grid and s denotes the maximum number of required basis functions. The
permutation symmetry of 9(x, t) is ensured by the correct symmetrization of the expansion
coefficients aJ (t).

Using the Dirac–Frenkel variational principle, one can derive equations of motion for both
aJ (t) and φ j(x, t) [35]. Integrating this system of differential equations allows us to obtain
the time evolution of the system via (5). This has the advantage that the basis {8J (t)|J ∈ C} is
variationally optimal at each time t . Thus it can be kept relatively small, rendering the procedure
very efficient.

New Journal of Physics 11 (2009) 023010 (http://www.njp.org/)

http://www.njp.org/


5

Although designed for time-dependent simulations, it is also possible to apply this
approach to stationary states. This is done via the so-called relaxation method [40]. The
key idea is to propagate an initial wave function 9(x, t = 0) by the non-unitary, imaginary
time propagator U (τ ) = e−Hτ . As τ → ∞, any excited state contribution is exponentially
suppressed with e−(Em−E0)τ and we are left with the ground state. In practice, one relies on
a more sophisticated scheme termed improved relaxation [41], which is much more robust,
especially for excitations. Here, the energy E = 〈9|H |9〉 is minimized with respect to both
the coefficients aJ and the orbitals φ j(x). The effective eigenvalue problems thus obtained are
then solved iteratively by first solving for aJ with fixed orbitals and then optimizing φ j(x) by
propagating them in imaginary time over a short period. That cycle will then be repeated.

Applying this procedure, we obtain the exact wave function for the ground state and
can subsequently calculate the correlation functions according to (3) and (4). A profound
understanding of the qualitative as well as quantitative details of this correlation function is
the main topic of the present study. For this purpose, we compare the results of the MCTDH
method to the Lieb–Liniger theory for the homogeneous Bose gas, which will be combined with
an LDA. However, before doing so, we briefly review the main concepts of the Bethe ansatz and
Lieb–Liniger theory, which can be solved exactly.

3.2. Lieb–Liniger theory and Bethe ansatz for the homogeneous system

As we have discussed, it is only possible to obtain the eigenstates and eigenvalues of the trapped
Hamiltonian in (1) with a significant computational effort. However, if one can disregard the
external trapping potential and supply the system with periodic boundary conditions instead,
we obtain the Hamiltonian

HLL =

N∑
j=1

−
1

2
∂2

j +
N∑

j<l=1

gδ(x j − xl) . (6)

The corresponding eigenvalue problem has been solved analytically by Lieb and
Liniger [11, 16] using the Bethe ansatz [9] and they derived the ground state properties—
even for the thermodynamic limit. Before we discuss correlation functions and their functional
behavior, we will briefly recall the quintessential steps.

To solve for the ground state and its energy, we have to consider the eigenvalue equation

HLL9(x) = E9(x), (7)

where the spatial region is {x = (x1, . . . , xN )| 06 x j 6 `} and the totally symmetric wave
function satisfies periodic boundary conditions. The dimensionless system length ` determines
the linear number density n = N/` for a given particle number N . It still occurs in our
dimensionless formulation of the Lieb–Liniger Hamiltonian because we want to allow for a
straightforward comparison of the ground states of the Hamiltonians in (1) and (7) for equal
particle numbers N and equal interaction strengths g. Furthermore, having the length ` as a
free parameter we can tune the number density n such that the correlation parameter in the
homogeneous system is equivalent to the correlation parameter at a certain position in the
trapped system.

A subspace of the whole configuration space is the spatial simplex that contains only
ascending coordinate N -tuples, i.e.R= {x = (x1, . . . , xN )|06 x1 < x2 < · · · < xN 6 `}. In this
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region, (7) together with its periodic boundary conditions are equivalent to N∑
j=1

−
1

2
∂2

j

 9(x) = E9(x), (8)

(∂ j+1 − ∂ j)9(x)

∣∣∣
x j+1=x j

= g9(x)

∣∣∣
x j+1=x j

, (9)

9(0, x2, . . . , xN ) = 9(x2, . . . , xN , `), (10)

∂x9(x, x2, . . . , xN )

∣∣∣
x=0

= ∂x9(x2, . . . , xN , x)

∣∣∣
x=`

. (11)

Due to the required symmetry of the wave function under particle exchange, knowledge of 9(x)

in the regionR is equivalent to knowing 9(x) in all other regions of the configuration space. In
order to solve (8)–(11), one uses the ansatz

9(x) =

∑
P∈SN

aP eikP x, (12)

where the summation extends over all N ! elements P of the permutation group SN . If we
denote the wave vector of the N particles by k = (k1, . . . , kN ), then the permuted vector is kP =

(kP(1), . . . , kP(N )). For convenience we also introduce the scalar product kPx =
∑N

j=1 kP( j)x j .
Immediately, one obtains, for the ground state energy of the N -particle system,

E =
1

2
Nn2 eB(N , γ ), eB(N , γ ) =

1

N 3

N∑
j=1

(k j`)
2. (13)

The remaining task consists of determining the wave vector k such that all boundary
conditions are fulfilled. After minor algebra, which is outlined in [11], one obtains the following
equations for the components of the wave vectors of the ground state

(k j+1 − k j)` =

N∑
i=1

(θ j+1i − θ j i) + 2π for j = 1, . . . , N − 1, (14)

θrs = 2 arctan
[
(ks − kr)`

Nγ

]
. (15)

Furthermore, we note that the ground state solution possesses reflection symmetry, which means
that for every positive component k j there exists a negative counterpart −k j .

Before the ground state wave function can be calculated, we need to clarify how the factors
aP are defined, such that the boundary conditions are fulfilled. This is done by first setting
a1 = 1. If P takes k into kP , then this is achieved by subsequent transpositions. For each
transposition, the amplitude acquires a factor −eiθ l j , if kl and k j are transposed and kl is to
the left of k j . The product of all these factors is aP . Thus, we end up with the following wave
functions for N = 2, 3 and 4 particles

9(x1, x2) = eik12x
− ei(θ21+k21x), (16)

9(x1, x2, x3) = eik123x
− ei(θ32+k132x)

− ei(θ21+k213x)

+ ei(θ31+θ21+k231x) + ei(θ31+θ32+k312x)
− ei(θ32+θ31+θ21+k321x), (17)
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9(x1, x2, x3, x4) = eik1234x
− ei(θ21+k2134x)

− ei(θ32+k1324x)
− ei(θ43+k1243x)

+ ei(θ43+θ21+k2143x) + ei(θ31+θ21+k2314x) + ei(θ31+θ32+k3124x) + ei(θ42+θ32+k1342x)

− ei(θ32+θ31+θ21+k3214x)
− ei(θ41+θ31+θ21+k2341x)

− ei(θ42+θ31+θ32+k3142x)

+ ei(θ41+θ32+θ31+θ21+k3241x) + ei(θ42+θ43+k1423x)
− ei(θ43+θ42+θ32+k1432x)

− ei(θ41+θ43+θ21+k2413x) + ei(θ43+θ41+θ31+θ21+k2431x) + ei(θ41+θ42+θ31+θ32+k3412x)

− ei(θ42+θ41+θ32+θ31+θ21+k3421x)
− ei(θ41+θ42+θ43+k4123x) + ei(θ41+θ43+θ42+θ32+k4132x)

+ ei(θ42+θ41+θ43+θ21+k4213x)
− ei(θ42+θ43+θ41+θ31+θ21+k4231x)

− ei(θ43+θ41+θ42+θ31+θ32+k4312x) + ei(θ43+θ42+θ41+θ32+θ31+θ21+k4321x), (18)

in the region 06 x1 6 · · ·6 xN 6 `.
In the thermodynamic limit it is possible to switch from a discrete distribution of k values

to a continuous distribution and the ground state energy can then be written as [9, 11]

E =
1
2 Nn2 e(γ ), (19)

where e(γ ) is given in terms of the solutions of the Lieb–Liniger equations

e(γ ) =
γ 3

λ3(γ )

∫ 1

−1
dξ h(ξ, γ )ξ 2, (20)

h(ξ, γ ) =
1

2π
+

1

π

∫ 1

−1
dy

λ(γ )h(y, γ )

λ2(γ ) + (y − ξ)2
, λ(γ ) = γ

∫ 1

−1
dξ h(ξ, γ ). (21)

Using the Hellmann–Feynman theorem [42], we can directly obtain the second-order correlation
function along the diagonal from the ground state energy

g(2)(x, x) ≡ g(2)(0, 0) =
∂

∂γ
eB(N , γ ), (22)

which can be measured experimentally [5, 6], [43]–[46]. In the thermodynamic limit, this
simplifies to g(2)(x, x) ≡ g(2)(0, 0) = e′(γ ).

4. Correlation functions of the homogeneous system

To get a feeling for the second-order correlation function and its dependence on the particle
number N as well as the correlation strength γ , we first consider the homogeneous system,
where this is straightforward. The results are depicted in figure 1 where we compare g(2)(0, 0)

in the thermodynamic limit with results that were obtained by using finite values of the particle
number N . As can easily be seen, the thermodynamic limit is approached very quickly and for
N = 100 bosons the exact results obtained with the Bethe ansatz are almost indistinguishable
from the thermodynamic limit.

The decrease of the second-order correlation function for large values of γ is due to an
interaction-induced antibunching also known as fermionization of bosons. In the limit γ → ∞,
this behavior was first predicted by Girardeau [10] and is due to a one-to-one correspondence
between impenetrable bosons and spinless fermions in 1D systems. This can be understood
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Figure 1. Second-order correlation function g(2)(0, 0) versus γ for a
homogeneous setup. Results from the thermodynamic limit (solid line) are
compared with—from bottom to top—results for N = 2, 3, 4, 10 and 100 bosons
(dash-dotted lines).
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γ

k
�/

π

Figure 2. Wave vector k`/π versus γ for N = 2 (solid lines), N = 3 (dash-dotted
lines), N = 4 (dashed lines) and N = 10 (dotted lines). The functional form of
the wave vectors is very similar for different particle numbers; there is only a
different number of wave vector components for each particle number.

by looking at the limiting values of the wave vector k and the phases θrs as a function of the
interaction parameter γ . At large values of γ , the wave functions of (16)–(18) approach the
form of Slater determinants. Thus, the wave function of N bosonic particles must vanish when
two particles are getting close as if they were fermions.

In figure 2, we plot the results for the wave vectors for an increasing particle number
N = 2, 3, 4 and 10. For odd particle numbers, the components of the wave vectors approach
even multiples of 2π , which is exactly the result that one would obtain for non-interacting,
spinless fermions subject to periodic boundary conditions. However, for even particle numbers,
the components of the wave vectors are also separated by a constant spacing of 2π if we go to
strong interactions, but they approach odd multiples of π .

This does not correspond to the behavior of non-interacting, spinless fermions subject to
periodic boundary conditions. This breakdown of the mapping between impenetrable bosons
and spinless fermions has already been pointed out by Girardeau and originates from the
periodic boundary conditions. Considering hard wall boundary conditions, then there are no
restrictions on the particle number N . Furthermore, it can be noticed that the dependence of the
wave vectors on the correlation parameter γ is very similar for the different particle numbers.
Hence, the two components of the wave vectors with smallest magnitude for N = 4 and 10
are indistinguishable from the solid line, which depicts the components of the wave vector
for N = 2.
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Figure 3. Anti-diagonal of the second-order correlation function g(2)(x, −x)

versus position x for the homogeneous system. Results for N = 2 are depicted in
(a), for N = 3 in (b) and for N = 4 in (c). The lines correspond to values of the
correlation parameter of γ = 0.1 (solid line), γ = 1 (dashed-dotted line), γ = 10
(dashed line), γ = 100 (thin dotted line) and γ = ∞ (thick isolated dots).

Apart from the behavior of the wave vectors themselves, a closer look at the wave function
reveals that the factors aP appearing in (12) approach either +1 or −1 for γ → ∞. Hence
the wave function approaches the limit of a Slater determinant as introduced by Girardeau.
A simple way of understanding these behaviors is to consider the defining equations for the
wave vectors (14) and (15) in the limit γ → ∞. Using a linear approximation for the arctan,
one obtains

(k j+1 − k j)` = 2π −
4π

γ
+ O(1/γ 2), θl j =

4π( j − l)

Nγ
+ O(1/γ 2), (23)

which exactly yield the previously explained behavior for γ → ∞.
In the remainder of this section, we want to analyze the spatial dependence of the

second-order correlation function for the homogeneous problem. Due to the translational
symmetry of the system, the correlation functions only depend on the relative distance |x − y|.
Hence, it suffices to just study the anti-diagonal of the correlation functions for y = −x . In
particular, we will examine the particle numbers N = 2, 3 and 4, because they exhibit finite
number effects, which vanish in the thermodynamic limit [23]. In figure 3, we depict the anti-
diagonal of the second-order correlation function g(2)(x, −x) for N = 2, 3 and 4 particles,
respectively. For an increasing value of the correlation parameter γ , we again notice the strong
antibunching at the origin, which reduces limγ→0g(2)(0, 0, γ ) = 1 − 1/N for ideal bosons to
limγ→∞g(2)(0, 0, γ ) = 0.

Furthermore, the off-diagonal develops an oscillatory behavior, which becomes most
pronounced for large values of the correlation parameter. The oscillatory behavior strongly
depends on the particle number. For N strongly interacting particles in the system, we expect
N − 1 maxima of g(2)(x, −x) in the interval 06 x 6 `/2. This can be understood by recalling
the behavior of the wave vectors. In the limit γ → ∞ their components are all equally separated
by 2π and therefore exactly N − 1 different combinations of the components exist in the
calculation of g(2)(x, −x) when we insert (12) into (4). These combinations range from 2π

to (N − 1)2π and lead to trigonometric functions with N − 1 different frequencies, thereby
producing the behavior that was described above. Finally, it is also interesting to note that the
anti-diagonal of the second-order correlation function has a kink at x = 0, which is due to the
delta interaction of the particles. However, in the limit γ → ∞ the kink vanishes and g(2)(x, −x)

approaches a smooth behavior at the origin.
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Figure 4. Second-order correlation function g(2)(x, y) for harmonically trapped
particles versus the two-particle coordinate x, y for N = 2 in (a), for N = 3 in
(b) and for N = 4 in (c). The interaction strength is g = 10.

In general, it is possible to write down the analytic form of any correlation function because
we have knowledge of the complete many-particle wave function. Using the particular form of
the wave function for N = 2, 3 and 4, as given in (16)–(18), we have calculated the second-
order correlation function according to (4) by properly using the total symmetry of the respective
wave functions. However, the lengthy analytical results are not enlightening and we refrain from
writing them down in detail. Nevertheless, studying them in the limit γ → ∞, using (23), we
find the following simple result

g(2)(x, −x) =
N − 1

N

1 −

N−1∑
j=1

2(N − j)

N (N − 1)
cos

(
j2π

2x

`

) + O(1/γ ), (24)

where we have assumed that the results for N = 2, 3 and 4 extrapolate to general particle
numbers N . This result is consistent with the known limit for non-interacting fermions, as can
be seen by evaluating the geometric series

g(2)(x, −x) = 1 −
sin2(2πx N/`)

N 2 sin2(2πx/`)
. (25)

This result has already been obtained by Girardeau [10]. However, he first considered the limit
γ → ∞ and used the fermionic wave function for the evaluation of the second-order correlation
function.

5. Correlation functions of the inhomogeneous system

With this understanding of the second-order correlation function and its dependence on the
particle number N and correlation strength γ , we are now in a position to interpret the trapped
results. For N = 2 particles, exact results for the ground state wave function are known [47, 48],
and for N = 3 and 4 particles we used the MCTDH method. The corresponding results for the
spatial correlations and a fixed interaction strength of g = 10 are shown in figure 4.

To establish a common ground for the comparison of the homogeneous and the trapped
system, we first of all restrict ourselves to the values of the second-order correlation function
in the center of the trap g(2)(x = 0, 0). Tuning the interaction from g = 0.001 → 50, we cover
the whole range of the correlation parameter γ from the weakly interacting GP regime to the
TG regime of strong interactions. In figure 5, we compare the results in the trapped system
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Figure 5. Second-order correlation function g(2)(0, 0) in the center of the
trap as a function of the correlation parameter γ . The data corresponds to
interaction strengths ranging from g = 0.001 to g = 50. The results for N = 2, 3
and 4 trapped particles (diamonds, squares and circles) are compared with a
homogeneous system (solid, dashed and dashed-dotted lines).
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Figure 6. Number density n(x) for N = 2 in subplot (a), for N = 3 in subplot
(b) and for N = 4 in subplot (c). The data correspond to interaction strengths of
g = 0.1, 1 and 10 (solid, dashed and dashed-dotted lines).

for N = 2, 3 and 4 particles (diamonds, squares and circles) with the homogeneous results
(solid, dashed and dashed-dotted lines) for the same parameters of g and N . The length of
the homogeneous system ` is chosen such that the constant number density n = N/` equals
the number density of the trapped system in the center of the trap. In general, we can see
good agreement of the results with slight deviations at the crossover from weakly to strongly
interacting bosons around γ = 1.

Thus we conclude that the correlation parameter γ remains a valid parameter for
the description of the inhomogeneous system as well. It is therefore possible to use a
position-dependent correlation parameter γ (x) = g/n(x), which is the central hypothesis of
the LDA.

In further considerations, we will apply this position dependent correlation parameter.
Thus it is necessary to be acquainted with its spatial behavior. Hence, we plot the number
density n(x) for N = 2, 3 and 4 particles for various strengths of the interaction in figure 6.
With an increasing interaction strength the density of the ground state changes from a Gaussian
shape at weak interactions to a broadened distribution with Friedel oscillations [49] for strong
interactions.

From the previous discussion we learn that the second-order correlation function in the
center of the trap, g(2)(0, 0), can well be understood by looking at the corresponding correlation
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Figure 7. Diagonal of the second-order correlation function g(2)(x, x) as a
function of the correlation parameter γ (x). The data correspond to interaction
strengths of g = 0.001, 0.01, 0.1, 1 and 10. The results for N = 2, 3 and 4 for
the trapped system (diamonds, squares and circles) are compared with the results
for the homogeneous case (solid, dashed and dashed-dotted lines) over the whole
range of the correlation parameter in (a). A magnification of the behavior of the
second-order correlation function around γ = 15 is shown in (b).

function in the homogeneous system for the same parameters of g, N and γ . In the next step
we want to investigate the behavior of the diagonal of the second-order correlation function,
g(2)(x, x). For this purpose, we take the exact values of the diagonal of the second-order
correlation function for the trapped system (obtained with an MCTDH calculation) and plot
them as a function of the position-dependent correlation parameter γ (x). Comparing these
values with the diagonal behavior of the second-order correlation function in the homogeneous
case, presented in figures 1 and 5, basically corresponds to an LDA. As the density decreases
by moving out of the center of the trap, increasing values of γ correspond to increasing
values of x .

In figure 7, we plot the diagonal of the second-order correlation function g(2)(x, x) for
N = 2, 3 and 4 at interaction strengths of g = 0.001, 0.01, 0.1, 1 and 10. Generally speaking,
the results for N = 2, 3 and 4 for the trapped system (diamonds, squares and circles) agree rather
well with the results of the Bethe ansatz for the homogeneous system in the weakly interacting
regime. However, the trapped system deviates significantly from the homogeneous results for
large correlation parameters. Starting with values of the correlation parameter around γ ≈ 1, we
can see oscillations of the trapped results around the homogeneous curve. This means that the
LDA gets less suited to describe the physical content of the trapped system.

The breakdown of the LDA can well be understood if one considers the behavior of the
density in the trap. For large interaction strengths the density develops the previously mentioned
Friedel-type oscillations which cannot be described within an LDA. This translates to the
second-order correlation function where similar oscillations occur.

Whereas for N = 3 the Friedel-type oscillations lead to a peak of the density in the center
of the trap, the opposite is true for N = 2 and 4, where we have a dip in the center. In terms of
the second-order correlation function, this leads to oscillations around the homogeneous result
that either start below the homogeneous curve (N = 3) or above it (N = 2 and 4), as one moves
out of the center of the trap. This can be seen in figure 7(b) which magnifies the behavior of the
second-order correlation function around γ = 15.

Apart from an oscillatory behavior for large interaction strengths, we have seen that the
diagonal of the trapped system can be understood if we combine the Bethe ansatz with an LDA,
in the sense described above. Finally, we want to investigate to what extent the full behavior of
g(2)(x, y) can be analyzed by the same means.
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Figure 8. Second-order correlation function g(2)(x, y) in an LDA combined with
the Bethe ansatz for N = 2 in (a), for N = 3 in (b) and for N = 4 in (c). The
interaction strength is in each case g = 10.

In this last step of the comparison, we calculate the value of g(2)(x, y) in the LDA
in the following way. In analogy to the previous discussion, we first of all recall that the
comparison of the homogeneous and inhomogeneous systems is made for the same values of
the particle number N and the coupling constant g. In the original homogeneous system we
have the translational symmetry and the properties of the correlation functions depend only
on the relative distance |x − y|. In an inhomogeneous system the relative distance is not the
only relevant property that determines the behavior of the second-order correlation function
g(2)(x, y). Instead we have to incorporate the spatial dependence of the density to arrive at
an LDA. For the diagonal part of the correlation function we have already seen that this
combination of the Bethe ansatz and the LDA leads to good agreement with the results for
the inhomogeneous system. We can extend this procedure to non-diagonal coordinate pairs
(x, y) by choosing the density at the center of the mass coordinate (x + y)/2 for the LDA. As
previously, this density is given by the exact MCTDH results and in the next step we again adjust
the dimensionless length ` for the homogeneous system, such that we obtain the same density
for the fixed particle number N . Thereafter we solve the Bethe ansatz for these parameters and
extract the anti-diagonal value of the second-order correlation function for a relative distance of
|x − y|. This result is eventually used to represent g(2)(x, y) for the combination of the Bethe
ansatz and the LDA. This procedure is repeated for every coordinate pair (x, y) that is used to
plot the second-order correlation function.

In this fashion, we obtain the counterparts of the exact trapped results in figure 4 and
depict them in figure 8. The most striking difference that can be noticed by comparing the
homogeneous with the trapped results is the large dip in the off-diagonal for N = 2 and 3 in
the homogeneous case with LDA. This is merely due to the fact that the periodic boundary
conditions in the Bethe ansatz prevent one from going to large distances. For a larger particle
number and consequently a larger number density, this difference begins to be negligible in
the region of interest, as can be seen in the plot for N = 4. Apart from this artifact the general
features are similar and we conclude that we can also understand the overall behavior of the
second-order correlation function in terms of an LDA and the Bethe ansatz.

Having a closer look at the anti-diagonal in the center of the trap in figure 9, we get a
clearer illustration of these conclusions. While the periodicity prevents one from matching the
exact physical behavior for any x , at least the initial slope and the approximate shape for x < 1
are modeled well.
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Figure 9. Anti-diagonal of the second-order correlation function g(2)(x, −x)

across the center of the trap for N = 2 in (a), for N = 3 in (b) and for N = 4
in (c). The interaction strength is g = 10 and the MCTDH results (solid line) are
compared with the combination of an LDA and the Bethe ansatz (dashed-dotted
line).

6. Conclusion

We have examined the ground state correlations for repulsive, quasi 1D bosons in a harmonic
trap. In particular, we have focused on the few particle limit N = 2, 3, 4, . . ., where exact
numerical solutions of the many particle Schrödinger equation are available with the multi-
configuration Hartree method. These numerical results for the inhomogeneous system are
modeled with the analytical solution of the homogeneous problem using the Bethe ansatz
and the LDA. Tuning the interaction strength from the weakly correlated GP to the strongly
correlated TG regime reveals finite number effects in the second-order correlation function
beyond the LDA.

To conclude our contribution, we want to comment on the experimental realization of the
particular few-body system that has been discussed and the chances of seeing the deviations
of the LDA in the second-order correlation function. The experiments on strongly correlated
1D Bose gases [4, 50, 51] have dealt with effective atom numbers down to N ∼ 15. However,
other experiments have for example measured the dynamics of only two atoms isolated in
a superlattice [52]. Moreover, experimental techniques nowadays allow for the control and
processing of even single atoms, e.g [53]. Nevertheless, observing effects as in figure 7 requires
a high-precision measurement of g(2)(x, x) in combination with the use of quantum-noise
detection tools [54], which has not been reported in the papers cited above.
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