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Sagnac Effect of Gödel’s Universe
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We present exact expressions for the Sagnac effect of Gödel’s Universe. For this purpose
we first derive a formula for the Sagnac time delay along a circular path in the presence
of an arbitrary stationary metric in cylindrical coordinates. We then apply this result
to Gödel’s metric for two different experimental situations: First, the light source and
the detector are at rest relative to the matter generating the gravitational field. In this
case we find an expression that is formally equivalent to the familiar nonrelativistic
Sagnac time delay. Second, the light source and the detector are rotating relative to the
matter. Here we show that for a special rotation rate of the detector the Sagnac time delay
vanishes. Finally we propose a formulation of the Sagnac time delay in terms of invariant
physical quantities. We show that this result is very close to the analogous formula of
the Sagnac time delay of a rotating coordinate system in Minkowski spacetime.
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1. INTRODUCTION

Phenomena in rotating coordinate systems have fascinated scientists over hundreds
of years. Three examples may serve as an illustration of this statement: i) The
Coriolis force is instrumental in the demonstration of the rotation of the earth with
the help of the Foucault pendulum [1]. ii) The Sagnac effect [2–6] measured by
the Michelson-Gale-interferometer [7] is the analogous optical tool. iii) Mach’s
principle [8–10] ushers in a fresh view on the relativity of rotation. In the present
paper we combine these three concepts and calculate the Sagnac effect of Gödel’s
Universe.
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Einstein’s theory of General Relativity [11] predicts gravito-magnetic forces
[12–14] due to the rotation of massive objects. These forces give rise to the
precession of nodal lines [15] of two orbiting LAGEOS-satellites proving the first
measurement of the Lense-Thirring effect [16–19]. The newly emerging field of
atom optics has opened a new arena [20] for measuring the dipole character of the
Lense-Thirring field with the help of an atom gyroscope [21–24].

Rotation is not limited to a coordinate system or individual masses but even
the universe can display features of rotation. Indeed, in 1949 Kurt Gödel [25–27]
derived an exact solution of Einstein’s field equations, in which a homogeneous
mass distribution rotates around every point in space. This solution shows rather
unusual properties [28] such as closed time like world-lines.

In a recent paper [29] we have evaluated the Sagnac effect of Gödel’s Universe
measured in a laboratory size interferometer. For this purpose we have used the
linearized Gödel metric, which can be approximated by the flat spacetime metric
of a rotating coordinate system. In the present paper we calculate the exact Sagnac
effect for the Gödel metric.

1.1. Why Gödel’s Metric?

Gödel’s Universe has many fascinating features. Indeed, the inherent rotation
of this Universe is only one interesting aspect. Even more intriguing is the lack of
a global time ordering and the existence of closed time like world lines giving rise
to the possibility of time travel. Such causal problems emerge also in other exact
solutions of Einstein’s field equations, such as the Kerr metric. However, Gödel’s
metric has the advantage that it is of rather compact form and most calculations
can be carried out analytically.

It is commonly accepted that this model does not provide a matching de-
scription of our observed universe. Nevertheless, there is the emerging field of
experimental cosmology in the laboratory [30]. In particular, the examination of
wave phenomena in curved spacetimes is a focus of research. For example, optical
analogues of black holes have been proposed by studying light propagation in
moving media [31] or sound propagation in condensed matter systems [32, 33].
In this context, it is important to ask how far one can extent such analogues in
general. Gödel’s Universe can shed some light on this problem, since the exis-
tence of closed time like world lines curtails the expectation of a globally valid
experimental analogue. Thus, it would be interesting to see, where and how the
experimental realization ceases to exist.

Motivated by this idea we have initiated a study of wave propagation for the
source free Maxwell equations in Gödel’s metric [34, 35]. However, in the present
paper we will focus on the Sagnac time delay within the limit of geometrical
optics and draw the comparison to the Sagnac time delay in a rotating frame in flat
Minkowski spacetime [29]. In order to keep the paper self-contained and in view
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of the fact that this issue brings together researches from atomic, molecular and
optical physics with experts in General Relativity we have used this opportunity
to combine our study of the Sagnac effect with a mini review of Gödel’s Universe.

1.2. Outline of the Paper

Our paper is organized as follows: In Section 2 we first briefly review the
essential features of the Sagnac effect and then derive an exact expression for the
Sagnac time delay for a time independent metric in cylindrical coordinates. We
dedicate Section 3 to a discussion of the Gödel metric. We then apply in Section
4 the expression of the Sagnac time delay to Gödel’s metric. In Section 5 we
reformulate the Sagnac effect purely in terms of proper time delays of light pulses
and compare it to the analogous expression for a rotating frame in flat Minkowski
spacetime. We conclude by an outlook to possible laboratory realizations of the
local light propagation in Gödel’s Universe.

2. SAGNAC EFFECT: BASICS

In the present section we first recall the familiar Sagnac effect and then derive
an exact expression for the Sagnac time delay in terms of metric coefficients. We
conclude by making contact with the familiar Sagnac effect using the metric of a
rotating coordinate system in flat Minkowski spacetime.

2.1. Familiar Sagnac Time Delay

In 1913 George Sagnac performed an experiment [2, 3], which he interpreted
as an verification of the existence of the ether. In order to bring out the essential
features of this phenomenon we consider two counter-propagating light pulses
which travel on a circle of radius r0 due to an appropriate array of mirrors or a
glass fiber. When the setup is at rest the two counter-propagating pulses arrive at
the same time at the point of emission. However, when the arrangement rotates
there is a time delay between them. This Sagnac time delay �tS follows from an
elementary, classical argument [36] and reads

�tS ≈ 4�R

c2
πr2

0 . (1)

Hence, �tS is proportional to the area πr2
0 enclosed by the light beams and the

rotation rate �R of the ring with respect to the flat Minkowski spacetime. Moreover,
we note that this result is an approximation and higher order corrections in �R

will arise as discussed in Section 2.3.
The Sagnac effect is the basis of modern navigational systems. Moreover,

it can also be generalized in the framework of General Relativity [12, 37], as
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presented in the next section. In particular, the Sagnac effect is closely related to
the Hannay angle [38] and the synchronization of clocks [39] along a closed path.

2.2. Time Delay for a Stationary Metric

We now derive an exact expression for the Sagnac time delay �τS in terms of
the time independent metric coefficients gμν expressed in cylindrical coordinates
xμ ≡ (x0, x1, x2, x3) ≡ (t, r, φ, z). For a general treatment of the Sagnac effect of
two counterpropagating light rays along any spatially closed path in an arbitrary
metric we refer to [40]. However, inhere we choose a particularly simple configu-
ration and consider the propagation along a circle of radius r0 in the z = z0 plane
resulting in dx1 = dr = 0 and dx3 = dz = 0. For this situation the line element
reads

ds2 = gμνdxμdxν = g00(dx0)2 + 2 g02 dx0dx2 + g22(dx2)2, (2)

and vanishes for light ds2 = 0.
The angular velocity

ω ≡ dx2

dx0
(3)

of the light beam follows from the quadratic equation

g22ω
2 + 2g02ω + g00 = 0,

giving rise to the two velocities

ω± = −g02

g22
±
√(

g02

g22

)2

− g00

g22
. (4)

In order to get two solutions, which correspond to two ordinary counter-
propagating light beams, we restrict ourselves to spacetime regions G, in which
the above metric coefficients satisfy the conditions

g00 > 0, g22 < 0 ∀ xμ ∈ G. (5)

These conditions immediately imply that the angular velocity ω+ is positive and
ω− is negative for all events in G, so that the monotony of the corresponding
solutions x0

±(x2) is guaranteed. The condition g00 > 0 is furthermore important
to allow for an observer resting relative to the chosen spatial coordinates and
measuring the proper time, as discussed e.g. in [41].

We can find the coordinate times x0
± of the first return of the counter-

propagating light rays to their starting point x2 = φ0 by integrating equation
(3) over one period 2π in positive and negative angular direction, respectively.
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Hence, we arrive at

x0
± =

∫ φ0±2π

φ0

dx2

ω±
= ±

∫ 2π

0

dx2

ω±
, (6)

where in the second step we have made use of the periodicity of the metric
coefficients in the coordinate x2.

When we recall the connection dτ = √
g00(r0, φ0, z0) dx0/c between the

coordinate time x0 and the proper time τ measured by an observer resting at
(r0, φ0, z0), the corresponding proper times τ± of the incoming light rays read

τ± = ±1

c

√
g00(r0, φ0, z0)

∫ 2π

0

dx2

ω±
. (7)

The positive sign in τ+ corresponds to the light pulse propagating in the
positive angular direction, whereas the negative sign in τ− denotes the proper time
of the light pulse traveling in the negative angular direction.

The Sagnac proper time delay �τS follows as

�τS ≡ (τ+ − τ−) = 1

c

√
g00(r0, φ0, z0)

∫ 2π

0

ω+ + ω−
ω+ω−

dx2,

which reduces with help of the explicit expressions (4) for ω± to

�τS = −2

c

√
g00(r0, φ0, z0)

∫ 2π

0

g02

g00
dx2. (8)

If we further assume, that the metric coefficients g02 and g00 do not depend on the
angular coordinate x2, then the expression (8) for the Sagnac time delay reduces
to the compact formula

�τS = −4π

c

g02√
g00

. (9)

For negative values of �τS the light pulse which propagates in the positive angular
direction returns before the other pulse and vice versa for positive �τS .

We conclude by noting that the Sagnac time delay (9) is by construction only
form-invariant under the special class of coordinate transformations

x ′0 = x ′0(x0, x1, x3), x ′1 = x ′1(x1, x3), x ′2 = x2, x ′3 = x ′3(x1, x3),

which change neither the frame of reference nor the angular coordinate.

2.3. Time Delay in a Rotating Frame

We now want to apply formula (9) of the Sagnac time delay to the metric of
a rotating coordinate frame in flat Minkowski spacetime. The line element in flat
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Minkowski spacetime reads in cylindrical coordinates xμ = (t, r, φ, z)

ds2 = c2dt2 − dr2 − r2dφ2 − dz2. (10)

The coordinates x ′μ = (t ′, r ′, φ′, z′) of a reference frame rotating with a rate
�R > 0 are defined by the transformation equations

t ≡ t ′, r ≡ r ′, φ ≡ φ′ + �Rt ′, z ≡ z′,

and give rise to a line element ds2 = g′
μνdx ′μdx ′ν of the form

ds2 = (
c2 − r ′2�2

R

)
dt ′2 − dr ′2 − r ′2dφ′2 − dz′2 − 2r ′2�R dt ′dφ′. (11)

To satisfy the conditions (5) we have to restrict ourselves to the spacetime region

G ′ ≡
{

0 ≤ r ′ <
c

�R
, 0 ≤ φ′ < 2π, −∞ < t ′, z′ < ∞

}
. (12)

When we now assume that the counter-propagating light rays travel along a circle
with radius r ′

0 and substitute the metric coefficients g′
00 and g′

02 into (9), the Sagnac
time delay in the rotating frame reads

�τ ′
R = 4π

c2

r ′2
0 �R√

1 −
(

r ′
0�R

c

)2
. (13)

In the first approximation of (r ′�R/c) this expression reduces to the time delay of
the familiar Sagnac effect (1).

However, also the limit of large rotation rates, where the square root in
the denominator gets important is of interest. Indeed, in Section 5 we present
an expression for the Sagnac time delay in Gödel’s Universe, which on first sight
looks very different from (13). Nevertheless, a closer view reveals that this formula
is numerically very close to the Minkowskian Sagnac time delay.

3. ESSENTIAL FEATURES OF GÖDEL’S UNIVERSE

In order to gain some insight into the intricacies of Gödel’s Universe we
briefly review two representations of Gödel’s metric that are convenient for our
analysis of the Sagnac effect. Moreover, we sketch the conditions under which
this metric solves Einstein’s field equations. We then present tensorial quantities
characterizing the time like velocity field of the matter generating the Gödel metric.
Furthermore, we make contact with the metric of flat spacetime in cylindrical
coordinates and mention the symmetries and the causal structure of Gödel’s metric.
We conclude this section by summarizing special null geodesics, which will be
important in expressing the Sagnac time delay by measurable quantities.
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3.1. Line Element and Einstein’s Field Equations

The line element ds2 ≡ ḡμν dx̄μdx̄ν given by Gödel [25] in 1949 in dimen-
sionless, cylindrical coordinates x̄μ ≡ (x̄0, x̄1, x̄2, x̄3) ≡ (t̄, r̄ , φ̄, z̄) with

GG ≡ {−∞ < t̄ < ∞, 0 ≤ r̄ < ∞, 0 ≤ φ̄ < 2π, −∞ < z̄ < ∞}, (14)

has the form

ds2

4a2
= dt̄2 − dr̄2 − (sinh2 r̄ − sinh4 r̄ ) dφ̄2 − dz̄2 + 2

√
2 sinh2 r̄ dφ̄ dt̄ . (15)

The parameter a > 0 has the unit of a length.
In the next section we derive a simple expression for the Sagnac effect. For

this purpose, it is convenient to use a slightly different form of Gödel’s metric,
which can be obtained from (15) by the coordinate transformation

t ≡ 2a

c
t̄, r ≡ 2a sinh r̄ , φ ≡ φ̄, z ≡ 2az̄. (16)

The resulting line element reads

ds2 = c2dt2 − dr2

1 + (
r

2a

)2 − r2

(
1 −

(
r

2a

)2)
dφ2 − dz2 + 2r2 c√

2a
dt dφ.

(17)
These new coordinates have now physical dimensions.

We can convince ourselves that the metric coefficients

(gμν) =

⎛
⎜⎜⎜⎜⎜⎜⎝

c2 0 r2 c√
2a

0

0 − 1
1+( r

2a )2 0 0

r2 c√
2a

0 −r2
(

1 − (
r

2a

)2
)

0

0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎠

(18)

corresponding to the line element (17) indeed solve Einstein’s field equations

Rμν − 1

2
gμν R = κTμν + 
gμν,

by calculating explicitly the Ricci tensor Rμν and the scalar curvature R, defined
in Appendix A. Here 
 denotes the cosmological constant and κ ≡ (8πG)/(c4)
with Newton’s gravitational constant G and the velocity of light c.

The energy momentum tensor Tμν of an ideal fluid with mass density ρ and
pressure p reads

Tμν ≡
(

ρ + p

c2

)
uμuν − pgμν.
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With the four-velocity uμ = (1, 0, 0, 0) of the matter generating the field, we find

Rμν = uμuν

a2c2
, R = 1

a2
.

When we substitute these expressions into the field equations, we arrive at the two
relations

κ

(
ρ + p

c2

)
= 1

a2c2
, κp = 
 + 1

2a2
,

which couple the length scale a to the density ρ, the pressure p and the cosmo-
logical constant 
.

3.2. Time Like Velocity Field of the Ideal Fluid

The essential properties of the motion of the ideal fluid generating the field are
characterized by the tensorial quantities θ , σαβ and ωαβ representing the volume
expansion, the shear tensor and the rotation tensor, respectively [28, 42]. From
the four-velocity uμ ≡ (1, 0, 0, 0) and the acceleration aμ = uμ

;νuν = 0 of the
congruence of time like curves belonging to the ideal fluid we find a vanishing
volume expansion

θ ≡ uμ
;μ = 0,

and a vanishing shear tensor

σαβ ≡ Pμ
α Pν

β u(μ;ν) − 1

3
θ Pαβ = 0.

Here we have introduced the projection tensor

Pα
β ≡ δα

β − 1

c2
uαuβ

together with u(μ;ν) ≡ (uμ;ν + uν;μ)/2, where the semicolon denotes the covariant
derivative.

However, we arrive at a non-vanishing rotation tensor

ωαβ ≡ Pμ
α Pν

β u[μ;ν] = u[α,β] = r
c√
2a

(
δ2
αδ1

β − δ2
βδ1

α

)
. (19)

Here the square brackets are defined by u[μ;ν] ≡ (uμ;ν − uν;μ)/2 and the comma
denotes the partial derivative.

The corresponding rotation vector

ωα ≡ 1

2
εαβγ δ uβ uγ ;δ = c2

√
2a

δα
3 (20)



Sagnac Effect of Gödel’s Universe 2297

and the rotation scalar

�G ≡
√

1

2
ωαβ ωαβ = c√

2a
> 0. (21)

are constant in every point of Gödel’s Universe.
In the limit a → ∞ all rotation quantities (19), (20) and (21) vanish. More-

over, for r/(2a) � 1 we find that the line element (17) can be approximated in
first order by

ds2 = c2dt2 − dr2 − r2dφ2 − dz2 + 2r2�Gdt dφ + O(�2
G

)
.

While the zeroth order approximation [43] corresponds to the line element
(10) of flat spacetime in cylindrical coordinates the linear correction is reminiscent
of the line element (11) of a rotating coordinate frame in Minkowski spacetime.

3.3. Killing Vectors and Symmetry

If a spacetime manifold with the metric gμν possesses symmetries, then they
can be characterized by a special class of coordinate transformations x ′α = x ′α(xβ )
which satisfy the condition

g′
μν(x ′α) = gμν(x ′α). (22)

Such a coordinate transformation is called isometry. In particular, the infinitesimal
isometries

x ′α = xα + εξα(xβ) (23)

with ε � 1 are of special interest, since every continuous isometry can be con-
structed successively by these infinitesimal isometries.

The infinitesimal transformation (23) together with (22) and the transforma-
tion law of a metric yields the condition

ξα;β + ξβ;α = 0 (24)

for the Killing vector field ξα(xβ ). The solutions ξα of this linear system of partial
differential equations characterize the symmetry of a given metric.

In the case of Gödel’s metric we find five Killing vectors as solutions of
the Killing equation (24). Three of them are immediately found from (22), since
Gödel’s metric does not depend explicitly on the coordinates (t, φ, z). With the
constants A, B, C, D, E the complete solution of (24) reads

ξα(t, r, φ, z) = Aδα
0 + Bδα

2 + Cδα
3 + Dζ α(r, φ) + Eζ α

(
r, φ − π

2

)
, (25)
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with

⎛
⎜⎜⎜⎝

ζ 0

ζ 1

ζ 2

ζ 3

⎞
⎟⎟⎟⎠ ≡ 1√

1 + (
r

2a

)2

⎛
⎜⎜⎜⎜⎜⎝

r√
2c

cos φ

a
(

1 + (
r

2a

)2
)

sin φ

a
r

(
1 + 2

(
r

2a

)2
)

cos φ

0

⎞
⎟⎟⎟⎟⎟⎠ .

Since (25) contains a time like Killing vector Gödel’s Universe is stationary.
Moreover it is also spatially homogeneous. However, a more detailed analysis of
the Killing vectors shows, that Gödel’s metric is not static and also not isotropic.
The latter feature is due to the existence of a rotational axis giving rise to a
rotational symmetry in the z =const. planes.

3.4. Causal Structure

The non-vanishing rotation scalar has a dramatic consequence for the causal
structure of Gödel’s Universe. In order to gain some insight into this feature, it
is useful to consider infinitesimal light cones at different spatial points. Figure l
depicts such an arrangement. The cylindrical coordinates (t, r, φ, z) are embedded
for illustration in a Cartesian frame

(t, x ≡ r cos φ, y ≡ r sin φ, z) (26)

and the third spatial coordinate z is suppressed in the figure.

Figure 1. Light cones in Gödel’s metric represented in the z = 0 plane. The middle circle of critical
radius rG = 2a separates the domains of different causal behavior. At every point of the inner domain
the light cones lie outside of the t = 0 plane as exemplified by the cones along the inner circle. In
contrast, outside of the critical circle the cones cut through this plane.
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For every instant of time there exists a domain in space with closed time
like world-lines. To visualize this property, we consider the orientation of some
selected light cones with respect to the plane of constant coordinate time t .

At the origin of the coordinate system the axis of the light cone is orthogonal to
the plane. As we move away from the origin the light cones start to tilt, as indicated
in Fig. 1. At the critical Gödel radius rG = 2a, represented by the middle circle,
the light cones are tangential to the plane of constant coordinate time t . This circle
of radius rG is a light like curve. Outside this critical radius the inclination of the
light cones increases further and allows the existence of closed time like curves,
as shown by the outer circle in Fig. 1.

It is this peculiar feature of the causal structure which permits to connect two
arbitrary events of spacetime by a time like curve, irrespectively of their ordering
in the chosen coordinate time t . Indeed, we can start from a point within the inner
circle and cross the critical Gödel radius to explore the world beyond this border.
During this trespassing we take a time like world line which spirals downwards
into the past. Having regressed long enough on this trajectory we can finally return
to the original causal domain, thus arriving before departing.

We conclude by noting that closed time like world-lines are not limited
to Gödel’s Universe. They also appear in other exact solutions of Einstein’s field
equations for rotating mass distributions. Examples include the rotating Kerr black
hole [44, 45] and the van Stockum rotating dust cylinder [46]. Most recently is has
been shown [47], that the gravitational field of a solenoid of light, that is a light
beam bent along helical path also exhibits such closed time like world-lines.

3.5. Null Geodesics

In the presence of a metric, the free motion of particles or the propagation of
light rays is described by the geodesic equations

d2xμ

dλ2
+ �

μ
αβ

dxα

dλ

dxβ

dλ
≡ uμ

;νuν = 0 (27)

and by the condition

gμνuμuν = ε2.

For the definition of the Christoffel symbols �
μ
αβ we refer to Appendix A and

xμ(λ) = (t(λ), r (λ), φ(λ), z(λ)) is the path of the particle or light beam. For mas-
sive particles ε denotes the velocity c of light and the curve parameter λ represents
its proper time. Moreover, the tangent vector uμ ≡ dxμ/dλ is the four-velocity
of the particle. In the case of a light beam we have to set ε = 0 and the curve
parameter λ has no physical meaning.
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The solutions of the geodesic equations for Gödel’s metric were first given
by W. Kundt [48], independently examined by S. Chandrasekhar and J. P. Wright
[49] and discussed in detail by Novello et al. [50].

In Section 5 we express the Sagnac time delay in measurable quantities only.
For this purpose we need to know the geodesic motion of light for special initial
conditions. Indeed, the light pulse shall start for the initial curve parameter λ0 = 0
at the point r (0) = 0, z(0) = 0. Furthermore, the light ray shall have a vanishing
z-component of the initial velocity, that is u3(0) = 0. Since we start at the origin,
the radial velocity has to be positive, that is u1(0) > 0.

In Appendix B we outline a procedure for obtaining the general solution
of the geodesic equations (27) for Gödel’s metric and integrate these equations
subjected to these initial conditions.

For the radial coordinate we find the expression

r (λ)

2a
= ∣∣sin

(
1
2ηλ

)∣∣ , (28)

where we have introduced the abbreviation

η ≡
√

2 u0(0)�G . (29)

Hence, when the curve parameter λ reaches the value λc ≡ (2π )/η the light pulse
returns again to the origin r = 0.

The coordinate time along these geodesics reads

t(λ) = −u0(0) λ + 2

�G
[arctan(

√
2 tan(ηλ/2)) + m(λ) π ], (30)

where the integer

m(λ) ≡
[

ηλ

2π
+ 1

2

]
I

(31)

represents the greatest integer less than or equal to the number inside the brackets.
Within one cycle, 0 ≤ λ ≤ 2π/η, the coordinate time t(λ) increases by the

time interval

�tc =
√

2π

�G
(
√

2 − 1).

For the angle coordinate φ(λ) the integration yields

φ(λ) = φ(0) + arctan(
√

2 tan(ηλ/2)) + [m(λ) − m(λ − π/η)] π. (32)

We conclude this section by illustrating the null geodesics for the special initial
conditions in Fig. 2.

The left side displays the geodesic motion in the (x, y)–plane embedded in
the coordinate frame (26). The light signals emitted at the origin r = 0 cycle in
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Figure 2. Null geodesics in the (x, y)–plane (left) and coordinate time t(λ) extending over 2 cycles
(right) for the special initial conditions r (0) = 0, u3(0) = 0 and φ(0) = (0, 2π/3, 4π/3). The three
values a, b, c of the curve parameter λ mark the three different positions on a null geodesic on the
left.

the positive angular direction. The right side of the figure shows the coordinate
time t(λ) for the increasing curve parameter λ. The inflection points in the time
coordinate appear when the light ray touches the critical Gödel radius.

4. SAGNAC TIME DELAY IN GÖDEL’S UNIVERSE

The goal of the present section is to derive an exact expression for the Sagnac
time delay of two counter-propagating light rays on a circle in the presence of
Gödel’s metric. We also analyze the Sagnac effect observed by a detector rotating
relative to the ideal fluid. Finally we briefly discuss the dependence of the Sagnac
time delay on the choice of the spatial coordinates.

4.1. Sagnac Effect in the Rest Frame of the Ideal Fluid

We start by considering a situation in which the emitter and the detector are
at rest in the coordinate frame of the ideal fluid. The light pulses propagate along
a circle of radius r = r0 in the plane z = z0. Recalling Gödel’s metric (18) and the
rotation scalar (21) the relevant metric coefficients read

g00 = c2, g02 = r2
0 �G . (33)

In order to satisfy the conditions (5), we have to restrict ourselves to the spacetime
region

G ≡ {0 ≤ r < 2a, 0 ≤ φ < 2π, −∞ < t, z < ∞}.
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If we do not confine ourselves to this domain the coordinate time needed by one
of the light pulses to return to the starting point will be negative for radii larger
than the critical Gödel radius rG = 2a. This feature follows from the orientation
of the future light cones in Fig. 1.

Furthermore an observer resting with the detector at r0 > rG would measure
a negative proper time of the returning light ray, which travels backward in the
coordinate time. By restricting our experimental setup to the region G we avoid
such alien situations in which the light pulse returns before it is emitted with
respect to the chosen coordinate time.

When we substitute the coefficients (33) into formula (9) the Sagnac time
delay for Gödel’s metric reads

�τS = −4�G

c2
πr2

0 . (34)

Since this expression is negative, we conclude from the definition of the
proper time �τS , that the light pulse propagating in the positive angular direction
will always return to its starting point before the pulse propagating in the negative
direction.

It is instructive to compare this result to the familiar Sagnac time delay �tS

given by (1). On first sight the absolute value of the Sagnac time delay (34) in
Gödel’s Universe seems to be identical to the familiar Sagnac effect (1). However,
when we recall that the coordinate r0 in Gödel’s Universe does not represent
a proper distance, we recognize that the similarity only arises from the special
choice of our spatial coordinates. We will return to this point in Section 4.3.

We conclude by noting that the gravitational time delay in Gödel’s Universe
has also been calculated in [51]. However, the expression given in that paper is
quadratic in the rotation scalar.

4.2. Sagnac Effect Measured by a Rotating Detector

We now analyze the Sagnac time delay for a slightly different experimental
situation. The light source emitting the two counter-propagating light rays and
the detector are now no longer at rest relative to the ideal fluid, but rotate relative
to it. We denote the corresponding rotation rate by �D . Due to this additional
rotation the Sagnac time delay will also depend on �D . After providing an explicit
expression for the Sagnac time delay for this situation we choose �D such, that
this time delay vanishes exactly.

We start from the metric (18) and perform the coordinate transformation

t ≡ t ′, r ≡ r ′, φ ≡ φ′ + �Dt ′, z ≡ z′
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into the rotating frame of the detector. In the new coordinates the line element
takes the form

ds2 =
(

c2 − r ′2�2
D

(
1 − r ′2

4a2

)
+ 2r ′2�D�G

)
dt ′2 − dr ′2

1 + (
r ′
2a

)2

− r ′2
(

1 − r ′2

4a2

)
dφ′2 − dz′2 + 2r ′2

(
�G −

(
1 − r ′2

4a2

)
�D

)
dt ′ dφ′.

The conditions (5) for the corresponding metric coefficients in the rotating frame
lead to the restrictions

c2 − r ′2�2
D

(
1 − r ′2

4a2

)
+ 2r ′2�D�G > 0

and

0 ≤ r ′ < rG

on the radial coordinate r ′ and the rotation rate �D . Indeed, these conditions lead
to a nontrivial region G of allowed radii r ′ with respect to the chosen �D .

We again denote the radius of the circular light path by r ′
0. When we insert

the relevant coefficients g′
00 and g′

02 into formula (9) and take into account the
rotation scalar (21) we find the Sagnac time delay

�τ ′
S = −4π

c

r ′2
0

(
�G −

(
1 − r ′2

0
4a2

)
�D

)
√

c2 + r ′2
0 �D

(
2�G −

(
1 − r ′2

0
4a2

)
�D

) .

The special choice

�D ≡ �G

1 − r ′2
0

4a2

. (35)

of the rotation rate of the detector leads to a vanishing time delay �τ ′
S between the

two counter-propagating light pulses. Hence, for infinitesimal radii r ′
0, the rotation

velocity �D of the detector is equal to the rotation scalar �G of Gödel’s Universe.

4.3. A Different Choice of Spatial Coordinates

We now return to the Sagnac time delay measured in the rest-frame of the
ideal fluid of Section 4.1. According to equation (34) the Sagnac time delay �τS

depends in a linear way on the rotation scalar �G of Gödel’s Universe.
We emphasize that this linearity is only due to the special choice of our space

coordinates (16) in the line element (17). Indeed, we can also express the Sagnac
time delay �τS in the dimensionless space coordinates of the original Gödel line
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element (15), where the coordinate transformation (16) does not change the frame
of reference. In these coordinates (14) the Sagnac time delay reads

�τS = − 8π

�G
sinh2 r̄0. (36)

Although in this representation the dependence of �τS on �G differs from that of
equation (34) both formulae contain the same physics. This invariance is hidden
behind the explicit dependence of �τS in (34) and (36) on the spatial coordinates,
which have no immediate physical meaning. In the next section we are going to
rectify this problem by introducing an invariant formulation via an operational
definition of the radial coordinate.

5. INVARIANT FORMULATION OF THE SAGNAC TIME DELAY

The different formulae (34) and (36) for the Sagnac time delay bring out most
clearly the question: How can we reformulate the radial coordinate of the mirrors
in a measurable quantity?

In the present section we outline a measurement strategy to address this
question and then reformulate the Sagnac time delay solely in terms of proper
times of light signals. The obtained relation allows for an interesting comparison
to expression (13) for the Sagnac time delay in a rotating frame of reference.

5.1. Operational Definition of the Radial Coordinate

All expressions for the Sagnac time delay derived so far contain a radial
coordinate. What is a measurement strategy for obtaining the radius r0 of the
circular path of the light pulses?

We answer this question in the spirit of [11, 52, 53]. We send light signals
along their null geodesics from the center of the circle to every mirror M in the
z = 0 plane, as illustrated on the left side of Fig. 3. The mirrors are arranged in
such a way as to reflect the light back to the point of emission. Moreover they
are lined up in the z = 0 plane as to ensure that the pulses emitted simultaneously
at the center and reflected from the mirrors all return to the center at the same
time.

Hence, the radius r0 can be expressed by the proper time �τM between the
emission and detection of the reflected pulses measured by an observer resting
at the origin r = 0. Once the circular setup of mirrors has been established by
this operational procedure the mirrors have to be readjusted to guide the counter-
propagating light rays in this circular Sagnac configuration with radius r0, as
indicated in the right of Fig. 3.

We conclude by emphasizing that our experimental implementation is only
the simplest conceivable model. It is a gedanken experiment, which even requires
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Figure 3. Illustration of the measurement procedure for the radius r0 of a circle (left) and of the
Sagnac time delay �τS (right). Light rays start at the origin and propagate on null geodesics to the
mirrors (M), where they are reflected back to the origin (left). The proper time �τM between emission
and arrival of the light pulses is measured by an observer resting at the origin. The figure on the right
illustrates the typical experimental arrangement for the Sagnac effect with a detector (D) on the circle.
The straight lines between two consecutive mirrors are an approximation to the corresponding null
geodesics. However, the curves shown on the left are exact null geodesics (see Appendix B).

an infinite amount of mirrors. However, a practical realization has many caveats
which need to be considered, such as the finite number of mirrors, the propagation
of the light pulses on null geodesics in-between and the applicability of geometrical
optics. In fact, the case of a finite number of mirrors has been carried out in principle
by [40, 54], where the Sagnac time delay in a rotating frame in Minkowski
spacetime serves as an example of the given method.

5.2. Invariant Formulation

We are now in a position to establish a connection between the Sagnac time
delay �τS and the rotation scalar �G in terms of the proper time interval �τM ,
measured by an observer resting at the origin r = 0 of the coordinate system.
We start by calculating the coordinate time for the light pulses to propagate to
the mirrors and back. For this purpose we recall (28)–(30). We then translate this
time interval into proper time and express the radius r0 by the Sagnac time delay
making use of equation (34).

Since our mirrors are positioned at the radius r0 < rG the curve parameter
λ0 corresponding to this radius can be found from equation (28). Within a period
0 ≤ ηλ < 2π two values of λ correspond to r0 and we choose the first solution λ0

within the interval 0 < ηλ0 < π . The coordinate time between the emission of a
light pulse at r = 0 and the reflection of it from r = r0 follows from (30) and (31)
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and reads

t(λ0) = −u0(0) λ0 + 2

�G
arctan(

√
2 tan(ηλ0/2)). (37)

Since Gödel’s metric is stationary, spatially homogeneous and possesses rotational
symmetry in the planes z = const., it takes twice the time t(λ0) to travel to and
from the mirrors. For an observer resting at the origin r = 0 the proper time �τM

between emission and arrival of the light pulses is given by ds = c dτ = c dt , and
consequently

�τM = 2t(λ0).

When we use equation (28) for λ0 in (37) we arrive at the expression

�G�τM = −2
√

2 arcsin
( r0

2a

)
+ 4 arctan

⎛
⎝ √

2
( r0

2a

)
√

1 − ( r0
2a

)2

⎞
⎠ (38)

for the proper time �τM . Here we have recalled the definition (29).
In order to make the connection to the absolute value of the Sagnac time

delay �τS , we recall from (34) the relation

|�τS| = 4�G

c2
πr2

0 = 8π

�G

( r0

2a

)2
,

keeping in mind, that the negative value of �τS is only due to a faster propagation
of the light pulse in the positive angular direction.

This formula allows us to express the radius r0 in (38) in terms of the absolute
value |�τS| of the Sagnac time delay. In order to avoid the appearance of the square
root of �τS it is convenient to introduce the dimensionless parameters

�2
S ≡ 1

8π
�G |�τS| =

( r0

2a

)2
(39)

with 0 < �S < 1 and

�2
M ≡ 1

8π
�G�τM . (40)

When we replace the proper time �τM and the radius r0 in (38) by their corre-
sponding dimensionless parameters (39) and (40) we arrive at the transcendental
equation

4π�2
M = 2 arctan

⎛
⎝ √

2�S√
1 − �2

S

⎞
⎠−

√
2 arcsin �S. (41)

This relation is quite a remarkable result since it provides an invariant formulation
of the Sagnac time delay in Gödel’s Universe. Indeed, for a given value of the
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�M , that is for the radius of the circular path measured in propagation time �τM

of light, the solution of this equation is the scaled Sagnac time delay �S . Since
we have scaled all proper times in terms of the rotation scalar the transcendental
equation contains no parameters of Gödel’s Universe. The information about the
metric reflects itself solely in the form of the equation.

5.3. Comparison to the Rotating Frame in Flat Spacetime

We now compare the transcendental equation (41) for the Sagnac time delay
of Gödel’s metric with the corresponding formula for the time delay (13) found in
a rotating frame of reference in Minkowski spacetime.

The first step consists of replacing the radial coordinate in equation (13) by a
measurable time. For this purpose we apply the same measurement strategy to the
rotating frame as discussed in 5.1. We then substitute the radial coordinate r ′

0 by
the proper time interval �τ ′

M of a light ray, which returns after reflection from the
circular mirror arrangement at r ′

0 to the origin. Since the observer at the origin is
at rest relative to the inertial frame of Minkowski spacetime, we find immediately
the proper time

�τ ′
M = 2r ′

0

c
.

For the comparison of the Sagnac time delay (13) with the expression (41) it is
useful to introduce the dimensionless parameters

�′2
R ≡ 1

8π
�R�τ ′

R (42)

and

�′2
M ≡ 1

8π
�R�τ ′

M , (43)

in complete analogy to the formulae (39) and (40).
Using these parameters we can cast the Sagnac time delay (13) into the form

2�′2
R =

(
4π�′2

M

)2√
1 − (

4π�′2
M

)2
,

which in contrast to (41) is an explicit formula for �′
R in terms of �′

M .
In order to obtain a formula analogous to (41) we solve this equation for

4π�′2
M , which yields

4π�′2
M =

√
2�′

R

√√
1 + �′4

R − �′2
R . (44)
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Figure 4. Comparison between the Sagnac time delay for Gödel’s Universe (solid
line) and for a rotating coordinate system in flat spacetime (dotted curve). Scaled
proper times 4π�2

M and 4π�′2
M of a light signal propagating from the origin to a mir-

ror on the circle and back in Gödel’s Universe and in a rotating frame of reference in
flat spacetime, plotted versus the Sagnac time delays �S and �′

R in scaled units. While
the left ordinate applies to the absolute values of those scaled time delays, the dashed-
dotted line magnifies the residual differences 4π (�′2

M − �2
M ) as indicated by the right

ordinate.

Due to our restriction (12) to the spacetime region G ′ the parameter �′
M has to

satisfy the condition

0 ≤ 4π�′2
M < 1.

Figure 4 illustrates the differences in the curves defined by (41) and (44).
We find that for our measurement strategy the difference between the solid
and dotted curve is very small. This is surprising, as the underlying physi-
cal systems with Gödel’s Universe on the one hand and the rotating frame in
flat Minkowski spacetime on the other hand, differ substantially in their global
behavior.
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This similarity can also be understood from the Taylor series expansion of
(41) and (44). Indeed, for small values of �S or �′

R we find

4π�2
M =

√
2

(
�S − 1

2
�3

S + 11

40
�5

S + O(�7
S

))
, (45)

and

4π�′2
M =

√
2

(
�′

R − 1

2
�′3

R + 1

8
�′5

R + O(�′7
R

))
. (46)

Thus the two equations determining the Sagnac time delay only differ in the
contribution of the fifth power of �S or �′

R .

6. SUMMARY AND OUTLOOK

In conclusion we have investigated the Sagac time delay in Gödel’s Universe.
Our analysis generalizes the results of our previous examination [29], which were
limited to small radial dimensions and rotation rates, to arbitrary sizes of the
circular Sagnac interferometer and arbitrary rotation rates of Gödel’s Universe.
The previous results exhibited a close relation between the Sagnac effect in Gödel’s
Universe and in a rotating frame in flat spacetime. By obtaining exact and invariant
expressions for the Sagnac time delays in both systems, valid for arbitrary rotation
rates and radii within G and G ′ we have demonstrated inhere, that this statement
is also valid in general.

The original Gödel solution is not in agreement with cosmological ob-
servations of the background radiation [55]. Therefore, one might be tempted
to dismiss this remarkable exact solution of Einstein’s field equations alto-
gether. However, recently analogies between light propagation in curved space-
times and optics in moving media [31] or sonic propagation in condensed mat-
ter systems [32, 33] have instigated renewed interest in this subject. For ex-
ample, these articles consider experimental analogues of a gravitational black
hole. Here, the event horizon emerges when the flow velocities of the optical
medium or the condensate exceed the velocities of light or sound in these media,
respectively.

How far can we push these analogies? Can we find an optical or sonic
realization of the light propagation in Gödel’s Universe? Unfortunately, a global
simulation of the Gödel spacetime via an experimental analogue seems not to be
very probable due to the causal structure of this metric discussed in Section 3.1.
But since we can approximate the local light propagation in Gödel’s Universe by a
rotating coordinate frame in Minkowski spacetime it should be possible to translate
the physics of wave propagation in curved space locally to cold quantum gases.
Vortices [56–58] or alternatively Abrikosov lattices [59] might offer a possible
route to an analogue of Gödel’s Universe in the laboratory.



2310 Kajari, Walser, Schleich, and Delgado

APPENDIX

A. DEFINITIONS AND CONVENTIONS

Throughout this article we use the signature (+,−,−,−) of our metric
gμν with the determinant g ≡ det gμν and denote the covariant derivative with a
semicolon and the ordinary partial derivative with a comma.

The antisymmetric tensor

εαβγ δ ≡ 1√−g
�αβγ δ

is defined in terms of the Levi-Cevita-Symbol

�αβγ δ ≡

⎧⎪⎨
⎪⎩

1 for an even permutation

−1 for an odd permutation

0 otherwise

⎫⎪⎬
⎪⎭ . (47)

The components of the Riemann tensor

Rμ
αβγ ≡ �

μ
αγ,β − �

μ
αβ,γ + �

μ
ρβ�ρ

αγ − �μ
ργ �

ρ
αβ

result from the Christoffel symbols

�
μ
αβ ≡ 1

2
gμν

(
gνα,β + gνβ,α − gαβ,ν

)
.

The Ricci tensor and the scalar curvature

Rαβ ≡ Rμ
αμβ, R ≡ Rμ

μ

follow by contraction.
The covariant derivative of a contravariant vector field T α reads

T α
;β ≡ T α

,β + �α
μβ T μ

whereas for a covariant vector field it takes the form

Tα;β ≡ Tα,β − �
μ
αβ Tμ.

B. INTEGRATION OF NULL GEODESICS

In this Appendix we outline a procedure to obtain the solutions of the geodesic
equations in Gödel’s metric. Since the main goal of the paper is the Sagnac time
delay and in particular, an invariant formulation of it, we confine ourselves to
special initial conditions appropriate for our experimental setup.
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B.1. General Idea

The central idea for solving the geodesic equations relies on finding simple
expressions for the constants of motion. Some of these constants can easily be
obtained if the metric possesses Killing vectors ξμ. This feature can be understood
by contracting the geodesic equations (27) with the contravariant components of
a Killing vector, that is

ξμuμ
;νuν = (

ξμuμ
)

;ν uν − ξμ;νuμuν = 0.

When we recall the Killing equation (24) and note, that the covariant derivative of
a scalar is just the ordinary partial derivative, we find

d

dλ

(
ξμuμ

) = 0.

Hence, every Killing vector corresponds to a constant of motion.
In addition the norm of the tangent vector uμ(λ) is constant along the

geodesics and therefore yields another constant of motion

gμνuμuν = ε2. (48)

Since the metric coefficients (18) depend only on the radial coordinate r , the
solution of the geodesic equations (27) can be found by making use of the first
three Killing vectors in (25) to obtain the simple constants of motion

A = u0(λ) = c2u0(λ0) + r2(λ0) �Gu2(λ0) (49)

B = u2(λ) = r2(λ0) �Gu0(λ0) − r2(λ0)

(
1 −

(
r (λ0)

2a

)2
)

u2(λ0) (50)

C = u3(λ) = −u3(λ0). (51)

Here λ0 denotes the initial curve parameter and in the second step of these equa-
tions we have made use of the relation uμ(λ0) = gμν(λ0)uν(λ0) with the metric
coefficients (18).

We substitute the expressions (49)–(51) for the covariant components of the
four–velocity uμ into the constant of motion (48) and find with the contravariant
metric coefficients

(gμν) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
c2

1−( r
2a )2

1+( r
2a )2 0 �G

c2
1

1+( r
2a )2 0

0 −
(

1 + (
r

2a

)2
)

0 0

�G
c2

1
1+( r

2a )2 0 − 1
r2

1
1+( r

2a )2 0

0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (52)
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the equation

gμνuμuν = A2

c2

1 − (
r

2a

)2

1 + (
r

2a

)2 + �G

c2

2AB

1 + (
r

2a

)2 − B2

r2

1

1 + (
r

2a

)2 − C2

−
(

1 +
( r

2a

)2
)

(u1(λ))2 = ε2. (53)

Inserting u1 = g11u1 into this expression yields a differential equation in the
radial coordinate r . The solution r (λ) can then be used to formulate the differential
equations for the coordinates t and φ by making use of the relations u0 = g0μ uμ

and u2 = g2μ uμ. The solution of the third spatial coordinate z can be obtained
from the last constant of motion (51)

u3 = g33 u3 = −C, z(λ) = u3(λ0)(λ − λ0) + z(λ0). (54)

Thus, the motion in z–direction is like a free motion in one dimension in flat
Minkowski spacetime.

B.2. Special Initial Condition

In the remainder of this Appendix we focus on the solution of the geodesic
equations for light, that is ε = 0 in (48), subjected to the special initial condi-
tions associated with the experimental arrangement considered in Section 5. In
particular, the light pulse starts with the initial curve parameter λ0 = 0 at the po-
sition r (0) = 0, z(0) = 0 and propagates in the z = 0 plane. Therefore, we have
to choose u3(0) = 0. We emphasize, that for r = 0 the angle velocity u2(0) looses
its meaning. Moreover, since we start at the origin and r is positive, we have to
take u1(0) > 0.

These special initial conditions reduce the constants of motion (49)–(51) to

A = u0(λ) = c2u0(0) > 0 (55)

B = u2(λ) = 0 (56)

C = u3(λ) = 0. (57)

These compact expressions allow us to integrate the differential equation (53) for
our radial coordinate r (λ) as shown in the next section.

B.3. Radial Coordinate

The constants of motion (55)–(57) reduce the differential equation (53) to

c2

(
1 −

( r

2a

)2
)

(u0(0))2 −
(

1 +
( r

2a

)2
)2

(u1(λ))2 = 0,
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which leads with u1 = g11 u1 and u1(0) > 0 to

dr

dλ
= ±c u0(0)

√
1 −

( r

2a

)2
. (58)

The two equations correspond to the two different signs of the radial velocity.
Separation of variables∫ r (λ)

0

dr√
1 − (

r
2a

)2
= ±c u0(0)

∫ λ

0
dλ

finally yields the radial geodesic

r (λ)

2a
= ∣∣sin

(
1
2ηλ

)∣∣ . (59)

Here we have introduced the periodicity rate

η ≡
√

2 u0(0)�G (60)

in such a way, that one cycle of the radial coordinate r (λ) corresponds to the curve
parameter λ = 2π/η.

It is apparent, that the solution (59) is not differentiable at r = 0. This feature
is due to the transformation to polar coordinates, which is singular at r = 0.
Furthermore we recognize that these null geodesics touch the critical Gödel radius
rG = 2a for ηλ = π .

B.4. Coordinate Time

The explicit expression (59) for our radial coordinate allows us now to find
the corresponding expressions for both the coordinate time t(λ) and the angular
coordinate φ(λ). For this purpose we use the relation u0 = g0μuμ with the con-
travariant metric coefficients (52) and the constants of motion (55) and (56) and
arrive at

u0(λ) = u0(0)
1 − ( r (λ)

2a

)2

1 + ( r (λ)
2a

)2 ≥ 0.

Hence, the coordinate time is increasing monotonously.
Substitution of (59) into the above equation leads to

t(λ) = −u0(0) λ + 2u0(0)
∫ λ

0

dλ

1 + sin2
(

1
2ηλ

) , (61)

which after integration yields

t(λ) = −u0(0) λ + 2

�G
(arctan(

√
2 tan(ηλ/2)) + m(λ) π ). (62)
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Here we have used (60) and introduced the integer

m(λ) ≡
[

ηλ

2π
+ 1

2

]
I

(63)

where the brackets denote the greatest integer less than or equal to the number in-
side them. The integer m guarantees the continuity, differentiability and monotony
of t(λ) for arbitrary λ ≥ 0.

B.5. Angular Coordinate

The dependence of the angular coordinate φ(λ) on the curve parameter can
be found in a way similar to the one of the coordinate time t(λ). With the help of
the relation u2 = g2μuμ and the constants of motion (55) and (56) we arrive at

u2(λ) = u0(0) �G

1 + ( r (λ)
2a

)2 .

Since the angular velocity u2 looses its meaning at the point r = 0 we perform the
integration over one cycle only, that is 0 ≤ λ < (2π )/η. In this case the integral

φ(λ) = φ(0) + u0(0) �G

∫ λ

0

dλ

1 + sin2
(

1
2ηλ

)
leads in analogy to (61) under the restriction m(λ) = 0, 1 to the angular coordinate

φ(λ) = φ(0) + arctan(
√

2 tan(ηλ/2)) + m(λ) π.

We can rewrite this expression in order to allow arbitrary values of λ > 0 which
results in

φ(λ) = φ(0) + arctan(
√

2 tan(ηλ/2)) +
(

m(λ) − m
(
λ − π

η

))
π. (64)

Equations (59), (62) and (64) represent the null geodesics for our special initial
conditions.
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