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We show that pair correlations may play an important role in the dynamical properties of a Bose-
Einstein condensed gas composed of an atomic field resonantly coupled with a condensed field of
molecular dimers. Specifically, pair correlations in this system can dramatically modify the coherent and
incoherent transfers between the atomic and molecular fields.
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Superfluidity and long-range order are usually identi-
fied with a complex-valued order parameter defined as the
expectation value of the field operator. In the case of a
dilute Bose gas, the evolution of the order parameter is
given in the mean-field approximation by the well-known
Gross-Pitaevskii equation. Recently, this equation has
been extensively applied to studies of the zero-temperature
collective behavior of metal-alkali Bose-Einstein conden-
sates confined in magnetic traps. Quantitative agreement
has been found between theory and experiment for a wide
range of distinct phenomena [1,2].

Although identical in form to a nonlinear Schrédinger
equation, it is notable that the Gross-Pitaevskii equation
does not by itself describe the full evolution of the
quantum state. In general, a complete kinetic description
requires knowledge of the evolution of a hierarchy of cor-
relation functions, and not just the evolution of the expecta-
tion value of the field [3]. In particular, in low temperature
systems, it is well known that pairing fields associated
with two-particle correlations can play an important role.
In a quantum degenerate Fermi gas, pairing may radically
alter the equilibrium properties, giving rise to superflu-
idity in *He and superconductivity in electron systems.
Correlations can also be important in Bose systems. For
example, squeezed states of light— formed when photons
are generated in pairs in nonlinear media—have been
studied extensively in the field of quantum optics [4].

In this Letter, we elucidate the important role of
pair correlations on the macroscopic dynamics of a dilute
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Bose-Einstein condensate composed of resonantly coupled
atoms and molecules. This extension leads to significant
deviations from a simple mean-field picture [S—8]. We
find that proper treatment of correlations rapidly damps the
giant atom-molecule oscillations predicted by mean-field
theory. The inevitable consequence of the damping is an
increase in the density of the thermal cloud. This behavior
also resolves the conceptual difficulty associated with
the rapid atom-molecule oscillations—how can pairs of
atoms find each other rapidly enough to form molecules
at the predicted rate?

The atom-molecule coupling may be generated experi-
mentally [9,10] by tuning the strength of an external mag-
netic field in the proximity of a Feshbach resonance (see
Fig. 1). Two parameters characterize the Feshbach reso-
nance: (i) the energy mismatch e between the bound state
and the zero energy edge of the continuum states for the
colliding atom pair, and (ii) the inverse lifetime « of the
bound state. As an alternative, photoassociation may be
used to directly generate the resonant coupling [11,12]. In
photoassociation, a two-photon Raman transition is used
to couple the atomic continuum states to a specific bound
molecular level. In that case € represents the detuning
energy of the Raman lasers from the atom-molecule tran-
sition, and « denotes the two-photon Rabi frequency pro-
portional to the laser intensities and to the usual overlap
integrals.

A Hamiltonian for this coupled atom-molecule system
may be written as
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where ,(x) and #,,(x) are bosonic field operators which
annihilate atoms or molecules, respectively. The mean-
field potential arising from binary atomic collisions is de-
termined by U, = 47 h*a/m, where m is the atomic
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mass, and a is the scattering length for atom-atom colli-
sions. Equivalent definitions apply for U,m and Uppm,
corresponding to atom-molecule collisions and molecule-
molecule collisions. The interconversion of atom pairs into

© 2001 The American Physical Society 1915



VOLUME 86, NUMBER 10

PHYSICAL REVIEW LETTERS

5 MARCH 2001

Closed Channel

Open Channel

Energy

Internuclear Separation —

FIG. 1. Feshbach resonance. Atoms collide with relative ki-
netic energy near zero as indicated by the dashed line. This en-
ergy is quasidegenerate with a bound state in a closed channel
potential. Typically, € can be tuned experimentally by changing
the magnitude of an external magnetic field.

molecules is characterized by g = +/kU,, [5]. The free
Hamiltonians are H,(x) = —h2V?/2m + V,(x) — pa
and H,(x) = —h*V?/4m + V,,(x) — m,, where we
include V,(x) and V,,(x) for generality to allow for the
possibility of external potentials. Here the chemical
potentials of the atomic and molecular fields are denoted
by p, and w,,, respectively, such that € = u,, — 2u,.

We derive a mean-field description according to the
following prescription. For the molecules, we replace
the field operator by its mean value, ¢,,(x) = (¢, (x)),
thereby assuming a classical condensed field. Anticipat-
ing that pairing of atoms will play an intrinsic dynam-
ical role, we treat the atomic field in a more detailed
manner, incorporating both the mean value of the field,
¢a(x) = (h,(x)), and the single-time Green’s functions
for normal fluctuations, Gy(x,y) = (¥!(y))ta(x)), and
anomalous fluctuations, G4(x,y) = (¥«(¥){«(x)), where
Fa(®) = Pa(x) — ¢,(x). Deriving the first-order Hartree-
Fock-Bogoliubov theory then gives the following equa-
tions of motion for the condensates:
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with corresponding mean-field potentials
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and coupling elements
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A concise representation for the evolution of the atomic
fluctuations is given by
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with single-particle density matrix
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and Bogoliubov self-energy of symplectic structure
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The 2 X 2 elements of X(x, y) are each diagonal in x and
¥ due to the implicit contact potential in Eq. (1). Accord-
ingly, by defining H(x,x) = H,(x) + Y(x,x), the set of
equations are closed by specifying

Y(x,x) = 2Un (1. (0)1* + Gn(x,%)) + Usmlpm(x)I?,
O(x,x) = Un(lpa(x)I* + Galx,x)) + gdum(x).  (8)

As an example of the implementation of these equations,
we apply the theory to consider a spatially uniform gas by
the assumption that we may set to zero the external po-
tentials, V,(x) and V,,(x). In order to simplify the model
as much as possible, we also discard the effects of back-
ground mean fields by setting to zero U,,, U,n, and Uypy,.
Inclusion of these terms can be done in a straightforward
manner (although renormalization of the low energy effec-
tive field theory is then slightly more involved) and does
not change the essential predictions which follow. Be-
cause of translational symmetry, the resulting atomic and
molecular condensates are spatially homogeneous, and the
normal and anomalous densities, Gy(x,y) and Ga(x,y),
depend only on the magnitude of the relative coordinate,
ie, |x — yl.

We convert the equations to dimensionless forms in
the following manner. We define the number density
n as the number of atoms plus twice the number of
molecules per unit volume. Then g\/; denotes a char-
acteristic coupling energy of the atomic and molecular
mean fields. A dimensionless time 7 can therefore be
defined by 7 = g\/; t/h. A dimensionless coordinate
r = |x — y|/{ is associated with the length scale ¢
corresponding to the formation of molecules from atom
pairs. This is effectively a “molecular healing length”
found by balancing the relative kinetic energy with the
resonance coupling energy, i.e., i2/2ul? = g\/;, where
u = m/2 is the reduced mass. By making systematic sub-
stitutions, ¢u = $a(x)/Vn, ¢w = u(x)/Vn, Gu(r) =

Gy (x,y)/n, Ga(r) = Ga(x,y)/n, and A = €/g/n gives
the complete system of equations in dimensionless form
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where 63 (r) is the isotropic three-dimensional Dirac delta
function and we have defined n = n/* as a diluteness pa-
rameter of the coupled atomic and molecular gas. There
are explicitly conserved quantities in these equations cor-
responding to normalization (density of atoms plus twice
the density of molecules), i.e.,

|¢a|2 + GN(r)erO + 2|¢m|2 = 1, (10)

and energy density u (energy due to detuning and coupling
plus the kinetic energy of the normal gas)

u=—Alpnul* + Re[¢;(p3 + Galr)l,=o)]
— 5 V2Gy ()0 (11)

Interestingly, Eq. (9) cannot be directly integrated as
written. The delta function describes the spontaneous
breakup of molecules into atom pairs. This process is
reminiscent of the decay of an excited atom leading to the
spontaneous emission of a photon. In that case, the inter-
action with the unoccupied vacuum modes of the radia-
tion field gives both an energy width and an energy shift
(Lamb shift) to the decaying state. Analogously in the
atom-molecule system, there is an energy shift of the
molecular state containing contributions from all diagrams
representing the breakup of molecules into virtual atom
pairs. The virtual atom pairs may form an intermediate
state off the energy shell. Summing over the full spectrum
of wave numbers for the pair gives an infinite shift to the
molecular level.

This divergence is reconciled by noting that we have
been inconsistent in not including the self-energy of the
molecular quantum state in the original definition of the
chemical potential u,,. We carry out the renormalization
in the following manner. We place an artificial bound on
the momenta of the atom pair by replacing the delta func-
tion by a three-dimensional Gaussian of standard width o,
normalized to have unit volume

80(r) = Qma?) e, (12)
Physically, this accounts for the fact that the real potential
is not exactly a contact potential. The resulting energy
shift is then finite and we derive its value according to

the following prescription. We define a three-dimensional
Fourier transform

Galk) = ] d3r Ga(r)e Tk, (13)

which for the isotropic case is simplified to Ga(k) =
Akt fg rGa(r)sin(kr) dr. As k — oo, an approximate
equation for G4 (k) using Eq. (9) is
——— = k"Gplk) + —, 14
P (k) 26 (14)
where 7 (k) = n exp(c2k?/2). Arbitrarily taking G (k) =
0 at 7 = 0, the solution of this equation is
i [ d’m(T/)eikz(TLT) dr' =
0

n (k)

_¢m(7)

k2n(k)
(15)

Ga(k) =

Calculating the energy shift of the molecular level re-
quires substituting this result into the evolution equa-
tion for d¢,,/d7 in Eq. (9). Using the Fourier integral
Ga(r)l,—o = @) [ k*Ga(k) dk, the resulting shift
may be incorporated into a renormalized detuning A:

27

A—A— ———.
8mino,

(16)
The end result of this analysis is that Eq. (9) is satis-
factorily renormalized by making the two substitutions,
Egs. (12) and (16). The evolution of any observable will
then be independent of the choice of o, providing o, is
chosen to be sufficiently small.

Although we have removed the ultraviolet divergence
of the molecular state, we emphasize that there remains a
width to the state in general which may be evaluated in
the same second-order level of perturbation theory. Physi-
cally the width arises from a process by which an unbound
molecule can spontaneously disintegrate into an atom pair
with a possible continuum of energies. Atoms generated
by such a spontaneous process acquire a random phase
undetermined by the phase of the broken symmetry field.
Therefore, while the Hamiltonian theory is reversible, the
evolution of observables such as populations and quan-
tum mechanical coherences may acquire the appearance
of damping.
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FIG. 2. Time evolution of the atomic condensate |¢,|*> and
molecular condensate 2|¢,,|> for solely mean-field theory
(dashed lines) and for the Hartree-Fock-Bogoliubov theory

(solid lines).
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FIG. 3. Evolution of the normal density.

As a numerical example, we examine the 2*Na Feshbach
resonance at 907 G [9]. For this system « = 27h X
4.6 MHz, and we consider the bound state to be on-
resonance with the colliding atom pairs (i.e., A = 0).
Other parameters are the scattering length a = 60ay,
where aq is the Bohr radius, and we take a density of
10" cm™3. This gives a diluteness parameter of 7 =
6 X 1072, In the simulation in Fig. 2 we show the
evolution of the atomic and molecular condensate fields,
comparing the Hartree-Fock-Bogoliubov theory we have
derived with the predictions of mean-field theory. The
initial condition is taken as 95% of the population in the
atomic condensate and 5% in the molecular condensate.

The persistent large scale oscillations of the population
of the atomic and molecular condensates as seen in a solely
mean-field theory dampen out when the coupling to the
normal gas is included. This is partly due to the fact that,
when molecules are formed from atom pairs, the pair cor-
relation function at that point is depleted, and is partly
due to the possibility of spontaneous breakup of the gener-

v‘v‘ |

il
I
|

A
w e

r (um) 0 t (us)

FIG. 4. Evolution of the anomalous density.
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ated molecules into the normal component of the gas. The
damping of the population oscillations in this theory is in-
trinsic and not due to interactions with external reservoirs;
e.g., relaxation of the molecules in highly excited vibra-
tional states, or spontaneous emission in photoassociation.

In Fig. 3, we illustrate the behavior of the normal com-
ponent during this simulation. The density of the normal
gas is Gy(r)|,—o. The temperature of the normal gas is
found from the spatial scale over which this correlation
function decays. For reference, for an equilibrium classi-
cal gas, Gy is Gaussian with a standard deviation given by
the thermal de Broglie wavelength.

In Fig. 4, we show the evolution of the anomalous fluc-
tuations. For a dilute gas, the magnitude of the pair-
correlation function is usually small, so it is significant
that here |G4| acquires a large value comparable to that
of |Gy|. One of the reasons for this behavior is that there
can never be an odd number of atoms in the thermal cloud
since atoms are spontaneously generated from molecules
in pairs. This situation is similar to the formation of a
squeezed vacuum in optics. Note that the value of |G 4(r)|
near r = 0 depends on o, ! and is not an observable.
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