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Excitation of a dipole topological state in a strongly coupled
two-component Bose-Einstein condensate
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Two internal hyperfine states of a Bose-Einstein condensate in a dilute magnetically trapped®fRis of
atoms are strongly coupled by an external field that drives Rabi oscillations between the internal states. Due to
their different magnetic moments and the force of gravity, the trapping potentials for the two states are offset
along the vertical axis, so that the dynamics of the internal and external degrees of freedom are inseparable.
The rapid cycling between internal atomic states in the displaced traps results in an adiabatic transfer of
population from the condensate ground state to its first antisymmetric topological state. This has a pronounced
effect on the internal Rabi oscillations, modulating the fringe visibility in a manner reminiscent of collapses
and revivals. We present a detailed theoretical description based on zero-temperature mean-field theory.

PACS numbsfs): 03.75.Fi, 05.30.Jp, 32.80.Pj, 74.50.

[. INTRODUCTION states of a driven two-level atom in quantum optics. Due to
the interplay between the internal and external degrees of
An intriguing aspect of Bose-Einstein condensationfreedom, the condensate dressed states have spatial structure
(BEC) in a dilute atomic gas is that the internal atomic statethat depends on the trap parameters, the mean-field interac-
of the condensate can be manipulated to produce quite novébn, and the frequency and intensity of the driving fig2é].
systems. A number of interesting experiments have producelth the experiment reported in Rei25], the dressed states
uncoupled multicomponent condensates, in which two omvere created via an adiabatic passage by sweeping the de-
more internal states of the condensate exist together in tning.
magnetic or optical trapl-5]. These experimental studies, In this paper, we focus on the limit of a very strong and
along with their theoretical counterparts, have investigatedustained coupling between hyperfine states, which is the
various topics such as the ground state of the sy$6ei 1], situation achieved experimentally in RE25]. In that experi-
the elementary excitationgl2—18, and the nonlinear dy- ment, a BEC of about 8 10° atoms was produced in the
namics of component separatifio)]. |[F=1Mg=—1) hyperfine state of’Rb, at a temperature
Many fascinating properties can be studied by applying artlose to zero,T~0. The atoms were confined in a time-
external electromagnetic field that coherently couples the inaveraged, orbiting potentidfOP) magnetic trap by a har-
ternal atomic states of the condend@@-28. In the experi-  monic potential with axial symmetry along the vertical axis.
ment described in Ref20], the relative phase between two An external field was then applied that coupled the-1)
hyperfine components was measured using a technique basstdte to thg2,1) hyperfine state via a two-photon transition.
on Ramsey’s method of separated oscillating fi¢kB and  The Rabi frequency was five to ten times larger than the
these results have motivated further theoretical investigatiorertical trap frequency and the detuning could be adjusted
[19,21. In this system, several key parameters can be variedrbitrarily. Due to their different magnetic moments and the
over a wide range of values, such as the coupling-field intenforce of gravity, the two hyperfine states sit in shifted traps
sity and frequency, the confining potentials, the total numbeoffset along the vertical axigt0]. The degree of separation
of atoms, and the temperature, making this a very rich syseould be controlled by adjusting the magnetic trapping fields.
tem to explore. The subsequent behavior of the system described in Ref.
Several theoretical papef82-24 have investigated the [25] was quite unexpected: after the coupling field was
weak coupling limit of this system, where the intensity of theturned on, the Rabi oscillations between the states appeared
external driving field is very low but is turned on for a time to collapse and revive on a time scale which was long com-
long compared to the period of oscillation in the magneticpared to the Rabi period of 3 ms. An example of this behav-
trap. A clear analogy exists between this system and ther taken from the experiment described in RE25] is
Josephson junctiof80]. In the Josephson junction, identical shown in Fig. 1. It was observed that the period of this
particles in spatially separated condensates are coupled vimodulation increased with decreasing detuning. The behav-
the tunneling mechanisif81-39. In this two-component ior of the system also depended critically on the separation
system, however, two distinct internal states of the condenbetween the traps for each state. As the separation was taken
sate are coupled by an applied field. By adjusting the magto zero, the effect went away. The evolution of the density of
netic fields that confine the atoms, the degree of spatial oveeach component was also very interesting. Each component
lap between the two components can be controlled. cycled between a density profile with one peak and a profile
Recently, there have been both experimef2g] and the-  with two peaks. The two-peaked structure was most clearly
oretical [26] studies on the dressed states of a driven twovisible around the collapse time, whichtis-20 ms for the
component condensate, drawing an analogy to the dressedse shown in Fig. 1.
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1 ‘ , - - - the exact solution of this state is known as a dark soliton
075 ] [39]. In that case the scale of the density perturbation around
the node is the healing length and is determined by a balance
5 08 of kinetic and mean-field interaction energies. In the problem
S 0.25] ] we consider here, however, it is necessary to account for the
< ‘ . . . . mean field of the the remaining population in the condensate
k- ‘1’ ‘ , . . . ground state. Consequently the two states—the ground state
g and the dipole state—are inextricably linked and must be
=078 i determined self-consistently.
Z g5 We first present a detailed theoretical analysis in Sec. Il.
After making several reasonable approximations, we arrive
0.25 in Sec. Il E at the two-state model—a simplified description
0 ‘ s s s s that encapsulates the essential properties of the system. In
0 25 50 75 100 125 150

time (ms) Sec. lll we present results of numerical calculations that il-
lustrate the behavior of the system and we compare our

FIG. 1. This plot shows the modulation of the fractional popu- model with the exact numerical solution of the coupled GP
lation in the (1--1) state. The top line is experimental d&&5]  equations. We finally summarize our work in Sec. IV and

while the bottom line is the result of a numerical calculation of thesuggest further studies based on our understanding of this
three-dimensional, two-component Gross-Pitaevskii equation Eophenomenon

(1) (below). The coupling strength and detuning were chosen for
the calculation to b&) =350 Hz ands= —188 Hz, respectively. Il. THEORETICAL DESCRIPTION
A numerical calculation of the three-dimensional, COUp|Ed The fo||owing theoretical deve|0pment was motivated by

Gross-Pitaevski(GP) equations Eq(1) (below) describing  the experiment described in R4R5]. Therefore, we have
the system in the zero temperature limit agrees, at least qualfot tried to keep our calculations general, but instead have
tatively, with the outcome of the experiment, as shown inmade several assumptions based on that particular situation.
Fig. 1. Of course, the agreement between the numerical inqowever, our approach could easily be extended to treat a
tegration of Eq(1) and the laboratory data does not in itself proader class of systems. We give a brief discussion in the
provide an intuitive explanation of the underlying physical conclusion of the paper about possible extensions of this
mechanism responsible for the collapse-revival behavior. Ifyork to other interesting systems.
this paper, we present a detailed analysis of this problem, e begin this section by writing down the coupled mean-
and arrive at a rather simple model that explains the majofield equations, valid for zero temperature, that describe this
features of the system’s behavior. driven, two-component BEC. In Sec. Il B we rewrite the
Before presenting the details of our analysis, it is useful tanean-field equation in a direct-product representation that
first give an overview of the results. There are two mainclearly separates out the external and internal dynamics. We
concepts that play key roles in obtaining an intuitive underthen go to a frame rotating at the effective Rabi frequency in
standing of this problem. First, there is a clear separation o§ec. Il C in order to focus on the slower motional dynamics
time scales: the period of Rabi oscillations between internabf the system_ After making some approximations in Sec.

states is much shorter than the period of the trap. That is, thg D, we finally arrive at the main result of our study in Sec.
internal dynamics occur on a much shorter time scale thay g, the two-state model.

the motional dynamics of the system. It is therefore useful to

go to a frame rotating at the effective Rabi frequency. In this A. Coupled mean-field equations
rotating frame, we show that there exists a weak coupling . . .
between the low lying motional states which is proportional. A mean-field description of this many-body system that

- : ludes the atom-field interaction has been developed
to the offset between the two traps. This weak coupling had'c’ : i '
the effect of modulating the amplitude of the fast Rabi oscil-v.vhICh generalizes the §tandard Gross-Pitaevsh#) equa-
lations in the lab frame. tion to treat systems with internal state coupli2g,23,48.

The second key point is to understand exactly which mo_'I'he resulting time-dependent GP equation describing the

tional states are excited. They are not the linear respons%”ven’ two-component condensate is

collective excitationgnormal modepsthat have been studied . 0 MF
frequently in the BEC literatur41-43. Instead, they are i l.ﬁl _ HytH™+6l2 Q72 <¢1)_ 1)
many-particle topological states determined by the self- by Q2 HI+HY =612/ \ o,

consistent solutions to the two-component GP equations Eg.
(14). The well known vortex statgt4—47 is one example of The Hamiltonians describe the evolution in the tﬁhf) and
such an excitation in which phase continuity requires quanthe mean field interactiohl"" for each component

tized circulation around a vortex core. The related excitation

2
Wh_ich plays a key role _in this paper does_ not exhi_bit circu- H?: _ EV2+ HE) +(z+ yizo)?|,

lation but has a node in the wave function amplitude and 2 2

exhibits odd-parity behavior characteristic of such a dipole ME 5 5

state. For a single component in the limit of the uniform gas, H™ = NG [ 24 Mg 1), )
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wherey;=—1 andy,=1, andz, is the shift of each trap ~ N{Ai+Xgp 0

from the origin along the vertical axis. The factaer 7\+=§ 0 Nt han]’

=w,/w, is the ratio of axial and radial trap frequencies. In 27 2 .
the experiment reported in R425], «>1. The mean-field N[N —App 0 ()
strength is characterized by; =4 ma;; /zsp,, Which depends )\ZE( 0 N )

on the scattering lengthy; of the collision. In general there 12 "2

will be three different values, one for each type of collision \jgie that the harmonic potential i, is centered at the
in this t‘r’l"o'g‘?mporf‘,e?é gaféllr’] aZhZ! al%_- The detuning be-  qrigin. The mean-field interaction has been rewritten in terms
tween the driving field and the hyperfine transition is given .~ part that acts identically on both componedis P,

by & while Q) denotes the strength of the coupling. We work ~ . - . . .
in dimensionless units: time is in units ofd/, energy isin  ©A+#)®1, and a part that acts with the opposite sign on

terms of the trap level spaciffgw,, and position is in units €ach Sta}“&"/’|Pr®7\—|¢}®0z- _
of the harmonic oscillator lengthy,,= %/Mgyw,. The com- The first two terms in Eq(3) separately describe the ex-
plex functionsy;(r,t) are the mean-field amplitudes of each ternal and internal dynamics of the system, respectively. The
component, wheré={1,2}. They obey the normalization third term in Eqg.(3), however, couples the internal state
condition f (| |2+ |;|?)d°x=1. The total population i. evolution to the condensate dynam|cAs in the trap and can
The coupled mean-field equations Ed) can be solved lead to interesting behavior. If the terkh, were identically
numerically using a finite-difference Crank-Nicholson algo-zero, then the problem would be completely separable in
rithm [49]. We show results of such calculations in Fig. 1 for terms of the external and internal degrees of freedom. The
the three-dimensional solution and in Sec. Ill for a one-term |2|Z would be zero if the trap separatiag were zero
dimensional version. However, in order to gain a more intui-and if the scattering lengths were all exactly equal. In fact,
tive understanding of the behavior shown in Fig. 1, we for-for 8’Rp the three scattering lengths are nearly degenerate, so
mulate a simplified description of the system in the following o main effect 0“:'2 comes from the term-zyz, which is

section. the difference in the shifted traps. It causes there to be a
spatially varying detuning across the condensate.
B. External ® internal representation

The coupled mean-field equations Ef). can be rewritten C. Rotating frame

in a more illuminating form by making a clear separation of ~As previously stated, we are concentrating on the situa-
the external and internal degrees of freedom. The systertion where the coupling strength is large, so that the fre-
exists in a direct-product Hilbert spag¢é=H.,® H;,, Wwhere  quency of the Rabi oscillationQ is significantly larger than
Hey is the infinite-dimensional Hilbert space describing thethe trap frequency, . In this case, the internal spin dynam-
motional state of the system in the trap aHg is the two-  ics and the motion of the condensate in the trap occur on two
dimensional Hilbert space describing the spin of the systendifferent time scales. Therefore, it is useful to go to a rotating
A general operator iri{ can be written as a sum over the frame that eliminates the second term in E8). describing
direct-product of operators frorit,, and #;,. We rewrite  the fast Rabi oscillations between the two internal states. In
Eq. (1) in this representation as the rotating frame, we will be able to understand more
clearly how the third term in Eq(3), which couples the
() motional and spin dynamics of the condensate, effects the
’ system on a time scale much longer than the period of Rabi
(3)  oscillation.
We go to the rotating frame, or interaction picture, by
where{1,0,,0y,0,} are the standard Pauli spin matrices. making a unitary transformation using the operator
The state of the systefy(t)) in general has a nonzero pro-
jection on the internal statgd) and |2), represented by
Gi(r,t)=(r|(i|¥(t)), wherei ={1,2}. The position represen-
tations of Hy and H, are local, i.e.(r[Ho|r')=Hq(r)s(r
—r’) and (r|H,|r"y=H,(r)s(r—r’"), where Hy(r) and U,(h=1®| cog Qg/2t)1
H,(r) are given by

0 o A o
Iﬁw(t»: Ho®l+1® §O'X+ 202 +H,®0,

U ()= e 118[(Q2)a,+ (812)a]t (6)

This can be rewritten in the equivalent form

1 1 2 . . B |_ i ~ ~
Ho(r)=—5V243| | =] +22 | +(s0P ok |pb), Qo e R0t oos]), ()
o (4 whereQ = Q%+ 6. The state vectofy!)(t)) in the ro-
H,(r)=—2zoz+{(t)|P,@N _|(t)). tating frame is related to the state vector in the laboratory
frame |y (t)) by
The operatoP, is the projector onto the position eigenstates o +
~ ~ < t)=uU t)). 8
P,=|r)(r|, and the matrix representations)of and\ _ are [2(0)=Uil(0) ®
given as In the rotating frame, the system evolves according to
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1% . TO—H'01+H %o
1O = A0 [pOD), © HP=He@lt 8oy, 12
R where the position representations kéf and H. are local,
whereH")(t) is the interaction Hamiltonian ie., (r|Ar'y=Hyr)a(r—r') and (r|Ar"y=H.(r)&(r

N P R R R —r'), whereH;(r) andH_(r) are given by
AO(t) =Ho 1+ H,8[ay(t) oyt ay(t) oy + ax(t)oy)]. ° ’

(10 R 1 1[({p)?
i R Hc’,(r)=—§V2+ E[(Z +Z2[+An(r,t),
Note thatHy, andH, are unaffected by the unitary transfor-
mation to the rotating frame. The time-varying coefficients -
ax(t), ay(t), anda,(t) are H(r)=—pz (13

B The total density isn(r,t)=N(4(t)|P,®1|y(t)) and B
ax(t) = Qe Q_eﬁ[l_ cod Qert) ], =27,6'Q/0%;. For the typical values of the parameters in
the experimen{) =400 Hz, ' =100 Hz,zy/z,=0.1, this
factor is rather smal3~0.02 in harmonic oscillator units.

ay(t)= Q_ﬁs'“(ﬂeﬁt)’ (1) Note thatA} still varies slowly in time through the nonlinear
¢ mean-field term, which depends on the density. We refer to
2 (2 this result Eq.(12) as the coarse-grained, small detuning
a(t) = — + —cog Qegt). (CGSD model to distinguish it from the two-state model
0% 0% presented below, which makes further assumptions.

We have managed to greatly simplify the description of
the system by going to the rotating frame. The first term in
Eqg. (12) contains the kinetic energy, a harmonic potential

We now make three simplifications in order to extract outcentered at the origin, and a mean-field interaction term de-
the dominant behavior of the system. We first note that thepending on the slowly varying density(r,t). The second
coefficientse;(t) given in Eq.(11) oscillate rapidly at the term in Eq.(12) represents a very weak coupling between the
Rabi frequency. We expect the system in the rotating framéwo internal state$l) and|2), and between motional states
|y)(t)) to evolve on a much slower time scale than the|,) and| ) via the dipole operatar. The state$e,,) and
period of Rabi oscillation. We can ut|l|ze this fact in order to | ) are the instantaneous self-consistent eigenstatelg, of
simplify the interaction HamiltoniarH((t) given in Eq.  In the next subsection we present a model that assumes only
(100 by taking the average values of the coefficientstwo motional states are coupled, the self-consistent ground
a;(t)—this is equivalent to coarse graining H§). The co-  state |¢,) and the self-consistent first-excited staig,),
efficients in Eq(11) become time independent and reduce towhich has odd-parity along theaxis.
ay=00/0%;, a,=0, anda,= 6%/Q%;.

We make the additional assumption that the system is E. Two-state model
being driven close to resonance, so th#)4<1. We ) , ) i i i
therefore seir,=0 sincea, depends quadratically on this Itis u_seful to define a basis of r_notlonal states with whlc_:h
small parameter. to describe the system in the rotating frAame. A natural choice

Finally, we take advantage of the fact that the scatterinds the set of instantaneous eigenstatesipf which satisfy
lengths for 8’Rb are nearly degenerate, with the ratios be-
tween interspecies and intraspecies scattering lengths given [_ }VZ i l
by {a,:a;,:a,}={0.971:1.03 [5]. This allows us to sim- 2 2
plify the two mean-field terms appearing in Ed). We first
make the approximation, ~\N- 1 by assuming equal scat- * -
tering lengths, ol ;~\,~\1,—\. We can also simplify the f_x¢>i(f)¢j(r)d r=a;,
other termh _ by assuming that its predominant effect is to
shift the levels slightly. Instead of neglecting it altogether,where the index refers to all of the relevant quantum num-
we simply replace it by a mean-field shift of the levels bers that uniquely specify each eigenstate{n,,n,,n},
<¢,||5r®f\_|¢>_>5MF, where the shift is given bydye given the cylindrical symmetry of the system. In general,
=ANSn?(r,0)d3x/N. Heren(r,0) is the total density at many states can be occupied and the state vector is written
=0 andAXN=(N{—\N129)=(A1o—\,). We can absorb it into
the detuningé by defining an effective detuning’ that in-
cludes this mean-field shii— 6’ = 5+ Sy

After making the above approximations, we can now
write the interaction Hamiltoniatd(") from Eq. (10) in a  where ¢;(r)={(r|#;). The density appearing in E§14) is
much simpler form then

D. Approximations

2
+ 72

+)\n(r,t)] di(r)= € di(r),

(14)

|l//(')(t)>22i [ci(Dlg|1)+di(D]i)]2)], (19

033612-4



EXCITATION OF DIPOLE TOPOLOGICAL STATEIN A ... PHYSICAL REVIEW A61 033612

2 2 TABLE I. This is a table showing the values used for the vari-
n(r,t)= N( 2 Ci(t)di(r)| + 2 d;(t) ¢;(r) ) ous physical parameters appearing in our calculations. The scatter-
! : ing lengths are taken from Rgf5].
) ) ) , N 8x10° v, 65 Hz
!t is clear that the.set of coupled.elgenvalue equations given a, 5.5(3) nm v, 24 Hz
in Eq. (14) is nonlinear and requires a numerical procedure 0.97 13
that will converge upon the solution in a self-consistent man- 822 Sl Zsho ooem
all 1.0321 ZO 02 ,um

ner. The eigenstate®;(r) and eigenenergies; depend on
time implicitly through the coefficients;(t) andd;(t), how-
ever, we do not show this time dependence in order to Sim- The oscillation frequency, increases with increasing
plify the notation. We assume that the eigenbasis evolvegetuning s’ and increasing trap separatiag through the
slowly in time so that the adiabatic condition is satisfi80].  coypling parameteg. The amplitude of oscillation depends
Based on the experiment reported in R&b| thg initial 5 the energy spacing between states,,. Based on nu-
motional state of the system i8!"(r,0)=¢o(r—z52); the  merical calculations, we have found that this effect is en-
system is in the ground state Bif,, but displaced from the hanced by the mean-field interaction becaligg, decreases
origin along the vertical axis by,. This displacement is With increasing populatioiN. Also, the dipole matrix ele-
small compared to the Width of the Condensatqolwz ment(z) increases with increasirig, since the width of the
~0.01. We therefore approximate the initial state of the syscondensate increases with increasing population.
tem as| (1)) =|po)|1). The solution in the lab frame can be obtained by applying

The system in the rotating frame evolves according to thdJi(t) from Eq(7) to [¢?) in Eq. (17) to yield

HaAmiItonian described by Eq$12) and(13)..ThAe termH, (1)) =[ @y (1) Co(1)| o) + arn(t)dy (1) b1)]| 1)
® o, couples the internal statés) and|2) via o. It also .
drives transitions between motional states via the dipole op- +[aa(t)co(t)| do) + @] (1)d1 (D] #1)]]2),

eratorz. The dipole matrix elemen(z);;=(#i|z|¢;) is the (19)
largest between neighboring states and falls off quickly as

li—j| increases. For a small coupling parameserwe ex-  where aq(t)= cosQe/2t) —i (8" /Qeg)SiNQer/2t)  and
pect the coupling to the first excited stdi®,) to dominate  a,(t) = —i(Q/Qex)SiNQer/2t). Equation(19) is the main
the other transitions, making the evolution of the system preresult of our study, with which we can explain the essential
dominantly a two state evolution. We therefore make theproperties of the system. During the first few Rabi cydles

approximation that the system occupies only two states  ~1/Q., the coefficientd,(t)~0, so that the solution for
short times is|#(t)) = (a1(t)| 1)+ ay(t)|2))| o). That is,
| (1)) =co(t)] Po)|1) +d1(1)] b1)|2), (17)  for short times, the internal and external degrees of freedom

appear to be decoupled and the system simply oscillates rap-
where| o) is the ground state={0,0,0} and|¢,) is the first  idly between internal states. However, for longer times, the

excited state with odd parity along tzeaxisi={1,0,0}. coefficientd,(t) grows in magnitude asq(t) correspond-
If we substitute this ansatz into E(@), using the Hamil- ingly decreases. This results in a modulation of the Rabi
tonian described by Eq12) and Eq.(13), we get the equa- oscillations. Furthermore, a two-peaked structure in the den-
tion of motion for the coefficientsy(t) andd,(t) sity appears, associated with the first-excited staig.
[c) [ e —B{2o1| | Co 6 IIl. RESULTS
| dy) | =B2or e Jldi)’ (18 The main goal of this section is to illustrate the behavior

of the system by showing results of humerical calculations.
. For this purpose, it is useful to treat the system in only one
where we have neglected the time rate-of-change of th(celimensiori]—palong the vertical axig2]. W)e/ also assu?ne

slowly varying adiabatic eigenbasis. This coupled pair of . ) .
equations must be solved numerically by updating the ener(?qual scattering lengths throughout this section, so dgat

ies ¢, and the dipole matrix elemei), from solving E =0. Values of most of the physical parameters are given in
9 ! dip =/ 0L 9509 Taple I. Values of the remaining parameters are stated for
(14) at each time step. However, in order to see how the . .
b X . : each case considered in the text.
ehavior depends on the various physical parameters, one
can obtain a simple estimate of the solution by fixing

€ and (z)o; to their initial values. In this case the A. Understanding the dual dynamics

solution of Eq. (18) is trivial and is given by co(t) In Fig. 2 we plot the fractional population of stalte),

= cos@oy/2t) —i (A€o /Qo)sinQoy/2t)  and  di(t)=  given by Ny(t)=[|(z|(1]¥(t))|?dz, for the case ofQ
—i(2B(2)/ Qo) sinQey/2t), where Aegy=€e1— € and Qp; =700 andd=100 Hz. This is a numerical solution of Eq.
= 4B%z)?+ A€Z,. In the rotating frame, the system oscil- (1). The population is cycling rapidly at the effective Rabi
lates between the two states at a frequenc@ gf, which is  frequencyQ =707 Hz, while simultaneously being modu-
much slower than the effective Rabi frequer@y. lated at a much lower frequency of about 11 Hz.
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FIG. 2. This plot shows an example of the modulation of the — © 5 5 5
Rabi oscillations. The fractional population in staté is plotted as _ A
a function of time, obtained from a numerical solution of the one 27N VAR PSRN
dimensional version of Eq1). The values of the various param- 6 6
eters are given in the text. In Fig. 3, the densities for both states are
shown for three different Rabi cycles designated by the circled
numbers in this plot. i

position (arbitrary units)

In order to visualize how t.he spin and motional dynamics . FIG. 3. This plot shows snapshots of the density of each state
becpme entangled over a time long qompared to the. Ra,%r three different Rabi cycles corresponding to the three circled
period, We_show snapshots of the density of each state in F_'guumbers in Fig. 2. The solid line is the density of 18 state,

3. Three different sets of snapshots are shown, correspondifghile the dashed line is that of t@) state. Each snapshot within
to the three circled numbers in Fig. 2. A full Rabi cycle is 3 set is numbered in sequential order. The first set statts @tms,
shown for each set. The first set begins=a0 with all of the  and runs for a full Rabi cycle 1.41 ms. The second and third sets
atoms in thel1) internal state and in the mean-field ground begin att=45.2 ms and=90.3 ms, respectively. The time incre-
state of the trap¢g). During this first Rabi cycle, the shape ment between snapshotsAs=0.28 ms for all three sets.

of the density profile for each internal state does not change

much—only the height changes. That is, the motional stat@ensity of each spin state in the rotating frame is shown,
remains the ground state while population cycles rapidly begorresponding to the solid line in Fig. 4. Initially, all of the
tween internal states, as discussed below(E§). atoms are in th¢l) internal state and the mean-field ground

The second_ set of snapshots in Fig. 3 is taken_at aroungkate of the trafbo). Due to the dipole coupling, population
t=45 ms, which is halfway through the modulation. The

density profiles for each spin state cycle rapidly between a
single-peaked and a double-peaked structure. For example,
in the first snapshot, thgl) state is in the single-peaked
structure, while the2) state is in the double-peaked struc- 0.8r
ture, but halfway through the Rabi cycle the situation is re-
versed, as shown in the third and fourth snapshots. Finally, at
aboutt=90 ms when the amplitude of the Rabi oscillations
has revived, the third set shows that the motional and spin  _
degrees of freedom appear to be decoupled again, with the =- 04f
density profile of each spin state appearing as it did during
the first Rabi cycle.

0.6r

) population

) . . . o . 0.2t
As outlined in Sec. Il, this peculiar behavior is most easily
understood by going to the rotating frame. In Fig. 4, we plot
th((le)fra(inonal pOpl(JI|)atIOI’l2In thel) statg in the rotating frame % 20 4'0. 60 30 100
N3’ (t) = [{z](1| 4" (t))|*dz. The solid line corresponds to time (ms)

the CGSD model presented in Sec. IID. In the rotating
frame, populatlo_n IS SIOY\”’y t[an_sferred out of thb> state frame is shown. The solid line is the solution given by the CGSD
due to the COL.JP“”Q front, ® oy in Eq. (12)-. . model, while the dot-dashed line corresponds to the solution of the

In the rotating frame, the system is being excited out ofyyo-state model. If the two-state model is extended to include cou-

the ground stat¢¢,) due to the dipole couplingd,. This  pling to the first even-parity excited state, then we get better agree-
can be seen in the top strip of snapshots in Fig. 5, where theent to the CGSD model, as shown by the dashed line.

FIG. 4. The fractional population of tH&) state in the rotating
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FIG. 5. The top strip of this plot shows snapshots of the density ) . . .
of each state corresponding to the solution of the CGSD model 1 ' ' ' ' ' ' ' '
given by the solid line in Fig. 4. The bottom strip shows the corre- .
sponding two self-consistent eigenstates given by the solution ol 0.5
Eqg. (14). The times of each snapshot are shown in the region be-

tween the two strips, in units of milliseconds. The solid line corre- 0 . L L L L L L L L
sponds to the density of tH&) state, while the dashed is that of the 0 20 40 60 80tim;0?ms)120 140 160 180 200
|2) state.

FIG. 6. This plot shows the fractional population in {1i¢ state

is transferred out of the ground state. for four different values of the detuning, obtained from a numerical

The strongest coupling is between the groyglg) and  solution of Eq(1). Starting from the top, the detuning &0, &
the first excited ¢;) states. These eigenstates are shown in=50 Hz, 5=100 Hz, ands=200 Hz. The values of the other pa-
the bottom strip of Fig. 5. They evolve slowly in time as the rameters are given in the text.
coefficientscy(t) and d;(t) change. For example, initially
the ground state is just the Thomas-Fermi-like ground stateyas held fixed for each plot while the detuning was varied
since all of the population is in that state. However,tat from zero at the to@=0 to §=200 Hz in the bottom plot.
=45 ms, about one-third of the population is in the first As predicted by the coupling paramef@s z,6Q/Q2 in the
excited state, which pinches the ground state due to theGSD model, no coupling between motional states occurs if
mean-field interaction term in E¢13). That is why the self- $§=0, and thus the Rabi oscillations experience no modula-
consistent ground state &=45 ms is narrower than at  tion. As § is increased the motional-state coupling becomes
=0. stronger and we expect the modulation frequency to increase.

It is clear from Fig. 4 that the low-frequency modulation The amplitude of modulation also increases as the detuning
of the rapid Rabi oscillations in the lab frame is just theis increased.
frequency of oscillation in the rotating frame between We show the dependence of the period of modulation on
|#0)|1) and|41)|2). This is reflected in the two-state solu- detuning more explicitly in Fig. 7. The dashed line is the
tion given by Eq.(19), which also helps explain the peculiar
behavior of the densities shown in Fig. 3. In the lab frame 200
the system is cycling rapidly between the two states shown
in Fig. 5. The initial values of the energies arg 175
=13.6iw, and €;,=13.7h w,, which makesA;=0.1% w,. 150}
This small energy splitting is due to the effect of the mean
field, since in the limitN— 1 these energies move apart by a
factor of 10, which greatly reduces the coupling between the
states and thus greatly reduces the modulation effect.

If we make the two-state ansatz and solve @@§), we get
the dot-dashed line in Fig. 4. The discrepancy from the solid
line arises due to a weak coupling between the fitg) and
second ¢,) excited states. If we extend our two-state model o5l
to include this third state, we get the dashed line in Fig. 4,
which nearly sits on top of the solid line. In this case, the 990 300 200 —100 0 100 200 300 400
second excited statgp,) gains less than 5% of the total 3 detuning
population.

-

n

[$1]
T

period of modulation
>
(=)

[44]
o
T

FIG. 7. This plot shows the period of modulation as a function
of detuningés. The dashed line corresponds to the numerical solu-
tion of the one-dimensional version of Ed.), while the solid line

In Fig. 6, we show how the behavior of the system de-was obtained from a numerical solution of the two-state model Eq.
pends on the detuning. The Rabi frequency)=700 Hz  (18). The Rabi frequency waQ =700 Hz.

B. Dependence on detuning
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FIG. 8. This plot shows the fractional population in {fi¢ state
for four different values of the trap displacemeyt obtained from

a numerical solution of E@l). Starting from the top, the displace-

ment isz,=0, z;=0.1 um, z;=0.4 um, andz,=1.0 um. The
values of the other parameters are given in the text.

numerical solution of the full problem given by E@l),

PHYSICAL REVIEW A61 033612

presence of collapses and revivals in the relative population
dynamics, are supported by experimental observdtRH).
Experiment-theory agreement on finer points is only fair.
The theory tends to underestimate the contrast ratio of the
collapses, for instance. Moreover, to match the detuning
trends shown in Figs. 6 and 7 one needs to add by hand an
unexplained overall detuning offset. This is most likely due
to there actually being a spatial dependence of the bare Rabi
frequency due to the influence of gravity on the untrapped
intermediate state of the two-photon transition. To model the
experimental situation in more detail one would have to in-
clude this effect as well as inelastic loss processes and finite-
temperature effects neglected here. It may be also that treat-
ing the TOP trap potential as purely static may be an
oversimplication.

In this paper we have demonstrated the possibility for
quantum state engineering of topological excitations through
the interplay between the internal and spatial degrees of free-
dom in a Bose condensed gas. Due to the symmetry of the
system we have analyzed, the excitation in our case was the
odd-parity dipole state. The intriguing possibility of exciting
states with alternative symmetries, such as a vortex state
[51-54, would require a different trap geometry, but is a
straight-forward extension of the analysis presented here.
(Note added in proofThe work presented here has been
extended to the case of a vortex, with the theoretical predic-
tion given in[56] and the experimental observation[Bi].)

model given by Eq(18).

C. Dependence on trap displacement

rameter regime, the system is a rich one for study and exhib-
its complex and perhaps chaotic dynamics under strong ex-
citation conditions.

In Fig. 8, we show how the behavior of the system de-

pends on the trap displacemenyt The Rabi frequency)

=700 Hz and the detuning=100 Hz were held fixed, while

the trap displacement was varied from zege=0 in the top

plot to z;=1um in the bottom plot. Again, the coupling

parameterB predicts no modulation ifZy=0. As z, is in-
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