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Excitation of a dipole topological state in a strongly coupled
two-component Bose-Einstein condensate

J. Williams, R. Walser, J. Cooper, E. A. Cornell, and M. Holland
JILA, National Institute for Standards and Technology and University of Colorado, Boulder, Colorado 80309-0440

~Received 28 April 1999; published 16 February 2000!

Two internal hyperfine states of a Bose-Einstein condensate in a dilute magnetically trapped gas of87Rb
atoms are strongly coupled by an external field that drives Rabi oscillations between the internal states. Due to
their different magnetic moments and the force of gravity, the trapping potentials for the two states are offset
along the vertical axis, so that the dynamics of the internal and external degrees of freedom are inseparable.
The rapid cycling between internal atomic states in the displaced traps results in an adiabatic transfer of
population from the condensate ground state to its first antisymmetric topological state. This has a pronounced
effect on the internal Rabi oscillations, modulating the fringe visibility in a manner reminiscent of collapses
and revivals. We present a detailed theoretical description based on zero-temperature mean-field theory.

PACS number~s!: 03.75.Fi, 05.30.Jp, 32.80.Pj, 74.50.1r
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I. INTRODUCTION

An intriguing aspect of Bose-Einstein condensati
~BEC! in a dilute atomic gas is that the internal atomic st
of the condensate can be manipulated to produce quite n
systems. A number of interesting experiments have produ
uncoupled multicomponent condensates, in which two
more internal states of the condensate exist together
magnetic or optical trap@1–5#. These experimental studie
along with their theoretical counterparts, have investiga
various topics such as the ground state of the system@6–11#,
the elementary excitations@12–18#, and the nonlinear dy-
namics of component separation@19#.

Many fascinating properties can be studied by applying
external electromagnetic field that coherently couples the
ternal atomic states of the condensate@20–28#. In the experi-
ment described in Ref.@20#, the relative phase between tw
hyperfine components was measured using a technique b
on Ramsey’s method of separated oscillating fields@29# and
these results have motivated further theoretical investiga
@19,21#. In this system, several key parameters can be va
over a wide range of values, such as the coupling-field int
sity and frequency, the confining potentials, the total num
of atoms, and the temperature, making this a very rich s
tem to explore.

Several theoretical papers@22–24# have investigated the
weak coupling limit of this system, where the intensity of t
external driving field is very low but is turned on for a tim
long compared to the period of oscillation in the magne
trap. A clear analogy exists between this system and
Josephson junction@30#. In the Josephson junction, identic
particles in spatially separated condensates are coupled
the tunneling mechanism@31–39#. In this two-component
system, however, two distinct internal states of the cond
sate are coupled by an applied field. By adjusting the m
netic fields that confine the atoms, the degree of spatial o
lap between the two components can be controlled.

Recently, there have been both experimental@25# and the-
oretical @26# studies on the dressed states of a driven tw
component condensate, drawing an analogy to the dre
1050-2947/2000/61~3!/033612~9!/$15.00 61 0336
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states of a driven two-level atom in quantum optics. Due
the interplay between the internal and external degree
freedom, the condensate dressed states have spatial stru
that depends on the trap parameters, the mean-field inte
tion, and the frequency and intensity of the driving field@26#.
In the experiment reported in Ref.@25#, the dressed state
were created via an adiabatic passage by sweeping the
tuning.

In this paper, we focus on the limit of a very strong a
sustained coupling between hyperfine states, which is
situation achieved experimentally in Ref.@25#. In that experi-
ment, a BEC of about 83105 atoms was produced in th
uF51,MF521& hyperfine state of87Rb, at a temperature
close to zero,T'0. The atoms were confined in a time
averaged, orbiting potential~TOP! magnetic trap by a har
monic potential with axial symmetry along the vertical ax
An external field was then applied that coupled theu1,21&
state to theu2,1& hyperfine state via a two-photon transitio
The Rabi frequency was five to ten times larger than
vertical trap frequency and the detuning could be adjus
arbitrarily. Due to their different magnetic moments and t
force of gravity, the two hyperfine states sit in shifted tra
offset along the vertical axis@40#. The degree of separatio
could be controlled by adjusting the magnetic trapping fiel

The subsequent behavior of the system described in
@25# was quite unexpected: after the coupling field w
turned on, the Rabi oscillations between the states appe
to collapse and revive on a time scale which was long co
pared to the Rabi period of 3 ms. An example of this beh
ior taken from the experiment described in Ref.@25# is
shown in Fig. 1. It was observed that the period of th
modulation increased with decreasing detuning. The beh
ior of the system also depended critically on the separa
between the traps for each state. As the separation was t
to zero, the effect went away. The evolution of the density
each component was also very interesting. Each compo
cycled between a density profile with one peak and a pro
with two peaks. The two-peaked structure was most clea
visible around the collapse time, which ist'20 ms for the
case shown in Fig. 1.
©2000 The American Physical Society12-1
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A numerical calculation of the three-dimensional, coup
Gross-Pitaevskii~GP! equations Eq.~1! ~below! describing
the system in the zero temperature limit agrees, at least q
tatively, with the outcome of the experiment, as shown
Fig. 1. Of course, the agreement between the numerica
tegration of Eq.~1! and the laboratory data does not in itse
provide an intuitive explanation of the underlying physic
mechanism responsible for the collapse-revival behavior
this paper, we present a detailed analysis of this probl
and arrive at a rather simple model that explains the m
features of the system’s behavior.

Before presenting the details of our analysis, it is usefu
first give an overview of the results. There are two ma
concepts that play key roles in obtaining an intuitive und
standing of this problem. First, there is a clear separation
time scales: the period of Rabi oscillations between inter
states is much shorter than the period of the trap. That is
internal dynamics occur on a much shorter time scale t
the motional dynamics of the system. It is therefore usefu
go to a frame rotating at the effective Rabi frequency. In t
rotating frame, we show that there exists a weak coup
between the low lying motional states which is proportion
to the offset between the two traps. This weak coupling
the effect of modulating the amplitude of the fast Rabi os
lations in the lab frame.

The second key point is to understand exactly which m
tional states are excited. They are not the linear respo
collective excitations~normal modes! that have been studie
frequently in the BEC literature@41–43#. Instead, they are
many-particle topological states determined by the s
consistent solutions to the two-component GP equations
~14!. The well known vortex state@44–47# is one example of
such an excitation in which phase continuity requires qu
tized circulation around a vortex core. The related excitat
which plays a key role in this paper does not exhibit circ
lation but has a node in the wave function amplitude a
exhibits odd-parity behavior characteristic of such a dip
state. For a single component in the limit of the uniform g

FIG. 1. This plot shows the modulation of the fractional pop
lation in the (1,21) state. The top line is experimental data@25#
while the bottom line is the result of a numerical calculation of t
three-dimensional, two-component Gross-Pitaevskii equation
~1! ~below!. The coupling strength and detuning were chosen
the calculation to beV5350 Hz andd52188 Hz, respectively.
03361
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the exact solution of this state is known as a dark soli
@39#. In that case the scale of the density perturbation aro
the node is the healing length and is determined by a bala
of kinetic and mean-field interaction energies. In the probl
we consider here, however, it is necessary to account for
mean field of the the remaining population in the condens
ground state. Consequently the two states—the ground s
and the dipole state—are inextricably linked and must
determined self-consistently.

We first present a detailed theoretical analysis in Sec
After making several reasonable approximations, we arr
in Sec. II E at the two-state model—a simplified descripti
that encapsulates the essential properties of the system
Sec. III we present results of numerical calculations that
lustrate the behavior of the system and we compare
model with the exact numerical solution of the coupled G
equations. We finally summarize our work in Sec. IV a
suggest further studies based on our understanding of
phenomenon.

II. THEORETICAL DESCRIPTION

The following theoretical development was motivated
the experiment described in Ref.@25#. Therefore, we have
not tried to keep our calculations general, but instead h
made several assumptions based on that particular situa
However, our approach could easily be extended to tre
broader class of systems. We give a brief discussion in
conclusion of the paper about possible extensions of
work to other interesting systems.

We begin this section by writing down the coupled mea
field equations, valid for zero temperature, that describe
driven, two-component BEC. In Sec. II B we rewrite th
mean-field equation in a direct-product representation
clearly separates out the external and internal dynamics.
then go to a frame rotating at the effective Rabi frequency
Sec. II C in order to focus on the slower motional dynam
of the system. After making some approximations in S
II D, we finally arrive at the main result of our study in Se
II E, the two-state model.

A. Coupled mean-field equations

A mean-field description of this many-body system th
includes the atom-field interaction has been develop
which generalizes the standard Gross-Pitaevskii~GP! equa-
tion to treat systems with internal state coupling@22,23,48#.
The resulting time-dependent GP equation describing
driven, two-component condensate is

i S ċ1

ċ2
D 5S H1

01H1
MF1d/2 V/2

V/2 H2
01H2

MF2d/2
D S c1

c2
D . ~1!

The Hamiltonians describe the evolution in the trapHi
0 and

the mean field interactionHi
MF for each component

Hi
052

1

2
¹21

1

2 F S r

a D 2

1~z1g iz0!2G ,
Hi

MF5N~l i i uc i u21l i j uc j u2!, ~2!

-

q.
r
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EXCITATION OF DIPOLE TOPOLOGICAL STATE IN A . . . PHYSICAL REVIEW A61 033612
whereg1521 andg251, andz0 is the shift of each trap
from the origin along the vertical axis. The factora
5vz /vr is the ratio of axial and radial trap frequencies.
the experiment reported in Ref.@25#, a.1. The mean-field
strength is characterized byl i j 54pai j /zsho, which depends
on the scattering lengthai j of the collision. In general there
will be three different values, one for each type of collisi
in this two-component gasa11, a22, a12. The detuning be-
tween the driving field and the hyperfine transition is giv
by d while V denotes the strength of the coupling. We wo
in dimensionless units: time is in units of 1/vz , energy is in
terms of the trap level spacing\vz , and position is in units
of the harmonic oscillator lengthzsho5A\/mRbvz. The com-
plex functionsc i(r ,t) are the mean-field amplitudes of ea
component, wherei 5$1,2%. They obey the normalization
condition*(uc i u21uc j u2)d3x51. The total population isN.

The coupled mean-field equations Eq.~1! can be solved
numerically using a finite-difference Crank-Nicholson alg
rithm @49#. We show results of such calculations in Fig. 1 f
the three-dimensional solution and in Sec. III for a on
dimensional version. However, in order to gain a more int
tive understanding of the behavior shown in Fig. 1, we f
mulate a simplified description of the system in the followi
section.

B. External ‹ internal representation

The coupled mean-field equations Eq.~1! can be rewritten
in a more illuminating form by making a clear separation
the external and internal degrees of freedom. The sys
exists in a direct-product Hilbert spaceH5Hex^ Hin , where
Hex is the infinite-dimensional Hilbert space describing t
motional state of the system in the trap andHin is the two-
dimensional Hilbert space describing the spin of the syst
A general operator inH can be written as a sum over th
direct-product of operators fromHex and Hin . We rewrite
Eq. ~1! in this representation as

i
]

]t
uc~ t !&5F Ĥ0^ 1̂11̂^ S V

2
ŝx1

d

2
ŝzD1Ĥz^ ŝzG uc~ t !&,

~3!

where $1̂,ŝx ,ŝy ,ŝz% are the standard Pauli spin matrice
The state of the systemuc(t)& in general has a nonzero pro
jection on the internal statesu1& and u2&, represented by
c i(r ,t)5^r u^ i uc(t)&, wherei 5$1,2%. The position represen
tations of Ĥ0 and Ĥz are local, i.e.,̂ r uĤ0ur 8&5H0(r )d(r
2r 8) and ^r uĤzur 8&5Hz(r )d(r2r 8), where H0(r ) and
Hz(r ) are given by

H0~r !52
1

2
¹21

1

2 F S r

a D 2

1z2G1^c~ t !uP̂r ^ l̂1uc~ t !&,

~4!
Hz~r !52z0z1^c~ t !uP̂r ^ l̂2uc~ t !&.

The operatorP̂r is the projector onto the position eigenstat
P̂r5ur &^r u, and the matrix representations ofl̂1 andl̂2 are
given as
03361
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l̂15
N

2 S l11l12 0

0 l21l12
D ,

~5!

l̂25
N

2 S l12l12 0

0 l122l2
D .

Note that the harmonic potential inĤ0 is centered at the
origin. The mean-field interaction has been rewritten in ter
of a part that acts identically on both components^cuP̂r

^ l̂1uc& ^ 1̂, and a part that acts with the opposite sign
each statêcuP̂r ^ l̂2uc& ^ ŝz .

The first two terms in Eq.~3! separately describe the ex
ternal and internal dynamics of the system, respectively.
third term in Eq. ~3!, however, couples the internal sta
evolution to the condensate dynamics in the trap and
lead to interesting behavior. If the termĤz were identically
zero, then the problem would be completely separable
terms of the external and internal degrees of freedom.
term Ĥz would be zero if the trap separationz0 were zero
and if the scattering lengths were all exactly equal. In fa
for 87Rb the three scattering lengths are nearly degenerat
the main effect ofĤz comes from the term2z0z, which is
the difference in the shifted traps. It causes there to b
spatially varying detuning across the condensate.

C. Rotating frame

As previously stated, we are concentrating on the sit
tion where the coupling strength is large, so that the f
quency of the Rabi oscillationsV is significantly larger than
the trap frequencynz . In this case, the internal spin dynam
ics and the motion of the condensate in the trap occur on
different time scales. Therefore, it is useful to go to a rotat
frame that eliminates the second term in Eq.~3! describing
the fast Rabi oscillations between the two internal states
the rotating frame, we will be able to understand mo
clearly how the third term in Eq.~3!, which couples the
motional and spin dynamics of the condensate, effects
system on a time scale much longer than the period of R
oscillation.

We go to the rotating frame, or interaction picture,
making a unitary transformation using the operator

UI~ t !5e2 i 1̂^ [(V/2)ŝx1(d/2)ŝz] t. ~6!

This can be rewritten in the equivalent form

UI~ t !51̂^ S cos~Veff /2t !1̂

2
i

Veff
sin~Veff/2t !@Vŝx1dŝz# D , ~7!

whereVeff5AV21d2. The state vectoruc (I )(t)& in the ro-
tating frame is related to the state vector in the laborat
frame uc(t)& by

uc (I )~ t !&5UI
†uc~ t !&. ~8!

In the rotating frame, the system evolves according to
2-3
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i
]

]t
uc (I )~ t !&5Ĥ (I )~ t !uc (I )~ t !&, ~9!

whereĤ (I )(t) is the interaction Hamiltonian

Ĥ (I )~ t !5Ĥ0^ 1̂1Ĥz^ @ax~ t !ŝx1ay~ t !ŝy1az~ t !ŝz!].
~10!

Note thatĤ0 and Ĥz are unaffected by the unitary transfo
mation to the rotating frame. The time-varying coefficien
ax(t), ay(t), andaz(t) are

ax~ t !5
V

Veff

d

Veff
@12 cos~Vefft !#,

ay~ t !5
V

Veff
sin~Vefft !, ~11!

az~ t !5
d2

Veff
2

1
V2

Veff
2

cos~Vefft !.

D. Approximations

We now make three simplifications in order to extract o
the dominant behavior of the system. We first note that
coefficientsa i(t) given in Eq. ~11! oscillate rapidly at the
Rabi frequency. We expect the system in the rotating fra
uc (I )(t)& to evolve on a much slower time scale than t
period of Rabi oscillation. We can utilize this fact in order
simplify the interaction HamiltonianĤ (I )(t) given in Eq.
~10! by taking the average values of the coefficien
a i(t)—this is equivalent to coarse graining Eq.~9!. The co-
efficients in Eq.~11! become time independent and reduce
ax5dV/Veff

2 , ay50, andaz5d2/Veff
2 .

We make the additional assumption that the system
being driven close to resonance, so thatd/Veff!1. We
therefore setaz50 sinceaz depends quadratically on thi
small parameter.

Finally, we take advantage of the fact that the scatter
lengths for 87Rb are nearly degenerate, with the ratios b
tween interspecies and intraspecies scattering lengths g
by $a2 :a12:a1%5$0.97:1:1.03% @5#. This allows us to sim-
plify the two mean-field terms appearing in Eq.~4!. We first
make the approximationl̂1'lN•1̂ by assuming equal sca
tering lengths, orl1'l2'l12→l. We can also simplify the
other terml̂2 by assuming that its predominant effect is
shift the levels slightly. Instead of neglecting it altogeth
we simply replace it by a mean-field shift of the leve

^cuP̂r ^ l̂2uc&→dMF , where the shift is given bydMF
5Dl*n2(r ,0)d3x/N. Here n(r ,0) is the total density att
50 andDl5(l12l12)5(l122l2). We can absorb it into
the detuningd by defining an effective detuningd8 that in-
cludes this mean-field shiftd→d85d1dMF .

After making the above approximations, we can no
write the interaction HamiltonianĤ (I ) from Eq. ~10! in a
much simpler form
03361
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Ĥ (I )5Ĥ08^ 1̂1Ĥz8^ ŝx , ~12!

where the position representations ofĤ08 and Ĥz8 are local,

i.e., ^r uĤ08ur 8&5H08(r )d(r2r 8) and ^r uĤz8ur 8&5Hz8(r )d(r
2r 8), whereH08(r ) andHz8(r ) are given by

Ĥ08~r !52
1

2
¹21

1

2 F S r

a D 2

1z2G1ln~r ,t !,

Ĥz8~r !52bz. ~13!

The total density isn(r ,t)5N^c(t)uP̂r ^ 1̂uc(t)& and b
5z0d8V/Veff

2 . For the typical values of the parameters
the experimentV5400 Hz,d85100 Hz,z0 /zsho50.1, this
factor is rather smallb'0.02 in harmonic oscillator units
Note thatĤ08 still varies slowly in time through the nonlinea
mean-field term, which depends on the density. We refe
this result Eq.~12! as the coarse-grained, small detuni
~CGSD! model to distinguish it from the two-state mod
presented below, which makes further assumptions.

We have managed to greatly simplify the description
the system by going to the rotating frame. The first term
Eq. ~12! contains the kinetic energy, a harmonic potent
centered at the origin, and a mean-field interaction term
pending on the slowly varying densityn(r ,t). The second
term in Eq.~12! represents a very weak coupling between
two internal statesu1& and u2&, and between motional state
ufn& andufm& via the dipole operatorz. The statesufn& and
ufm& are the instantaneous self-consistent eigenstates ofĤ08 .
In the next subsection we present a model that assumes
two motional states are coupled, the self-consistent gro
state uf0& and the self-consistent first-excited stateuf1&,
which has odd-parity along thez axis.

E. Two-state model

It is useful to define a basis of motional states with whi
to describe the system in the rotating frame. A natural cho
is the set of instantaneous eigenstates ofĤ08 , which satisfy

H 2
1

2
¹21

1

2 F S r

a D 2

1z2G1ln~r ,t !J f i~r !5e if i~r !,

E
2`

`

f i~r !f j~r !d3r 5d i , j , ~14!

where the indexi refers to all of the relevant quantum num
bers that uniquely specify each eigenstate,i 5$nz ,nr ,nf%,
given the cylindrical symmetry of the system. In gener
many states can be occupied and the state vector is writ

uc (I )~ t !&5(
i

@ci~ t !uf i&u1&1di~ t !uf i&u2&], ~15!

wheref i(r )5^r uf i&. The density appearing in Eq.~14! is
then
2-4
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n~r ,t !5NS U(
i

ci~ t !f i~r !U2

1U(
i

di~ t !f i~r !U2D .

~16!

It is clear that the set of coupled eigenvalue equations gi
in Eq. ~14! is nonlinear and requires a numerical proced
that will converge upon the solution in a self-consistent m
ner. The eigenstatesf i(r ) and eigenenergiese i depend on
time implicitly through the coefficientsci(t) anddi(t), how-
ever, we do not show this time dependence in order to s
plify the notation. We assume that the eigenbasis evo
slowly in time so that the adiabatic condition is satisfied@50#.

Based on the experiment reported in Ref.@25# the initial
motional state of the system isc1

(I) (r ,0)5f0(r2z0ẑ); the

system is in the ground state ofĤ08 , but displaced from the
origin along the vertical axis byz0. This displacement is
small compared to the widthwz of the condensatez0 /wz
'0.01. We therefore approximate the initial state of the s
tem asuc (I )(t)&5uf0&u1&.

The system in the rotating frame evolves according to
Hamiltonian described by Eqs.~12! and ~13!. The termĤz8

^ ŝx couples the internal statesu1& and u2& via ŝx . It also
drives transitions between motional states via the dipole
erator ẑ. The dipole matrix element̂z& i j 5^f i uẑuf j& is the
largest between neighboring states and falls off quickly
u i 2 j u increases. For a small coupling parameterb, we ex-
pect the coupling to the first excited stateuf1& to dominate
the other transitions, making the evolution of the system p
dominantly a two state evolution. We therefore make
approximation that the system occupies only two states

uc (I )~ t !&5c0~ t !uf0&u1&1d1~ t !uf1&u2&, ~17!

whereuf0& is the ground statei 5$0,0,0% anduf1& is the first
excited state with odd parity along thez axis i 5$1,0,0%.

If we substitute this ansatz into Eq.~9!, using the Hamil-
tonian described by Eq.~12! and Eq.~13!, we get the equa-
tion of motion for the coefficientsc0(t) andd1(t)

i S ċ0

ḋ1
D 5S e0 2b^z&01

2b^z&01 e1
D S c0

d1
D , ~18!

where we have neglected the time rate-of-change of
slowly varying adiabatic eigenbasis. This coupled pair
equations must be solved numerically by updating the e
giese i and the dipole matrix element^z&01 from solving Eq.
~14! at each time step. However, in order to see how
behavior depends on the various physical parameters,
can obtain a simple estimate of the solution by fixi
e i and ^z&01 to their initial values. In this case th
solution of Eq. ~18! is trivial and is given by c0(t)
5 cos(V01/2t)2 i (De01/V01)sin(V01/2t) and d1(t)5
2 i (2b^z&/V01)sin(V01/2t), where De015e12e0 and V01

5A4b2^z&21De01
2 . In the rotating frame, the system osc

lates between the two states at a frequency ofV01, which is
much slower than the effective Rabi frequencyVeff .
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The oscillation frequencyV01 increases with increasing
detuningd8 and increasing trap separationz0 through the
coupling parameterb. The amplitude of oscillation depend
on the energy spacing between statesDe01. Based on nu-
merical calculations, we have found that this effect is e
hanced by the mean-field interaction becauseDe01 decreases
with increasing populationN. Also, the dipole matrix ele-
ment^z& increases with increasingN, since the width of the
condensate increases with increasing population.

The solution in the lab frame can be obtained by apply
U I(t) from Eq ~7! to uc (I)& in Eq. ~17! to yield

uc~ t !&5@a1~ t !c0~ t !uf0&1a2~ t !d1~ t !uf1&] u1&

1@a2~ t !c0~ t !uf0&1a1* ~ t !d1~ t !uf1&] u2&,

~19!

where a1(t)5 cos(Veff/2t)2 i (d8/Veff)sin(Veff/2t) and
a2(t)52 i (V/Veff)sin(Veff/2t). Equation ~19! is the main
result of our study, with which we can explain the essen
properties of the system. During the first few Rabi cyclet
'1/Veff , the coefficientd1(t)'0, so that the solution for
short times isuc(t)&5(a1(t)u1&1a2(t)u2&)uf0&. That is,
for short times, the internal and external degrees of freed
appear to be decoupled and the system simply oscillates
idly between internal states. However, for longer times,
coefficient d1(t) grows in magnitude asc0(t) correspond-
ingly decreases. This results in a modulation of the R
oscillations. Furthermore, a two-peaked structure in the d
sity appears, associated with the first-excited stateuf1&.

III. RESULTS

The main goal of this section is to illustrate the behav
of the system by showing results of numerical calculatio
For this purpose, it is useful to treat the system in only o
dimension—along the vertical axis@22#. We also assume
equal scattering lengths throughout this section, so thatdMF
50. Values of most of the physical parameters are given
Table I. Values of the remaining parameters are stated
each case considered in the text.

A. Understanding the dual dynamics

In Fig. 2 we plot the fractional population of stateu1&,
given by N1(t)5* u^zu^1uc(t)&u2dz, for the case ofV
5700 andd5100 Hz. This is a numerical solution of Eq
~1!. The population is cycling rapidly at the effective Ra
frequencyVeff5707 Hz, while simultaneously being modu
lated at a much lower frequency of about 11 Hz.

TABLE I. This is a table showing the values used for the va
ous physical parameters appearing in our calculations. The sca
ing lengths are taken from Ref.@5#.

N 83105 nz 65 Hz
a21 5.5(3) nm nr 24 Hz
a22 0.97a21 zsho 1.3 mm
a11 1.03a21 z0 0.2 mm
2-5
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In order to visualize how the spin and motional dynam
become entangled over a time long compared to the R
period, we show snapshots of the density of each state in
3. Three different sets of snapshots are shown, correspon
to the three circled numbers in Fig. 2. A full Rabi cycle
shown for each set. The first set begins att50 with all of the
atoms in theu1& internal state and in the mean-field grou
state of the trapuf0&. During this first Rabi cycle, the shap
of the density profile for each internal state does not cha
much—only the height changes. That is, the motional s
remains the ground state while population cycles rapidly
tween internal states, as discussed below Eq.~19!.

The second set of snapshots in Fig. 3 is taken at aro
t545 ms, which is halfway through the modulation. T
density profiles for each spin state cycle rapidly betwee
single-peaked and a double-peaked structure. For exam
in the first snapshot, theu1& state is in the single-peake
structure, while theu2& state is in the double-peaked stru
ture, but halfway through the Rabi cycle the situation is
versed, as shown in the third and fourth snapshots. Finall
aboutt590 ms when the amplitude of the Rabi oscillatio
has revived, the third set shows that the motional and s
degrees of freedom appear to be decoupled again, with
density profile of each spin state appearing as it did dur
the first Rabi cycle.

As outlined in Sec. II, this peculiar behavior is most eas
understood by going to the rotating frame. In Fig. 4, we p
the fractional population in theu1& state in the rotating frame
N1

(I )(t)5* u^zu^1uc (I )(t)&u2dz. The solid line corresponds t
the CGSD model presented in Sec. II D. In the rotat
frame, population is slowly transferred out of theu1& state
due to the coupling fromĤz8^ ŝx in Eq. ~12!.

In the rotating frame, the system is being excited out
the ground stateuf0& due to the dipole couplingHz8 . This
can be seen in the top strip of snapshots in Fig. 5, where

FIG. 2. This plot shows an example of the modulation of t
Rabi oscillations. The fractional population in stateu1& is plotted as
a function of time, obtained from a numerical solution of the o
dimensional version of Eq.~1!. The values of the various param
eters are given in the text. In Fig. 3, the densities for both states
shown for three different Rabi cycles designated by the circ
numbers in this plot.
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density of each spin state in the rotating frame is show
corresponding to the solid line in Fig. 4. Initially, all of th
atoms are in theu1& internal state and the mean-field groun
state of the trapuf0&. Due to the dipole coupling, populatio

re
d

FIG. 3. This plot shows snapshots of the density of each s
for three different Rabi cycles corresponding to the three circ
numbers in Fig. 2. The solid line is the density of theu1& state,
while the dashed line is that of theu2& state. Each snapshot withi
a set is numbered in sequential order. The first set starts att50 ms,
and runs for a full Rabi cycle 1.41 ms. The second and third s
begin att545.2 ms andt590.3 ms, respectively. The time incre
ment between snapshots isDt50.28 ms for all three sets.

FIG. 4. The fractional population of theu1& state in the rotating
frame is shown. The solid line is the solution given by the CGS
model, while the dot-dashed line corresponds to the solution of
two-state model. If the two-state model is extended to include c
pling to the first even-parity excited state, then we get better ag
ment to the CGSD model, as shown by the dashed line.
2-6
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is transferred out of the ground state.
The strongest coupling is between the grounduf0& and

the first exciteduf1& states. These eigenstates are shown
the bottom strip of Fig. 5. They evolve slowly in time as t
coefficientsc0(t) and d1(t) change. For example, initially
the ground state is just the Thomas-Fermi-like ground st
since all of the population is in that state. However, at
545 ms, about one-third of the population is in the fi
excited state, which pinches the ground state due to
mean-field interaction term in Eq.~13!. That is why the self-
consistent ground state att545 ms is narrower than att
50.

It is clear from Fig. 4 that the low-frequency modulatio
of the rapid Rabi oscillations in the lab frame is just t
frequency of oscillation in the rotating frame betwe
uf0&u1& and uf1&u2&. This is reflected in the two-state solu
tion given by Eq.~19!, which also helps explain the peculia
behavior of the densities shown in Fig. 3. In the lab fra
the system is cycling rapidly between the two states sho
in Fig. 5. The initial values of the energies aree0
513.6\vz and e1513.7\vz , which makesD0150.1\vz .
This small energy splitting is due to the effect of the me
field, since in the limitN→1 these energies move apart by
factor of 10, which greatly reduces the coupling between
states and thus greatly reduces the modulation effect.

If we make the two-state ansatz and solve Eq.~18!, we get
the dot-dashed line in Fig. 4. The discrepancy from the s
line arises due to a weak coupling between the firstuf1& and
seconduf2& excited states. If we extend our two-state mod
to include this third state, we get the dashed line in Fig
which nearly sits on top of the solid line. In this case, t
second excited stateuf2& gains less than 5% of the tota
population.

B. Dependence on detuning

In Fig. 6, we show how the behavior of the system d
pends on the detuningd. The Rabi frequencyV5700 Hz

FIG. 5. The top strip of this plot shows snapshots of the den
of each state corresponding to the solution of the CGSD mo
given by the solid line in Fig. 4. The bottom strip shows the cor
sponding two self-consistent eigenstates given by the solutio
Eq. ~14!. The times of each snapshot are shown in the region
tween the two strips, in units of milliseconds. The solid line cor
sponds to the density of theu1& state, while the dashed is that of th
u2& state.
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was held fixed for each plot while the detuning was var
from zero at the topd50 to d5200 Hz in the bottom plot.
As predicted by the coupling parameterb5z0dV/Veff

2 in the
CGSD model, no coupling between motional states occur
d50, and thus the Rabi oscillations experience no modu
tion. As d is increased the motional-state coupling becom
stronger and we expect the modulation frequency to incre
The amplitude of modulation also increases as the detun
is increased.

We show the dependence of the period of modulation
detuning more explicitly in Fig. 7. The dashed line is t

y
el
-
of
e-
-

FIG. 6. This plot shows the fractional population in theu1& state
for four different values of the detuning, obtained from a numeri
solution of Eq~1!. Starting from the top, the detuning isd50, d
550 Hz, d5100 Hz, andd5200 Hz. The values of the other pa
rameters are given in the text.

FIG. 7. This plot shows the period of modulation as a functi
of detuningd. The dashed line corresponds to the numerical so
tion of the one-dimensional version of Eq.~1!, while the solid line
was obtained from a numerical solution of the two-state model
~18!. The Rabi frequency wasV5700 Hz.
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numerical solution of the full problem given by Eq.~1!,
while the solid line is the numerical solution of the two-sta
model given by Eq.~18!.

C. Dependence on trap displacement

In Fig. 8, we show how the behavior of the system d
pends on the trap displacementz0. The Rabi frequencyV
5700 Hz and the detuningd5100 Hz were held fixed, while
the trap displacement was varied from zeroz050 in the top
plot to z051mm in the bottom plot. Again, the couplin
parameterb predicts no modulation ifz050. As z0 is in-
creased, the frequency of modulation increases as the sy
is driven harder. However, for the large separation in
bottom plot, the modulation becomes highly irregular and
two-state model most certainly breaks down. This behav
may be chaotic and warrants further investigation.

IV. CONCLUSIONS

The gross features predicted by our model, such
double-peaked structure in the density distribution, and

FIG. 8. This plot shows the fractional population in theu1& state
for four different values of the trap displacementz0, obtained from
a numerical solution of Eq~1!. Starting from the top, the displace
ment is z050, z050.1 mm, z050.4 mm, and z051.0 mm. The
values of the other parameters are given in the text.
ys
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presence of collapses and revivals in the relative popula
dynamics, are supported by experimental observation@25#.
Experiment-theory agreement on finer points is only fa
The theory tends to underestimate the contrast ratio of
collapses, for instance. Moreover, to match the detun
trends shown in Figs. 6 and 7 one needs to add by han
unexplained overall detuning offset. This is most likely d
to there actually being a spatial dependence of the bare R
frequency due to the influence of gravity on the untrapp
intermediate state of the two-photon transition. To model
experimental situation in more detail one would have to
clude this effect as well as inelastic loss processes and fin
temperature effects neglected here. It may be also that tr
ing the TOP trap potential as purely static may be
oversimplication.

In this paper we have demonstrated the possibility
quantum state engineering of topological excitations throu
the interplay between the internal and spatial degrees of f
dom in a Bose condensed gas. Due to the symmetry of
system we have analyzed, the excitation in our case was
odd-parity dipole state. The intriguing possibility of excitin
states with alternative symmetries, such as a vortex s
@51–54#, would require a different trap geometry, but is
straight-forward extension of the analysis presented h
~Note added in proof.The work presented here has be
extended to the case of a vortex, with the theoretical pre
tion given in@56# and the experimental observation in@57#.!
Although we have focused in this work on a particular p
rameter regime, the system is a rich one for study and ex
its complex and perhaps chaotic dynamics under strong
citation conditions.
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