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Equivalence of kinetic theories of Bose-Einstein condensation

J. Wachter, R. Walser, J. Cooper, and M. Holland
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~Received 10 May 2001; published 12 October 2001!

We discuss the equivalence of two nonequilibrium kinetic theories that describe the evolution of a dilute,
Bose-Einstein condensed atomic gas in a harmonic trap. The second-order kinetic equations of Walseret al.
@Phys. Rev. A63, 013607~2001!# reduce to the Gross-Pitaevskii equation and the quantum Boltzmann equation
in the low- and high-temperature limits, respectively. These kinetic equations thus describe the system in
equilibrium ~finite temperature! as well as in nonequilibrium~real time!. We have found this theory to be
equivalent to the nonequilibrium Green’s function approach originally proposed by Kadanoff and Baym and
more recently applied to inhomogeneous trapped systems by Imamovic´-Tomasovic´ and Griffin @in Progress in
Nonequilibrium Green’s Functions, edited by M. Bonitz~World Scientific, Singapore, 2000!, p. 404#.

DOI: 10.1103/PhysRevA.64.053612 PACS number~s!: 03.75.Fi, 05.70.Ln
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I. INTRODUCTION

Binary collisions are the essential mechanism for the f
mation of a Bose-Einstein condensate in an atomic g
Moreover, many aspects of the system’s dynamics req
two-particle collisions, for example, sound propagation,
damping of elementary excitations, and the very mechan
that leads to the quantum phase transition—evaporative c
ing. However, the conventional Hartree-Fock-Bogoliub
approach to generalize the Gross-Pitaevskii equation for
lute, trapped gases includes binary collisional interacti
only as first-order energy shifts. Second-order kinetic th
ries that include collisional redistributions of excited atom
offer a more complete microscopic description of the g
eous system.

Why is a simplified kinetic description possible, when t
evolution of the Bose-Einstein condensate might involve c
relations between as many particles as the system conta
Would not binary collisions eventually entangle the quant
state of each atom in the system with that of every ot
atom? Fortunately, such complexity is not necessary to
scribe the measurable properties of a dilute, weakly inter
ing gas, because the duration of a collision,t0, is very short
compared to the essentially interaction-free oscillation in
external potential between isolated collision events@1#.

Because of this characteristic separation of time sca
correlations that arise during an individual collision dec
rapidly before the next collision takes place. This rapid d
cay, in turn, implies the possibility of a Markov approxim
tion, which assumes that only the current configuration of
system determines its future evolution. Furthermore, this
cay of correlations allows us to parametrize the syste
state by a reduced set of master variables, because w
interested in the system’s time evolution only on the kine
time scale, i.e., for times large compared to the duration
collision t0. This reduced description with a set of mas
variables is possible, because for kinetic times the high
order correlation functions can be expressed as functiona
these variables@2#.

This set of master variables is common to both kine
theories we will discuss: In the Kadanoff-Baym approa
abstract real-time Green’s functions parametrize the cond
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sating gas, whereas in the Walseret al. case@3#, single-time
density matrices, which contain the physical density and
herences of thermal atoms, as well as the mean field, re
sent the system. The equivalence of these two approach
a general principle in nonequilibrium statistical mechan
@4,5#. However, it is not trivial to verify this fact in detail by
explicitly connecting the complementary microscopic equ
tions. Strictly speaking, we state equivalence after
Kadanoff-Baym theory has been restricted to single-ti
quantities using the Markov approximation.

We present the formulation of the quantum kinetic theo
of dilute Bose-Einstein condensed gases in terms of none
librium, real-time Green’s functions and their Kadano
Baym equations of motion@6#, which were generalized in
Refs.@7,8# to include the condensate.

By transforming these equations to the single-particle
ergy basis and taking the single-time limit of the two-tim
Green’s functions by means of the Markov approximatio
we reproduce the equations of motion of the Walseret al.
kinetic theory as presented in Ref.@3#, thus providing an
independent confirmation of these equations. Follow
Imamović-Tomasovic´ and Griffin@9#, we use the gapless Be
liaev approximation for the self-energies in the Kadano
Baym equations, and thus prove the Walseret al. kinetic
theory to be gapless as well.

II. NONEQUILIBRIUM GREEN’S FUNCTIONS

We begin the introduction to the Kadanoff-Baym descr
tion of the dilute Bose gas by defining its variables. Negle
ing three-body interactions, the second-quantized many-b
HamiltonianĤ describing the atoms is

Ĥ5E dxE dy â†~x! ^xuĤ (0)uy& â~y!

1
1

2E dxE dy â†~x!â†~y!Vbin~x2y!
â~x!

â~y!
, ~1!

where â†(x) is the bosonic creation operator andVbin(x
2y) the binary interaction potential. The single-partic
Hamiltonian
©2001 The American Physical Society12-1
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Ĥ (0)5
p̂2

2m
1Vext~ x̂! ~2!

contains the kinetic energy of a boson with massm and the
external potentialVext(x).

To represent the master variables in terms of nonequ
rium Green’s functions, we first write the system’s degrees
freedom in terms of spinor operators@10#

Â~1!5S â~1!

â†~1!
D and Â†~1!5„â†~1! â~1!…, ~3!

where we now follow Kadanoff-Baym and abbrevia
(1)[(x1 ,t1). The master variables are then contained in
following two-time propagators:

h~1,2![2 i ^Â~1!&^Â†~2!&, ~4!

g~1,2![2 i ^T$Â~1!Â†~2!%&, ~5!

where^•& denotes the grand-canonical average andT$•% the
time ordering operator, which sorts its arguments in orde
decreasing time. These two propagators are defined for
times by analytic continuation of the finite-temperatu
propagators for imaginary time, following@6# Chap. 8. We
subtract the condensate propagatorh from the full propagator
g and thus define the Green’s function for the fluctuation

g̃~1,2![g~1,2!2h~1,2!. ~6!

The two time orderings ofg̃,

g̃,~1,2![g̃~1,2! for t1,t2 ~7!

and

g̃.~1,2![g̃~1,2! for t1.t2 , ~8!

define the generalized two-time fluctuation-density matric
This can be seen by explicitly writing these two time ord

ings in terms of the fluctuating partẫ(1) of the field opera-
tors,

ẫ~1![â~1!2^â~1!&[â~1!2a~1!, ~9!

as follows:

g̃,~1,2!5S f̃ 12 m̃12

m̃12* ~11 f̃ !12*
D , ~10!

g̃.~1,2!5sz1g̃,~1,2!, ~11!

where we defined the two-time normal (f̃ ) and anomalous
(m̃) averages of the fluctuations in the position basis as

f̃ 125^ ẫ†~2! ẫ~1!& and m̃125^ ẫ~2! ẫ~1!&. ~12!

In the caset15t2, the propagators in Eqs.~10! and ~11!
correspond to the dynamical quantities in the kinetic eq
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tions for the fluctuations given in Eqs.~24! and~25! of Ref.
@3#; for t15t2, the averages in Eq.~12! correspond to the
density of thermal atoms around the condensate and cor
tions between these atoms. We have thus represented
condensate~h! and its fluctuations (g̃,) and can now look
for their corresponding evolution equations.

III. KADANOFF-BAYM EQUATIONS

The equations of motion for the nonequilibrium Green
functionsh and g̃, are the Kadanoff-Baym equations; the
equations are equivalent to the Dyson equation. In the s
ond part of this section, we discuss the second-order Bel
approximation for the self-energies that we use. For the c
densed part of the atom cloud, which is parametrized by
propagatorh(1,2) defined in Eq.~4!, we can write the
Kadanoff-Baym equations as@7#

E
2`

`

d1̄$g0
21~1,1̄!2SHF~1,1̄!%h~ 1̄,2!

5E
2`

t1
d1̄$S.~1,1̄!2S,~1,1̄!%h~ 1̄,2! ~13!

and

E
2`

`

d1̄ h~1,1̄!$g0
21~ 1̄,2!2SHF~ 1̄,2!%

52E
2`

t2
d1̄ h~1,1̄!$S.~ 1̄,2!2S,~ 1̄,2!%. ~14!

We write the corresponding equations for the fluctuatio
g̃,(1,2) andg̃.(1,2) @Eqs. ~10! and ~11!# around the con-
densate mean field as

E
2`

`

d1̄$g0
21~1,1̄!2SHF~1,1̄!%g̃ :~ 1̄,2!

5E
2`

t1
d1̄$S.~1,1̄!2S,~1,1̄!%g̃ :~ 1̄,2!

2E
2`

t2
d1̄S:~1,1̄!$g̃.~ 1̄,2!2g̃,~ 1̄,2!%

~15!

and

E
2`

`

d1̄g̃ :~1,1̄!$g0
21~ 1̄,2!2SHF~ 1̄,2!%

5E
2`

t1
d1̄$g̃.~1,1̄!2g̃,~1,1̄!%S:~ 1̄,2!

2E
2`

t2
d1̄g̃ :~1,1̄!$S.~ 1̄,2!2S,~ 1̄,2!%.

~16!
2-2
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In Eqs.~13! through~16!, we use the definition of the matri
inverse of the interaction-free propagatorg0,

g0
21~1,2!5H isz

d

dt1
1

¹1
2

2m
2Vext~1!1mJ d~1,2!, ~17!

with the third Pauli matrixsz5diag(1,21) and an energy
shift m, which removes mean-field oscillations. We define
d function by d(1,2)[d(x12x2)d(t12t2) and integration
d1̄ as integrationdt1̄ over time within the given time limits
and dx1̄ over all space. The approximations we choose
the Hartree-Fock self-energies for the condensateSHF and for
the fluctuationsSHF as well as the second-order collision
self-energiesS, andS, will be discussed below.

Kadanoff and Baym derived these equations without
cluding the condensate@6# and de Dominicis and Martin for
mulated a very general mathematical account@11,12#. The
Green’s function formalism traces back to Schwinger@13#
and originally made use of the correspondence between
partition function and the time evolution operator in imag
nary time (ebH5eiHt for t52 ib). To get information about
measurable quantities, the dynamic variables and equa
of motion were extended to real times by analytic contin
tion ~see@6# Chap. 8 and@14,15,5# for more details!.

FIG. 1. The first-order Hartree-Fock self-energy diagrams. T

solid lines depict the noncondensate propagatorg̃, the wiggly lines
the condensate propagatorh, and the dashed lines the interactio
potentialv. The first two terms give the energy shifts due to bo
the mean fieldU f c and the normal fluctuationsU f̃ . The third term
in SHF gives rise to a factor of 2 forU f̃ and toVm̃ . The fourth term
which only appears inSHF causes the difference in the mean-fie
shifts that are experienced by the condensate and the fluctua
respectively.
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This nonequilibrium Green’s function description was d
veloped 40 years ago to eventually explain the behavio
superfluid helium@16#. Since this description involves
weak-coupling approximation but helium atoms are stron
interacting, the results at that time were disappointing a
for example, could not explain all predictions of the pheno
enological Landau model. However, since the Green’s fu
tion description holds for a dilute, weakly interacting gas,
application to Bose-Einstein condensation in this system
more appropriate.

To complete our exposition of the Kadanoff-Baym equ
tions ~13! through~16!, we have to choose the Hartree-Fo
and collisional self-energies. We draw the Hartree-Fock s
energy diagrams for both the condensateh and the thermal
cloud g̃, in Fig. 1 and write them, respectively, as

SHF~1,2!5
i

2E d2̄ v~1,2̄!Tr$g~ 2̄,2̄!%d~1,2!1 iv~1,2!g̃~1,2!

~18!

and

SHF~1,2!5
i

2E d2̄ v~1,2̄!Tr$g~ 2̄,2̄!%d~1,2!

1 iv~1,2!g~1,2!, ~19!

with the local-time, binary interaction potentialv(1,2)
5Vbin(x12x2)d(t12t2) and the matrix trace Tr. When w
evaluate the time ordered propagatorg at equal times, we
follow the conventionT$â(1)â†(2)%5â†(2)â(1).

For the second-order collisional self-energiesS ,
.

we
choose the gapless and conserving Beliaev approxima
@9,17–19#. This means that, compared to Kane and Kadan
@7#, we include the exchange terms, which they deliberat
excluded to obtain the simplest conserving approximation
proven in@20#, and compared to Hohenberg and Martin@8#,
we include the terms containing no condensate contributio
which will give rise to the quantum Boltzmann terms for th
fluctuations.

We depict the resulting self-energy diagrams in Fig. 2 a
represent them mathematically as

e

ns,
-
-

-

r-

n-
FIG. 2. The second-order col
lisional self-energies in the gap
less Beliaev approximation. The
solid lines depict the nonconden

sate propagatorg̃, the wiggly lines
the condensate propagatorh, and
the dashed lines the binary inte
action potential v. The second
diagram of S corresponds to the
last four of S, when we replace
each of the three fluctuation
propagators by an open conde
sate one.
2-3
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S:~1,2!52
1

2E d2̄E d3̄ v~1,2̄!v~2,3̄!

3@ g̃ :~1,2!Tr$g̃ "~ 3̄,2̄!g̃ :~ 2̄,3̄!%

12g̃ :~1,3̄!g̃ "~ 3̄,2̄!g̃ :~ 2̄,2!# ~20!

for the condensed part and

S:~1,2!52
1

2E d2̄E d3̄ v~1,2̄!v~2,3̄!

3@ g̃ :~1,2!Tr$g"~ 3̄,2̄!g:~ 2̄,3̄!

2h~ 3̄,2̄!h~ 2̄,3̄!%1h~1,2!Tr$g̃ "~ 3̄,2̄!g̃ :~ 2̄,3̄!%

12g̃ :~1,3̄!$g"~ 3̄,2̄!g:~ 2̄,2!2h~ 3̄,2̄!h~ 2̄,2!%

12h~1,3̄!$g̃ "~ 3̄,2̄!g̃ :~ 2̄,2!%# ~21!

for the fluctuations.
Instead of using lines for the matrix-valued propagat

g̃ andh as in Fig. 2, one can also draw diagrams for the fo
elements of the matrix separately. The resulting diagrams
the first-order and second-order Beliaev terms can be see
Figs. 15 and 17 of Ref.@21#, where the interaction potentia
is replaced by a two-bodyT matrix.

IV. TRANSFORMATION TO THE ENERGY BASIS

We now demonstrate the key steps that connect the kin
theory presented in the previous section to the work
Walser et al. presented in@3#: We rewrite the Kadanoff-
Baym Eqs.~13! through ~16! in the single-particle energy
~SPE! basis and obtain the equations of motion for the m
ter variables—the measurable quantities in our reduced
scription of the system—in this basis, exactly as given in
Walseret al. paper.

First, we define our master variables in the SPE ba
$u18&%18[$ue18&%e18

and determine their relation to their po
sition basis counterparts, the Green’s functions given in E
~4!, ~10!, and ~11!. The time-dependent, two-compone
mean-field state vector

x5S a

a* D ~22!

is defined in terms ofa[a18u18&[(18^â18&u18& and also
contains the time-reversed mean fielda* . The time-
dependent annihilation and creation operatorsâ andâ† trans-
form as

â~1!5^1u18&â18 and â†~1!5^18u1&â18
† , ~23!

whereu1&[ux1& are the position eigenstates. The fluctuati
part of the master variables is contained in the single-t
fluctuation-density matrixG̃,, which we define as
05361
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G̃,5S f̃ m̃

m̃* ~11 f̃ !*
D , ~24!

with the normal fluctuation densityf̃ 5^â28
† â18&u18& ^ ^28u

and the anomalous averagem̃5^â28â18&u18& ^ u28& in the
SPE basis.

Second, we can recognize the fluctuation-density ma
G̃, as the single-time limit of its position-basis counterp
g̃,(1,2) in Eq. ~10!. The mean-field state vectorx, on the
other hand, can be combined with its Hermitian conjug
into the matrix-ixx†, which corresponds toh(1,2) in Eq.~4!.
We thus definex(1)[^Â(1)&. This allows us to explicitly
connect the condensate mean-field state vectorsx(1) ex-
pressed in the position basis andx(t1) in the SPE basis as
follows:

x~1!5S ^1u18& 0

0 ^18u1&
D S a18~ t1!

a18
* ~ t1!D [T~1!x~ t1!,

~25!

with a time-independent 232n transformation matrixT(1)
5T(x1). Because of the completeness of the position ba
we can also write

x~ t1!5E dx1 T†~1!x~1!. ~26!

For the fluctuation density, we obtain similarly

i g̃,~1,2!u t15t2
5T~1!G̃,~ t1!T†~2! ~27!

and

2 i G̃,~ t1!5E dx1E dx2 T†~1!g̃,~1,2!T~2!u t15t2
.

~28!

We can now use the transformation Eq.~27! to write the
condensate’s Hartree-Fock self-energySHF(1,1̄) in Eq. ~18!
as

T~1!S U f c12U f̃ Vm̃

Vm̃
† U f c

†
12U f̃

†D T†~ 1̄!d~ t12t 1̄!. ~29!

We here use the definitions of@3#, where energy shifts due to
both the mean field and the normal fluctuations are given
the matrices

U f52 f18283848 f 3828u18& ^ ^48u, ~30!

whereas the first-order anomalous coupling strength is gi
by

Vm̃52 f18283848m̃3848u18& ^ u28&. ~31!

The symmetrized two-body interaction matrix elementsf
are here defined by
2-4
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EQUIVALENCE OF KINETIC THEORIES OF BOSE- . . . PHYSICAL REVIEW A 64 053612
f182838485
1

4
~fu

182838481fu
182848381fu

281838481fu
28184838!,

~32!

fu
182838485E dx1E dx2^18u1&^28u2&

Vbin~x12x2!

2

3^1u38&^2u48&. ~33!

Like the first-order Hartree-Fock self-energies, we can
write the second-order self-energies in Eqs.~20! and ~21!
using the transformations in Eqs.~25! to ~28! and ~33!. In
particular, we now have to transform two potential facto
which makes the computation more complicated. Furth
more, the integrals over time tot1 andt2 in Eqs.~13! through
~16! modify one of the binary potentials according
Eq. ~65! of @22# to an approximately energy conserving tw
particle matrix element

fh
182838485f18283848H pdh~D!1 i Ph

1

DJ , ~34!

with an energy differenceD between the incoming and ou
going states of the collision event. This definition of the m
trix elementsfh introduces the Markov approximation int
the Kadanoff-Baym equations. We obtain the second-or
damping rates and energy shiftsY: for the condensate, cor
responding toS(1,2) in Eq.~20!, andG: for the fluctuations,
corresponding toS(1,2) in Eq.~21!; these are the collision
integrals defined in@3#. The second-order terms appear
combinationsG,G̃.2G.G̃, that contain, for example, th
Boltzmann collision terms

$G f̃ f̃ (11 f̃ )~11 f̃ !2G (11 f̃ )(11 f̃ ) f̃ f̃ %1858

58f18283848fh
19293949$ f̃ 3819 f̃ 4829~11 f̃ !4928~11 f̃ !3958

2~11 f̃ !3819~11 f̃ !4829 f̃ 4928 f̃ 3958% ~35!

and similar contributions involving the anomalous avera
m̃ andm̃* .

We can now exactly reproduce the coupled equations
the condensed fraction as well as the normal and anoma
fluctuations stated in Eqs.~10! and~26! of Ref. @3#. Consid-
ering the first column of the matrix Eq.~13! for the conden-
sate att15t2, we obtain the generalized Gross-Pitaevs
equation

d

dt
x5~2 i P1Y,2Y.!x, ~36!

with the symplectic first-order propagator

P5S PN PA
2PA* 2PN*

D . ~37!
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This propagator consists of the normal Hermitian Ham
tonian

PN5Ĥ (0)1U f c12U f̃2m, ~38!

which contains the usual single-particle HamiltonianĤ (0)

given in Eq.~2! and the mean-field and fluctuation shiftsU f
given in Eq. ~30!; furthermore, the symmetric anomalou
coupling

PA5Vm̃ ~39!

is defined in Eq.~31!. The propagatorP contains the
Hartree-Fock shifts, which are given in Eq.~29!, and origi-
nally were contained inSHF(1,2) @see Eq.~18!#.

To obtain the equation of motion for the fluctuations, w
subtract Eq.~15! from Eq. ~16! and evaluate att15t2 to
obtain

d

dt
G̃,52 i SG̃,1G,G̃.2G.G̃,1H.c. ~40!

The reversible evolution of the fluctuationsG̃, is governed
by the Hartree-Fock-Bogoliubov self-energy operator

S5S SN SA
2SA* 2SN*

D , ~41!

which in turn consists of the Hermitian Hamiltonian

SN5Ĥ (0)12U f c12U f̃2m ~42!

and the symmetric anomalous coupling

SA5Vm . ~43!

The propagatorS corresponds toSHF(1,2) in Eq. ~19!. Its
mean-field shift is twice as large as that of the condens
propagatorP, which is a well known property of first-orde
Hartree-Fock-Bogoliubov theories. Further details of th
transformation can be found in@23#.

V. CONCLUSION

We independently rederive the kinetic equations of Wal
et al. from the Kadanoff-Baym nonequilibrium Green’s fun
tion formulation of kinetic theory, and recover identical fa
tors in all second-order damping rates and energy shifts. T
shows that for dilute, weakly interacting gases the Kadan
Baym nonequilibrium, real-time Green’s function approa
is microscopically equivalent to the density matrix approa
used by Walseret al. @3#. The latter approach is more phys
cal in two respects. First, its variables are measurable qu
tities: the mean field and the density and coherences of t
mal atoms. Second, the variables’ equations of motion red
2-5
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to the Gross-Pitaevskii equation and the quantum Boltzm
equation in the low- and high-temperature limits, resp
tively.

Starting from the gapless Beliaev approximation for t
collisional self-energy in the Kadanoff-Baym equations,
furthermore learn that the full second-order kinetic theory
Walseret al. is gapless itself@18,9#. This shows that the gap
that appears in the first-order Hartree-Fock-Bogoliubov sp
trum @24# is closed by the second-order energy shifts.

Furthermore, this work connects the kinetic theory
Walser et al. with work done by M. Imamovic´-Tomasovic´
s

05361
n
-

f
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f

et al. @9,17,25#, because they start from the same Kadano
Baym equations.
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