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Equivalence of kinetic theories of Bose-Einstein condensation
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We discuss the equivalence of two nonequilibrium kinetic theories that describe the evolution of a dilute,
Bose-Einstein condensed atomic gas in a harmonic trap. The second-order kinetic equations oéiVehlser
[Phys. Rev. A3, 013607(2001)] reduce to the Gross-Pitaevskii equation and the quantum Boltzmann equation
in the low- and high-temperature limits, respectively. These kinetic equations thus describe the system in
equilibrium (finite temperatureas well as in nonequilibriungreal time. We have found this theory to be
equivalent to the nonequilibrium Green’s function approach originally proposed by Kadanoff and Baym and
more recently applied to inhomogeneous trapped systems by Imamawiasovicand Griffin[in Progress in
Nonequilibrium Green’s Functiongdited by M. Bonitz(World Scientific, Singapore, 2000p. 404].
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I. INTRODUCTION sating gas, whereas in the Walsgral. case[3], single-time
density matrices, which contain the physical density and co-

Binary collisions are the essential mechanism for the forherences of thermal atoms, as well as the mean field, repre-
mation of a Bose-Einstein condensate in an atomic gassent the system. The equivalence of these two approaches is
Moreover, many aspects of the system’s dynamics requir@ general principle in nonequilibrium statistical mechanics
two-particle collisions, for example, sound propagation, thd4.,5]. However, it is not trivial to verify this fact in detail by
damping of elementary excitations, and the very mechanisrXplicitly connecting the complementary microscopic equa-
that leads to the quantum phase transition—evaporative coolions. Strictly speaking, we state equivalence after the
ing. However, the conventional Hartree-Fock-BogoliubovKadanoff-Baym theory has been restricted to single-time
approach to generalize the Gross-Pitaevskii equation for diquantities using the Markov approximation.
lute, trapped gases includes binary collisional interactions We present the formulation of the quantum kinetic theory
only as first-order energy shifts. Second-order kinetic theoOf dilute Bose-Einstein condensed gases in terms of nonequi-
ries that include collisional redistributions of excited atomslibrium, real-time Green’s functions and their Kadanoff-
offer a more complete microscopic description of the gasBaym equations of motiofi6], which were generalized in
eous system. Refs.[7,8] to include the condensate.

Why is a simplified kinetic description possible, when the By transforming these equations to the single-particle en-
evolution of the Bose-Einstein condensate might involve cor€rdy basis and taking the single-time limit of the two-time
relations between as many particles as the system contain§¥een’s functions by means of the Markov approximation,
Would not binary collisions eventually entangle the quantunive reproduce the equations of motion of the Walseal.
state of each atom in the system with that of every othekKinetic theory as presented in RéB], thus providing an
atom? Fortunately, such complexity is not necessary to déndependent confirmation of these equations. Following
scribe the measurable properties of a dilute, weakly interactmamovic Tomasovicand Griffin[9], we use the gapless Be-
ing gas, because the duration of a collisieg, is very short  liaev approximation for the self-energies in the Kadanoff-
compared to the essentially interaction-free oscillation in thd8aym equations, and thus prove the Walseml. kinetic

external potential between isolated collision evdnis theory to be gapless as well.
Because of this characteristic separation of time scales,
correlations that arise during an individual collision decay Il. NONEQUILIBRIUM GREEN'S FUNCTIONS

rapidly before the next collision takes place. This rapid de-

cay, in turn, implies the possibility of a Markov approxima- éion of the dilute Bose gas by defining its variables. Neglect-

tion, which assumes that only the current configuration of th 10 three-body interactions. the second-quantized manv-bod
system determines its future evolution. Furthermore, this de- 9 y ' q y y

cay of correlations allows us to parametrize the system'diamiltonianH describing the atoms is
state by a reduced set of master variables, because we are
interested in the system’s time evolution only on the kinetic ﬂ:f dxf dya’(x) (x[A@)y) a(y)
time scale, i.e., for times large compared to the duration of a
collision 7y. This reduced description with a set of master 1 A

. - . AT : - - a(x)
variables is possible, because for kinetic times the higher- + _f dxf dy af(x)al(y)Vp(x—y) —, (1)
order correlation functions can be expressed as functionals of 2 a(y)
these variablef2]. A

This set of master variables is common to both kineticwhere a'(x) is the bosonic creation operator aihi,(x
theories we will discuss: In the Kadanoff-Baym approach,—y) the binary interaction potential. The single-particle
abstract real-time Green'’s functions parametrize the conderdamiltonian

We begin the introduction to the Kadanoff-Baym descrip-
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. |52 . tions for the fluctuations given in Eq&4) and (25) of Ref.
HO=_——+V_(X) (2)  [3]; for t;=t,, the averages in Eq12) correspond to the

2m density of thermal atoms around the condensate and correla-
tions between these atoms. We have thus represented the
condensatéh) and its fluctuationsg~) and can now look

pfor their corresponding evolution equations.

contains the kinetic energy of a boson with masand the
external potential/ g ().

To represent the master variables in terms of nonequili
rium Green'’s functions, we first write the system’s degrees of
freedom in terms of spinor operatdrs0] ll. KADANOFF-BAYM EQUATIONS

a1) The equations of motion for the nonequilibrium Green'’s

A(1)=( ) ) and Af(1)=(af(1) a(1)), (38 functionsh andg~ are the Kadanoff-Baym equations; these
a’(1) equations are equivalent to the Dyson equation. In the sec-
~ond part of this section, we discuss the second-order Beliaev
where we now follow Kadanoff-Baym and abbreviate gpproximation for the self-energies that we use. For the con-
(1)=(x1,t1). The master variables are then contained in thejensed part of the atom cloud, which is parametrized by the

following two-time propagators: propagatorh(1,2) defined in Eq.(4), we can write the
A - Kadanoff-Baym equations 43]
h(1,2=—i(A(1))(AT(2)), 4
9(1,2=—i(T{A(L)AT(2)1), (5) f_wdT{gal(l,T)—SHF(l,T)}h(IZ)
where(-) denotes the grand-canonical average &fd the o o o
time ordering operator, which sorts its arguments in order of =f d1{S7(1,1)—-S~(1,1)}h(1,2) (13

decreasing time. These two propagators are defined for real
times by analytic continuation of the finite-temperature
propagators for imaginary time, following] Chap. 8. we and
subtract the condensate propagdtétom the full propagator

g and thus define the Green'’s function for the fluctuations J: d1h(1,1){gg (1,2~ Su(1,2)}
9(1,2=9(1,2-Nn(1,2). (6)
t2 — JR— — —_—
The two time orderings 4§, =— J, d1h(1,1){S7(1,2-S~(1,2)}. (14
§7(1,2=G(1,29 for t;<t, (7

We write the corresponding equations for the fluctuations
and §<(1,2) andg~(1,2) [Egs. (10) and (11)] around the con-
densate mean field as

§7(1,2=7(1,2 for t;>t,, (8)
define the generalized two-time fluctuation-density matrices. Jx dT{ggl(lI)—EHF(l,T)}@%(T,Z)
This can be seen by explicitly writing these two time order- -
ings in terms of the fluctuating paa(1) of the field opera- L — — —
tors, ope ’ - [* disraz-xanpeaa
p EA —{3 EA — t _ _ _ _
8(1)=4(1)~ (a(1))=a(1) - a(1), ©) -7 dzrane @a-ge@a)
as follows: o
~ - (15
f1o Mo
9°(1,2=| - | 100  and
g2 (mfz (1+0)71, o
T (12=0,+5°(1,2), (11 |” a1 Die, 12 - 312}

where we defined the two-time norméai)(and anomalous t, o o o
(m) averages of the fluctuations in the position basis as = f_wd1{§>(1,1)—§<(1.1)}2<(1,2)
To=(a'(2)a(1)) and mp=(a(2)a(1)). (12 oo _
12=(a'(2)a(1)) p=(a(2)a(l)). (12 —fzdl"g'2(1,1){E>(1,2)—E<(1,2)}.
In the caset;=t,, the propagators in Eq$10) and (11) o
correspond to the dynamical quantities in the kinetic equa- (16
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This nonequilibrium Green’s function description was de-
@ LLV(') LT veloped 40 years ago to eventually explain the behavior of
Sur(l,2) = | + Y32+ 2‘—>—‘1 superfluid helium[16]. Since this description involves a
] H weak-coupling approximation but helium atoms are strongly
: | interacting, the results at that time were disappointing and,
1=2 1=2 for example, could not explain all predictions of the phenom-
e enological Landau model. However, since the Green’s func-
Tur(l,2) = Smr(1,2) + 2'~3v- -§-1 tion description holds for a dilute, weakly interacting gas, its

application to Bose-Einstein condensation in this system is

FIG. 1. The first-order Hartree-Fock self-energy diagrams. Thenore appropriate. N
solid lines depict the noncondensate propaggtdhe wiggly lines 10 complete our exposition of the Kadanoff-Baym equa-
the condensate propagator and the dashed lines the interaction tions (13) through(16), we have to choose the Hartree-Fock
potentialy. The first two terms give the energy shifts due to both and collisional self-energies. We draw the Hartree-Fock self-
the mean fieldJc and the normal fluctuatiorid7 . The third term  €nergy diagrams for both the condenshatend the thermal
in Sy gives rise to a factor of 2 fdd; and toVy,. The fourth term Cloud§< in Fig. 1 and write them, respectively, as
which only appears ix - causes the difference in the mean-field

shifts that are experienced by the condensate and the fluctuations, i

respectively. Sie(12)= > d2v(1,2)T{g(2,2)}8(1,2 +iv(1,29(1,2)
In Egs.(13) through(16), we use the definition of the matrix (18)
inverse of the interaction-free propagatgy, d
an
. o ,d Vi
L Sue(1.2=5 f d2v(1,2)Tr{g(2,2)}8(1,2)
with the third Pauli matrixa®*=diag(l,—1) and an energy +iv(1,2)9(1,2 (19

shift u, which removes mean-field oscillations. We define the
6 function by 8(1,2)=46(x;—X,) 8(t;—t5) and integration
d1 as integratiordt; over time within the given time limits .
and dxg over all space. The approximations we choose for_ Viin(X1~X5) é(tl_tZ) and the matrix trace Tr. _When we
the Hartree-Fock self-energies for the condenSateand for evaluate the time .orde[ed Qropaga@at eAquaI times, we
the fluctuationsS - as well as the second-order collisional follow the conventioriT{a(1)a'(2)}=a"(2)a(1). )
self-energiess™ and>, = will be discussed below. For the second-order collisional self-energigs: we
Kadanoff and Baym derived these equations without inchoose the gapless and conserving Beliaev approximation
cluding the condensafé] and de Dominicis and Martin for- [9,17-19. This means that, compared to Kane and Kadanoff
mulated a very general mathematical accoit,12. The [7], we include the exchange terms, which they deliberately
Green’s function formalism traces back to Schwinge8] excluded to obtain the simplest conserving approximation as
and originally made use of the correspondence between thgoven in[20], and compared to Hohenberg and Mafi@j,
partition function and the time evolution operator in imagi- we include the terms containing no condensate contributions,
nary time @*"=e'" for t=—ip). To get information about which will give rise to the quantum Boltzmann terms for the
measurable quantities, the dynamic variables and equatiorilsictuations.
of motion were extended to real times by analytic continua- We depict the resulting self-energy diagrams in Fig. 2 and

with the local-time, binary interaction potential(1,2)

tion (see[6] Chap. 8 and14,15,5 for more details represent them mathematically as
3 O 2 o=~ FIG. 2. The second-order col-
s%(1,2) = ' AL RN lisional self-energies in the gap-
' ' 2 A e less Beliaev approximation. The
2 1 =T solid lines depict the nonconden-

sate propagatag, the wiggly lines
the condensate propagator and
the dashed lines the binary inter-

2
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1
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T m )
, (24)

s%(l,z)z—%J d?f d3v(1,2)v(2,3) G==
m* (1+1)*

X[§=(1,2TrHG=(3,2)§(2,3) Yt
[g=¢ i {g_(_ )g_( 2 with the normal fluctuation densit}’z=<a;al,>|1’>®(Z’I
+265(1,3)§7(3,2)§7(2,2)] (200 and the anomalous average=(a,a; )|1')®|2') in the
SPE basis.
for the condensed part and Second, we can recognize the fluctuation-density matrix

G*= as the single-time limit of its position-basis counterpart
§°(1,2) in Eq.(10). The mean-field state vectgr, on the
other hand, can be combined with its Hermitian conjugate
into the matrixi y x ", which corresponds th(1,2) in Eq.(4).

We thus defin@y(l)E(A(l». This allows us to explicitly
connect the condensate mean-field state vectdds) ex-
pressed in the position basis ag(t;) in the SPE basis as

+285(13){97(3.29%(22-h(32h(22}  folows:

1 —f = -
22(1,2)=—§f dzf d3v(1,2)v(2,3)

X[37(1,2T{g7(3,2)9%(2,3)
—h(3,2)h(2,3)}+h(1.2Tr{G(3,2)57(2,3)}

+2h(1,3){5(3,2)5(2,2)}] (21) (1) o )(“1'“1)

for the fluctuations. (25
Instead of using lines for the matrix-valued propagators

G andh as in Fig. 2, one can also draw diagrams for the fouwith a time-independent 22n transformation matrixr (1)

elements of the matrix separately. The resulting diagrams for T(x1). Because of the completeness of the position basis,

the first-order and second-order Beliaev terms can be seen ¥ can also write

Figs. 15 and 17 of Ref21], where the interaction potential

is replaced by a two-body matrix. X(tl):f dx, TT(1) x(1). (26)

IV. TRANSFORMATION TO THE ENERGY BASIS For the fluctuation density, we obtain similarly

We now demonstrate the key steps that connect the kinetic o B = +
theory presented in the previous section to the work of g (1'2)|tftz_T(1)G (t)T'(2) (27)
Walser et al. presented in[3]: We rewrite the Kadanoff-
Baym Egs.(13) through (16) in the single-particle energy and
(SPB basis and obtain the equations of motion for the mas-

ter variables—the measurable quantities in our reduced de- _; é<(t1)=f dxlf dx, TILT<(1,2T(2)),. -
scription of the system—in this basis, exactly as given in the e
Walseret al. paper. (28)

First, we define our master variables in the SPE basis We can now use the transformation 87) to write the
{11")}1={|€1/)}.., and determine their relation to their po- L
- . 1 , . . . condensate’s Hartree-Fock self-enefgiy(1,1) in Eq. (18)
sition basis counterparts, the Green’s functions given in Eqsas
(4), (10), and (11). The time-dependent, two-component

mean-field state vector Ujet 2U7 Vs,
T(1)

a vl ult+2u]
X=( *) (22)

We here use the definitions [8], where energy shifts due to

. both the mean field and the normal fluctuations are given by
is defined in terms ofv=a4/|1')==,,(a;,)|1’) and also  the matrices

contains the time-reversed mean field*. The time-

dependent annihilation and creation operatoanda’ trans- Ui=2 ¢ 234 5,1 Y (4], (30)
form as

TI(1)6(t,—t7).  (29)

whereas the first-order anomalous coupling strength is given
A(L)=(1]108, and a(L)=(1'|Dal,, @3 %

V=2 ¢34 my 1)@ |2"). 31
where|1)=|x,) are the position eigenstates. The fluctuating n=2¢ sarll’)el2) 3

part of the master variables is contained in the single-timerhe symmetrized two-body interaction matrix elemets
fluctuation-density matriXG =, which we define as are here defined by
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voratar L raraiar  arararat . pi1iatal | ,2'17a’3 This propagator consists of the normal Hermitian Hamil-
¢ =7 (%0 + éy + &y + 4 ), tonian

(32)
M =HO+ U+ 2U7— p, (39
Ialal gl b ( 1 2) o~
TR :J XmJ dxa(1'[1)(2’ |2>m— which contains the usual single-particle Hamiltonigit®
given in Eq.(2) and the mean-field and fluctuation shitls
X(1|3")(2|4"). (33)  given in Eq.(30); furthermore, the symmetric anomalous
coupling
Like the first-order Hartree-Fock self-energies, we can re-
write the second-order self-energies in E¢R0) and (21)
I ,=V5 (39

using the transformations in Eg&5) to (28) and (33). In
particular, we now have to transform two potential factors,.
which makes the computation more complicated. Further!®
more, the integrals over time t@ andt, in Egs.(13) through
(16) modify one of the binary potentials according to
Eq. (65 of [22] to an approximately energy conserving two-
particle matrix element

s defined in Eq.(31). The propagatorll contains the
Hartree-Fock shifts, which are given in E@9), and origi-
nally were contained if8,(1,2) [see Eq.(18)].

To obtain the equation of motion for the fluctuations, we
subtract Eq.(15) from Eg. (16) and evaluate at;=t, to
obtain

ralalpal 1
1 2 3 4 _ 1’2/3/4/ .
= S (A)+iP, —i, 34 d. i~ ~ ~
¥ ¢ (77 o(8) ”A] (34 aG<= —i3G~+I'"G™-I'"G~+H.c. (40)
with an energy differencA between the incoming and out-
going states of the collision event. This definition of the ma-The reversible evolution of the fluctuatio@" is governed
trix elementsg,, introduces the Markov approximation into by the Hartree-Fock-Bogoliubov self-energy operator

the Kadanoff-Baym equations. We obtain the second-order

damping rates and energy shifts- for the condensate, cor- Sy S
responding t&S(1,2) in Eq.(20), andI'= for the fluctuations, S ( . . ) (41)
corresponding t&(1,2) in Eq.(21); these are the collision -3 3y
integrals defined if3]. The second-order terms appear in ) - o
combinationsl <G> —T'>G= that contain, for example, the which in turn consists of the Hermitian Hamiltonian
Boltzmann collision terms
S A=HO+2Uc+2U7— u (42)
750147 1+? —I rt N:f g . .
I+ D=Tamhaifhs and the symmetric anomalous coupling
=8¢t 2 T K (14 T) 42 (14 T) g0
3 4=Vn. (43

—(1+D)3r1n(1+ 1) gronfgrarfausi} (35
The propagato® corresponds t& (1,2) in Eqg.(19). Its
and similar contributions involving the anomalous averagesnean-field shift is twice as large as that of the condensate
m andm*. propagatodlI, which is a well known property of first-order
We can now exactly reproduce the coupled equations foHartree-Fock-Bogoliubov theories. Further details of this
the condensed fraction as well as the normal and anomalotigansformation can be found [123].
fluctuations stated in Eq$10) and (26) of Ref.[3]. Consid-

ering the first column of the matrix E4L3) for the conden- V. CONCLUSION
sate att;=t,, we obtain the generalized Gross-Pitaevskii i , L ,
equation We independently rederive the kinetic equations of Walser

et al. from the Kadanoff-Baym nonequilibrium Green'’s func-
q tion formulation of kinetic theory, and recover identical fac-
R < _ > tors in all second-order damping rates and energy shifts. This
th_( HIEY" =Yy, (36) shows that for dilute, weakly interacting gases the Kadanoff-
Baym nonequilibrium, real-time Green’s function approach
with the symplectic first-order propagator is microscopically equivalent to the density matrix approach
used by Walseet al.[3]. The latter approach is more physi-
M, I, qa_ll in two respects. First, its variat_)Ies are measurable quan-
I ( . . ) ) (37) tities: the mean field and the density and coherences of ther-
-1 —1I, mal atoms. Second, the variables’ equations of motion reduce
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to the Gross-Pitaevskii equation and the quantum Boltzmanet al.[9,17,25, because they start from the same Kadanoff-
equation in the low- and high-temperature limits, respecBaym equations.
tively.

Starting from the gapless Beliaev approximation for the
collisional self-energy in the Kadanoff-Baym equations, we
furthermore learn that the full second-order kinetic theory of J.W. acknowledges financial support by the National Sci-
Walseret al. is gapless itself18,9]. This shows that the gap ence Foundation. R.W. gratefully acknowledges support
that appears in the first-order Hartree-Fock-Bogoliubov specfrom the Austrian Academy of Sciences through an APART
trum [24] is closed by the second-order energy shifts. grant. M.H. acknowledges support from the U.S. Department

Furthermore, this work connects the kinetic theory ofof Energy, Office of Basic Energy Sciences via the Chemical
Walser et al. with work done by M. ImamovicTomasovic  Sciences, Geosciences, and Biosciences Division.
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