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Abstract.  Phase correlations, density fluctuations and three-body loss rates are
relevant for many experiments in quasi one-dimensional geometries. Extended
mean-field theory is used to evaluate correlation functions up to third order for
a quasi one-dimensional trapped Bose gas at zero and finite temperature. At
zero temperature and in the homogeneous limit, we also study the transition
from the weakly correlated Gross—Pitaevskii regime to the strongly correlated
Tonks—Girardeau regime analytically. We compare our results with the exact
Lieb—Liniger solution for the homogeneous case and find good agreement up
to the cross-over regime.
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1. Introduction

After the realization of Bose—Einstein condensation (BEC) of atomic gases a decade ago, the
field has witnessed a remarkable diversification in research topics: from fundamental many-
body physics questions to applications of ultra-cold gases as quantum sensors, interferometers,
information processing and storage devices, as well as cooling agents for nano-oscillators.
The persistent drive for miniaturization has led also to a growing number of experiments with
surface traps, mounted on lithographically produced chips. In order to describe experiments that
trap elongated atomic clouds, channel them through narrow waveguides, split and merge them
repeatedly in interferometric sequences, one needs a robust theoretical description that can deal
with time-dependent phenomena and that is able to describe spatially inhomogeneous systems
at the dimensional crossover from three to one dimensions. However, it is clear that general
purpose methods cannot deal with every question in ultimate precision. It is therefore necessary
to gauge the systematics with known results to stake the limits of applicability. Thus, it is the
purpose of this article to explore the growth of quantum correlations in quasi one-dimensional
trapped Bose gases at a finite temperature with an extended mean-field (EMF) theory, which
does include quantum fluctuation.[As expected, this agrees well in the weakly correlated
regime and fails for strongly correlated systems, if compared to exact equilibrium results in the
homogeneous limit.

The enhancement of quantum fluctuations in low-dimensional systems, has already
stimulated many fascinating experiments in the context of ultracold g2ls¢S][ which explore
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various aspects of the geometric transitions. Serendipitously, also most exactly solvable models
of field theory are one-dimensional(] and rest on the celebrated Bethe-ansatz invented in
the 1930s. In the context of atomic Bose gases, today most prominent ones are the spatially
homogeneous models of hard- and soft-core bosons on a string of Giraddgaas [well as

Lieb and Liniger L2, 13]. One of the many interesting questions which can be explored, is the
cross-over from the weakly correlated Gross—Pitaevskii (GP) regime () to the strongly
correlated Tonks—Girardeau (TG) reginiel[ 15] (y > 1). Thereby, one commonly uses the
Lieb—Liniger (LL) parametey, cf (5), to measure the relative strength of repulsive self-energy

to kinetic energy in the dilute Bose gas.

Today, we also have alternative tools available: firstly, there are exact few-body
calculations, i.e. multi-channel time-dependent Hartree—Fock (MCTHF) or configuration
interaction (Cl) methods, which originate from atomic, molecular and nuclear physics. While
originally designed for fermionic energy structure calculation, they are nowadays also applied to
few-boson systems{(10—100 particles) in arbitrary trap geometri@slf-[19]. Secondly, there
is now the possibility to prepare atomic gases in optical lattices, which are well described by
the Bose—Hubbard model. Direct simulation methods, as well as density matrix renormalization
group methods have been applied successf@i}{25]. Thirdly, there are stochastic multi-
mode trajectory simulationg§] that also successfully address the same questions.

Irrespective of the choice of method, all need to predict experimentally accessible
observables in terms of correlation functions, spatial averages or Fourier transforms thereof.
Most relevant are obviously the lowest order moments of the bosonic field opégatehich
is the single particle density, at positionx and the conjugate phase quadrature correlation
function g)(j)y. The fluctuations about the mean density are measured with the second-order

density—density correlation functiagf)y

(alay) (arara,a,)

_yata @ _ 7y @ _ \IXxFyTy

ny=(a.a,), = , =" 1
X < X x> gX,y nxny gX,y nxny ( )

Here, (---) =Tr{---p} denotes an average over the state of the system described by the
many-body density operatar. Such second-order correlation functions have been measured
experimentally b, 6], [27]-[30], while the third-order density—density correlation

@ (éié;élézéyéx) 2

Geyz= Nynyn, ’

became observable only recenttly B1] via the three-body recombination rat].

Theoretically, much attention has been directed toward second-order correlation
functions B3]-[40], while less is known about the third-order correlation function. This
situation has been rectified recently #1] 42] where the diagonal behaviour of this correlation
function was calculated in the framework of the LL theory. This is where the EMF theory is
useful, because we can calculate arbitrary orders of the correlation function and will present
calculations of the diagonal and off-diagonal behaviour of the third-order correlation function
at zero as well as finite temperature. However, the EMF approach is restricted to values of the
correlation parametey < 1, because any mean-field theory is known to fail in the strongly
correlated regime.

This paper is organized as follows: in sect@&nwe briefly review the central ideas of the
LL theory [12]. This celebrated solution of the 1D homogeneous Bose gas is an ideal benchmark
for the EMF theory 87], [43-[45], whose basic concepts are summarized in secBon
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In section4, we specialize the kinetic equations to a quasi one-dimensional homogeneous
situation at zero temperature for which analytical solutions can be found and compare
correlation functions with the LL predictions. After successfully gauging our theoretical
framework, we go beyond the homogeneous limit and numerically study inhomogeneous,
harmonically trapped systems at finite temperatures in seBtion

2. Lieb—Liniger theory for bosons in 1D

LL theory based on the Bethe ansatf][describes a 1D homogeneous gas\bbosons on

a ring of lengthL. It is one of the very few exactly solvable problems in many-body physics
and provides a solution for every value of the correlation parametEren in inhomogeneous
trapped systems this is very useful, if we can make the local density approximation (LDA). In the
language of second quantization, the starting point for LL theory is the following Hamiltonian

R L h2 82 g
H= | dxa&l|(-——-——+24l4, )4, 3
/(; X( 2m 8X2 2 X X) ( )
wherem denotes the mass of a boson and the creation and annihilation operators satisfy the
usual bosonic commutation relation. With the help of the Hellmann—Feynman thedém |
one can obtain the diagonal paxt€ y = 0) of the translation invariant second-order correlation

functiong®, = g7, introduced in {), as

L @.2_ 9dEo
—g,n
by differentiating the ground state enenﬁywnh respect to the coupling constantHere,| W)
represents the ground state ang- N/L denotes the linear particle density. It was shown by
Lieb and Liniger [L2] that the ground state energy only depends on the dimensionless correlation
parametey . It is basically the ratio of the repulsive mean-field eneggyto the kinetic energy

h?/2md? at an average distance= 1/n. Another length scale of the problem is the healing
length&, which equates the kinetic energy of a wavefunction at scédehe mean-field energy

(‘1’0|—|‘1’o) (4)

y=D9 N ©)
h?n’ V2mng

We call bosons weakly correlated for<« 1 (GP regime) and strongly correlated fprs 1
(TG regime).
In terms of this parameter, the ground state energy and second-order correlation function

h?n? @
Eo= Nﬁe()’)’ ar =€), (6)
are given in terms of the solutions of the LL equations
4 ! 2
ely) = / dx h(x, y)x*, 7
=350 ), Y (7)

1 1t A(»h(y. y) ot
h(x, V)—Z+;/1 dy 20+ (Y — X2 /\(V)—Vfl dx h(x,y). (8)

New Journal of Physics 10 (2008) 045024 (http://www.njp.org/)


http://www.njp.org/

3) I0P Institute of Physics () DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

1.0 . .

S
=
S2) J
2
10
» < 7
=o
) i
2
10

Figure 1. The LL correlation function versus the correlation parameter
In (a), we depict the second-order correlatgﬁ) (solid line), the GP

approximationgﬁ),ep (dashed dotted line) and the TG approximatigﬁf,TG

(dotted line), while (b) shows the third-order correlag,f_)? (solid line) and the

approximationsy,; ¢, (dashed dotted line) argf) ; (dotted line).

In the weakly correlated GP limjt — 0, as well as in the strongly correlated TG regime
y — 00, one obtains for the correlation functiodd

A
gﬁ)ep—l_i fory <1, gﬁ’m—3 5, fory > 1 ©)

A comparison of these approximations with the exact solution is presented in figiitee
validity of these results has recently been tested experimentally over a wide range of the
correlation paramete6] and will be used to probe the EMF approach presented in the next
section.

Itis also possible to derive an exact result for the diagonal part of the third-order correlation
function within the framework of the LL theory, however, the task is considerably more difficult.
The exact result is derived id2] by introducing a new functiog(y ) which has the form

J/5 1 4
e(y) = —/ dx h(x, y)x 10
=350y, Y (10)
and with the help of this function one obtains

38(y) —4e(y) —6e(y)e(y) AW 9€?(y) — 58(y)
o = o +(1+2)em =

(11)
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A comparison of the exact result for the third-order correlation function with the
approximations in the GP and the TG regin3é€][is presented in figuré

3 6.7y 3 167°

14
OLep=1— o fory <« 1, oL 1= F}/G fory > 1 (12)

3. Extended mean-field theory for bosons in 1D

3.1. Time-dependent Hartree—Fock—Bogoliubov equations (THFB)

The evolution of a weakly interacting dilute gas of bosons in three dimensions can be described
by a Hamiltonian

H = / dxyal [Hy, + IVoin(x — y)Al4, ] &, (13)

2
Hyy = (X| ;—m +Vext(1Y),  Vext(X) = 1mw?x? + Imw? (y? +22), (14)

where# is the single-particle energy in an external potentgl and Vi, is the two-particle
potential. As we are interested in the quasi one-dimensional limit, we will consider a cigar
shaped trapping configuration (angular frequenciesdw, ) with a large aspect rati8. The
energy and length scales will be set by the transverse oscillator

,B:a)L/a)>>1, aL:\/h/ma)L, SJ_:hCL)J_. (15)

Conceptually, it is straightforward in the EMF theory to use real, finite range binary
interaction potentials and obtain proper two-bddynatrices including many-body corrections.
However, for convenience, we will use the pseudo-potential approximation here

4 h’a,

Vbin(X - Y) = 5x—y, (16)

whereas denotes the s-wave scattering length. In order to compactify the notation, we will
interchangeably use a subscript notation also for continuous functions.

EMF theory uses a reduced state description based on a set of master varialdlgs}.
Basically, this implies the existence of a well-separated hierarchy of time, energy and length
scales ], 47] and leads to a rapid attenuation of correlation functions. Mathematically speaking,
it allows for a selfconsistent expansion of the full many-body density matiix terms of a
perturbation series of simple many-body density matrée€s which depend parametrically on
the master variables

p=o)+al)+O(VZ). (17)
This non-perturbative series in terms of the interaction poteNtiglhas been introduced first
by Chapman and Enskog in the context of kinetic theory of ga48€s [n addition to the
simple series expansion, we impose a self-consistency constraint such that the opgrators
corresponding to the c-number master variabjesulfil

v = () = Trlppl = Tihio ). (18)
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As far as the master variables are concerned, we choose the meaasfieflde normal

fluctuations of the single-particle densifyand the fluctuations of the anomalous two-particle
correlation functionn such that

@) =a, f9=00, md=0a, (19)
atay — §0O 4 A4\ —m©O 4§
(a,a,) = fx’y + fx,y’ (@,a,) =mey+m,,. (20)

A Gaussian operatofr?;)} is compatible with the requirements dfg)—(20). In turn, this

implies the factorizability of multi-operator products (Wick's theorem) and also yields non-
Gaussian corrections by calculating the contributionﬁf.

By studying the coordinate transformation properties of the fluctuatésisdne finds that
the averages andm are components of a positive semi-definite, generalized density matrix
G > 0. Thus, the system is described by a row vegtpcontaining the mean-field as well as
its complex conjugate, and by the density magix

aX f~X T X
= Gyy = ¥ X . 21
XX <a;> , Y <mXTy 8Xsy + f Xjky> ( )

It can be shown from a Cauchy—-Schwartz inequality that at O, the generalized density
matrix G obeys an idem-potency relation

GosG+G =0, o3= (é _2) . (22)

Starting with the Heisenberg equation of motion, it is straightforward to derive the equations
of motion for y andG. In order to obtain higher order correlation functions within the present
approximation scheme, 50, like g@ or g® of (1) and @), one has to evaluate the Gaussian
Tr[- - - agg)}] as well as the non-Gaussian contributions T{[rﬁ)}]. However, it is clear that the
Gaussian contribution will dominate for weak correlations. Thus, we have evaluated here only
the Gaussian contributions. But already for 1, deviations from that can be noticed.

3.2. Reduction to a quasi one-dimensional stationary configuration

In a very prolate trap, the transverse motion in the directipasdz is effectively frozen out
and only amplitudes proportional to the ground state

e—(y2+22)/2ai—iaut
oy, z,t) =
ﬁaj_

need to be considered. By projecting all three-dimensional functions onto the longitudinal axis
X — X, one obtains the THFB foxy, andGy «

N3y = Myxx +O(V3), hdGyyx =X,G, , —h.c.+O(V3), (24)
with the following abbreviations for the single particle Hamiltonian and the self energies

_( TIn  TIa _( X~ XA

(26)

(23)

X, X’

My =H,+9fQ+29f Ty =H, +29f+2gf

X,X? X,X?
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(C) ~ = h2 2 1 22
Ta=gm: +agm,,, Ia=gm,,, Hx:—%ax+@maﬂx . (27)
In the course of the dimensional reduction, we had to introduce an effective one-dimensional
coupling constang = 2hw, a5, which is in agreement with previous derivatioB3,[51, 52]. In
order to obtain the stationary solution for the time-independent figlésdG, ., we make the
ansatz

x(t) = e_(i/h)“w3x, G(t) = e—(i/h)utcs G e(i/h)utds’ (28)

which introduces the chemical potentiabnd employs the Pauli matrig of (22). This ansatz
implies that the normal fluctuationéxﬁx/(t) become time-independent, while the anomalous
fluctuationsmy  (t) oscillate with twice the chemical potential. The properties of the resulting
stationary HFB equation will be investigated in sectirfor the case of a homogeneous
gas of bosons and in secti@nfor a harmonic trapping potential, both at zero and for finite
temperatures.

The fact that the eigenvalue in the resulting stationary equations is indeed the chemical
potential B9 can be seen from a variation of the total energy functighl, f, m) = (H)
given by

e = [ axdy sy o (o Sl P) o+ Gy +0 T ) T
+g f x| (2l e+ 3M,F) +hic] + OV2), (29)

with the constraint that the number of partichds= f dx ( fx<f§ + fx,x)-

4. Analytic solution for the stationary HFB equations in the homogeneous system
at zero temperature

For the calculations that are presented in the following sections, we use standard parameters for
8’Rb in natural units of length, and energy

m=1.4432x 100®°kg, as=5.8209% 10 °m,
w; =27 x800Hz =27 x 3Hz
a, =38128x10'm, §=2as/a, =3.0533x 102 (30)
To reach the homogeneous case, we have to decrease the influence of the external trapping
potential in @7) by weakening it to the limit8 > 1, where we can neglect it practically.
Therefore, the equilibrium state should possess the same translation symmetry as the generator

of the dynamics. Consequently, we can assume that the mean field is space indegpgeadent
and the density matrix only depends on relative differemcesx — x’

< dk .
Xx = X Gx,x’ =Gyx = f Z _Ikrgk- (31)

Translation invariant systems are best described in Fourier space, which was introduced
above. We can also choose the mean field to be real-valued by a suitable phase rotation.
This is a consequence of the global number conservation that is built into the dynamical
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HFB equations§3]. As the mean field is real-valuetl® = m© = «?, so are the fluctuations
fo= f«x andmy = M, , and with these assumptions, the normalization constraint reads

N .
nzr:f(">+fo, (32)
wheren is the linear particle density on a length Furthermore, the THFB equation24)
simplify significantly to
p=9(f@+2fo+my), 0= (Tk—nozG—h.c. (33)
From the equation for the chemical potential, it is clear that energy and length scales emerge. It
will be beneficial to introduce such scales for coherekgesf andw,), the pairing correlations

(k, £ and®), and their weighted sums and differences as
~—1

ke=£t= o, k=& =&, ki=&"'= Jos, (34)
wet @
2

In particular, in the GP regime one can assume éhat> ». With these definitions, one finds
that the self energy is simply ax22 matrix ink-space with eigenvalues;

we =44 19, @ = —4gmy, Wy =

(35)

1 k2 + w4 w_ 1 po
Sy pos = 5( Fee 2 ) a= W Rreol@ra). (3
Now, we can finally evaluate the density matrix part of the HFB equati®®s fMoreover, we

also have to consider the idem-potency relation2®).(It holds for the vacuum state at zero
temperature and one obtains another, now quadratic relation between normal and anomalous
fluctuations ink-space

= @O (1,¢ £ m2  £2

M=~y <§+fk), fo=m— f2 (37)
The system of equations can be solved point-wide gpace and leads to two solutions, one of
which has to be rejected on physical grounds. Thus, we find
- K+w, 1

M =——, fr= ——. 38

= e = e 3 (38)

The high-momentum tail of the correlation functions is responsible for the short-scale behaviour
in real space. In the limk — oo the leading terms are

g w_ o
mk’\’—ﬁ, fk’\’mk. (39)

4.1. Diagonal contributions of normal and anomalous fluctuations

In order to obtain the diagonal part of the translation invariant correlation funafiprsd f
atr = 0, we have to evaluate the inverse Fourier transforn3f (

My = — o= dk fo:/ %fk. (40)

87 J o ok o 2
Serendipitously, this can be done exactly in terms of elliptic integ&ls [

_ ke Mo Mo
To=—7° <1+f(c))K<1+f©), (41)
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Figure 2. Diagonal part of the anomalous fluctuations), (left scale, solid line)
and normal fluctuations o (right scale, dashed line) versus mean field density
f©. The asymptotic approximations fdt, (dashed dotted line) antl, (dotted
line) according to43) agree well for the considered parameter range.

S Mo Mo
fO:mO_E[E (1+W>—K<l+m>:|, (42)

whereK and E are the complete elliptic integrals of the first and second kinds, respectively.
Basic definitions are given in appendixl.

The scaling properties of the correlation functions are most relevant for a physical insight.
Thus, we can study the GP regime of weakly correlated bosons, whgfé©| « 1 and use a
series expansion for the elliptic integdl— x) K (1 — x) ~ In(4/./x). With this approximation
we get

T B /& f©
Mo = — gfcw<64m/f<c>/g), fo=— gfC—rﬁo. (43)
T

A
In this explicit formula, we had to introduce the Lamb®&/tfunction, which is defined in
appendixA.2 and an excellent asymptotic expansion is given in terms of logaritBBjs [
The approximations for the fluctuations are compared to exact numerical calculations in
figure 2 and give good agreement. We will use these approximations in the following sections
to evaluate the ground state energy and correlation functions.

4.2. Off-diagonal contribution of normal and anomalous fluctuations

4.2.1. Short length scale behaviourz £. A rather simple, yet surprisingly efficient insight
into the short-range behaviour of the off-diagonal contribution of the fluctuations can be
obtained by using an iteration scheme for their Fourier transforms, which has its origin.in (
Starting with f ¥ = 0 and using the recursion relation

vy _ oo (1 F+D) _ =402 F()y2
m __k2+w+<§+fk>’ fi 7 =M )" = (1) (44)

we get a rapid convergence towards the exact results. It is remarkable that even with the inverse

Fourier transforms of low orders of this iteration scheme, we get functional behavioti¢rfpr

andm(r), which is equivalent to their exact behaviour for short ranges. However, in contrast

to the exact form of the Fourier transforms of the fluctuations3B), (it is possible to perform
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Figure 3. Off-diagonal part of the normal and anomalous fluctuations versus
the distancer. In (a) we depict the normal fluctuatiori(r) (solid line),

its short-range approximatiorf @ (r) (dashed dotted line) and the long-
range approximation (dotted line) according #®)( (b) shows the anomalous
fluctuation—m(r) (solid line), the short-range approximatien®(r) thereof
(dashed dotted line) and the long-range approximation (dotted line) according
to (49).

the inverse Fourier transform analytically in every order of the iteration scheme. A closer look
reveals that the dependence of the fluctuations loas to be of the form

A0 () = ek PO (py. FO(ry = e rQir), (45)

where PO (r) and Q¥ (r) are polynomials inr of order 2 —2 and 2 — 3, respectively.
Consequently, the length scale on which the correlations decay is given by

1 1
ke 29(F0 — i)

In the GP regime, wherd © > My, we recover the healing length~ 1/,/2§ f©, already
introduced at the beginning il

The short-range behaviour of the anomalous fluctuation and the normal fluctuation is
depicted in figure3. There, we compare the fourth-order result of the iteration scheme to the
exact numerical evaluation of the inverse Fourier transform. We assiined 00 particles,
distributed over a length of = 90a,. This length was chosen such that the density in the
homogeneous case is similar to the density in the centre of the trapped system, which will
be discussed in sectidgh One obtains good agreement between the approximation and the

£ (46)
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exact results in the regime, whereg £ ~ 10.5 with £ ~ 3.88. At the origin, we note that
the anomalous fluctuation shows the typical cusp whereas the normal fluctuation has smooth
behaviour and consequently a vanishing first derivative=a0.

4.2.2. Long length scale behaviour:>s £. In order to get an approximation for the
fluctuations in this regime, we start with the Fourier transform of the anomalous fluctuation in
(38) and note for further consideration that the Fourier transform of the modified Bessel function
of the second kinKq(c|r|) [54] is given byn/+/k2+ c2. Thus, the convolution property of the
Fourier transform yields

- w_ [ -

M) =—5- | Kotkelr'DKo(kir+r|)dr'.

Ko(r) diverges logarithmically at the origin and decreases exponentially for large arguments

—ye+IN2+0(r?), r — 0,

Ko(r) ~ 47
o)™ or [\/§+(’)(r‘3/2)], [ = oo, (47)

wherey, ~ 0.5772 denotes Euler’s constant. 3
In the GP regime wheré© > |fy|, we get fronr > £ that alsar > & and therefore the
first Bessel function in the integral closely resembl@ésfanction. Thus, we obtain the result

. Ke Mo =N L K -

m(r):_E (1"' f(c)> Ko (k|r|>~—E Ko (k|r|>, (48)

F(r) = —_[k2Ko(RIr ) — RKo(RIr ] (49)
8wkt © 0 2 '

An alternative derivation of this result with the help of complex integration is given in
appendixB. In figure 3, the asymptotic form of the fluctuations in terms of the Bessel functions

is compared to an exact numerical simulation with the parameters that were mentioned in the
previous subsection. In either case the semi-logarithmic plot reveals an exponential decay for
large distances > £, in agreement with the asymptotic behaviour of the Bessel functions.

4.3. Comparison to Lieb—Liniger theory

Having all the ingredients at hand to calculate correlation functions, we are now ready for a
guantitative comparison with the results of the LL theory which provides an exact solution for
the behaviour of the second- and third-order correlation functions.

As outlined in sectior.1, we have to obtain the values of the correlation functions from
multiple operator averages.dfis such a general operator, then

(6) = Tr[6 (o), + o)+ OE))]. (50)

While we have already evaluated the Gaussian and non-Gaussian averages for the multinomial
operator averagesA§], it is clear that the Gaussian contribution will dominate for weak
correlations.
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Therefore, we will focus here on the Gaussian contribution and disregard the non-Gaussian
contibutions in the following explicit expressions of the orders two and one, respectively

£0+f,
o) = L2 +o(@. (51)
2R(FOF,  +m& 'm, )+ f +m,
g)((?)y:]- ( X,y "y, X X,y ) X,y yX X,y yX+0(g) (52)
© 2 © © * 2 =k
Oy =1+n [28t(fxyfyx+mx’ym )+fXy yX+mx,ymy,x]
x Ny
+ [ 107, + Ty, r2f, fyorammy,
x Ny

1
H(m© . ©
t [25)1 (Mm@ my ) +m, my 5+ £Of y]

4 -
N o & © (©) = %
+n nzih[fx’y(my,ymyX +my My )+f (Mg My +f,,f,0
X

+mg, (fyymyx +my " fy,x)] +0(0), (53)

wheren, = fX(fQ + fx,x denotes the total density. This way we can calculate the full diagonal and
off-diagonal behaviour of the correlation functions. It works equally well for the trapped and
homogeneous case.

In figure4, we see a comparison of approximations and exact numerical results within the
EMF theory as well as the LL theory. In either case we observe good agreement between our
results and the LL theory. However, asincreases the deviation from the exact result grows.
We attribute this deviation to the non-Gaussian contributions that have been dropped.

Another relevant quantity is the ground state energy of the system. By comparing the value
of the energy functional2©) with the LL ground state energy for a range of the correlation
parametely, we obtain figures. In particular, we plot the relative deviation of the ground state
energies. This is to be compared with deviations from a simple mean-field approach neglecting
fluctuations and for the Bogoliubov method in the GP regime which includes excitations of the
mean field. The latter approach results5g]

4

e(y)LePr=Y — g)/ (54)

In either case, we present all the results in the form of a normalized deviation from the
dimensionless ground state eneggy) from the LL theory given by®).

The results show a clear improvement over simple mean-field theory and it also improves
on the Bogoliubov method. Up to the cross-ovey at 1, the maximum deviation of our results
is less than 4% and we obtain reliable results throughout the region of interest,<.&.
However, this appears to be the limit for a quasi one-dimensional EMF theory and different
approaches have to be used in the strongly correlated regime.
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Figure 4. Second- and third-order correlation functions versus the correlation
parametery. In (a) we compare the exact results from LL thecgﬁ,) (solid
line), and the approximation in the GP regi ?’GP (dashed dotted line) to

)(f; = gézg calculated with an EMF theory. We depict exact results (dashed line)
using @1) and @2) as well as approximated results (dotted line) usihg).(

In (b) we depict the same comparison for the third-order correlation function.
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Figure 5. Relative deviations from the dimensionless ground state energy of the
LL theory as a function ofs. Results from an EMF approach (solid line), the
simple mean-field theory without fluctuations (dotted line) and the Bogoliubov
approach (dashed dotted line) are compared.
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Figure 6. Coherent single-particle density matrb){?; versusx andy. As the

ground state is real valued, the coherent part of the pairing lﬁéﬁ;l is also
represented in this figure.

5. Numerical results for trapped atoms at zero and finite temperatures

5.1. The zero temperature limit for a trapped gas

In the previous section, we have studied the homogeneous case. Here, this will be extended
to harmonically trapped systems and we present correlation functions up to the third order.
First of all, we depict the spatial shape of the master varialfle® and of the quantities

f©, m©, which are essential for the calculation of the correlation functions. The plots show
numerical simulations for a particle numbir= 10? in a trap with standard parameters for
87Rb according t030).

The coherent contribution to the single particle density matﬁfa} in figure 6 has off-
diagonal long-range order and extends over the complete system. As the Hamiltonian for a
one-dimensional trap is real-valued, so is the ground-state solajioklence, the coherent
contribution of the pairing fieldn{®) is identical tof, and shown in figuré.

In contrast to the coherent contributions, the normal fluctuafigy in figure 7 and the
anomalous fluctuatior,  in figure8 are primarily localized along the diagonal. The coherence
in the off-diagonal direction is only short range and the negativity of the pairing field is an
indication of a reduced likelihood of finding two particles at the same location.

The behaviour of the first-, second- and third-order correlation functions is presented
in figures 9-11. A generic feature of all three correlation functions is that they become
more pronounced for smaller particle numbers. For the first-order correlation function the
diagonal has to be identical to one and the deviation in the off-diagonal is fairly small as
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Figure 8. Anomalous fluctuations-m, , versusx andy.

expected for a coherent system. However, the second-order, density—density correlation is
a more sensitive probe as this correlation function is less than one, thus exhibiting non-
classical behaviour. This anti-bunching is particularly strong for smaller particle numbers

when we approach the TG regime of a fermionized Bose gas and the correlation function

New Journal of Physics 10 (2008) 045024 (http://www.njp.org/)


http://www.njp.org/

17 I0P Institute of Physics () DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

1.00

0.99

0.98-

0.97
60

Figure 9. First-order correlation functiogy, versusx andy.
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Figure 10. Second-order correlation functicgff; versusx andy.

vanishes eventually. Recently, this effect has been investigated in a number of experiments, e.g.
[6, 7, 15], and the theoretical predictions have been confirmed. The same statements apply to
the third-order correlation function and it can be observed that the deviation from one is even
more pronounced. This also implies that the third-order correlation funetid@i] is the most
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b

Figure 11. Third-order correlation functiog’, versusx andy.

sensitive probe for quantum aspects of the field. In addition, we notice values which are clearly
below one forly| > 1 andx # y, because in this casg’, ~ g{3,. This can easily be seen by
looking at 62) and 63) and taking into account that all the terms with off-diagonal contributions

of the fluctuations ||g§f§, are negligible forx # .

5.2. Behaviour in the centre of the trap

In figure 12, we compare the results of our simulations for the second- and third-order
correlation functions with the LL theory. In contrast to the comparison in subsedti®n

an external potential is now included in the calculations with the EMF theory whereas the
theoretical curve is for a homogeneous gas of bosons. Our simulations are for particle numbers
ranging fromN = 10°-1, and we only used the values of the correlation functions in the
centre of the trap for the comparison. Compared to subseéti®rihe results in the trapped

case deviate slightly more from the exact results originating from the homogeneous LL theory
but the qualitative behaviour is very similar.

5.3. Diagonal behaviour in the local density approximation

The LDA is a frequently employed approximation scheme to transfer results of homogeneous

systems to spatially trapped gases. It is assumed that a smooth variation of the density profile
can be incorporated by an adiabatic adjustment of a locally uniform gas. The LDA uses a local

effective chemical potentiaBp]

(X)) = o — V(X) = po — 3Mw?x?, (55)
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Figure 12. Correlation functions versus the correlation parametein (a) we
depict gézc), and compare simulation results for the trapped case (circles) with

analytic calculations obtained with LL theory (solid line). In (b) we deg@

and again compare simulation results for the trapped case (circles) with analytic
calculations obtained with the LL theory (solid line). In both the comparisons the
circles originate for particle numbeb$ ranging fromN = 10° on the left hand

side toN = 1° on the right hand side.

where o denotes the global equilibrium chemical potential. In order for the LDA to be
applicable, it is thus necessary that the short-range correlation length is much smaller than the
characteristic inhomogeneity length.

In this context, we want to compare the diagonal behaviour of our numerically calculated
correlation functions to theoretical predictions. By definition, the first-order correlation function
is identical to one along the diagonal and our data behave accordingly. For the second- and third-
order correlation functions, we will compare our results with the predictions from the LL theory
in the LDA. Naturally, the LDA works best in the centre of the trap. It cannot be expected to
work in regions where the density drops rapidly and the inhomogeneity length is very small in
these regions.

In the GP regime the chemical potentjal connects the density to the correlation
parametey, via

mg
p(X) = gn(x), y (X) W00 (56)

In our simulations, we tune the particle number in the trap, which decreases
increasing number of particles. Qualitatively, one can expect that the inhomogeneous correlation
functions are higher than the homogeneous results because in the LDA the external potential
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Figure 13. The diagonal second-order correlation functigﬁ; versus y

for various particle numbers. With an increasing value of the correlation
parametery the circles correspond to points further outwards from the origin.
We compare results for the trapped case (circles) with analytic calculations for
the second-order correlation function obtained with LDA-LL theory (solid line).
Plots (a)—(c) are foN = 10°, 10" and 16 (from left to right) and plots (d)—(f)

are forN = 10°, 10* and 16 (from left to right).

leads to a smaller chemical potential and accordin¢ @ &lso to a smaller density compared

to the homogeneous case. Due to the monotonic decrease of the correlation functions, there is
a tendency of the inhomogeneous values to be shifted to lgrgatues. All the features that

have just been described can be seen in figliBezand 14, where we plotted the correlation
functions for particle numbers ranging frofh= 10°—10° and restricted the plotted regions to

the Thomas—Fermi radius.

5.4. The finite temperature result for a trapped gas

The zero-temperature results of the previous section can be extended easily to account for finite
temperature effects3[7, 49]. One obtains an equilibrium solution for the density matéof
the thermal system2() from the eigenstates of the self-energy maté%)( according to the
Bose—Einstein distribution. We present results in the present section for a particle number of
N =100 and a temperatuie= 10hw/kg.

The main thermal effect is a strong increase of the fluctuations at the edge of the trap at the
cost of a reduction of the condensate dendf}.[This effect is clearly seen by comparing the
first-order correlation function in figurg5 to the zero temperature result in figugeAt finite
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Figure 14. The diagonal third-order correlation functlgﬁ> versusy for various
particle numbers. With an increasing value of the correlation parametiee
circles correspond to points further outwards from the origin. We compare
results for the trapped case (circles) with analytic calculations for the third-
order correlation function obtained with the LDA-LL theory (solid line). Plots
(a)—(c) are folN = 10°, 10" and 1@ (from left to right) and plots (d)—(f) are for

N = 10% 10* and 10 (from left to right).

temperatures, we also obtain a reduction of first-order coherence. Consequently, this leads to
a situation where the gas is almost thermalized at the edge of the trap, whereas it is coherent
in the centre. The suppression of density fluctuations, also known as anti-bunching, is also
less pronounced at finite temperature. This can be seen by comparing fiGuaed 17 with
figuresl10and11, which give the zero temperature results.

For a thermal gas of noninteracting bosons, one figiis= 2! andgg = 3. It can be seen
that these values are attained at the edge of the trap where fluctuations dominate. Ibh7igure
we also notice a value of two fdy| > 1 andx # y, because we again hagg), ~ g7, = 2 in
this case.

In figure 18, we present the off-diagonal of the first- and second-order correlation functions
gff’ff( versusx for temperatures frorkig T = 0 — 10hw in increments of 2w. It can be noticed
that correlations are strongly attenuated with increasing temperature. Looking at the off-
diagonal ofg(z) in figure 18, we see a reduction of the anti-bunching dip in the centre with
increasing temperature; however, it is still present for high values of the temperature. It can be
understood qualitatively from the stronger increase of fluctuations with the temperature at the
edge of the trap. Thus, the anti-bunching dip in the centre of the trap remains visible even at
finite temperatures.

New Journal of Physics 10 (2008) 045024 (http://www.njp.org/)


http://www.njp.org/

22 I0P Institute of Physics () DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

Figure 15. Finite temperature first-order correlation functigﬁﬁy Versus X
andy, for N =100 andT = 10hw/Kg.

Figure 16. Finite temperature second-order correlation functgfi) versusx
andy, for N = 100 andT = 10hw/Kg.
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Figure 17. Finite temperature third-order correlation functigﬁfg, Versusx
andy, for N =100 andT = 10hw/Kg.
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6. Conclusions and outlook

We have presented a detailed study of quantum correlations beyond mean-field in a trapped
guasi one-dimensional Bose gas at zero and finite temperatures. In particular, we have studied
the growth of quantum fluctuations from the weakly correlated regime to intermediate ranges
of the correlation parameterQy < 1. In the zero temperature, homogeneous limit this EMF
theory agrees well with exact predictions of the LL theory.

There are many relevant applications for using this EMF theory in different geometrical
configurations like a double-well potentidd§, 59]. Yet another extension of our approach is
the dimensional crossover out-of-equilibrium where in general the increase of available phase
space volume leads to a decrease of correlations. An evaluation of such correlation functions is
in progress.
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Appendix A. Higher transcendental functions

A.1l. Complete elliptic integrals

Following the definitions and the notation i54], the complete elliptic integral of the first kind
reads

(A.1)

/2 d@
K(m)=/ —_—
0 +/1—msirto

where the parameter Qm < 1. For the calculation offiy in section4.1, we encounter an
integral of the form

dk _ K(m)
VK ro/k+e ke

wherew, > @. We can show that the evaluation of this integral leads to the complete elliptic
integral of the first kind by making the substitutikr= k. coté and usingn = (o, — ) /wc.
Similarly, the complete elliptic integral of the second kind is defined as

/2
E(m):/ vV1—msirf 6 do. (A.3)
0

(A.2)

In order to calculatd , in section4.1, we end up with the integral

| f dk\/k +w. —VKkZ+ o
2_

VK2 +o

(A.4)
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after separating the constant contribution which leads to the previously discussed integral. The
same substitution as aboke= k. cotd simplifies the integral to the form

I _kcf”/z 1—+/1—msinte
? 0 SifH+v/1—msirto

do = —kc (E(m) — K(m)). (A.5)

A.2. The Lambert-W function

The LambertW function is implicitly defined by the solution of the transcendental equaigin [

z=wev. (A.6)
In the case of large argumergs> 1, one can use an asymptotic expansion
W(z) =Ly — Lo+ Lo/l +- -+, (A7)

with 41 =Inzand{, =Inz.

Appendix B. Deformation of the integration contour in the complex plane

The results of sectiod.2.2 can be derived alternatively with the help of complex
integration pQ]. If we take the inverse Fourier transform of the anomalous fluctuatioB8)f (
we get

w._ 00 efikr
mr)=—-—— dk . B.1
O L erenere &4
Using the substitutionks = kz, r’ = kr andb? = k§/l22, this equation reduces to
00 —ir'z d
M) = —2= © z (B.2)

E —00 V22+b2\/22+1?.

For the evaluation of this integral we make a branch cut betwdeand —ib and choose the
path of integration as can be seen in figBré.

The contributions fromC; and Cg vanish if the contour is moved to infinity and the
contributions fromC, and Cs cancel each other. The integrals along the semicircles around
—ib and the circle arouné i tend to zero if the radius tends to zero. Due to the branch cut the
contributions fronC3; andC, are equal. Thus, the integral to be solved reads

00 e—ir’zdZ —i 2e—ir’zdZ
/—oo\/22+1\/22+b2 _ib 22+ 122+ D02 (B-3)
and by changing the variable of integratia= —i — iy), taking into account thdi > 1 in the
GP regime, we get
00 —yr’
| ~ 26 e dy (B.4)

0 V2y+yR /P -1-2y-y?2
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>

Figure B.1. Integration contour for the evaluation d3.Q).

As we are looking for an approximation for= kr > 1, we notice that only small values gf
play an important role for the evaluation of the integral.
Hence, we neglect the expression 1y+2y? in the second term in the denominator which
yields
e’ [ eV 2

~ 2 d = —K r/ B.5

and agnis an even function in we get the final result

M(r) ~ —;—LCKO(RHD ~ —% Ko(KIr ) . (B.6)
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