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Achieving steady-state Bose-Einstein condensation

J. Williams, R. Walser, C. Wieman, J. Cooper, and M. Holland
JILA and Department of Physics, University of Colorado, Boulder, Colorado 80309-0440

~Received 7 October 1997!

We investigate the possibility of obtaining Bose-Einstein condensation~BEC! in a steady state by continu-
ously loading atoms into a magnetic trap while keeping the frequency of the radio frequency field fixed. A
steady state is obtained when the gain of atoms due to loading is balanced with the three dominant loss
mechanisms due to elastic collisions with hot atoms from the background gas, inelastic three-body collisions,
and evaporation. We describe our model of this system and present results of calculations of the peak phase-
space densityr0 in order to investigate the conditions under which one can reach the regimer0>2.612 and
attain BEC in steady state.@S1050-2947~98!05503-6#

PACS number~s!: 03.75.Fi, 05.20.Dd, 32.80.Pj
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I. INTRODUCTION

In the usual method of evaporative cooling used so fa
Bose-Einstein condensation~BEC! experiments@1–6#, a fi-
nite number of atoms are collected in a magnetic trap a
being laser cooled to a phase space density at least five
ders of magnitude below the critical density needed for BE
The frequency of an external RF radiation field, which sp
flips the atoms to an untrapped state, is then lowered c
tinuously. This further cools the gas by removing high e
ergy atoms from the tail of the distribution. This evaporati
cooling procedure increases the phase space density a
the critical point needed to reach BEC. The success of
method is well established experimentally, allowing ma
fundamental properties of Bose-Einstein condensation to
investigated@7–12#.

This standard method of achieving BEC has one criti
drawback: once a condensate has been obtained, it h
finite lifetime in the trap determined by various loss mech
nisms, such as collisions with hot atoms from the ba
ground gas, and inelastic collisions between the trapped
oms. Although the finite lifetime of the condensate does
prevent many crucial properties of the system to be stud
it is still very desirable to achieve a steady-state situation
that a condensate can be sustained for an indefinite perio
time. Such a situation is essential for the continuous ou
of a coherent beam of atoms in an atom laser@13–18#. To
date, no experiment has demonstrated a steady-state co
sation.

We address this problem by constructing an intuit
model describing the two aspects to such an experiment:
continuous loading of atoms into the magnetic trap and
classical kinetic evolution of the trapped atoms toward
steady state during the evaporation. Our description of
loading procedure is based on the experimental setup
scribed in @19#, where the authors loaded a magnetic tr
with atoms which had been cooled in a separate MOT. T
allows us to estimate the rateg f that atoms enter the tra
below the RF cut, as well as the mean energyef of the
injected atoms.

To model the classical kinetic evolution, we assume
truncated Boltzmann distribution for the trapped atoms a
obtain rate equations for the total numberN(t) and energy
571050-2947/98/57~3!/2030~7!/$15.00
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E(t) of the system@1,3–6#. These rate equations include th
loss of atoms due to elastic collisions with the backgrou
gas atoms, inelastic three-body collisions, and evaporat
as well as the gain of atoms due to loading. We then num
cally calculate the steady-state solution of these equat
and show plots of the peak phase space densityr0 as a func-
tion of the various physical parameters of the system.
show that the critical regimer0>2.612 may be reached in
order to obtain BEC in steady state.

II. DESCRIPTION OF THE MODEL

In constructing a model of steady-state evaporative co
ing, there are several experimental schemes one could
sider for describing the loading of atoms into the magne
trap, as well as several layers of approximation in describ
the kinetic evolution of the trapped gas toward steady st
However, we consider only one realization of the loadi
procedure, assuming the atoms are first trapped and cool
a MOT and then transferred to a separate magnetic
@19,20,11#. Furthermore, we consider a simplified model
evaporative cooling that assumes classical statistics, an
therefore valid only for phase space densities below the c
cal point r052.612; one would have to include quantu
statistics in order to properly model the system above
point. These two parts to our model are described in
following subsections.

A. Description of the loading procedure

In a real experiment, irreversibility is introduced at ea
step of the transfer of the atoms from the MOT to the ma
netic trap; the atoms are first pushed out of the MOT, th
then travel through a magnetically confining tube, and fina
must be caught in the magnetic trap and optically pump
into a trapped hyperfine state. In order not to get lost in
details of modeling all of these heating and loss mechanis
we consider two extreme idealizations of the transfer:
adiabatic transfer which preserves the phase space densir0
and a sudden, irreversible transfer which decreasesr0.

We assume the atoms feel an isotropic, linear restor
force in both the MOT and the magnetic trap, neglecting
possibility of a radiation pressure in the MOT, which wou
2030 © 1998 The American Physical Society
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57 2031ACHIEVING STEADY-STATE BOSE-EINSTEIN CONDENSATION
distort the effective harmonic trapping potential@21#. Then
the free Hamiltonian of an atom in either trap can be writ

Hi~r ,p!5
p2

2m
1 1

2 mv i
2r 2, ~1!

where m is the mass of the atom, andv i is the effective
radial frequency of the trapping potential. The indexi 51
indicates the MOT, whilei 52 indicates the magnetic trap

We model the transfer of atoms in order to obtain a r
sonable estimate of the feed rateg f and the mean energyef
of atoms injected into the trap below the RF cut. We tr
this transfer process as a succession of discrete transfers
consisting of a finite number of atoms. We only need
consider a snapshot of this transfer process: a finite num
of atomsN1 are collected in the MOT at a temperatureT1 in
equilibrium, they are then either adiabatically or sudde
transfered to the magnetic trap. In our model, we allow th
N1 atoms to come to an equilibrium in the magnetic tra
characterized by a new temperatureT2. We then place the
RF cut ecut and calculate the fraction of atomsa f which
remain in the magnetic trap belowecut, as well as the mean
energy per atomef of these atoms,

a f5
*0

ecute2e2e/kBT2de

*0
`e2e2e/kBT2de

, ~2!

ef5
*0

ecute3e2e/kBT2de

*0
ecute2e2e/kBT2de

. ~3!

The e2 factor appears due to the density of states for
isotropic harmonic oscillator potential. A schematic diagra
in Fig. 1 illustrates the transfer process.

This process can be repeated many times each secon
that atoms are transfered to the magnetic trap at a rateg t .
The rate that atoms enter below the RF thresholdecut is then
given byg f5a fg t . We estimate an upper limit on the num
ber of these transfers each second to be on the order of

The equilibrium temperatureT2 which the atoms attain
after a sudden transfer can be obtained by considering
sudden change in the energy of the atoms after the insta
neous change in trapping frequenciesv1→v2. Then for a
sudden transfer, the temperatureT2 is related to the tempera
ture T1 in the MOT according to

T25
T1

2 S 11
v2

2

v1
2D ~sudden!. ~4!

The adiabatic case can be treated as a succession of i
tesimal stepsv1→v11dv, each treated as a sudden tran
fer. This yields the relationship

T25T1

v2

v1
~adiabatic!. ~5!

Note that both cases giveT25T1 when v25v1 as they
must. With the peak phase space densityr05n0L3 of the
trapped atoms given by
n
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r05N1S \v i

kBTi
D 3

, ~6!

it is clear thatr0 is invariant through an adiabatic transfe
while it decreases after a sudden transfer. Here,L is the de
Broglie wavelength andn0 is the peak spatial density.

The two quantitiesg f andef depend on the frequency i
the lower trapv2, as well as the RF field thresholdecut; as
the trap is made looser, more atoms will make it into the t
below the cut so thatg f increases. The feed rate is als
increased asecut is raised, however the mean energyef of
those atoms increases as well.

B. Description of evaporative cooling

With the feeding rateg f and mean energy per atomef of
the injected atoms given by the above model of the load
procedure, it remains to describe the kinetic evolution of
atoms in the magnetic trap during evaporation. Our mo
can be constructed on phenomenological considerati
with the goal of characterizing the steady state of the syst

We characterize the trapped atoms by a single-part
distribution over energyr(e) f (e,t) instead of retaining the

more detailed description in phase space usingf (xW ,pW ,t) @1#.
Herer(e) is the density of states for an isotropic harmon
potential. We also make an assumption that the nonequ
rium distribution f (e,t) of the system can be well approx
mated by a truncated Boltzmann distribution@1,3–6#

FIG. 1. This diagram illustrates the transfer process describe
Sec. II A. A finite number of atoms are cooled in the MOT to
temperatureT1 in equilibrium. We approximate the potential in th
MOT as an isotropic harmonic oscillator at frequencyv1. They are
then transferred to the magnetic trap, either suddenly, or adia
cally. We also approximate the magnetic trap as forming an iso
pic harmonic oscillator potential, with a different frequencyv2. In
equilibrium, the atoms have a temperatureT2 in the magnetic trap.
Then, the RF energy thresholdecut is applied and only a portion o
the original atoms from the MOT remains. This transfer can
repeated many times in order to obtain a piecewise continu
transfer of atoms.
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2032 57WILLIAMS, WALSER, WIEMAN, COOPER, AND HOLLAND
f ~e,t !5H h~ t !e2b~ t !e, e,ecut

0, e>ecut,
~7!

whereh(t) andb(t)51/kBT(t) are functions of time. They
are related to the total numberN(t) and total energyE(t) of
the atoms according to

N~ t !5E
0

ecut
der~e! f ~e,t !, ~8!

E~ t !5E
0

ecut
der~e!e f~e,t !. ~9!

With the assumption of the truncated Boltzmann form
f (e,t), the description of the system can be reduced to fi
ing the equations of motion for the total number and ener

The equations of motion forN(t) andE(t) will be written
in terms of the various gain and loss processes which oc
There are four competing processes which take place du
the evaporation: the constant feeding of atoms into the tra
a rateg f with a mean energy per atomef , the loss of atoms
from the trap due to collisions with the atoms from the h
background gas, characterized by a constant rategbl , the loss
of atoms and heating due to three-body inelastic collisio
given by the rateg38 , and the rethermalization due to elas
collisions which will eject atoms from the trap which obta
an energy aboveecut after a collision. We can include all o
these effects in the kinetic equation forf (e,t),

r~e!
] f ~e,t !

]t
5g fgf~e!2gblr~e! f ~e,t !2g38„r~e! f ~e,t !…3

1Gcol~ t !, ~10!

where the distribution of atoms injected into the trap isgf(e)
and the density of states isr(e)5 1

2 e2/(\v2)3. Gcol(t) is the
collision integral given by@1#

Gcol~ t !5g0E derde8der8d~e1er2e82er8!r~emin!

3@ f ~e8! f ~er8!2 f ~e! f ~er !#, ~11!

where g05ms/(p2\3) and emin5min$e,er ,e8,er8% is the
minimum energy.

By substituting Eq.~7! into Eq. ~10!, and using Eq.~8!
and Eq.~9!, we obtain the following equations of motion fo
the total number and total energy:

Ṅ5g f2gblN2g3N32GN , ~12!

Ė5g fef2gblE2 2
3 g3N2E2GE , ~13!

where the three-body loss rate for the total number isg3

531.5K3(mv2
2/2pkBT)3. K3 is an experimentally deter

mined constant to be specified@22#. In obtaining the three-
body loss terms, an approximation has been made thatecut
@kBT(t) in order to simplify the terms. Initially during the
evolution, this assumption may not hold, but the density
low enough that the three-body loss terms are negligible
any case. By the time the density has increased enoug
r
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that three-body losses are significant, the assumption d
hold. The factor of 2/3 in Eq.~13! signifies that the energy
will decrease at a slower rate than the number due to th
body losses, which gives rise to an effective heating.

The two termsGN and GE represent the loss of numbe
and energy due to evaporation and are given by

GN5g0E
0

ecut
deE

ecut2e

ecut
derE

0

e1er2ecut
der8r~er8! f ~e,t ! f ~er ,t !,

~14!

GE5g0E
0

ecut
deE

ecut2e

ecut
der

3E
0

e1er2ecut
der8e8r~er8! f ~e,t ! f ~er ,t !. ~15!

The fourth atom in these equations is lost from the trap si
its energy is always greater than the RF cute8.ecut. Due to
energy conservation and the truncated form off (e), this
means thatemin5er8 , as indicated in Eq.~14! and Eq.~15!.
Also, the energy which appears in the termGE(t) is that of
the escaping atome85e1er2er8 .

III. RESULTS

In order to carry out explicit calculations, we choose r
alistic values of the various physical parameters neede
our model. These are listed in Table I for a gas of87Rb
atoms. The parametersv2 andecut are not listed in the table
but are variables to be specified in the following calculatio
We have specified a reference point for the MOT parame
which yields a phase space density in the MOT ofr056.9
31026, if one assumes thatN1553105 at 20 transfers per
second@21#.

A. Time evolution

We first consider the dynamical evolution of the syste
toward steady state. In Fig. 2 we show results of a numer
integration of the rate equations in Eq.~12! and Eq.~13! for
the total numberN(t) and energyE(t). Since the magnetic
trap frequencyv2 is matched to the MOT frequencyv1 in
this calculation, the adiabatic and sudden transfers
equivalent. For case 1 in the figure, we chose the optim
value of ecut to yield the highest phase space densityr0,

TABLE I. This is a table showing the values used for the va
ous physical parameters needed in the model.sRb is the s-wave
scattering cross section for87Rb. The explanations for the othe
parameters are given in the text.

sRb 7.5310216 m2

tbl[1/gbl 200 s
K3 4.9310229 cm6/s
T1

(ref) 20 mK

v1
(ref)/2p 100 Hz

g t
(ref) 107 atoms/s
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57 2033ACHIEVING STEADY-STATE BOSE-EINSTEIN CONDENSATION
while in case 2 the value chosen forecut is ten times higher
than that in case 1. There are some interesting feature
consider from this plot.

It is instructive to take a simple limiting case of Eq.~12!
and Eq.~13! in order to learn something about the build-u
time for steady state to occur. If we letecut→` andg350,
then the solution to the rate equations forN(t) and E(t) is
given by

N~ t !5
g t

gbl
~12e2gblt!,

E~ t !5
g t

gbl
ef~12e2gblt!. ~16!

The time scale for steady state to occur in this simple cas
just the lifetime of the trap as determined by backgrou
losses,tbl . In the case where the RF cut is present a
evaporation is occurring, while still neglecting three-bo
losses, the build-up time for steady state will be on the or
of magnitude oftbl , although it will be shorter, based o
results of numerical calculations. We define this build-
time to be the time at whichN(t)5(12e21)Nss. When
three-body losses are included, the build-up time can be v
short compared totbl if the density is high enough for three
body losses to dominate. So this gives us an upper limi
the build-up time to betbl , and if steady state occurs on
much shorter time scale than this, it indicates that three-b
losses are dominating the other loss mechanisms.

FIG. 2. This plot shows the time evolution of the total numb
N(t) and total energyE(t) for the values of the parameters listed
Table I. The magnetic trap frequency is equal to the MOT f
quencyv25v1 in this calculation. Two values ofecut were chosen:
1.1 mK, labeled by 1, and 11mK, labeled by 2. Each of the curve
is normalized by its final steady-state value. The solid curve is
total number and reaches a steady-state value ofNss52.03104 for
case 1, andNss52.83106 for case 2. The dashed curve is the to
energy and reaches a steady-state value ofEss5(0.33mK)Nss for
case 1~case 2 is not shown!. The evolution of the peak phase spa
densityr0 is shown in the inset for the two cases.
to
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d
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In Fig. 2, the build-up time in case 1 is slightly less th
tbl , which is 200 seconds. This indicates that the choice
ecut in case 1 minimizes three-body losses. In case 2, on
other hand, whereecut is ten times larger than that in case
the build-up time is much shorter at roughly 25 seconds. T
is because in case 2,g f is larger, causing the density to buil
up more quickly which allows three-body losses to domina
This also stops the evaporative cooling quickly and so o
does not obtain as high of a phase space densityr0 as in case
1. It should be noted that when we calculated case 2 w
g350, the build-up time was approximately equal totbl ,
and the steady-state value of the phase space density
close to being optimized at that value ofecut, with r053.9 in
steady state.

B. Steady-state solution

Now that we have characterized the time scale for ste
state to occur, it is useful to solve Eq.~12! and Eq.~13!
directly for the steady-state values ofNss andEss by setting
the left-hand sides equal to zero. We were not able to so
the resulting coupled algebraic equations analytically, si
they are transcendental in form. However, they are straig
forward to solve numerically. In the following sections, w
present calculations of the steady-state value ofr0 while
varying some of the physical parameters in order to disc
what values of the parameters yieldr052.612 so that BEC
can be achieved in steady state.

1. Varying ecut and v2

In trying to understand what it takes to reach a stea
state BEC, it is useful to look at howr0 varies withv2 and
ecut. In Fig. 3 and Fig. 4, we show shaded contour plots
the steady-state value ofr0, for both an adiabatic and a sud
den transfer. Also shown are contours of the total numberNss
overlaying the shaded contours. Again, we use the refere
point of parameters displayed in Table I. The two differe
idealizations of the transfer process yield quite distin
shapes for the surfaces ofr0 andNss.

For the adiabatic case shown in Fig. 3,r0 increases with
increasingv2, keepingecut fixed. However, it levels off quite
quickly, varying from 1.1 to 1.5 with an order of magnitud
increase inv2 /v1 from 0.1 to 1.0 atecut51 mK. Also, with
v2 fixed, the optimum value ofecut which yields the highest
r0 does not depend much onv2, but is roughly a straight
line at ecut51 mK. Perhaps the most interesting and cruc
feature exhibited in the plot is thatNssdecreases very rapidly
as v2 is increased, going from 107 down to 104 as v2 /v1
goes from 0.1 to 1.0. This is because three-body losses
crease as the trap is tightened, since the density increa
Therefore, one will gain a lot in number by keeping th
magnetic trap shallow, while losing only a small amount
phase space density.

The results of a sudden transfer are shown in Fig. 4. T
most striking difference between this and the plot shown
Fig. 3 for an adiabatic transfer is a strong peak which occ
at v2 /v151. This can be attributed to the fact that the pha
space density always decreases in a sudden transfer, w
peak occurring atv25v1, where the sudden and adiabat
transfers are equivalent. Notice also thatr0 drops off much
more rapidly asv2 /v1 is varied from unity, compared to th
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2034 57WILLIAMS, WALSER, WIEMAN, COOPER, AND HOLLAND
adiabatic case. Another difference between the two case
that the optimum value forecut increases asv2 /v1 is varied
from unity. Finally, it can be seen also that one does not g
that much in number asv2 is decreased, in sharp contrast
the adiabatic case.

2. Varying T1 and g t

We now have an understanding of how the steady-s
values ofr0 andNss vary with ecut andv2. Another useful

FIG. 3. This plot shows two overlaying contours of the stea
state value of the phase space density and the total number v
ratio of trap frequencies and RF cut threshold for an adiabatic tr
fer. The shaded contours represent the steady-state value ofr0, with
the gray-scale bar shown to the right. The numbered lines repre
log10Nss ~i.e., a value of 6 for the line in the center corresponds
Nss5106). It is v2 that is varied in the ratio, whilev1 is fixed at
2p100 Hz. The values used for the other parameters are displ
in Table I.

FIG. 4. This plot is the same as described in the caption of F
3 except for a sudden transfer of atoms from the MOT to the m
netic trap, instead of an adiabatic one.
is

in

te

calculation is to see howr0 depends on the MOT tempera
ture T1 and the transfer rateg t . In the plots below,ecut is
chosen so as to maximizer0, for a givenT1, g t , and v2.
Then, giveng t and v2, T1 is chosen so as to reachr0
52.612. This is done for 106<g t<108, as well as three
values of the trap frequency ratiov2 /v1P$0.1,0.5,1%, with
v152p3100 Hz.

The results of an adiabatic transfer are shown in Fig
Along each of the three linesr052.612. The most importan
feature of this plot is that the three lines lie nearly on top
each other. This agrees with Fig. 3 in thatr0 decreases vary
little as v2 is lowered. The plot also shows thatr0 depends
more critically onT1 than ong t . Starting from the reference
point in the center, one has to either decreaseT1 by 20%, or
increaseg t by 100% in order to get to ther052.612 line.

The sudden transfer is shown in Fig. 6. In contrast to
adiabatic case, the three lines are separated, so that asv2 is
decreased, one has to try much harder to reachr052.612,
which is also consistent with Fig. 4.

The Nss curves corresponding to ther052.612 lines in
Fig. 5 and Fig. 6 are shown in Fig. 7. The results are
same in both the sudden and adiabatic cases~thus there are
only three lines instead of six!. For the adiabatic case, b
loosening the magnetic trap, one does not have to varyT1
and g t much at all in order to stay atr052.612 while in-
creasing the numberNss by orders of magnitude. On th
other hand, for the sudden transfer, one has to decreasT1
and increaseg t a lot in order to stay atr052.612 asv2 is
decreased. However, one will achieve the same increas
number as in the adiabatic case.

Finally, in Fig. 8 we show a plot of the ratioecut/T2
corresponding to ther052.612 lines shown in Figs. 5–7
This ratio of the optimum cut to the temperatureT2 of atoms
being injected into the trap is the same in both the adiab
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FIG. 5. This plot shows the values ofT1 and v2 one must
achieve in order to reachr052.612 in the case of an adiabat
transfer. Three different values ofv2 /v1 are shown:v2 /v1

P$0.1,0.5,1%, with v152p3100 Hz. For each line,ecut was cho-
sen so as to maximizer0. The reference values areT1

(ref)520 mK
andg t

(ref)5107 atoms/s.
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57 2035ACHIEVING STEADY-STATE BOSE-EINSTEIN CONDENSATION
and sudden transfers. Asv2 is decreased, one does not ha
to exclude as much of the distribution from the trap. Also,
g t is increased, one has to cut further into the injected d
tribution in order to prevent three-body losses from domin
ing.

IV. CONCLUSION

In this paper we have addressed the problem of achie
a steady-state condensation by continuously feeding at
into the magnetic trap below a fixed RF threshold. We ha
included losses due to elastic collisions with atoms from

FIG. 6. This plot is the same as described in the caption of F
5 but for the case of a sudden transfer.

FIG. 7. This plot corresponds to the three lines in both Fig
and Fig. 6, showing the total number of atoms in steady stateNss as
a function of the transfer rateg t . Along each of these curves
r052.612. The legend in Fig. 5 and Fig. 6 applies to this plot al
s
-

t-

g
s

e
e

background gas, as well as inelastic three-body collisio
Our model of the loading of atoms into the magnetic tr
treats two idealizations of transferring atoms from a sepa
MOT; either an adiabatic or a sudden transfer. The desc
tion of the kinetic evolution to steady state assumes a tr
cated Boltzmann form for the nonequilibrium distributio
f (e,t), reducing the problem to that of solving coupled ra
equations for the total numberN(t) and total energyE(t) of
the gas. Our calculations show that it is possible to achiev
steady-state condensation using optimistic values of the
evant physical parameters.

We have shown several results of numerical solutions
the rate equations in Eq.~12! and Eq.~13!. First, we ad-
dressed the build-up time for steady state to occur and de
mined that an upper limit on the build-up time is given b
the background loss lifetimetbl . If three-body losses are
dominating due to a high density, then the build-up time w
be much shorter than this. We next looked at how the stea
state value of the peak phase space densityr0 depends on the
magnetic trap frequencyv2 and the RF cutecut. We found
that in the adiabatic case, one can gain a large increase in
total number in steady stateNss by loosening the magnetic
trap, while only losing a small amount inr0. This is not true
for a sudden transfer. Finally, we looked at how one m
vary the transfer rateg t and the MOT temperatureT1 in
order to reachr052.612. We found thatr0 depends more
critically on T1 thang t . Also, it was shown that one must tr
much harder to reach the critical point while achieving
largeNss in the sudden case compared to the adiabatic c

There are several shortcomings of our model which mi
be improved, however we believe that the present calc
tions are qualitatively correct and are sufficient for expe
mental guidance. An obvious extension to our model wo
be to include the effect of the growth of the condens
which will make the evaporation more efficient but at t
same time increasing three-body losses due to the increa

.

.

FIG. 8. These curves correspond to the curves in Figs. 5
showing the ratio of the RF cut to the temperature of atoms injec
into the trap,ecut /T2, as a function of the transfer rateg t . Along
each of these curves,r052.612.
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density in the center of the trap@4,23–25#. Another improve-
ment would be to construct a more accurate model of
transfer process by understanding the relationship betw
T1, v1, andg t , since these cannot be varied independen
in an experiment. Alternatively, one could construct a mo
of the loading procedure based on an entirely different
perimental method than that described in@19,20,11#.
m
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