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coherent matter waves in these devices are Bose-Einsteitensates. A reliable prediction
of their dynamics, which is governed by the Gross-Pitagwsffuation, requires suitable
analytical and numerical methods which take into accouatctnter-of-mass motion of the
condensate, its rotation and its spatial expansion by medgre of magnitude.

In this chapter, we present an efficient way to study theiraglyics in time-dependent ro-
tating traps that meet this objective. Both, an approxiraatdytical solution for condensates
in the Thomas-Fermi regime and dedicated numerical sinoulsion a variable adapted grid
are discussed. We contrast and relate our approach to pssfiiernative methods and provide
further results, such as analytical expressions for the ame two-dimensional spatial density
distributions and the momentum distribution in the long«ilimit that are of immediate in-
terest to experimentalists working in this field of research
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1. Introduction

Since the first creation of a Bose-Einstein condensate (BE@)e mid 1990s (Anderson
et al., 1995; Davis et al., 1995), the field of ultra-cold cquam gases (Dalfovo et al., 1999;
Giorgini et al., 2008) has enormously developed and BECsavedays commonly used
in a broad variety of applications. They include the genenaof vortices (Fetter, 2009),
the exploration of different quantum phase transition®¢Blet al., 2008) as well as inertial
sensors that are realized with the help of matter-wavefer@metry (Berman, 1997; Cronin
et al., 2009; Tino and Kasevich, 2014). In many of these pimama the Gross-Pitaevskii
(GP) equation (Gross, 1961; Gross, 1963; Pitaevskii, 198dyides a reliable theoretical
description of the BEC dynamics. Analytic solutions of the &juation can be derived within
the Thomas-Fermi (TF) approximation when combined withgbealled scaling approach
(Kagan et al., 1996; Castin and Dum, 1996; Kagan et al., 199@gre most of the BEC
dynamics is described by an appropriate time-dependemtic@te transformation. In this
chapter we generalize this scaling approach and applydctiyrto the GP equation to obtain
an efficient analytic description of the dynamics of a BEGnme-dependent rotating traps.

Our approach was motivated and used by seminal experimeatzead within the
QUANTUS collaboration (van Zoest et al.,, 2010; Muntinga &t 2013), which has
successfully performed matter-wave interferometry wit in microgravity at the drop
tower in Bremen (ZARM). These pioneering experiments stag manipulate BECs that
expand freely for several seconds and hence evolve intoemaiives of macroscopic
dimensions. In order to reliably predict and describe thee@me of such experiments, it
is essential to have dedicated analytical and numeric# tidhand which take into account
translational and rotational motions of the BEC as well a&sfétt that the spatial size of the
condensate changes by many orders of magnitude duringeéseftpansion. To account for
these effects, the scaling approach has been generaligaid e hydrodynamic framework
(Storey and Olshanii, 2000; Edwards et al., 2002) by emptpyn affine transformation,
where a translation first eliminates the center-of-massanand a subsequent linear map
absorbs most of the remaining dynamics of the BEC. Here wiy dipig affine transformation
directly to the GP equation resulting in an efficient dedaip of the time evolution of a
BEC in a time-dependent quadratic potential including stotations. Our approach has
a straightforward application to matter-wave interfertnméRoura et al., 2014), facilitates
an efficient numerical computation of the condensate wametion and provides valuable
analytical insights into the dynamics of BECs.

Our chapter is organized as follows. In secfibn 2 we firstgmethe affine transformation
of the GP equation, where we displace the wave function toiedte the center-of-mass
motion and then apply a linear transformation of the coattia to account for the inner
dynamics of the BEC. The combination of the affine approachthe time-dependent TF
approximation results in an approximate, but astoniskiagturate solution for the dynamics
of a BEC subject to a time-dependent rotating trap. Moreower derive expressions for
the one- and two-dimensional integrated density distidmst which are experimentally
accessible through time-of-flight pictures.



Efficient description of Bose-Einstein condensates in-tiegendent rotating traps 3

To verify the accuracy of our efficient description of the BE{hamics, we perform
in sectior 8 full numerical simulations of the GP equationdgurely rotating trap as well
as for the free expansion of an initially rotating BEC. We fard excellent agreement with
our approximate analytical solution and show that the affiaesformation can be used to
improve the performance of numerical simulations by sawime transformed GP equation
rather than the original one. Indeed, since the affine toamsdtion itself does not contain any
approximation, our technique does not alter the accuradhehumerical simulations but
speeds up the computation.

In section[# we establish a connection between the dynanfitisectime-dependent
affine transformation and the corresponding Hamiltoniam#tdism triggered by (Kagan
et al., 1997). In this context, we discuss two constants dfanmf the affine transformation
matrix, which we relate to the conservation of the total gnemnd the angular momentum of
a BEC.

Since almost every experiment dealing with BECs makes usienefof-flight pictures,
it is essential to have a thorough understanding of the digsanf a BEC during its free
expansion. Indeed, due to their mean-field interaction, 8gGsses a more complex time-
of-flight dynamics compared with the simple ballistic expiam known from non-interacting
wave functions. Therefore, in sectidn 5 we compare the fnee ¢volution of the GP equation
with the Schrédinger equation and derive a relation betvikeriong-time behavior of the
momentum distribution of a free expanding BEC and its ihgatial density distribution.

In order to keep our consideration self-contained but fedusn the central ideas,
we have included further details and calculations in threeeadices. I Appendix]A we
sketch the derivation of the affinely transformed GP equatind show how to calculate
the integrated density distributions of a BEC within the Elgime. The important steps to
determine the total energy of a BEC and its angular momentithinthe time-dependent TF
approximation are presented in Appendix B. Finally, in Apgie G we discuss the behavior
of the affine transformation matrix for a freely expanding@ihat is released from an
isotropic harmonic trap.

2. Efficient description of the time evolution of a Bose-Eintein condensate

The present section introduces a natural generalizatioth@fscaling approach (Kagan
etal., 1996; Castin and Dum, 1996; Kagan et al., 1997) todke ofrotating harmonic traps

In contrast to the hydrodynamical approach (Storey and @ish2000), we carry out this
generalization directly to the GP equation. We apply theselts to a BEC in the TF regime
and obtain an approximate, analytical description of nsetievolution, the so-called time-
dependent TF approximation. Moreover, we then derive srappressions for the integrated
density distributions of a BEC in the TF regime which esttbh direct link to experimental
time-of-flight observations. We conclude this section vaithrief discussion of an alternative,
but equivalent description (Edwards et al., 2002) of therimal dynamics of a BEC. Further
details on the results presented in this section are cetldofAppendix A.
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2.1. Affine transformation of the Gross-Pitaevskii equatio

The affine transformation of the GP equation is realized im $teps (Eckart, 2008), namely
(i) we eliminate the center-of-mass motion using Kohn'’s thexit¢ohn, 1961; Dobson, 1994;

Bialynicki-Birula and Bialynicka-Birula, 2002), an@) we introduce a linear mapping of the
coordinates in order to account for the main contributianthée internal dynamics of a BEC.
Moreover, we show how this linear mapping is reduced to thiékmown scaling approach

(Kagan et al., 1996; Castin and Dum, 1996; Kagan et al., 1@0{he case of a non-rotating
harmonic potential.

2.1.1. Basic setting We describe the dynamics of a BEC in an inertial frame of ezfee by
the macroscopic wave functiaf(t, ) which satisfies the GP equation

2
0% V() + gt @)P| 0t ), o)
t 2m

where the position vectat is considered here as an element of thdimensional vector
spaceR? with d = 1,2,0r3. In this way, our results are applicable to the general three
dimensional case (Jin et al., 1996; Mewes et al., 1996; Staikprn et al., 1998; Dalfovo
et al., 1999; Ketterle et al., 1999; Hechenblaikner et &l02 Edwards et al., 2002; Clancy
et al., 2007) as well as to the cases of BECs confined in one @dtmensions (Petrov,
Shlyapnikov and Walraven, 2000; Plaja and Santos, 2002,g8at al., 2001; Gorlitz
et al., 2001). Throughout this article the macroscopic wawvetion (¢, ) is normalized

to the number of particled’ in the condensate, that is

[t @) d%e = N (2)

R4
The general potentidl’ (¢, «) in Eq. (1) describes the interaction of an atom of mass
with the external fields that correspond for example to a ragoptical trap and Earth’s
gravity. Moreover, we assume that the atoms interact with @gher via a repulsive contact
interaction, leading to the non-linear temy (¢, )|? in Eq. () with the positive coupling
constany.

In many experimental situations a semiclassical treatroéihe underlying quantum
mechanical dynamics allows an accurate and transparampietation of the measurement
results. Here, we apply this approach to study the BEC dyosaround a classical trajectory
p(t) and expand the potenti&l(t, =) into a Taylor series up to second order at this trajectory

vwm=vwmm—F@@—mm+%u—mmﬁﬂww—mm.@
Any anharmonicity of the potential can be neglected, as bmthe size of the BEC remains
sufficiently small within the vicinity of the trajectong(t). The latter can be associated with
the center-of-mass motion of the atomic cloud or the minimafnthe external potential
V (t,x), as discussed in more detail in secfion 2.1.6.

Each term in Eq.[(3) has a clear meaning. Indeed, the zeratbr aermV'[¢, p(t)]
represents the value of the potential along the trajectpty). The second term
—F(t)[x — p(t)] corresponds to the forcE(t) acting on the atoms at the poiat= p(t).
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The third termim(z — p(t))"22(t)(x — p(t)) is the purely quadratic trapping potential
represented in terms of the symmetric positive definite ima2? (¢). Its eigenvalues coincide
with the squared trap frequencieg(t) along the principal axes of the harmonic trapping
potential.

2.1.2. Elimination of the center-of-mass motiotWe incorporate the center-of-mass motion
of the BEC in a straightforward way and thereby eliminate atiependent terms in the
potential [B) by making use of the transformation

Y(t, @) = en O e POSRO (¢ ) (4)

between the original wave functiaf(¢, ) and the new onép (¢, ). Note thatp = —ihV,
represents the momentum operator in the position repiasmmt

The time-dependent vectoR®(t) andP(t) in Eq. (4) describe the time evolution of the
center of mass of the condensate, see seCtion| 4.2.2 for retadsd and obey the classical
equations of motion

AR P(1)
T m
P om0 [R() ~ pl)] + (), )

which are the Hamilton equations corresponding to the Lragjean function

LRR,t) = TR ~V(t.p)+ F(R~p)— = (R~ p)"2P*(R - p) (6)
The gobal phasé; (¢) in Eq. (4) depends on the classical action via the genethtleéinition
t
- k
S0) = [ LRRA)A - 5 RWP() ~ ROPO). )
0

where the additional integdr € Z has been introduced for later purposes. As outlined in

[Appendix A.], we arrive at the GP equation
2

2= |- sn v+ 5 0z gl )] vt o) ®

for the transformed wave functionp (¢, ) by inserting Eq.[(#) into Eq[{1) and taking

advantage of Eqd.i(5)4(7) far= 1.

The decoupling of the center-of-mass motion of a BEC is fbssis long as the potential
is at most quadratic (Dobson, 1994; Bialynicki-Birula anilnicka-Birula, 2002; Nandi
et al., 2007). It no longer holds true for anharmonic potdsatifor which a nontrivial
coupling of the center-of-mass motion and the inner dynamwi¢he condensate exists (Dum
et al., 1998).

ih

2.1.3. Linear transformation as a natural generalizatiohtbe scaling approachAfter
having eliminated the center-of-mass motion, we perform iraetdependent linear
transformation to account for the main internal dynamicshef BEC. For this purpose, we
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also introduce a new time coordinatesuch that the linear mapping between the “original
coordinates’{t, ) and the new oneg, &) reads

t =1,

x = A1), )
with A(7) being an arbitrary, time-dependent matrix. In what followe refer toA(r) as
“adaptive matrix” and tdr, &) as “adapted coordinates”.

In analogy to Eq.[(4), the coordinate transformatioh (9)sgband in hand with the
transformation

Un(t, @) = — = ATy (7 ) (10)

det A(7)
to the so-called affinely transformed wave function(t, ). The scalar phasé(r) and the
symmetric matrixA(7) introduced in this transformation depend on the adaptivieixa(7)
via

_ [T /
5(7)=/0 de (11)
and
A =" i) 4 (12

The constant, that appears in the definition (11) represents the chematahpial associated
with the ground state of the initial BEC at the time= 0. In[Appendix A.2 we outline the
derivation of the affinely transformed GP equation

T Sy AR

or 2m
|5 ETPOE+glua(rOF —n]ualr€)  (13)

1
- det A(T)
for the wave function), (7, £) under the requirement that the matrixr) obeys the nonlinear
matrix differential equation
d*A 5 240)
ATr) | T3 + 20 )| = (14)

where we have made use of the shorthand notatioh= (A~!)T. The additional assumption
thatez = £ andyp (0, ) = ¥4 (0, x) att = 0 yields the initial conditions

A0)=1 and i—A =0 (15)

T lr=0
for the nonlinear matrix differential equation _{14). As alissed in Appendix A3, the
symmetry of the matri¥d(7), Eq. (I2), is connected to the so-called irrotationalitpdition
arry Y, (16)
dr — dr

that gives rise t@(d — 1)/2 constants of motion of the matrix differential equatibnl(14

So far, we have made no approximation in deriving the affinednsformed GP
equation[(IB). Although it looks much more complicated tBgn(8), the solutions of Ed. (1L3)
show almost no time dependence in the TF regime. This obsanvanables us to establish
an efficient description of the BEC dynamics, as discussedlisection 2]2.
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2.1.4. The affinely transformed wave functioBy combining the two transformations given
by Egs.[(#),[(P) and (10), we obtain the following relatiotvaeen the original and the affinely
transformed wave function
1 :
tx) = —— &2y (1, A7) [z — R(1)]) 17
U(t, x) =0 a ( () (t)]) (17)
where we have introduced the local phase

o(t,2) = 2 {S:() = B(1) + P) [o ~ 4R + 3 [o ~ RO O [ - R(9)]} (19)
and the time-dependent, symmetric matrix

dA
o(t) = — A7\#). (19)
Since the matribxC'(¢) determines the time evolution of the quadratic phase terarefer to
it as “quadratic phase matrix”. For later purposes we alge,rbat by inverting Eq[(17), we

find the affinely transformed wave function (¢, =) in terms ofy (¢, ) via
Ua(t, ) = \/det A(t) e IPEAOERO)y, (¢ A(H)z+R(L)) . (20)

In summary, the affine transformation of the macroscopicenanction is realized
by Eq. [1T) and leads to the affinely transformed GP equafi) (n order to determine
Y (t, ), one has to solve the time-dependent partial differentéal (E3) together with the
ordinary differential equation§](5) and {14) for the certtemass variable®R (¢), P(t) and
the adaptive matrixi(¢), respectively. Throughout this article, we refer to thiagmlization
of the standard scaling method (Kagan et al., 1996; Castitbaim, 1996; Kagan et al., 1997)
as the “affine approach”.

2.1.5. Non-rotating trap: connection to the scaling appgrba We continue by pointing out
the connection between our affine approach and the scalitigoshéntroduced by (Kagan
et al., 1996; Castin and Dum, 1996; Kagan et al., 1997). Wesiden a non-rotating trap
and assume for simplicity that the principal axes of the i potential coincide with the
coordinate axes. This can always be achieved by an app@mt@ice of coordinates for
which the trap matrix2%(¢) in Eq. (3) possesses the diagonal form

2%(t) = diag [w%(t), . ,wﬁ(t)} , (22)
with w; () being the trapping frequency along thedirection. Accordingly, we assume that
the adaptive matrixi(7) is of diagonal form and substituté(r) = diag [\ (7), ..., Aa(7)]
into Eq. [14) which yields the coupled nonlinear differahéquations

d2), w?(0
e = —— 40 22
T Ai(7) TTeei Au(7)
where: € 1,...,d. The functions\;(7) characterize the time evolution of the condensate in

terms of an individual scaling along the three principalsagéthe potential. From Ed.(1L5),
we obtain for the corresponding initial conditions

d)\;
\i(0) =1 d ‘ =0. 23
(O) an dT 7=0 0 ( )
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Clearly, the irrotationality condition, Eq[(IL6), is autafitally satisfied for a diagonal
adaptive matrixA(7). For the casel = 3, Egs. [22) and[(23) precisely rephrase the well-
known conditions derived for the scaling factors in Ref. fttaand Dum, 1996; Kagan
etal., 1997).

2.1.6. Interpretation of the classical trajectoryDuring the preparation of the BEC by laser
and evaporative cooling @t < 0, we denote byp(t) the position of the minimum of the
full external potential/ (¢, =) which acts on the atomic cloud. For this reason, the clalssica
trajectoryp(t) is found as a solution of the equation

V.Vt $)|w:p(t) =0 (24)

for all times¢ < 0. Since the trapping potentidl (¢, ) is located in an Earth-bound
laboratory, a capsule freely falling in a drop tower or a biggan space, inertial effects due to
the local acceleration and rotation of the comoving framefdrence attached to the trapping
potentialV/ (¢, ) alongp(t) do occur in general. However, here we assume that thes@inert
effects can be neglected for all times< 0 due to the dominating influence of the trapping
potential and the repulsive interaction of the atoms.

As pointed out in sectidn 2.1.2, the time-dependent ved&jrg andP(t) are associated
with the center-of-mass motion of the atomic cloud. Thisiiptetation implies that the initial
conditionsR (0) andP(0) for the classical equations of motidd (5) are directly lidke the
preparation of the BEC in the external poteniidl, ) according to

R(0) = p(0),
P(0) = mp(0). (25)

In other words, the center of mass of the initial BEG at 0 is supposed to be at rest within
the comoving frame of reference attached to the externahpiall’ (¢, ) at the positiorp(0).

After the initial preparation phase, the dynamical evolntof the BEC for times > 0
can be analyzed based on two different interpretationseo€ldissical trajectory(t). In case
one is interested in the relative motion of the center of nodigee BEC with respect to the
trap minimum, the trajectory(¢) can still be associated with the minimum of the external
potentialV (¢, ) and Eq.[(2#) has to be satisfied pt) also fort > 0.

In terms of a semiclassical approach, one can likewise &ge@ct) for all ¢ > 0 with the
center-of-mass motion of the atomic cloud itself. In thisesahe trajectorp(t) is determined
as the solution of the classical equation of motion

mp(t) = =V V(t, 2)|e=p (26)
for t > 0 and describes the semiclassical motion of the center of ofake BEC in the full
external potential/ (¢, ). Thus, the time-dependent vectdRy¢) andP(t) follow directly
from p(t) via

R(t) = p(t),

P(t) =mp(t), (27)
whereas the classical equations of motion, Ejy. (5), matheatlst coincide with Eq.[(26).
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2.2. The macroscopic wave function in the time-dependesn@bk-Fermi approximation

We start this subsection by recalling the TF approximatkeetter and Feder, 1998; Pethick
and Smith, 2002) for the ground state of a BEC in a harmonjc iie then apply this method
also to the case of a time-dependent rotating trap in ordprdeide an efficient description
of the dynamics of the macroscopic wave function of a BEC i& T regime (Kagan
et al., 1996; Castin and Dum, 1996; Kagan et al., 1997; StanelyOlshanii, 2000; Dalfovo
etal., 1999).

In addition, we present a simple relationship between tla¢iapdensity distribution of
a BEC in three dimensions and its corresponding integragegity distributions in one and
two dimensions, which allows us to fully characterize thelBiynamics in the TF regime by
a sequence of three mutually orthogonal time-of-flightyries. We conclude this subsection
by briefly discussing an alternative description of therimé dynamics of a rotating BEC in
the TF regime (Edwards et al., 2002).

2.2.1. Thomas-Fermi approximation for the initial grourtdte Without loss of generality,
we assume thdt (0, p(0)) = 0 at the initial timet = 0. Furthermore, we recall thd(0) = 0

for the harmonic potentidl]3) due to the validity of Hq.l(ZRgking also EqL(25) into account,
the ground state(x) of a BEC at = 0 is defined as the solution of the stationary GP equation

po(x) = {——Vi + 2z — R(0)]"022(0) [z — R(0)] + 9|¢(w)|2} ¢(x), (28)

with 1 being the chemical potential of the ground state.

The TF regime is characterized by a dominant contributiothefatomic interactions
to the total energy of the BEC (Fetter and Feder, 1998; Hetlma Smith, 2002). In this
case, the kinetic energy term in the stationary GP equdZ@ndnly accounts for a negligible
contribution to the total energy in comparison with thogsiag from the harmonic potential
and the atomic interactions. For this reason, one simpliecegthe kinetic energy term in the
TF approximation which gives rise to the approximate grostade of the BEC

I

1 m T H2 3 0)x
e () = 7 {uTF - Sl =R <0>[oc—7%<0>1}+ en”0® (29)

Here, the chemical potentiakr in the TF approximation

m (2T (2+ %) Ng a2
T

is determined by the normalization conditian (2) for the eéunctiongrr (), I'(z) denotes
the Gamma function and

{z}% = 2°O(x) (31)

stands for the positive part of to the power ofo, a > 0, with ©(z) being the Heavyside
function. The additional phas@® (0) /A in Eq. (29) is due to the non-vanishing momentum
P(0), Eq. [25), of the initial BEC as discussed in secfion 2.1.6.
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The ground state within the TF approximationr(£) rewritten in terms of the adapted
coordinateg follows directly from Egs.[(20) and {29) according to

¢A,TF(5) = e_@(O’GR(O))ébTF (E+R(0)) = % {MTF - %5T92(0) ﬁ}j Q%R(O)P(O)- (32)

Besides the initial conditions for the adaptive matti), Eq. (15), we have used the defining
Egs. [7) fork = 1, () and [(IP) to findp(0,z) = P(0) [z — 1R(0)] /A for the local
phase[(18) at = 0 in the derivation of Eq[(32).

2.2.2. Time-dependent Thomas-Fermi approximation fodytmamical evolution Within the
time-dependent TF approximation (Castin and Dum, 1996 alkag al., 1997), one neglects
the kinetic energy term in the affinely transformed GP eque{L3) for all timesr > 0 in
order to arrive at the approximate, ordinary different&tion

A~ s [F € PO O~ inne). (@9
As we will show below, the solutiogi, (7, ) of Eq. (33) is time-independent and therefore
agrees with the approximate ground staterr(£), EqQ. [32), for all times- > 0

(T, €) = Pa(0,€) = darr(€) - (34)

This observation is the most important result of the timpeswlent TF approximation and
it manifests its full strength by providing an efficient anctarate description of the BEC
dynamics within the TF regime.

In order to prove the validity of Eq[_(B4), we first multiplyettordinary differential
equation[(3B) by (7, €) and subtract the imaginary part of the resulting equatidimtb

& (jeatr ) ~ 0. (35)

Thus, the absolute value of the affinely transformed wavetfan does not change in time
and we conclude that

[Ua(m, €I = [¥a(0,€)° = [darr(€)]* and p = prr. (36)

We infer from the Eqs[(32) an@ _(36), that the square brackehe right hand side of the
ordinary differential equation (33) vanishes, giving risé&v, /0T = 0 which finally justifies
the validity of Eq. [(34).

To find the above mentioned efficient description of the BEQaigics, we take
advantage of EqL(17) with the functign (7, £) being determined by combining the Eqs.1(34)
and [32). As a result, we obtain the central expression

[NIES

ei(bTF(t,w) m T e
(@)~ (@) =~ {pe— 5 2~ RO ST (e - RO} (37)

g det A(t) 2
that characterizes the time evolution of a BEC within theetidependent TF approximation.
In Eq. (37) we have introduced the new local phase

{80 - 80)+ PO @+ 5l - RO O [ - R} . (38)

@TF<t7 w) = A
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where the generalized actidfy(t) is given by Eq.[(V) foit = 2. Moreover, we have defined
the so-called “TF matrix”

X(t) = A(t) [2%0)] " AT(e), (39)

which is positive definite.

According to Eq.[(3]7), the boundary at which the spatial dgmstribution of the BEC
vanishes corresponds to an ellipsel i= 2 or to an ellipsoid ifd = 3. The TF matrix [[(3D)
defines the orientation and semi-principal axes of thipsdlior ellipsoid whereby its points
x € R? satisfy the conditionz — R(¢)|T X~ (t)[x — R(t)] = 2urr/m. The eigenvalues;
of the TF matrix)’ determine the lengths of the semi-principal axes, whichade with the
individual TF radiir; of the BEC, viar; = \/2utr 0;/m.

Fig.[ illustrates the time evolution of such an ellipsoidhinee dimensions. The initial
density distribution of the ground state is centered arcRrid) with its principal axes being
parallel to the coordinate axes, as shown in Eig. 1(a). Cémimgthe orientation and position
of the quadratic potentidli(3) give rise to a center-of-nrassion R (¢) and a transformation
of the elliptic contour of the BEC density distribution vihet time evolution of the TF
matrix X(¢), as depicted in Fidl 1(b).

t = b t
(a) . 0 (b) Az, >0
731y r3
1 'y
R(1)
R(0)

/ T )
| |

Figure 1. Boundaries of an ellipsoidal density distribution of a BE&Ehin the time-dependent
TF approximation. At = 0 the BEC is centered arourfR (0) and the principal axes of
its boundary are parallel to the coordinate axes (a). Matifias in the quadratic trapping
potential att > 0 result in a center-of-mass motid®(¢) and changes in the ellipsoidal shape
and the TF radit; of the BEC (b).

We summarize this section by pointing out once more that xipeession given by Eq.
(37) provides a valuable description of the time evolutibra sotating BEC within the TF
regime. Having the time-dependent TF approximation in mime might be tempted to
believe that Eq.[{37) is only valid for times shortly afte= 0. However, Eq.[(37) yields
very accurate results also for freely expanding BECs, simc¢his case the adaptive matrix
A(7) grows linearly in time, as discussed in secfion 5.1, andefoee strongly reduces the
influence of the kinetic energy term in EQ.{13), the so-chtjgantum pressure.
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2.2.3. Integrated density distributions for time-of-flighictures In practice, absorption
imaging techniques (Reinaudi et al., 2007) are the prevaiethod to study the dynamics of a
three-dimensional BEC. Identically prepared BECs aranihated by a laser field at different
times of flight and their shadows are detected by a CCD canesdting in a sequence of
two-dimensional pictures of the spatial density distridautof a BEC. For this reason, these
techniques provide only partial information about the mi@ion and size of the original three-
dimensional density distribution.

In this subsection we discuss the one- and two-dimensiosasity distributions that
result from an originally three-dimensional density petf a BEC within the TF regime. In
addition, we sketch the determination of the underlyingéhdimensional density distribution
from three mutually orthogonal time-of-flight pictures ogimgle BEC. The high efficiency
of our approach is due to the knowledge of the density profilthe macroscopic wave
function, Eq. [[(3V). In case one does not have anpriori knowledge about the wave
function under consideration, a reconstruction is stilkgble with the help of the Radon
transformation (Gindikin and Michor, 1994; Schleich, 201

We start with the density distribution of a three-dimensidBEC within the TF regime

pre(t @) = —— - 1l = G RO 20 RO 40
which directly follows from Eq.[(37). The two-dimensionateégrated density distribution in
thez-y plane

ny (t2,y) = / [re(t, @) da (41)
R
can be evaluated as discussed in Appendix A.4 and reads
42 m._ = _ - 3
n (t,y) = : {nre =5 2RO 27 (1) [2-R ()]} .42)
391/ m det £(t) det 22(0) +

Here, we have introduced the reduced vectors (z,y)" andR = (R, R.)T together with
the symmetric submatrix

- 2 Lie 22
Y= e R 43
( 2y Lo ) 43)

which is obtained from the TF matriX’, Eq. [39), by removing the row’;; and the
column X3 that correspond to the-coordinate. In a similar way, the two-dimensional
integrated density distributionsiy (¢, v, z) andna(t, z, ) depend on the two-dimensional
submatrices in which the rows and columns correspondingéda:-t and y-coordinate have
been eliminated, respectively.

For the one-dimensional integrated density distributiong thez-axis

”(le]?)(tjx):/R/R|¢TF(t,$)|2 dy dz

we obtain
2
(1D) ™ m 2
nyp (6, ) = {,u — ——— [ =R (1)] } . (44)
b mg\/Eu() dec ) U 2200 .
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The one-dimensional integrated density distributi@nﬁ%’)(t,y) and n(leP)(t, z) possess a
similar structure. A general derivation of the previousutesfor arbitrary dimensions is
presented if Appendix Al4.

To reconstruct the unknown three-dimensional densityridigion of a BEC within
the TF regime, Eq[(40), from three mutually orthogonal tiof€light pictures, one needs

to fit the two-dimensional integrated density distribusior’y (¢, =, y), n\o2 (t,y, z) and

n(f?) (t,z, z) to the corresponding experimental data and thereby deterthie submatrix
(43) and its two other counterparts. These three submatpicvide us with all elements of
the TF matrixX’, where each diagonal elementXfis found twice. This redundancy can be
used to check the quality of the data obtained from the thremiatly orthogonal time-of-

flight pictures.

2.2.4. Alternative description of rotating and vortexei@ondensates Our description of the
internal dynamics of a BEC within the TF regime rests uporsthiation/(¢) of the nonlinear
matrix differential equation (14) with the correspondimgtial conditions, Eq.[(15). Based
on the adaptive matrix(t), we then determine the TF matrX(¢) and the quadratic phase
matrixC'(t) defined by Eqs[(39) and (119), respectively. The two symmetdtrices'(¢) and
C'(t) characterize the time evolution of the absolute value argtiase of the macroscopic
wave functiony (¢, x), Eq. [3T). Whereas the TF matriX(¢) plays a crucial role in the
context of time-of-flight pictures, the quadratic phasenrat'(¢) is of great importance for
BEC based interferometry (Torii et al., 2000; Simsarianle2®00; Debs et al., 2011; Altin
et al., 2013; Mlntinga et al., 2013).

One might wonder whether there is a way to study the BEC dycsdirectly in terms
of the experimentally more accessible matri&s () andC'(¢) without a link to the adaptive
matrix /A(¢) at all. In fact, such an alternative description is possiiold involves the solution
of the two coupled first order nonlinear matrix differentgjuations

ds-t

—=—C DY) - 2T o), (45)
ac , o [det 511
T —CHt) = 27(t) + 27 (1) “det 2200) (46)

with the corresponding initial conditions
T7H0) = 2%0),
c) =0. (47)

These first order differential equations can be derived kingathe time derivative on both
sides of Egqs.[(19) and _(B9) and using the matrix differemtiplation[(14), the two identities
(dX=t/dt) = —X7HdX/dt)Y~" and det A(t) = \/det £2%(0)/ det X-1(¢) as well as the
symmetry of the matrix’(t).

At present, only a simplified version (Edwards et al., 2002he system of equations
(43) and[(4b) has been used to study the dynamics of a frepgneling BEC that was initially
prepared in a rotating anisotropic harmonic trap (Hechahkbeér et al., 2002). The trap was




Efficient description of Bose-Einstein condensates in-tiegendent rotating traps 14

instantly turned off at the time = T.4. In fact, by inserting the trap matri®*(t) = 0 for
all t > T.¢ into both Eqs.[(45) and (#6), it can be shown that the regutiatrix differential
equations are mathematically equivalent to the equatibmsation (12) and (13) derived
in Ref. (Edwards et al., 2002). However, the approach pteden this article facilitates an
analysis of the time evolution of BECs within the TF regimattgoes far beyond the scope
considered in Refs. (Edwards et al., 2002; Hechenblaikinelr,2002).

Next, we briefly outline how to obtaini(¢) from the quadratic phase matxixt) and the
TF matrix X'(¢). When the time evolution of'(¢) is known, the adaptive matriA(¢) follows
from Eq. [19) by simple integration of the first order matriKetential equation

dA

= = C(AW)
with the initial conditionA(0) = 1. In contrast, the knowledge of the TF mattiX¢) does
not suffice to fully determine the adaptive matrixt). From Eqg. [(39), the latter can only be

identified up to an arbitrary orthogonal matfiX¢) via the relation
At) = Z2(t) U(t) 2(0),

where the square root af/(¢) is defined in terms of its spectral decomposition. The
specification of the orthogonal matrix(¢) involves again the quadratic phase matrii).
There are two main reasons that make our approach based addpgve matrix/A(t)
more suitable for the characterization of BEC dynamics etk regime than the alternative
description just presented. First, the second order maiffecential equatior[(14) for(¢) can
be recast in the form of Hamilton’s equations, as shown irssatiori 4.1L. This fact allows
us to apply the full mathematical machinery available forilfeonian mechanics to study
the time evolution ofA(¢). Second, for studying the density distribution of a BEC niesar
surface at the scale of the corresponding healing lengghl Bhground state given by E@. (29)
provides no longer an adequate solution of Eq] (28) and theaseopic wave function Eq.
(37) does not suffice for this purpose. Hence, the TF maifiy, which rests upon the validity
of Eq. (37), loses its immediate physical significance. Intcast, the affine approach based
on the adaptive matrixi(¢) provides a valuable tool to study scenarios that are beyload t
scope of the TF approximation with the help of dedicated mizaksimulations, as discussed
in the next section.

3. Application of the affine approach to numerical simulatians

In this section we show how numerical simulations of the BB@auics can benefit from
the affine approach and we likewise apply this approach tatifyathe accuracy of the
time-dependent TF approximation for several differenhac®s. For simplicity, we present
here the study of the dynamics of rotating BECs on a 2D grid.ephasize that full 3D
simulations of BECs in the quasi-2D regime (Petrov, Holzmamnd Shlyapnikov, 2000;
Salasnich et al., 2002; Mateo and Delgado, 2008) have also performed, which verify
the validity of our 2D results.
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3.1. Efficient simulation of the time evolution of a BEC

Solving numerically the time-dependent GP equatidn (Lhan¢ase of a freely expanding
BEC in the original coordinateg, x), one immediately faces the problem that the size of
the condensate grows by several orders of magnitude afiechemg off the trap. To deal
with this problem, a large and well resolved grid is requjreading to a huge increase of
the computational costs of the numerical simulations, @aflg for two or three dimensional
cases.

Here we present an alternative approach to overcome thidgmo Namely we are
solving the affinely transformed GP equatiénl(13) in adaptardinateqr, £), rather than
the GP equatiori{1) in the original coordinatese). Since the external and internal dynamics
of the BEC are handled by the time dependence of the centmias$ positioR (¢) and the
adaptive matrix\(7), respectively, only the time evolution of the affinely triorsned wave
function v, (7, &) is left and can be computed very efficiently (Eckart, 20083. &Aresult,
in order to obtain the macroscopic wave functiofy, ) in the original coordinates it is
sufficient to apply the transformation E@. [17) once at the ehthe simulation. Moreover,
our method is not limited to the case of free expansion, boterghance the efficiency of
numerical simulations for various experimental scenasiosh as rotating traps or delta-kick
collimation (Ammann and Christensen, 1997).

3.2. Quantifying the accuracy of the time-dependent Theffasi approximation

Since the time-dependent TF approximation plays a key molal@riving the analytic
expression, Eq[(37), for the wave functigrit, ) of a BEC, it is worthwhile to have a
closer look at its accuracy. The time-dependent TF appration is based on assumptioni(34)
meaning that the wave function in adapted coordinat€s, £) remains approximately in its
initial value 1, (0, &) and does not undergo any time evolution at all. With our nucaér
simulations we have quantified the validity of this resutttigo different scenarios involving
rotating traps.

We take advantage of the Bures distance to quantify how nmhechamerically obtained
statey, (7, &) differs from the initial statey,(0,£). In the following, we first recall the
definition of the Bures distance and its properties and tiescribe the 2D model of a rotating
BEC. Finally, we discuss the results of the simulations drat@cterize the parameter regime
where it is safe to apply the TF approximation.

3.2.1. Bures distance The Bures distance (Bures, 1969) of two macroscopic wavetitums
11 andi, is given by

B AR 2 :
B 1, ¥2) = - — AT 1 2 9 48
o 92) (2 ¢<w1|w1><w2|¢2>> (2 NI "”') (48)

where we have used the normalized condition given by[EqF{&t we note, that one obtains
B(11,15) = 0if ¢ = 15 and B(v1,5) = +/2 if ¢, and, are orthogonal. Second, for two
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d-dimensional spherically symmetric Gaussian wave packets

2
VN ~7;

wc(w,al,z) = W €

with different widthso; ando,, the Bures distance Eq. (48) reads

2 2
o] + 05

(d) 20109 d/2
B Wz, 01),Ya(x,00)] = 4|2 |1 — ( ) _ (49)

In the case of two-dimensional Gaussian wave packets wehrdhative difference
ds = (02 — 01) /07 in their widths, Eq.[(409) gives rise to

BY(8,) = BY [va(x, 01), v, (1 + 6,)01)] = % . (50)

\/1+ 06 + 562
Thus, a small relative changg in the width of a two dimensional Gaussian wave packet
results in a small Bures distance, thatBé?)(cS(,) >~ §, < 1. Despite the fact that the
macroscopic wave function of a BEC is not typically Gausstairs estimate can help us
to evaluate the time dependence of the remaining inner digsammich is not included in the
affine approach.

3.2.2. 2D model of a Bose-Einstein condensate in a rotataqg t The numerical simulations
discussed in this section have all been performed with a 2Deimased on realistic values
that are accessible in state-of-the-art experiments. @stes) consists of atoms of mass
m which are condensed and harmonically trapped alongrthend y-direction with the
frequenciesv, andw,, respectively. The time evolution of this system is desatilby the
affinely transformed GP equation_{13) with= 2. The number of discretization steps in
time and the physical length of the grid are chosen as a wédeetween accuracy and
computational time.

The free parameters of our system &igthe anisotropy factor = w,/w,, (ii) the
strengthgN of the zero-range interaction between the atoms, @nd the final rotation
rate .,q Of the trap. All quantities are measured with respect to tiesen time scalé/w,
and the length scale, = \/h/(mw,), respectively. Tablgl1 displays the parameters for the
numerical simulations as well as the relations between Hysipal quantities and the free
parameters. For convenience we refer to the dimensionlemstity gN = gop N/ (hw,a?)
as the interaction strength as it combines the 2D couplimgtemtg,, with the number of
particlesN.

It is worth emphasizing that our 2D model can be experimbntahlized as a 3D disk-
shaped BEC in a highly anisotropic trap (Gorlitz et al., 20Bdrger et al., 2002; Rychtarik
et al., 2004), with the confinement length= \///(mw.) along thez-direction being much
smaller than those along the andy-direction (Petrov, Holzmann and Shlyapnikov, 2000;
Salasnich et al., 2002; Mateo and Delgado, 2008), wherés the trap frequency along
the z-axis. As a result, the 2D coupling constant, is determined by the 3D ongp as
gop = gsp/(V2ma.), wheregsp = 4mh%as/m anday is the s-wave scattering length. Using
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Table 1.List of the grid settings, physical trap frequencies andi2@raction strength in terms
of the simulation parameters.

number of discretization steps N, = N, = 27
physical length of the grid L,=L,=20a,

trap frequency along the-axis w,
trap frequency along thg-axis w, = ew,
2D-interaction strength gopN = gN hw,a?

these relations, the results based on the full 3D simulati@ve been shown to be in good
agreement with the results of the 2D simulations.

3.2.3. Time evolution within a rotating traprhe starting point for all simulations is the
ground-state wave function, (0, &) of the BEC obtained by imaginary time propagation
of Eq. (I3) withA(7) = 1 in combination with the Newton method. For the time evolatio
itself, the affinely transformed GP equatidnl(13) is solvéithwn implicit Adams-Bashforth-
Moulton multi-step algorithm (Press et al., 2007).

The first scenario in which the accuracy of the time-dependén approximation
is checked numerically is the rotating trap. In this case tthee-dependent trap matrix
2*(t) = O(t)D O™ (7) contains the diagonal matrix

w2 0
D=
( 0 w? )

with the time-independent trap frequencies and an orthalgoatrix

O(r) = ( cos (1) sing(7) )

—sinp(1) cosp(T)

describing a rotation around theaxis with the time-dependent anghé¢r).

Triggered by experiments (Hechenblaikner et al., 2002; twiga et al., 2013), the
rotation ratep(7) of the trap has been chosen to have a sigmoidal ramp for- < 7,4, as
depicted in Fig[R, and to keep equal to the rotation ¢atg for r > T,.4. We assume that
the characteristic timé,,q is large enough, that is, 7,.,q > 1, to have an adiabatically slow
increase of the rotation rate in order to avoid collectivei@tions of the BEC. In addition,
the final rotation rate>.,q is kept significantly smaller than the trap frequengyin order to
avoid the generation of vortices. For the rest of this sectve introduce the dimensionless
characteristic timé,,q = w,Tw.q/(27) and usel,,q = 15 for all numerical simulations.

Fig.[3 shows the time dependence of the Bures distétiee = B [{A(7, &), ¥4 (0, &)],
Eqg. (48), between the time evolved statg(r, &), being the numerical solution of Eq.
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Figure 2. The dependence of the rotation rgtér) of the harmonic trap on time. After a
smooth ramp within the characteristic tifig,q, the rotation rate>(r) reaches its maximum
valuey.,q and is kept constant for at > T¢,, 4.

(13), and the initial state’, (0, &) in adapted coordinates. The Bures distai¢e) exhibits
oscillations over the whole simulation timeand the local maxima of this oscillation grow as
long as the rotation rate increases until they reach thetrmmad valueB,,; at the characteristic
time 7.,q and stay constant from that point on. Since the magnitudeeBures distance is
very small,B,,; < 0.07, the time evolved state does not differ significantly frora thitial
state.

B(r)
Brot ---------------------------- AT AN RAT RN
0.06
0.04 - i
0.02 :
1 1 Tend i 1
0 5 10 15 20 w,T/(2m)

Figure 3. Time-dependence of the Bures distari¢er) = B [1a (T, &), v (0,£)], Eq. [48),
between the time evolved statg (7, &) and the initial state, (0, £) in adapted coordinates
for a rotating trap with the anisotropy facter= 1.5, the final rotation rat€.,q = 0.4 w,
and the interaction strengglV = 100. The Bures distanc8(r) exhibits oscillations during
the entire simulation, while the maxima of this oscillatigrow until the rotation rate(7),
shown in Fig[2, reaches its maximum valgg,q at the characteristic timé.,q = 15, after
which they remain constant at the vale,;. The black circles indicate the times for which
the corresponding density distributions are displayedgn:

For the parameters used in F[d. 3 the Bures distance ossillaith the frequency
WRures = 1.8 Yenq fOr 7 > T.,q. Since the Bures distance, EQ.|(48), only measures thewbsol
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value of the overlap between two wave functions, the timdvexdbstatey, (7, &) actually
undergoes collective oscillations with the frequengy,.s/2. In general, the frequency of the
collective oscillations caused by the rotation of the trepehd on the rotation ratg(7) as
well as the anisotropy facterof the trap.

In Fig. [4 we contrast the dynamics of a rotating BEC in origiaad adapted
coordinates while the whole time evolution is shown in maljevhich is available in the
online supplementary material. FIg. 4a depicts the twoetdisional (non-integrated) density
distributions|t (¢, z)|*> of a BEC in the original coordinates at different evolutidmes,
whereas the first column of Fig. 4b displays the correspandémsity distributiong/, (7, £)|?
in the adapted coordinates. In contrast to the densityiloligton |+ (¢, )|?, which follows
the clockwise rotation induced by the rotating trap, thesitgndistribution |, (7, £€)]? in
adapted coordinates does not show any visible changesghidtit the residual dynamics,
we present in the second column of Hi@j. 4b the differeifeg(r, £)| — |4 (0, €)||? of the
absolute values of the wave functions, which depends onlipcal effects of the density
distributions and not on their phases. This difference lmaszero values only at the edge of
the BEC forming a ring-like structure, which rotates clogssin accordance with the density
distribution|« (¢, x)|? presented in the first column. However, the magnitude ofrdsglual
dynamics is very small compared to the magnitude of the tedsitribution|y, (7, £)|> and
it oscillates in accordance with the Bures distance shoviigri3.

In summary, we have proven that the time-dependent TF appation applied to the
affinely transformed GP equatidn (13) provides an accurasergption of the dynamics of a
rotating BEC. Only at the very edge of the BEC a minor amoumeésidual dynamics occurs
that goes beyond the time-dependent TF approximation dsestiiort 3.2]5 we study how the
magnitude of this residual dynamics depends on the diffesetup parameters.

3.2.4. Free expansion after switching off a rotating trafss a second scenario to verify
the time-dependent TF approximation, we have studied theesjuent free expansion of an
initially rotating BEC. Here, the setup is the same as in tist icenario with the exception
that the trap is switched off at= T4 > T..q, that is shortly after the final rotation rafe, 4

is reached. Since the timing of the switch off has a strongamite on the final valuB,.. of
the Bures distance, we have variégt within the first period of the Bures distance afier
for each set of parameters to find the maximal valuggf..

The time dependence of the Bures distance for this case istdépn Fig.[5. During
the slow initial ramp, shown in Fi@] 2, the Bures distanceldigs the collective oscillations
discussed in subsection 3.2.3. After switching off the taap = 7,4, these oscillations
stop and the Bures distance approaches its final v@hdge This behavior is a consequence
of the fact that for a freely expanding BEC the adaptive magrows linearly for large
times, as discussed in sectiion]5.1, and thus the right-hidedo$ the affinely transformed
GP equation[(13) vanishes asymptotically.

The two-dimensional (non-integrated) density distribag in the original coordinates
[4(t, z)|?, Fig.[Ba, as well as in the adapted coordinategr, £)|?, Fig.[8b, are displayed
at different times indicated by the black dots in Hi@j. 5. Tiidire time evolution of these
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Figure 4. Density distributions|i:(t, z)|> and |¢a(7,€)]> as well as the difference
A (7, €)| — 1A (0,€)||” of a rotating BEC plotted for different times as indicatedFig.
3. In original coordinates, Fi@ll 4 a), the density distribntundergoes a clockwise rotation,
while it stays almost constant in adapted coordinates, &idp). The residual dynamics
in adapted coordinates are made visible in the third colusiednsidering the difference
A (T, &) — A (0,€)|]> between the time evolved statg, (7,£¢) and the initial state
¥ (0,€). Only at the edge of the condensate this difference obtainszero values while
its magnitude corresponds well with the oscillations of Biges distance3(7) shown in
Fig.[3. Movie 1 displaying the whole time evolution is avaiin the online supplementary
material.

density distributions is presented in movie 2, which is a@e in the online supplementary
material. Whereas the size of the BEC in the original coatdis quickly grows after the
trap is switched off, the rotation of the BEC stops compleédter a further rotation of about



Efficient description of Bose-Einstein condensates in-tiegendent rotating traps 21

B(7) .
Bfree """"""""""""""" ‘E - 'i """" -
0.06 :
0.04 - Al
002 r : 1
1 1 Tend i i TOH 1
0 5 10 1516 20 w,T/(27)

Figure 5. Bures distancé3(7) = B(a (7, &), ¥ (0, &)) between the time evolved state and
the initial state in adapted coordinates for free expanaifter switching off a rotating trap
with the anisotropy factos = 1.5, the final rotation rate&.,q = 0.4 w, and the interaction
strengthg NV = 100. The trap is switched off &, = 16 within the first period of the Bures
distanceB(7) after the characteristic timé,,.q = 15. The oscillation of the Bures distance
stops after the trap is swiched off and it approaches its fiakle Bg.... The black circles
indicate the times for which the corresponding densityritlistions are displayed in Fifyl 6.

7/2, in accordance with the irrotationality condition, as wedl the energy and momentum
conservation. It is worth mentioning that our results argand agreement with the theoretical
consideration (Edwards et al., 2002) and the experimeatal @Hechenblaikner et al., 2002).

However, in adapted coordinates, Hig. 6b, neither an isered the size of the BEC
nor a significant rotation of the density distribution candieserved. Only by looking at
the residual dynamics visualized again by the differefieg (7, &)| — ¥ (0, £)||?, minor
changes of), (7, &) become visible at the edge of the condensate. Thus, thedapendent
TF approximation used within the affine approach is an egoeltool to predict the free
expansion of an initially rotating BEC as well.

3.2.5. Dependence of the Bures distance on the setup paemét extension of the two
previous scenarios, we now provide a broader study of theracg of the time-dependent TF
approximation. In particular, we have solved numerically &3) for a rotating BEC with and
without subsequent free expansion for many different couatimns of the interaction strength
gN, the anisotropy factarand the final rotation ratg.,.q, thereby using..q = 15 as before.
The results for the Bures distancBs,, and By, are presented in Fig] 7.

As displayed in Fig[7a the Bures distanék,, decreases with an increase of the
interaction strengtly N and increases for larger values of the anisotropy factand the
maximal rotation rate>.,,q. These observations can be explained as follows.

(i) With an increase ofjN, the interaction energy term in Ed._{13) becomes more
dominant compared to the kinetic energy term, resultingrinmproved accuracy of the
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Figure 6. Density distributions|¢ (¢, z)|> and |ya(7, €)|* together with the difference
A (T, €)| — 1A (0, €)||” of a free expanding BEC after release from a rotating traftqro
for different times as indicated in Figl 5. In original coovattes, Figlb a), the rotation of the
condensate comes to an end after an angle of ah@while the size of the condensate grows
continuously. In adapted coordinates, Hiyy. 6 b), no suckctffare visible and the density
distribution stays almost constant. In the third columndtference|x (7, £)| — |14 (0, €)]|
between the time evolved statg (7, £) and the initial state, (0, &) is illustrating the residual
dynamics in adapted coordinates. This difference onlyinbtaon-zero values at the edge of
the condensate while its magnitude grows together with thee®distanced3(7) shown in
Fig.[3. Movie 2 displaying the whole time evolution is avaiein the online supplementary
material.
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Figure 7. Contour plot of (a) the maximal Bures distanBg,, for a purely rotating trap with

a time-dependent rotation rate as shown in Elg. 2 and (b) tiaé Bures distancéy,.. for

a subsequent free expansion of an initially rotating tragliasussed in sectidn 3.2.4. For
both scenarios the interaction strength increases from left to right, while the range of the
anisotropy factoe and the final rotation raté..q is the same for all plots, respectively. The
differences between the case of a purely rotating trap @adree expansion after the rotation
(b) are minor. In general, an increase in the interacticansfthg NV leads to smaller values of
the Bures distance, while in contrast the Bures distan@stak larger values as the anisotropy
factore and the final rotation ratg.,,q increase.

time-dependent TF approximation. For this reason, the 8digtanceBs,,; decreases as the
interaction strengtlg N grows.

(ii) Since a spherically symmetric trap with= 1 cannot transfer any angular momentum
to a BEC, the wave functiofi, (7, &) will remain in the initial state), (0, £), giving rise to
B..: = 0. However, fore > 1 the rotation of the trap affects the dynamics of the BEC. The
Bures distancés,; increases with an increase @fsince the kinetic energy term in Eq.{13)
depends on the spatial derivatives of the wave function bekfore increases for a stronger
confinement along one axis. Thus, the time-dependent TFozppation works better for a
system with small anisotropies.

(i) For larger values of the maximal rotation rate,,, the total energy transfered
from the trap to the BEC increases, raising the chance tdeexollective modes of the
condensate. However, these modes are not taken into acetthirt the framework of the
TF approximation. As a result, the amount of residual dymamgrows with the increase of
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the maximal rotation rate.,,. The quadrupole mode is well known to be excited wiien
approaches the critical value = 0.71 w, (Madison et al., 2001; Hodby et al., 2001) and the
time-dependent TF approximation breaks down completethisiregime. We have verified
this fact with our numerical simulations and for the respitssented here, we have always
made sure to stay well below the threshold for vortex creatio

Since, the dependencies Bf,; and By, on the simulation parameters are very similar
to each other, as shown in Fig. 7, we conclude here that treegulent free expansion of an
initially rotating BEC does not substantially amplify tresrdual time evolution in the adapted
coordinates.

In summary, we find that the accuracy of the time-dependerapifoximation depends
on various parameters with the most important one beingrtegaction strengtly N. For
valuesgN > 100, the transformed wave functiam, (7, £) is practically constant in time and
the time-dependent TF approximation holds true. In moseerpental setups, one typically
aims at a large number of particles in a BEC to improve theaigmnoise ratio. For this
reason, the TF approximation provides a valuable tool teriss the dynamics of a large
class of rotating BECs.

4. Constants of motion

In the preceding section we have confirmed the accuracy ofmatihod based on the time-
dependent TF approximation by dedicated numerical sinaunaiof the affinely transformed
GP equation[(13). However, the reliability of such numdrgienulations themselves must
also be guaranteed. One possible way to test it is based amasioms of suitable scenarios
that possess certain underlying symmetries which by Nosttleeorem give rise to specific
constants of motion. In this chapter, we focus on the timediational invariance and
the rotational symmetry and discuss the correspondingggnand angular momentum
conservation for both, the matrix differential equatiod@nd the GP equatiohl(1).

In this section, we first show how the matrix differential atjan [14) can be rewritten in
terms of a Hamiltonian formalism. Second, we analyze théecesf-mass motion of the BEC
with regard to a generalized version of the Ehrenfest tmedBodurov, 1998) and third, we
present expressions for specific constants of motion of tRe@uation[(1) valid within the
time-dependent TF approximation.

4.1. Hamiltonian formalism for the matrix differential eafion

Here we establish a connection between the matrix diffeeeiguation [(I4) and the
corresponding Hamiltonian formalism. For this purpose fivge perform a transformation of
the adaptive matrix and the the time coordinate to bring th&imdifferential equation (14)
into a specific form that does no longer contain the initiaptmatrix £2%(0). We call

the resulting equation the canonical form of the matrix edghtial equation. We then
introduce the Hamiltonian and verify that the correspogditamilton equations of motion
are equivalent to the canonical form of the matrix differ@nequation. With the help of this
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Hamiltonian we finally obtain two constants of motion for ttmatrix differential equation,
which we later on relate to the conservation of the totalgnand the angular momentum of
the BEC.

4.1.1. Canonical form of the matrix differential equatiokVe start by defining the orthogonal
matrix O and the diagonal matri® via the diagonalization of the initial trap matrix*(0)
according to

ODO" = 2%0). (51)
Moreover, we introduce a new time scale with the help of thentjty
o = [det 22(0)]> . (52)

Based on these new quantities, we now consider the tranafiam
1 -
A==-0ADz0",
(@

s o 1s (53)

(%

to the new adaptive matrixl and the dimensionless time The canonical form of the
matrix differential equation is simply obtained by insegithe transformatior_(53) into the

matrix differential equatiori (14) thereby taking into agnbthe relationlet(A) = det(A). It
describes the time evolution of the new adaptive matfi¥ and reads

FUDY EE Gy 1) p—— (54
dt? det A(f)’
where we have introduced the transformed trap matrix
o 1 .
2% (1) = = OT22(t/a)O. (55)
The initial conditions[(1b) accordingly transform to
. 1 dA
A0)=aD and T lico = 0, (56)
whereas the irrotationality condition (16) preservesatsif under Eq.[(53)
podAdAT -
AT ()= = —=A(t). 57
()= = == A (57)

Next we show that the canonical form of the matrix differahgiquation[(54) can be embedded
in a Hamiltonian formalism.

4.1.2. Hamiltonian and equations of motioWe start by introducing the momenta

- dAys
I3 = —= 58
Y (58)
as conjugate variables to the matrix elemehyis together with the Hamiltonian
IO o~ o e 1
H(A L) = =T IITYIT + ATQ*(H A + _ 59
(4.11,8) = 5 T { (B} +—— (59)
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The Hamilton equations of motion

d/LxB e OH ~
D — {H, Aag} iy = —=—— = s,
7 = sk T 5
A1,z - oOH A
8 (H Hogtiip = - = —PA+ —— AT 60
a it 0Aug det A (60)

are mathematically equivalent to the canonical form of ttadrix differential equation (34).
Here, we have introduced the corresponding Poisson bracket

af  dg dg Of
o= ()
(41D %; Ohns Ollas  OAns Ollp

of two functionsf andg that depend on the matrix elements; and 1, ; and made use of
the relation

d (det /I) —det Ao d A 24 L AT det A, (62)
d/laﬁ 8/1046

When we accordingly define the “momentd’= dA/dt, Eq. (53) implies the following
transformation of the conjugate variables

A=a0"AOD 2,

I=0"110D* (63)
We emphasize that Eq._(63) is not a canonical transformadimh that a corresponding
Hamiltonian formalism for the original matricesand /7 does not exist, as can be seen by
inserting the transformatioh (63) into the expressionierPoisson-brackdi (61). As a result,

we arrive at

o1 f 9y _ 99 2 of
{f7 g}(A,H) - o Z (a/le QV)\(O) 8]]#)\ a/le QV)\(O) 8]]#)\ ) (64)

JTR79
which demonstrates that the structure of the Poisson br6Bg¢ is not preserved by the
transformation[(63). Thus, there exist no correspondinmilan equations for the original
matrix differential equatiori{14).

4.1.3. Energy conservationWhen we consider a time-independent trapping potentidi wit
the constant trap matrii)z(f) = (22, the energy is a constant of motion given by the
HamiltonianH (A, IT), Eq. [59). In this spirit, we call the quantity

B(A IT:7) = %Tr [0 [ + A7 () 4} +

(65)

det A
the total energy associated with the matrix differentialagpn in canonical form also for a
time-dependent trap matri? (7).

Using Eq. [(58) together with the inverse of the transforora{g3) in Eq.[(6b), the total
energy associated with the matrix differential equaticadeein terms of the original adaptive
matrix

EA(t)ler %%ju/ﬁ(t) QX () A(t) | 272(0) ¢ + ! ,  (66)
2 dt dt det A(t)
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where22(t) = o2 0 2%(1) OT and272(0) = O D~ O". The fact that the total energly (66)

is indeed a constant of motiond#?(¢) = 2?2 can be easily verified by taking the time derive
of Eq, (€6) on both sides and inserting the matrix differequation[(14) on the right hand

side of the resulting equation.

4.1.4. Angular momentum conservatidfor an isotropic harmonic potential with corre-
sponding trap matrix?%(f) = @2(#) 1, the angular momentum of a BEC is preserved. In
order to later see how this conservation law is related tarthtrix differential equatiori(14),
we study the quantity

LA I = AT — T AT (67)
which we denote as angular momentum matrix associated katimatrix differential equation
in canonical form. Note, that this quantity is fully indeplemt from the irrotationality
condition [5T) which reads in terms of both conjugate vdesd™ 17 — [T A = 0.

We now prove that this angular momentum matrix is presergedri isotropic trapping
potential. For this purpose, we take the total derivative.afith respect to the timé and
obtain

dL 0L .

FrRrTe +{H, L} i i) (68)
where the Poisson brackét, E}(A?ﬁ) is defined by Eq[{81). Since the angular momentum
matrix L does not explicitly depend on the timethe partial derivativé L /df vanishes. With
the Hamiltonian[{5R), the evaluation of the Poisson brafiketly yields

% _ AAT () — () AT (69)

Thus, the angular momentum matixis a constant of motion if the matrid AT 2%(7) is
symmetric, which is indeed the case for an isotropic trajp Wit (7) = ©(#) 1.
When we insert the transformatidn {63) into the definitioid)(Gve obtain the angular

momentum matrix in terms of the original adaptive matrix

La(t) = O | A(t) 272(0) % - %9—2(0)/1%) 0. (70)

We emphasize that the angular momentum matrix explicithedes on the orientation of the
initial trapping potential via the orthogonal matixdefined by Eq.[(51).

4.2. Constants of motion of the Gross-Pitaevskii equation

Our efficient description of the time evolution of a rotatBigC within the TF regime, Eq_(37)
rests upon two different, but related approximationsh@ initial macroscopic wave function
¥ (0,x) is assumed to be given by the ground state in the TF approximdtg. [29), and

(i) the kinetic energy part in the affinely transformed GRuatipn [13) is supposed to be
negligible in comparison to the potential and interactioargies involved. According to this
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second assumption known as the time-dependent TF approaimtne affinely transformed
wave function, being the solution of E. (13), does not dig@ny essential dynamics

Ya(T, &) = ¥ (0,8). (71)
In section[2.22 we used a combination of both approximati¢i) and (ii), to derive the
efficient description of the BEC dynamics in the TF regimeegiby Eq.[(317).

However, for BECs that are not deep in the TF regime and whomsengd state differs
significantly from Eq.[(ZD), the assumptidn71) can stitiyade very accurate results for some
scenarios such as freely expanding BECs. For this reasdiirsiveeek an efficient description
that does not involve approximation (i), but includes thaatground state (0, ) of a BEC
or its numerically determined approximation. Based onghghtly more general description,
we derive approximate expressions for the total energy laadmngular momentum of a BEC
that allow further tests of assumptidn [71) by analyzingsjiule time dependencies in the
constants of motion that should not occur due to the chosemtry of the GP equation.
Eventually, we also include approximation (i) and relaeersulting expressions for the total
energy and the angular momentum based on the TF ground B8téo(the corresponding
constants of motion associated with the matrix differdmgpation.

4.2.1. Effective description of the dynamics based solethe time-dependent Thomas-Fermi
approximation In order to determine the slightly generalized efficientodiggion of the BEC
dynamics, we first relate the initial state in adapted coardisy, (0, &) with the original
ground state) (0, ) by evaluating EqL(20) dt= 0 giving rise to

a(0,€) = e FPOLEIROL Y (0,£ + R(0)) . (72)

Next, we obtairy, (, &) simply by combining Eqs[(71) and(72). We insert the restth i
Eq. (I7) and thereby use the substitutfor- A~ (¢) [z — R (t)]. Hence, we find as efficient
description of the BEC dynamics that is solely based on the-lependent TF approximation

x) ~ L el X(t@) ) [x -
Uit x) NAE0) ¥ (0,A7(t) [z — R(t)] + R(0)) , (73)

where we have introduced the phase
X(t:2) = 3 {80~ 50 + P @ + 5 [o — R(O)" C) 2~ R(1)
—P(0) (A7 () [z — R(t)] + R(0)) } - (74)

Note that by insertion of)(0,z) = ¢rr(x) together with Eq.[(29) into Eq[(¥3), we
consequentially arrive at the expression (37).

4.2.2. Generalized Ehrenfest Theorem for a Bose-Eins@nu@nsate in a harmonic trap
According to the generalized Ehrenfest-Theorem (Boduk®98), the expectation values

@ = [V t@)@ulte)dl, (75)
R4

Bl = [V EDpoto) s (76)
Rd
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of the positiont = « and the momentum = —iAV ., operators satisfy the classical equations
of motion

d . 1.
& <m>¢(t) T <p>1p(t)
By = —m 20 (@)~ p1)] + F(). )

The expectation values are evaluated with the full solutiohx) of the GP equatiori{1) for
the harmonic potential, Eq.1(3). Since the EGS] (77) comevith the Eqgs.L(5) for the time-
dependent vector® (t) and P (t), we can identify the latter ones with the center-of-mass
position(z),,,, and the average momentum),,,, by simply choosing the initial conditions
according to

R(0) = (@), and  P(0)=(p)y, - (78)
Here, we have introduced the shorthand notation of the drdeal statey, = (0, x).

We emphasize that the paramet®s$¢) andP(¢) introduced in sectioh 2.1.2, have strictly
speaking no physical meaning unless their initial condgi@are fixed in accordance with

Eq. (78).
Next, we discuss if the above assignment
R(t) = (&), and  P(t) = (P)yq (79)
is also consistent with our efficient description, Eq.l (A8sed on the time-dependent TF

approximation. For this purpose, we insert £qJ (73) intoEhs. [Z5) and{76) and make use
of the substitution

x' = A7(t) [x — R(t)] + R(0) (80)

to arrive at the expectation values
(@) = R() + A) [ (2),, — R(0)], (81)
By PO+ ATO[0)y, ~PO] +m A (@), ~RO)]. 62

Thus, usingR (0) andP(0) according to Eq.[{78), the last two expressions simply reduc
to Egs. [79), which proves that our efficient descriptioneloaen the time-dependent TF
approximation, Eq[{73), satisfies the generalized Ehettifeorem.

4.2.3. Energy of a Bose-Einstein condens#tere we use the approximate BEC wave
functiony (¢, x) given by Eq.[(7B) to derive an explicit expression for thatenergy

E(t) = Exin(t) + Epot(t) + Eint(t) (83)
of the BEC within the time-dependent TF approximation, vettée kinetic, the potential and
the interaction energy are defined by

h? N
Ekin(t) = % /]Rd |Vac¢(tv iB)|2 dz = % <ﬁ2>w(t) ) (84)
Balt) = [ Vit ot o) d's = N (V(t,2)) . 85)

N
Bult) = § [ Wt@)dls = 5L (uit.2)), - (86)
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In we evaluate each of these energy terms arairols the energy per
particle

Et)  P*t) 1 i . Ein(0)
N = g HVERO) T A0 A7) (pe ), | + N det A(t)
m AT dA
so{|% 5 0] (o -rojem-RO") | @)
where we have assumed that the initial wave functiéh x) is given by
¥(0,@) = gp (x — R(0)) et PO, (88)

Here,¢p(x) is the real-valued ground state of the BEC in the comoving&af the trap as
discussed in sectign 2.1.6 and the ph&3@) x /i accounts for the initial momentuf(0) of
the BEC in the inertial frame of referenag analogously to the TF ground stdtel(29). The first
two terms in Eq.[(87) display the kinetic and the potentiargy of the center of mass of the
BEC, respectively, whereby we have udé@, R (t)) as shorthand notation for the harmonic
potential [B). The third term corresponds to the quanturaqune and its expectation value is
evaluated with respect to the absolute valué), )| of the initial wave function. The forth
term describes the mean-field interaction energy. The ¢ast is determined by the explicit
form of the initial wave function)(0, ) and represent the inner dynamics of the condensate
associated with the deformation of the BEC which correspdadthe evolution of the adaptive
matrix A(t).

When the initial wave functiog (0, x) is given by the TF ground stater(x), Eq. (29),
the energy per particle reads

2

as shown i Appendix B|2. HerE(t) denotes the total energy associated with the matrix
differential equation given by Ed._(66) whereas: is the chemical potential within the TF
approximation, EqL(30).

By applying Eq. [(Ib) to the energy per particle](89) and assgmwithout loss of
generality that’ (0, R(0)) = 0, the initial energy per particle for a BEC in the TF ground
stateorr(x) reads

Erp(0)  P*(0) N d+2
N 2m d+al™
and is determined solely by the initial momentd0) and the chemical potentigly.

+V(t,R(t)) +

(90)

4.2.4. Angular momentum of a Bose-Einstein condenbatanalogy to the previous
subsection, we now discuss the angular momentum of a BEQnwiitle time-dependent

TF approximation. Indeed, as derived in Appendix|B.3 theudsrgnomentum operator with
respect to the center-of-mass coording®g) andP(¢) is defined by

L=(z-R()x(p—P1). (91)
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In we show that the expectation value of the axgnomentum operator,
Eqg. (91), evaluated with respect to the approximate wavetiom (73), is given by the relation

. R dAa . T
(L), = <{A<t> &~ R(O)) % {m W ia - R(0)]+ 4 p}>% 92)

where we have used the initial conditiohs](78). Here, the ¥Yiestor of the cross product
represents the position, while the second vector correisptm the momentum associated
with the inner dynamics of the BEC. For the sake of a concisthemaatical notation, we
map the angular momentum operator to the so-called angwarentum matrix operator via
Ly = ejle], wheree ;;,; denotes the Levi-Civita symbol. Applied to E.{92) this mimg
yields the following expression for the matrix operator

dA

~—(lz-RO)] [z - R(O)]T>w0 AT(t)]

FAM) ([ = RO] @7, A7 () = 4770 (pe [~ RO)]") A1) (93)

This matrix notation of the angular momentum is especialful if the initial wave function
(0, x) is approximated by the TF ground stater(x), Eq. (29), since in that case Ef.{93)
reduces to

<z>TF - z‘fi [A(t)rz (0)% _ e (O)AT(t)}

2 MR T
FE det 02(0)]% O L,(t)O (94)

as discussed ip Appendix B.5. The angular momentum maditji¢) and the orthogonal
matrix O are given by Eqs[{70) and (51), respectively.

In conclusion, the deep connection between the constam®tdn of the GP equation,
Eq. (1), and the matrix differential equation, Eq.l(14)yslrated by Eqgs[ (89) and (94), once
more highlights the benefit of the affine approach for the digison of the BEC dynamics.
Not only grants the solution of Ed._([L4) valuable insight®ithe time evolution of a BEC,
but it is also relevant for numerical applications.

5. Special properties of free expanding Bose-Einstein cordsates

Experiments dealing with quantum gases usually involvetofiflight pictures to deduce the
state of the system under study. It is well known, and we wikfty recall this statement
later, that in the long-time limit the spatial density distition obtained by time-of-flight

measurements is determined by the initial momentum didtdb of the quantum gas if the
free time evolution is described by the Schrédinger equatioother words, a non-interacting
guantum gas undergoes a ballistic expansion if it is retedismm the trapping potential.

However, it is not obvious that this statement holds trueffiee expanding BECs governed
by the non-linear GP equation. In fact, for BECs a reversaticel applies (Eckart, 2008),
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namely that the momentum distribution in the long-time timigiven by the initial spatial
density distribution. This relation is not only relevant the interpretation of time-of-flight
pictures of BECs, but it also plays a role for matter-waveri@ometry, where the atomic
clouds expand freely between the laser pulses.

This section starts with the discussion of the analytictsahs of the matrix differential
equation[(I¥) in the long-time limit as well as for isotrojmétial traps. We then recall the
long-time behavior for the Schrodinger equation beforewve to the GP equation.

5.1. Analytic solutions of the matrix differential equatio

For a pure free expansion, that & (t) = 0 for all timest > 0, the matrix differential
equation [(I4) possesses analytical solutions that candxktosdetermine the macroscopic
wave function of a BEC in the long-time limit. In order to dexithese solutions we assume
without loss of generality that the coordinate system aligned with the principal axes of the
trap at the initial time = 0. As a consequence, the adaptive mattix) is diagonal during
the free expansion, thati§(t) = diag [A\;(?), ..., Aq(t)] for ¢t > 0, and the scaling parameters
A; withi = 1,2, ..., d are determined by the system of non-linear differentiabdigns

dz)\i . CUZQ(O)

d? Ai H;'l:1 )‘j ’
which are a special case of equations| (14)Cat (22) for fredutien. The initial conditions
(@8) reduce to

(95)

d\;
Ai(0) and ar |, 0, (96)

accordingly. Here the frequencieg0) denote the initial trap frequencies along the principal
axes.

5.1.1. Long-time limitSince the scaling parameters(t) determine the size of the
condensate, they grow as the condensate expands freelye Hea right hand side of Eq. (95)
vanishes in the long-time limit and the scaling parametpp@ach the linear dependence

ast — oo. In general, the constants andb; are determined numerically. However, in the
case of an isotropic initial trap Eq._(95) can be solved aility also yielding the values for
a; andb,; as shown in the next subsection.

5.1.2. Isotropic case For an isotropic initial trap, that is;(0) = wy, the scaling parameters
Ai(t) are given by the single scaling parametén) foralli = 1,2, ..., d and the system of non-

linear differential equations, Ed. (95), decouples. WensirgAppendix ¢ that the function
A(t) is a solution of the integral equation

At) Cd/? 92
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Depending on the dimensionality, Eq. [98) gives rise to explicity = 2, or implicit,
d = 1 andd = 3, solutions for the scaling parameti(t), which are discussed in the next
paragraphs.

The cased = 1 The left-hand side of Eq_(98) gives rise to the transcerad@ofuation
VA =1) +1n <ﬁ+ﬁ) = V2wt
which can also be written as
A= V2t .
1—§+§ln(ﬁ+m>
It is clear that for long times, thatist > 1, the function\ = v/2 wyt, since the denominator

in the right-hand side of EJ._(P9) approaches unitjas oo. Taking into account the terms
in the denominator scaling as! andin(A\)A~!, we finally arrive at the approximate solution

A () 2 V2wt — % [ln (4\/5 wot) - 1} . (100)

Here we have neglected all terms, that vanish in the long-timit.

(99)

The cased = 2 In the case of two dimensions, the integral in the left-hadd sf Eq. [98)
yields/\2(t) — 1, leading to the exact solution

Aop () = /1 + w2 2 (101)

valid for all t > 0.

The cased = 3 For a three dimensional BEC the integral in the left-hane siflEq. [98)
can be expressed in terms of the Gaussian hypergeometdtdnnF (a, b, c; z) leading to
the implicit equation
1121 VL (3) \F

Fl=—= 2 2. )= X2 \3) _ J2 ¢ 102

2 1( 372737)\3> ]—,(%) 3&)0 ( )
for A(t), where I'(x) denotes the Gamma function. Since the hypergeometric ibmct
o F1(—1/3,1/2,2/3;1/)3) approaches unity as — oo, the solution\(¢) of Eq. (102) in
the long time limit, that isvgt > 1, is given by

vl (3) \f
Asp(t) & ———3% — wot. 103
3D< ) Ia (l) + 3 ) ( )

6

When we compare the relatiods (100), (101), dnd](103) with(&d), we find that the
coefficientd; = \/2/d wp.
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5.2. Connection between the long-time behavior of the wawetibn and the initial state

Here we show how the long-time behavior of the macroscopievianction of a BEC can be

estimated in the case of free expansion, although the dyisamgoverned by the non-linear
GP equation. Since the approximate analytic result for B&@Pgrasts the long-time solution
of non-interacting wave functions, we first have a look at Sohrddinger equation before
discussing the GP equation.

5.2.1. Schrddinger equationThe Schrodinger equation describing the free evolutiorhef t
non-interacting wave function(¢, ) in ad-dimensional space reads

L Ov(tz)  p?

and has the formal solution
.52

Uit @) = e i (0, ) (105)
in terms of the initial wave functiom (0, ). When we use the Fourier transformation

~ 1 i

— —+pT d

90.0) = s | i O0.2) (106)

of the wave function)(0, ), we can cast EqL(105) into the form
1 _img2 _it (o mz\? o~ d
Y(t,x) = We = /}Rde v (P5) ¥(0,p)dp. (107)

For long times, that is in the limit — oo, the exponential function inside the integral
on the right-hand side of E._107 oscillates very rapidly amdy the values ofp in a
narrow region aroungp = mx/t contribute to the integral. Hence, when we assume that
the momentum distributiod(o,p) is a smooth function op in this region, we can evaluate

(0, p) atp = ma/t and perform the remaining integral, leading to the relation

o\ d)2
m _img2 ¥ m_m
Wt @) = (7) eThE g (0,52 (108)
Consequently, as is well known, the spatial density distiim in the long time limit
2~ (M ¢z mx ?
wit2)f = () |0 (0,57)] (109)

is determined by the shape of the initial momentum distiﬁtnui)(o, D).

5.2.2. Gross-Pitaevskii equatiofor free expanding BECs a similar relation can be
established based on the affine approach. In order to contpareesults derived for the
Schrddinger equation and the GP equation, respectivaly,sitiitable to consider the wave
function ¢p (¢, ) that describes the inner dynamics of the BEC where the ceftmiass
motion has already been eliminated. As shown in settidnt@eltime evolution ofp (¢, )

is governed by the transformed GP equatldn (8) which isedl&d the affinely transformed
wave functiony, (1, €) by Eq. [10). If the initial wave functionp (0, ) coincides with the
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TF ground state, Eg[(B2), the time-dependent TF approiom#84) holds true during the

free expansion and we arrive at the solution
1 i[m. TdA q—1
i3 AT ==80)] (0, A : 110
Up(t, ) = =0 U (0,47(t) x) (110)
where we have used the definitionl(12) of the symmetric mat(iy.
In the long-time limit and for free expansion the adaptiven®al(t) grows linearly, Eq.
(@7), that isA(t) = Bt ast — oo with the diagonal matribB = diag(by, . .., bs). When we

apply this limit to expressioh (110), we obtain

1 i [77L 2_ ] _1m
o ______ehlm: 0.B "—). 111
Un(t, @) = e vo (0.577) (112)
As a result, the spatial density distribution in the longditimit
2~ 1
unt @)= e Juo (0,877 (112)

is determined by the initial spatial density dlstrlbut|ondathe time-dependent scaling.
Obviously, Eq. [(IIR) is a direct consequence of the timesddpnt TF approximation
on which this derivation is based and stands in contrast ladioa (109) derived for the
Schrédinger equation.

In the next step we obtain a similar relation for the momentlistribution of a free
expanding BEC in the long-time limit. In order to do so, weerisEq. (111) into Eq.[(106)
for the Fourier transform and arrive at the expression

1; (t ) N e_%ﬁ(t) %gif
yP) =

P (27ht)4/2/det B Jge

where we have introduced the new integration variable: «—pt/m. For long timeg — oo,

the argument of the initial wave functiafy, gets practically independent af, which allows
to perform the remaining integration and to obtain

Gotepy = SV iy, 1)

e—%ﬁ(t)—ﬁm y
(im)¥2+/det B

Hence, in the case of the GP equation for free expansion, dmantum distribution in the

long-time limit

im .2

enz® b ((],B_1 p + B! p) da’, (113)

‘¢D<t’p>‘ = detB ‘wD (0 B 172)‘ (115)
is given by the initial spatial density distribution, whfl@ the Schrédinger equation it is vice
versa, Eq.[{Z09). Moreover, according to Hg. (115) the mdamerdistribution|«p (¢, p)|?
of a free expanding BEC becomes time-independent in the-tiomg limit. However, we
emphasize that for the derivation of EQ. (I.15) we have reguthe validity of the time-
dependent TF approximation during the free expansion. Asrseaxjuence, for a proper
interpretation of time-of-flight pictures of BECs the irdetions play an important role,
especially deep within the TF regime.

In addition, we point out that the long-time behavior of aefyepropagating BEC is of
particular importance for atom interferometry and thatrttethods presented in this section
have been successfully applied by (Roura et al., 2014) tdystine influence of gravity

gradients on the properties of an atom interferometer.
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6. Conclusion

In this work we have introduced a natural generalization leg scaling approach for
time-dependent rotating harmonic traps, the so-calledheaffipproach. In contrast to the
hydrodynamical approach, we carried out this generatimatiirectly to the GP equation by
() eliminating the center-of-mass motion and (ii) by apptya linear map to account for the
main part of the internal dynamics of a BEC. With the comborabf this affine approach
and the time-dependent TF approximation, we establishedfiarent analytic description of
the BEC dynamics.

We verified the accuracy of this method by performing full rewimal simulations of the
GP equation for two scenarios: (i) a pure rotation of the a&rag (ii) a free expansion of an
initially rotating BEC. In both cases we found an excellggreement of the numerical results
with our approximate analytical solution for many differ@ombinations of the interaction
strength, the anisotropy factor and the final rotation rdténhe trap. Moreover, the affine
transformation can be successfully used to improve th@peaence of numerical simulations
for a variety of experimentally relevant scenarios by sujvihe transformed GP equation
rather than the original one.

By employing a further transformation, we introduced thearacal form of the matrix
differential equation that governs the time evolution of #daptive matrix and presented
its corresponding Hamiltonian formalism. We furthermonalsized the relation between the
constants of motion of this matrix differential equatiorddhe constants of motion of the GP
equation in connection with the conservation of the totargy and the angular momentum
of a BEC. For both cases, we derived explicit expressiorid imthe TF regime.

In agreement with our affine approach, the spatial densisyridution of a freely
expanding BEC in the long-time limit does not display theiaiimomentum distribution in
general, unlike a freely expanding atomic cloud that ewlaecording to the Schrédinger
equation. Instead, it resembles the affinely transformédlirspatial density distribution.
However, we showed that a converse relation between thiakgatl momentum distributions
for a BEC in the TF regime holds true, namely that the momentiistribution of a free
expanding BEC in the long-time limit is indeed given by itiial spatial density distribution.
These relations are a direct consequence of the nonlipedrihe GP equation and stand
in contrast to the well known ballistic expansion that wauadtions governed by the free
Schrédinger equation show. Hence, in order to properlyrpnét time-of-flight pictures of
BECs, the mean-field interaction has to be taken into accdins is of special importance
deep within the TF regime where the interactions play a dantirole.

In summary, it can be stated that scaling solutions like ffiaeaapproach presented
in this chapter are valuable tools for studying the dynarofcstrongly interacting quantum
gases. Not only do scaling approaches provide efficient wagscurately describe their time
evolution, but they also allow to unravel and separate tfferdint layers of their dynamics.
And even if a scaling approach cannot account for all of theeoled dynamical properties,
it can still offer valuable insights by dedicated numerisiahulations that take advantage of
the corresponding affine transformations. Finally, weapdte further fruitful applications of
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the presented affine approach in the fields of matter-waeef@rbometry and multi-component
condensates.
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Appendix A. Affine transformation

In this appendix we outline the derivation of the affinelynstormed GP equatioh_(1L3).
This is done by first eliminating the center-of-mass motibthe condensate and second, by
performing a linear transformation of the coordinates tbgewith a unitary transformation of
the wave function. Moreover, we show how to determine thegrdted density distributions
of a BEC within the TF regime.

Appendix A.1. Center-of-mass motion

Our starting point is the GP equatidn (1)

L O |- m T )2 2

ihor = |=5-Vat V(t,p) = Flx—p) + (@~ p) 2 (@=p) +g[V]"| ¢ (A1)
m 2

with the explicit time-dependent harmonic potential gi®nEq. [3). We then rewrite the

transformation[{4) by making use of the displacement operatposition representation

D(R,P) = ernPz-Rp), (A.2)
and obtain

O(t,x) = et OD(R, Pbp(t, ). (A.3)
The displacement operator satisfies the relations

D(R,P)up(t,x) = e mRPerP=yp(t,z — R), (A.4)

D'(R,P) f(z,p) D(R,P) = f(x + R.p+P) (A.5)

for any smooth wave functiony (¢, ) and phase-space operafdte, p). Taking advantage
of Egs. [A3) -[AD), as well as the fact that

D'yt 2)|* D = D' [yp(t,& — R)|* D = [p(t,z)*,
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we arrive at the transformed GP equation

_&DD_ 152 m o 9 9 dP P dR| .
ih T —{2m+2w(2 x+g|Ypl” + |[-F+m* (R—p)+ i P R
dS; d /RP dR P2
+E+&<T)_E’P—F%—’_V(t’p)_F(R_p)
m
+ 5(7'\’,—p)TQ2 (R—p)} Yp (A.6)

for the wave function/p.

In order to eliminate all terms in Ed._(A.6) that depend litggan = andp, as well as
arbitrarily onp, we require the parameteR¥(t) andP(t) to satisfy the classical equations of
motion (8) and the phas® (¢) to be a solution of the first order differential equation

ds; : 1d

T LR, R,t)— C¥T: (RP) . (A.7)
Here, we have used the first equation in Ed. (5) and the defindf the Lagrange function
L(R,R,1), Eq. [8). As a result, we have simplified the transformed Giatign [A.8) to

Eq. (8).

Appendix A.2. Linear transformation

We continue the derivation of the affinely transformed GPatign by recalling Eq.[(9) for
the linear transformation of the spatial coordinates aedsthbstitution of the time variable.
This mapping implies that the corresponding partial dérres in Eq. [8) transform as

o 0 oA\
§—§—<A (7)55) Ve,
Ve=A"71)V,. (A.8)

As mentioned in subsectidn 2.11.3, the linear mappidg (9)cmompanied by the unitary
transformation of the wave function (10) which guarantbes the affinely transformed wave
function, (7, €) is again normalized according to EQl (2). Thus, by using the B), [10)
and [A.8), as well as the identity

d ,dA
E(det/l)—det/l-Tr{A E}’ (A.9)
we arrive at the GP equation for the affinely transformed wawetion, (7, &)

. [ 9 2
5 = (‘%Vs/‘ AT Vet Geralval ) va

: ATV A 2 g idp

+ o &" da 24471 da Ly AT A e
dr dr m 2

+ih (Veihy) A7) B—f - %A‘TA} ¢. (A.10)
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Now we first choosel () to be given by Eq[{12) which serves the purpose of elimigatin
the last term in EqQL(A.10) as well as the part that contaiedrce in the second term on the
right-hand side. Next we insefi(7) as defined by Eq[{11). In order to simplify the third
term on the right-hand side of EQ. (Al10), we therein repla¢e) according to Eq.L(12) and
require the adaptive matri®(7) to satisfy the matrix differential equation_(14). Finalby
taking advantage of the irrotationality conditign}(16) wkwalidity is a direct consequence of
Egs. (14) and (15) as discussed in the next section, we achievgoal to simplify EqL(A.10)
to the affinely transformed GP equatiénl(13).

Appendix A.3. Irrotationality condition

Within our approach the adaptive matrik(r) automatically satisfies the irrotationality
condition, Eq.[(1B), since the derivative of the auxiliargtnix function

2(7) = %) 2 - L 4y
dr dr

vanishes for allr > 0 provided A(7) is a solution of the matrix differential equation {14)
with the initial conditions[(I5). For this reason, the aytisnetric matrixZ(7) = Z(0) = 0
representd(d— 1) /2 constants of motion of the second order matrix differertalation[(14)
and the matrixA(7), Eq. (12), is indeed symmetric.

However, as pointed out by (Storey and Olshanii, 2000),rtieggtionality condition, Eq.
(@8) can likewise be derived by using the notion of clasgieaticle trajectories that constitue
a velocity fieldv (¢, ), which is irrotational, namel¥ x v (¢, ) = 0 at any pointin space. We
briefly sketch this derivation within our approach. ket x(x,, t) be the classical trajectory
of a particle within a BEC, which depends on the initial positc, and the time. As we have
shown in sectioh 2.212 a BEC does not show any time evolutidhe adapted coordinates if
the time-dependent TF approximation holds true. Hencedr#éjectory in adapted coordinates
is given by&(t) = & = xo, keeping in mind that the original and the adapted coordmat
coincide att = 0. Since the transformation between the two coordinate syste defined
by the linear mapping = A~'(¢) [x — R (t)] with the center-of-mass positidR (¢) and the
adaptive matrix1(t), the classical trajectory is given by

xo = A" (t) [z — R(t)] (A.11)
or rather

x(xo,t) = R(t) + A(t) xo (A.12)
Thus, the velocity field

_dx dR dA

v(x,t) = T + i A (x—R) (A.13)

is irrotational, that isV x v(t, ) = 0, if the matrix(dA/dt) A~ is symmetric
dAT dA
AT — = A.14
dt dt ’ ( )

which is equivalent to the irrotationality conditidn {16).
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Appendix A.4. Integration of the density distribution of@sB-Einstein condensate in the
Thomas-Fermi regime

In this appendix, we discuss the integration of the densigyritution |¢p (¢, z)|> of a
d-dimensional BEC in the TF regime ovedimensions witm < d. We denote bye;y € R”

the vector consisting of the componentsof R? over which the integration is performed.
Accordingly, the vectot;; € R*" is composed of the remaining coordinates. Thus, the
integrated density distribution is given by

nrr(t, Tpy) = / o (t, )| d"zy . (A.15)
Rn
Without loss of generality, we can rearrange the coordsatethe original density
distribution, Eq. [(4D), such that™ = (w[“;],w[“;]), which furthermore translates into

R = (R}, R}y) for the center-of-mass position and

) )
v [Tll} [12]
2 [12] Ll22)

for the TF matrix defined by Eq._(89). By using the decompositif the matrix’ into the
Schur complements (Horn and Johnson, 1990)

T
1gn 0 2[11} 0 14 0
X = _ _ _ . (A.16)
( 2[?2]2[111] L, ) ( 0 2[22]_2[?2}2[111}2[12] 2[?2}2[111} L,

the inverse of the TF matrix can be written as

T ~1
2_1 _ ]].Td_n » 0 2[11} . 0 B . ]le—n . 0 .
_2[12] 2[11} L, 0 (2[22] _2[12} 2[11} 2[12}) _2[12} 2[11} 1,

By inserting this expression into E@.{40), the quadrationfox — R)* X~ (x — R) splits
into two terms:(¢) a term involving only the free coordinates;) and(:i) a term depending
on both, the coordinates; over which the integration is performed and the free co@tdis
x(1). In view of the integration in EqL(A.15), we perform a chamg¢he integration variables
from xy to y via

1
‘ [ T y-1 2 T -1
Y= o) (E[Qz] - 2[1212[11}2[120 [m[Q}—R[Q]—Em]Z[m (:vm—’Rm)} )

Note, that the inverse square root of the matiles) — Xy, 2[111] X9 is defined in terms of

its spectral decomposition. As a result, we obtain for thegrated density distribution (A1L5)

1 2" T —1 2 2 n
gdet A Wdet<2[22] — 2y 2[11]2[12]) /Rn{R (zp) —y?}, dy, (A7)

where we have introduced the auxiliary function

1
m T —_ 2
Ry) = {pme = 5 (@ —Ru) " I (w[11—R[11)}+ :

We perform the integration in Eq._(AL7) with the helpretlimensional spherical coordinates

n
472

R
R* — g2l d™y = / d”_lﬁ/ R* — ) r"ldr = R"™  (A.18)
/Rn{ }+ 5 0 ( ) n(n+2)I" (%)

nre(t, ) =
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where S, _; denotes thén — 1)-dimensional spherical surface. Moreover, by applying the
determinant on both sides of the decomposition (A.16), wek\iiith the help of Eq.[{(39) the
useful relation

_detY (det A)?
o det Xy det £22(0) det Xy |
Taking advantage of the latter, the integrated densityitigton Eq. (A7) finally reads

det (2[22} - E[}é] Z[Ill} E[m])

_ 1 2r/m)" m R o1 R 5+l
nre(t ®) = Fragy,  awao sy 14— % (@0 -Rw) Sy (@ -Ra) ;-

Forn = 1 andn = 2, this result reduces to Eq&.{42) ahdl(44), respectively.

Appendix B. Energy and angular momentum of a Bose-Einstein@ndensate

This appendix presents the important steps to determindiffieeent contributions to the total
energy of a BEC and its angular momentum within the time-ddpet TF approximation.

Appendix B.1. Energy terms in the time-dependent ThomasiB@proximation

We now evaluate the energy terms, Egs] (84) } (86), by usie@piproximate wave function,
Eq. (Z3), valid in the time-dependent TF approximation.W\ftie help of Eq.[(80) we can
rewrite the expectation values in Eds.](84) -(86) in termthiefexpectation value with respect
to the initial state) (0, «). Thus, for the kinetic energy, Ed.(84), we obtain

Ek;(t) - % [P(t) — AT (1) P(0)] + % [P(t) - AT (OP0)] A7) (B),,
o (574 0405, + o (e - RO S-S e - Rm”%
+[P(t) = A" (t)P(0)]" % (@), ~ R(0)
+Re {<[w ~R(0)]" %A‘T(t) ﬁ>¢0} : (8.1)
In the same manner the potential energy given by Egs. (85{3neads
L) v, pt0) + 7 (o - RO 202040 3 - RO,

~F()A() |(@),, - R(O0)] = F()[R() - p(t)
+m[R(1) - p(t)]" P()AW) |(@),,, ~ R(0)]

m
5 [R(1) — p(t)]" (1) [R(t) — p(t)]. (B.2)
Likewise, the dependence on time of the interaction enemyy(@8) is given by
Eint (t) _ Eint(o)
N Ndet A(t)

(B.3)



Efficient description of Bose-Einstein condensates in-tiegendent rotating traps 42

We can further simplify Eqs[.(Bl.1) and (B.2) for the kinetitdethe potential energies by
taking into account the initial conditions (78) and by usihg identity

(FTVF) = 30 (fy o) =T [V (f 2 7)) 4

which is valid for any symmetrlc matrix/. Hence, Eqs[(BI1) anf(B.2) reduce to

Euan(t) _ P(1) ﬁrﬁ [/1—1(15) AT (@) <ﬁ®ﬁT>wo} - im (A5 (1) P(0)]

2

N  2m 2
i {dﬁt ilf<[ —R(O)]@[@—R(O)]T>w()}
LdAT
Re z—R0)] —A (¢ B.5
v {<[ oy 4 <>p>wo} )
and
Epoi(t)

S = V(ER®) + 5 T {AT(t)Q?(t)A(t) (l& - R(O)]  [& - ’R(O)]T>w0} . (B.6)

respectively, wher& (¢, R (t)) denotes the harmonic potential (3).

In addition, by making use of the explicit form of the initiakve function, Eq.[(88),
we can evaluate the second and last term of [Eq] (B.5). Welstanserting Eq.[(88) into the
expectation value of the second term of EEg. [B.5) and artivleearelation

(pep"), =B, + PO)@P0) + (B)y, ®P(0) + P0) @ (B),, (B.7)
where the expectation values are now evaluated with rep#wt absolute value of the initial
state. Since the BEC is initially at rest in the comoving feaofithe trap, we obtai(ﬁ)w0| =0
and thus the second term of EqQ. (B.5) fully reads

% Tr [A—lm AT (p® ﬁT%J

= ﬁ Tr [A—l(t) A7) (p® ﬁTMJ + % [A7T(1) 7?(0)]2 . (B.8)
Next, we apply Eq.[(88), to the last term of Elg. (B.5) and &&avthe expression
A
Re {<[m ~R(0)]" ddt AT )p>w0}
T
= [, ~RO)] LA PO) = 0. ®.9)

which vanishes if we take into account the initial condispRq. [78), for the center-of-mass
positionR (0) of the BEC. Thus, by inserting Eq§.(B.8) and (B.9) into Eq5|Bthe kinetic
energy is finally given by

Emw_ﬁ®+iqqmwm*@@®fwﬂ

N  2m zmT
2y { délt i/tl ([@ - RO) @ [& - ’R(O)]T>wo} . (B.10)

In conclusion, by summing up the contributions given by EBs3), (B.8) and[(B.10),
we arrive at Eq.[(87) for the energy per particle of a BEC witthie time-dependent TF
approximation.
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Appendix B.2. Energy terms for the Thomas-Fermi groune stat

In this appendix we use the TF ground state (x), Eq. [29), to derive explicit expressions
for the energy of a BEC given by Ed. (87). Since we have negtetlie quantum pressure
term in the derivation of the TF ground state, EqJ (29), weseguently neglect it also for the
calculation of the energy within the TF approximation, tisat

BB )y ~ 0. (B.11)

Next we use Eq[(29), the transformatir= x — R (0), and the relatior .(30) to rewrite
the expectation value

<(:i: ~R(0)) @ (& — ’R(O))T>¢TF = Nig /£ ® " [NTF — %ETQQ(O) gl d%
]Rd

+
in the form
- - TN 2 HE
<(:13 R(0)) ® (& — R(0)) >¢TF_d+4 L 27(0). (B.12)
which is valid ind dimensions. Similarly, by applying Eq._(29) to EQ.(86) wdab
Ein(0) = ) N prr . (B.13)

Finally, when we insert Eqd._(B.11)[-(BIl13) into Elq.](87), areive at the expression for
the total energy of a BEC, Eq.(89), valid in the TF regime.

Appendix B.3. Angular momentum operator in original conades

Here we establish a relation for the angular momentum opeveth respect to the center
of mass in original coordinates. We start with the displarade functiony/ (¢, ), which is
the solution of the GP equatidn (8) in the center-of-massdinates. In these coordinates the
angular momentum operatd, is defined in the usual way by

Ly=@xp. (B.14)

With the help of the inverse of transformation Eg. (4) we cewrite the expectation
value of the angular momentum operafor (B.14) as follows

(Bo), = [ @ovite) Do vnit.a)
&

~

= % / d*z¢*(t,z) D(R(t), P(t)) Lp DT (R(t), P(t)) v(t, x)
R3

_ % / B (1, ) Lt @) = <£>w(t> | (B.15)
J

where D(R(t),P(t)) is the displacement operator which fulfills the relations)Aand
(A.5). Hence, the angular momentum operator in originatrdmates reads

L=(z-R()x(p—P1). (B.16)
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Appendix B.4. Angular momentum in the time-dependent Téibi@ani approximation

We now evaluate the expectation value, Eq. (B.15), of thelemgnomentum operator defined
by Eq. [B.16) with respect to the approximate wave functieq, (73), valid in the time-
dependent TF approximation. By making use of the coordimatesformation[{80) we obtain
the relation

<i>w(t> B <{A(t) [ — R0)]} x {m % &= RO)+ A7) ﬁ}>wo

- {A(t) [@)% - ’R(O)H < {47 ) PO)} . (B.17)

Taking into account the initial condition, E¢.(78), for tbenter-of-mass positioR (0), the
second term in EqL(B.17) vanishes and we arrive at[Ed. (92).

Appendix B.5. Angular momentum for the Thomas-Fermi grctsue

When we consider the TF ground stater(x), Eq. (29), as the initial state(0, x) for the
expectation value of the angular momentum matrix oper&iqr,(93), the last two terms
vanish, that is

A) (& = RO @p"),, A7) - A1) (po (& - R<0”T>¢TF AT(t)=0. (B.18)

This results from the fact that the contributions of these te&¥ms cancel out each other when
the momentum operator is applied|terr (x)|. In addition, the contributions due to the phase
iP(0) x/h of the TF ground state, EJ._(29), vanish in consequence oihitial condition,
Eq. (78), ofR(0). What remains is the contribution of the first term in EqJ (3®)ich can be
evaluated with the help of Eq.(B112). Hence, we obtain th@ession

<£>TF - Z’fi {A(tm—?(m% ~ WAy (B.19)

for the expectation value of the angular momentum matrixratpe in the TF regime. By
applying the angular momentum matrix associated with th&ixndifferential equation as

given by Eq.[(7D) to[(B.19), we obtain EG.(94).

Appendix C. Solutions of the matrix differential equation for the isotropic trap

In this appendix we find the solution of the non-linear diffietial equation(35) in the implicit
form given by Eq.[(9B) valid for isotropic initial traps. lhe¢ case of a rotationally invariant
trap, that isv;(0) = wy, all scaling parameters;(¢) are identical\;(t) = A(¢), and Eq.[(9b)
then reads

d2\ w?
= (C.1)
with the initial conditions
d\
AMt=0)=1 — =0 C.2
( ) at|_, =" (C.2)

resulting from Eq.[(96).
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By considering Eq[{Cl1) as the classical Newton equatiothi“coordinate”, we can
integrate this equation with the integral of motion

1/dA\\* w2l
2 (a) TN a (©3)
which plays the role of “energy” corresponding to EHg. {CHgre we have used the initial
conditions given by Eq[(Cl2). After solving EQ.(C.3) witkspect tal\/dt and using again
Eq. (C.2), we obtain the implicit solution

/A(t) d\ A 2 (C.4)
— L =\ /Z Wt 4
1 Va4 —1 d"

of Eq. (C1) for the function\(¢).
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