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Abstract. Quantum sensors based on matter-wave interferometry are promising candidates
for high-precision gravimetry and inertial sensing in space. The favorable source for the
coherent matter waves in these devices are Bose-Einstein condensates. A reliable prediction
of their dynamics, which is governed by the Gross-Pitaevskii equation, requires suitable
analytical and numerical methods which take into account the center-of-mass motion of the
condensate, its rotation and its spatial expansion by many orders of magnitude.

In this chapter, we present an efficient way to study their dynamics in time-dependent ro-
tating traps that meet this objective. Both, an approximateanalytical solution for condensates
in the Thomas-Fermi regime and dedicated numerical simulations on a variable adapted grid
are discussed. We contrast and relate our approach to previous alternative methods and provide
further results, such as analytical expressions for the one- and two-dimensional spatial density
distributions and the momentum distribution in the long-time limit that are of immediate in-
terest to experimentalists working in this field of research.
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1. Introduction

Since the first creation of a Bose-Einstein condensate (BEC)in the mid 1990s (Anderson
et al., 1995; Davis et al., 1995), the field of ultra-cold quantum gases (Dalfovo et al., 1999;
Giorgini et al., 2008) has enormously developed and BECs arenowadays commonly used
in a broad variety of applications. They include the generation of vortices (Fetter, 2009),
the exploration of different quantum phase transitions (Bloch et al., 2008) as well as inertial
sensors that are realized with the help of matter-wave interferometry (Berman, 1997; Cronin
et al., 2009; Tino and Kasevich, 2014). In many of these phenomena the Gross-Pitaevskii
(GP) equation (Gross, 1961; Gross, 1963; Pitaevskii, 1961)provides a reliable theoretical
description of the BEC dynamics. Analytic solutions of the GP equation can be derived within
the Thomas-Fermi (TF) approximation when combined with theso-called scaling approach
(Kagan et al., 1996; Castin and Dum, 1996; Kagan et al., 1997), where most of the BEC
dynamics is described by an appropriate time-dependent coordinate transformation. In this
chapter we generalize this scaling approach and apply it directly to the GP equation to obtain
an efficient analytic description of the dynamics of a BEC in time-dependent rotating traps.

Our approach was motivated and used by seminal experiments realized within the
QUANTUS collaboration (van Zoest et al., 2010; Müntinga et al., 2013), which has
successfully performed matter-wave interferometry with BECs in microgravity at the drop
tower in Bremen (ZARM). These pioneering experiments studyand manipulate BECs that
expand freely for several seconds and hence evolve into matter waves of macroscopic
dimensions. In order to reliably predict and describe the outcome of such experiments, it
is essential to have dedicated analytical and numerical tools at hand which take into account
translational and rotational motions of the BEC as well as the fact that the spatial size of the
condensate changes by many orders of magnitude during its free expansion. To account for
these effects, the scaling approach has been generalized within the hydrodynamic framework
(Storey and Olshanii, 2000; Edwards et al., 2002) by employing an affine transformation,
where a translation first eliminates the center-of-mass motion and a subsequent linear map
absorbs most of the remaining dynamics of the BEC. Here we apply this affine transformation
directly to the GP equation resulting in an efficient description of the time evolution of a
BEC in a time-dependent quadratic potential including slowrotations. Our approach has
a straightforward application to matter-wave interferometry (Roura et al., 2014), facilitates
an efficient numerical computation of the condensate wave function and provides valuable
analytical insights into the dynamics of BECs.

Our chapter is organized as follows. In section 2 we first present the affine transformation
of the GP equation, where we displace the wave function to eliminate the center-of-mass
motion and then apply a linear transformation of the coordinates to account for the inner
dynamics of the BEC. The combination of the affine approach and the time-dependent TF
approximation results in an approximate, but astonishingly accurate solution for the dynamics
of a BEC subject to a time-dependent rotating trap. Moreover, we derive expressions for
the one- and two-dimensional integrated density distributions, which are experimentally
accessible through time-of-flight pictures.
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To verify the accuracy of our efficient description of the BECdynamics, we perform
in section 3 full numerical simulations of the GP equation for a purely rotating trap as well
as for the free expansion of an initially rotating BEC. We findan excellent agreement with
our approximate analytical solution and show that the affinetransformation can be used to
improve the performance of numerical simulations by solving the transformed GP equation
rather than the original one. Indeed, since the affine transformation itself does not contain any
approximation, our technique does not alter the accuracy ofthe numerical simulations but
speeds up the computation.

In section 4 we establish a connection between the dynamics of the time-dependent
affine transformation and the corresponding Hamiltonian formalism triggered by (Kagan
et al., 1997). In this context, we discuss two constants of motion of the affine transformation
matrix, which we relate to the conservation of the total energy and the angular momentum of
a BEC.

Since almost every experiment dealing with BECs makes use oftime-of-flight pictures,
it is essential to have a thorough understanding of the dynamics of a BEC during its free
expansion. Indeed, due to their mean-field interaction, BECs posses a more complex time-
of-flight dynamics compared with the simple ballistic expansion known from non-interacting
wave functions. Therefore, in section 5 we compare the free time evolution of the GP equation
with the Schrödinger equation and derive a relation betweenthe long-time behavior of the
momentum distribution of a free expanding BEC and its initial spatial density distribution.

In order to keep our consideration self-contained but focused on the central ideas,
we have included further details and calculations in three appendices. In Appendix A we
sketch the derivation of the affinely transformed GP equation and show how to calculate
the integrated density distributions of a BEC within the TF regime. The important steps to
determine the total energy of a BEC and its angular momentum within the time-dependent TF
approximation are presented in Appendix B. Finally, in Appendix C we discuss the behavior
of the affine transformation matrix for a freely expanding BEC that is released from an
isotropic harmonic trap.

2. Efficient description of the time evolution of a Bose-Einstein condensate

The present section introduces a natural generalization ofthe scaling approach (Kagan
et al., 1996; Castin and Dum, 1996; Kagan et al., 1997) to the case ofrotating harmonic traps.
In contrast to the hydrodynamical approach (Storey and Olshanii, 2000), we carry out this
generalization directly to the GP equation. We apply these results to a BEC in the TF regime
and obtain an approximate, analytical description of its time evolution, the so-called time-
dependent TF approximation. Moreover, we then derive simple expressions for the integrated
density distributions of a BEC in the TF regime which establish a direct link to experimental
time-of-flight observations. We conclude this section witha brief discussion of an alternative,
but equivalent description (Edwards et al., 2002) of the internal dynamics of a BEC. Further
details on the results presented in this section are collected in Appendix A.
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2.1. Affine transformation of the Gross-Pitaevskii equation

The affine transformation of the GP equation is realized in two steps (Eckart, 2008), namely
(i) we eliminate the center-of-mass motion using Kohn’s theorem (Kohn, 1961; Dobson, 1994;
Bialynicki-Birula and Bialynicka-Birula, 2002), and(ii) we introduce a linear mapping of the
coordinates in order to account for the main contributions to the internal dynamics of a BEC.
Moreover, we show how this linear mapping is reduced to the well-known scaling approach
(Kagan et al., 1996; Castin and Dum, 1996; Kagan et al., 1997)in the case of a non-rotating
harmonic potential.

2.1.1. Basic setting We describe the dynamics of a BEC in an inertial frame of reference by
the macroscopic wave functionψ(t,x) which satisfies the GP equation

i~
∂ψ

∂t
=

[

− ~
2

2m
∇

2
x + V (t,x) + g |ψ(t,x)|2

]

ψ(t,x), (1)

where the position vectorx is considered here as an element of thed-dimensional vector
spaceRd with d = 1, 2, or 3. In this way, our results are applicable to the general three-
dimensional case (Jin et al., 1996; Mewes et al., 1996; Stamper-Kurn et al., 1998; Dalfovo
et al., 1999; Ketterle et al., 1999; Hechenblaikner et al., 2002; Edwards et al., 2002; Clancy
et al., 2007) as well as to the cases of BECs confined in one or two dimensions (Petrov,
Shlyapnikov and Walraven, 2000; Plaja and Santos, 2002; Bongs et al., 2001; Görlitz
et al., 2001). Throughout this article the macroscopic wavefunctionψ(t,x) is normalized
to the number of particlesN in the condensate, that is

∫

Rd

|ψ(t,x)|2 ddx = N . (2)

The general potentialV (t,x) in Eq. (1) describes the interaction of an atom of massm

with the external fields that correspond for example to a magneto-optical trap and Earth’s
gravity. Moreover, we assume that the atoms interact with each other via a repulsive contact
interaction, leading to the non-linear termg |ψ(t,x)|2 in Eq. (1) with the positive coupling
constantg.

In many experimental situations a semiclassical treatmentof the underlying quantum
mechanical dynamics allows an accurate and transparent interpretation of the measurement
results. Here, we apply this approach to study the BEC dynamics around a classical trajectory
ρ(t) and expand the potentialV (t,x) into a Taylor series up to second order at this trajectory

V (t,x) = V [t,ρ(t)]− F (t)[x− ρ(t)] +
m

2
[x− ρ(t)]TΩ2(t) [x− ρ(t)] . (3)

Any anharmonicity of the potential can be neglected, as longas the size of the BEC remains
sufficiently small within the vicinity of the trajectoryρ(t). The latter can be associated with
the center-of-mass motion of the atomic cloud or the minimumof the external potential
V (t,x), as discussed in more detail in section 2.1.6.

Each term in Eq. (3) has a clear meaning. Indeed, the zeroth order termV [t,ρ(t)]

represents the value of the potential along the trajectoryρ(t). The second term
−F (t)[x− ρ(t)] corresponds to the forceF (t) acting on the atoms at the pointx = ρ(t).



Efficient description of Bose-Einstein condensates in time-dependent rotating traps 5

The third term 1
2
m(x − ρ(t))TΩ2(t)(x − ρ(t)) is the purely quadratic trapping potential

represented in terms of the symmetric positive definite matrix Ω2(t). Its eigenvalues coincide
with the squared trap frequenciesω2

i (t) along the principal axes of the harmonic trapping
potential.

2.1.2. Elimination of the center-of-mass motionWe incorporate the center-of-mass motion
of the BEC in a straightforward way and thereby eliminate allρ-dependent terms in the
potential (3) by making use of the transformation

ψ(t,x) = e
i
~
S1(t) e

i
~
[P(t)x−R(t) p̂] ψD(t,x) (4)

between the original wave functionψ(t,x) and the new oneψD(t,x). Note thatp̂ ≡ −i~∇x

represents the momentum operator in the position representation.
The time-dependent vectorsR(t) andP(t) in Eq. (4) describe the time evolution of the

center of mass of the condensate, see section 4.2.2 for more details, and obey the classical
equations of motion

dR

dt
=

P(t)

m
,

dP

dt
= −mΩ2(t) [R(t)− ρ(t)] + F (t), (5)

which are the Hamilton equations corresponding to the Lagrangian function

L(R, Ṙ, t) =
m

2
Ṙ

2 − V (t,ρ) +F (R− ρ)− m

2
(R− ρ)TΩ2(R− ρ) .(6)

The gobal phaseS1(t) in Eq. (4) depends on the classical action via the generalized definition

Sk(t) =
∫ t

0

L(R, Ṙ, t′)dt′ − k

2
[R(t)P(t)−R(0)P(0)] , (7)

where the additional integerk ∈ Z has been introduced for later purposes. As outlined in
Appendix A.1, we arrive at the GP equation

i~
∂ψD

∂t
=

[

− ~
2

2m
∇

2
x +

m

2
xTΩ2(t)x+ g |ψD(t,x)|2

]

ψD(t,x) (8)

for the transformed wave functionψD(t,x) by inserting Eq. (4) into Eq. (1) and taking
advantage of Eqs. (5)-(7) fork = 1.

The decoupling of the center-of-mass motion of a BEC is possible as long as the potential
is at most quadratic (Dobson, 1994; Bialynicki-Birula and Bialynicka-Birula, 2002; Nandi
et al., 2007). It no longer holds true for anharmonic potentials for which a nontrivial
coupling of the center-of-mass motion and the inner dynamics of the condensate exists (Dum
et al., 1998).

2.1.3. Linear transformation as a natural generalization of the scaling approachAfter
having eliminated the center-of-mass motion, we perform a time-dependent linear
transformation to account for the main internal dynamics ofthe BEC. For this purpose, we
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also introduce a new time coordinateτ such that the linear mapping between the “original
coordinates”(t,x) and the new ones(τ, ξ) reads

t = τ ,

x = Λ(τ) ξ , (9)

with Λ(τ) being an arbitrary, time-dependent matrix. In what follows, we refer toΛ(τ) as
“adaptive matrix” and to(τ, ξ) as “adapted coordinates”.

In analogy to Eq. (4), the coordinate transformation (9) goes hand in hand with the
transformation

ψD(t,x) =
1

√

detΛ(τ)
e

i
~ [ξTA(τ)ξ−β(τ)] ψΛ(τ, ξ) (10)

to the so-called affinely transformed wave functionψΛ(t,x). The scalar phaseβ(τ) and the
symmetric matrixA(τ) introduced in this transformation depend on the adaptive matrix Λ(τ)
via

β(τ) ≡
∫ τ

0

µ

detΛ(τ ′)
dτ ′ (11)

and

A(τ) ≡ m

2
ΛT(τ)

dΛ

dτ
. (12)

The constantµ that appears in the definition (11) represents the chemical potential associated
with the ground state of the initial BEC at the timeτ = 0. In Appendix A.2 we outline the
derivation of the affinely transformed GP equation

i~
∂ψΛ

∂τ
= − ~

2

2m

[

Λ−T(τ)∇ξ

]2
ψΛ(τ, ξ)

+
1

detΛ(τ)

[ m

2
ξTΩ2(0) ξ + g |ψΛ(τ, ξ)|2 − µ

]

ψΛ(τ, ξ) (13)

for the wave functionψΛ(τ, ξ) under the requirement that the matrixΛ(τ) obeys the nonlinear
matrix differential equation

ΛT(τ)

[

d2Λ

dτ 2
+Ω2(τ)Λ(τ)

]

=
Ω2(0)

detΛ(τ)
, (14)

where we have made use of the shorthand notationΛ−T ≡ (Λ−1)T. The additional assumption
thatx = ξ andψD(0,x) = ψΛ(0,x) at t = 0 yields the initial conditions

Λ(0) = 1 and
dΛ

dτ

∣

∣

∣

∣

τ=0

= 0 (15)

for the nonlinear matrix differential equation (14). As discussed in Appendix A.3, the
symmetry of the matrixA(τ), Eq. (12), is connected to the so-called irrotationality condition

ΛT(τ)
dΛ

dτ
=

dΛT

dτ
Λ(τ) , (16)

that gives rise tod(d− 1)/2 constants of motion of the matrix differential equation (14).
So far, we have made no approximation in deriving the affinelytransformed GP

equation (13). Although it looks much more complicated thanEq. (8), the solutions of Eq. (13)
show almost no time dependence in the TF regime. This observation enables us to establish
an efficient description of the BEC dynamics, as discussed insubsection 2.2.



Efficient description of Bose-Einstein condensates in time-dependent rotating traps 7

2.1.4. The affinely transformed wave functionBy combining the two transformations given
by Eqs. (4), (9) and (10), we obtain the following relation between the original and the affinely
transformed wave function

ψ(t,x) =
1

√

detΛ(t)
eiΦ(t,x)ψΛ

(

t, Λ−1(t) [x−R(t)]
)

, (17)

where we have introduced the local phase

Φ(t,x) ≡ 1

~

{

S1(t)− β(t) +P(t)
[

x− 1
2
R(t)

]

+
m

2
[x−R(t)]T C(t) [x−R(t)]

}

(18)

and the time-dependent, symmetric matrix

C(t) ≡ dΛ

dt
Λ−1(t). (19)

Since the matrixC(t) determines the time evolution of the quadratic phase term, we refer to
it as “quadratic phase matrix”. For later purposes we also note, that by inverting Eq. (17), we
find the affinely transformed wave functionψΛ(t,x) in terms ofψ(t,x) via

ψΛ(t,x) =
√

detΛ(t) e−iΦ(t,Λ(t)x+R(t))ψ (t, Λ(t)x+R(t)) . (20)

In summary, the affine transformation of the macroscopic wave function is realized
by Eq. (17) and leads to the affinely transformed GP equation (13). In order to determine
ψ(t,x), one has to solve the time-dependent partial differential Eq. (13) together with the
ordinary differential equations (5) and (14) for the center-of-mass variablesR(t), P(t) and
the adaptive matrixΛ(t), respectively. Throughout this article, we refer to this generalization
of the standard scaling method (Kagan et al., 1996; Castin and Dum, 1996; Kagan et al., 1997)
as the “affine approach”.

2.1.5. Non-rotating trap: connection to the scaling approach We continue by pointing out
the connection between our affine approach and the scaling method introduced by (Kagan
et al., 1996; Castin and Dum, 1996; Kagan et al., 1997). We consider a non-rotating trap
and assume for simplicity that the principal axes of the harmonic potential coincide with the
coordinate axes. This can always be achieved by an appropriate choice of coordinates for
which the trap matrixΩ2(t) in Eq. (3) possesses the diagonal form

Ω2(t) ≡ diag
[

ω2
1(t), . . . , ω

2
d(t)
]

, (21)

with ωi(t) being the trapping frequency along thexi direction. Accordingly, we assume that
the adaptive matrixΛ(τ) is of diagonal form and substituteΛ(τ) ≡ diag [λ1(τ), . . . , λd(τ)]

into Eq. (14) which yields the coupled nonlinear differential equations

d2λi
dτ 2

+ ω2
i (τ)λi(τ) =

ω2
i (0)

λi(τ)
∏d

k=1λk(τ)
, (22)

wherei ∈ 1, . . . , d. The functionsλi(τ) characterize the time evolution of the condensate in
terms of an individual scaling along the three principal axes of the potential. From Eq. (15),
we obtain for the corresponding initial conditions

λi(0) = 1 and
dλi
dτ

∣

∣

∣

τ=0
= 0 . (23)
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Clearly, the irrotationality condition, Eq. (16), is automatically satisfied for a diagonal
adaptive matrixΛ(τ). For the cased = 3, Eqs. (22) and (23) precisely rephrase the well-
known conditions derived for the scaling factors in Ref. (Castin and Dum, 1996; Kagan
et al., 1997).

2.1.6. Interpretation of the classical trajectoryDuring the preparation of the BEC by laser
and evaporative cooling att ≤ 0, we denote byρ(t) the position of the minimum of the
full external potentialV (t,x) which acts on the atomic cloud. For this reason, the classical
trajectoryρ(t) is found as a solution of the equation

∇xV (t,x)|x=ρ(t) = 0 (24)

for all times t ≤ 0. Since the trapping potentialV (t,x) is located in an Earth-bound
laboratory, a capsule freely falling in a drop tower or a satellite in space, inertial effects due to
the local acceleration and rotation of the comoving frame ofreference attached to the trapping
potentialV (t,x) alongρ(t) do occur in general. However, here we assume that these inertial
effects can be neglected for all timest ≤ 0 due to the dominating influence of the trapping
potential and the repulsive interaction of the atoms.

As pointed out in section 2.1.2, the time-dependent vectorsR(t) andP(t) are associated
with the center-of-mass motion of the atomic cloud. This interpretation implies that the initial
conditionsR(0) andP(0) for the classical equations of motion (5) are directly linked to the
preparation of the BEC in the external potentialV (t,x) according to

R(0) = ρ(0) ,

P(0) = mρ̇(0) . (25)

In other words, the center of mass of the initial BEC att = 0 is supposed to be at rest within
the comoving frame of reference attached to the external potentialV (t,x) at the positionρ(0).

After the initial preparation phase, the dynamical evolution of the BEC for timest > 0

can be analyzed based on two different interpretations of the classical trajectoryρ(t). In case
one is interested in the relative motion of the center of massof the BEC with respect to the
trap minimum, the trajectoryρ(t) can still be associated with the minimum of the external
potentialV (t,x) and Eq. (24) has to be satisfied byρ(t) also fort > 0.

In terms of a semiclassical approach, one can likewise associateρ(t) for all t > 0with the
center-of-mass motion of the atomic cloud itself. In this case, the trajectoryρ(t) is determined
as the solution of the classical equation of motion

mρ̈(t) = −∇xV (t,x)|x=ρ(t) (26)

for t > 0 and describes the semiclassical motion of the center of massof the BEC in the full
external potentialV (t,x). Thus, the time-dependent vectorsR(t) andP(t) follow directly
from ρ(t) via

R(t) = ρ(t) ,

P(t) = mρ̇(t) , (27)

whereas the classical equations of motion, Eq. (5), mathematically coincide with Eq. (26).
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2.2. The macroscopic wave function in the time-dependent Thomas-Fermi approximation

We start this subsection by recalling the TF approximation (Fetter and Feder, 1998; Pethick
and Smith, 2002) for the ground state of a BEC in a harmonic trap. We then apply this method
also to the case of a time-dependent rotating trap in order toprovide an efficient description
of the dynamics of the macroscopic wave function of a BEC in the TF regime (Kagan
et al., 1996; Castin and Dum, 1996; Kagan et al., 1997; Storeyand Olshanii, 2000; Dalfovo
et al., 1999).

In addition, we present a simple relationship between the spatial density distribution of
a BEC in three dimensions and its corresponding integrated density distributions in one and
two dimensions, which allows us to fully characterize the BEC dynamics in the TF regime by
a sequence of three mutually orthogonal time-of-flight pictures. We conclude this subsection
by briefly discussing an alternative description of the internal dynamics of a rotating BEC in
the TF regime (Edwards et al., 2002).

2.2.1. Thomas-Fermi approximation for the initial ground state Without loss of generality,
we assume thatV (0,ρ(0)) = 0 at the initial timet = 0. Furthermore, we recall thatF (0) = 0

for the harmonic potential (3) due to the validity of Eq. (24). Taking also Eq. (25) into account,
the ground stateφ(x) of a BEC att = 0 is defined as the solution of the stationary GP equation

µφ(x) =

{

− ~
2

2m
∇

2
x +

m

2
[x−R(0)]TΩ2(0)[x−R(0)] + g|φ(x)|2

}

φ(x), (28)

with µ being the chemical potential of the ground state.
The TF regime is characterized by a dominant contribution ofthe atomic interactions

to the total energy of the BEC (Fetter and Feder, 1998; Pethick and Smith, 2002). In this
case, the kinetic energy term in the stationary GP equation (28) only accounts for a negligible
contribution to the total energy in comparison with those arising from the harmonic potential
and the atomic interactions. For this reason, one simply neglects the kinetic energy term in the
TF approximation which gives rise to the approximate groundstate of the BEC

φTF(x) =
1√
g

{

µTF − m

2
[x−R(0)]TΩ2(0)[x−R(0)]

}
1
2

+
e

i
~
P(0)x . (29)

Here, the chemical potentialµTF in the TF approximation

µTF =
m

2

(

2 Γ
(

2 + d
2

)

πd/2
Ng

m

√

detΩ2(0)

)

2
d+2

(30)

is determined by the normalization condition (2) for the wave functionφTF(x), Γ(x) denotes
the Gamma function and

{x}α+ ≡ xαΘ(x) (31)

stands for the positive part ofx to the power ofα, α > 0, with Θ(x) being the Heavyside
function. The additional phaseiP(0)x/~ in Eq. (29) is due to the non-vanishing momentum
P(0), Eq. (25), of the initial BEC as discussed in section 2.1.6.
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The ground state within the TF approximationφΛ,TF(ξ) rewritten in terms of the adapted
coordinatesξ follows directly from Eqs. (20) and (29) according to

φΛ,TF(ξ) = e−iΦ(0,ξ+R(0))φTF (ξ +R(0)) =
1√
g

{

µTF − m

2
ξTΩ2(0) ξ

}
1
2

+
e

i
2~

R(0)P(0). (32)

Besides the initial conditions for the adaptive matrixΛ(t), Eq. (15), we have used the defining
Eqs. (7) fork = 1, (11) and (19) to findΦ(0,x) = P(0)

[

x− 1
2
R(0)

]

/~ for the local
phase (18) att = 0 in the derivation of Eq. (32).

2.2.2. Time-dependent Thomas-Fermi approximation for thedynamical evolution Within the
time-dependent TF approximation (Castin and Dum, 1996; Kagan et al., 1997), one neglects
the kinetic energy term in the affinely transformed GP equation (13) for all timesτ ≥ 0 in
order to arrive at the approximate, ordinary differential equation

i~
∂ψΛ

∂τ
≈ 1

detΛ(τ)

[m

2
ξTΩ2(0) ξ + g |ψΛ(τ, ξ)|2 − µ

]

ψΛ(τ, ξ). (33)

As we will show below, the solutionψΛ(τ, ξ) of Eq. (33) is time-independent and therefore
agrees with the approximate ground stateφΛ,TF(ξ), Eq. (32), for all timesτ ≥ 0

ψΛ(τ, ξ) = ψΛ(0, ξ) ≈ φΛ,TF(ξ) . (34)

This observation is the most important result of the time-dependent TF approximation and
it manifests its full strength by providing an efficient and accurate description of the BEC
dynamics within the TF regime.

In order to prove the validity of Eq. (34), we first multiply the ordinary differential
equation (33) byψ∗

Λ(τ, ξ) and subtract the imaginary part of the resulting equation tofind

∂

∂τ

(

|ψΛ(τ, ξ)|2
)

≈ 0 . (35)

Thus, the absolute value of the affinely transformed wave function does not change in time
and we conclude that

|ψΛ(τ, ξ)|2 = |ψΛ(0, ξ)|2 ≈ |φΛ,TF(ξ)|2 and µ ≈ µTF . (36)

We infer from the Eqs. (32) and (36), that the square bracket on the right hand side of the
ordinary differential equation (33) vanishes, giving riseto ∂ψΛ/∂τ = 0 which finally justifies
the validity of Eq. (34).

To find the above mentioned efficient description of the BEC dynamics, we take
advantage of Eq. (17) with the functionψΛ(τ, ξ) being determined by combining the Eqs. (34)
and (32). As a result, we obtain the central expression

ψ(t,x) ≈ ψTF(t,x) =
eiΦTF(t,x)

√

g detΛ(t)

{

µTF − m

2
[x−R(t)]TΣ−1(t) [x−R(t)]

}
1
2

+
, (37)

that characterizes the time evolution of a BEC within the time-dependent TF approximation.
In Eq. (37) we have introduced the new local phase

ΦTF(t,x) ≡
1

~

{

S2(t)− β(t) +P(t)x+
m

2
[x−R(t)]T C(t) [x−R(t)]

}

, (38)
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where the generalized actionS2(t) is given by Eq. (7) fork = 2. Moreover, we have defined
the so-called “TF matrix”

Σ(t) = Λ(t)
[

Ω2(0)
]−1

ΛT(t), (39)

which is positive definite.
According to Eq. (37), the boundary at which the spatial density distribution of the BEC

vanishes corresponds to an ellipse ifd = 2 or to an ellipsoid ifd = 3. The TF matrix (39)
defines the orientation and semi-principal axes of this ellipse or ellipsoid whereby its points
x ∈ R

d satisfy the condition[x−R(t)]TΣ−1(t)[x−R(t)] = 2µTF/m. The eigenvaluesσi
of the TF matrixΣ determine the lengths of the semi-principal axes, which coincide with the
individual TF radiiri of the BEC, viari =

√

2µTF σi/m.
Fig. 1 illustrates the time evolution of such an ellipsoid inthree dimensions. The initial

density distribution of the ground state is centered aroundR(0) with its principal axes being
parallel to the coordinate axes, as shown in Fig. 1(a). Changes in the orientation and position
of the quadratic potential (3) give rise to a center-of-massmotionR(t) and a transformation
of the elliptic contour of the BEC density distribution via the time evolution of the TF
matrixΣ(t), as depicted in Fig. 1(b).

x1 x1

x2 x2

x3 x3

(a) (b)t = 0 t > 0

r1
r2

r3

r1 r2

r3

R(0)
R(t)

Figure 1.Boundaries of an ellipsoidal density distribution of a BEC within the time-dependent
TF approximation. Att = 0 the BEC is centered aroundR(0) and the principal axes of
its boundary are parallel to the coordinate axes (a). Modifications in the quadratic trapping
potential att > 0 result in a center-of-mass motionR(t) and changes in the ellipsoidal shape
and the TF radiiri of the BEC (b).

We summarize this section by pointing out once more that the expression given by Eq.
(37) provides a valuable description of the time evolution of a rotating BEC within the TF
regime. Having the time-dependent TF approximation in mind, one might be tempted to
believe that Eq. (37) is only valid for times shortly aftert = 0. However, Eq. (37) yields
very accurate results also for freely expanding BECs, sincein this case the adaptive matrix
Λ(τ) grows linearly in time, as discussed in section 5.1, and therefore strongly reduces the
influence of the kinetic energy term in Eq. (13), the so-called quantum pressure.
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2.2.3. Integrated density distributions for time-of-flight pictures In practice, absorption
imaging techniques (Reinaudi et al., 2007) are the prevalent method to study the dynamics of a
three-dimensional BEC. Identically prepared BECs are illuminated by a laser field at different
times of flight and their shadows are detected by a CCD camera resulting in a sequence of
two-dimensional pictures of the spatial density distribution of a BEC. For this reason, these
techniques provide only partial information about the orientation and size of the original three-
dimensional density distribution.

In this subsection we discuss the one- and two-dimensional density distributions that
result from an originally three-dimensional density profile of a BEC within the TF regime. In
addition, we sketch the determination of the underlying three-dimensional density distribution
from three mutually orthogonal time-of-flight pictures of asingle BEC. The high efficiency
of our approach is due to the knowledge of the density profile of the macroscopic wave
function, Eq. (37). In case one does not have anya priori knowledge about the wave
function under consideration, a reconstruction is still possible with the help of the Radon
transformation (Gindikin and Michor, 1994; Schleich, 2001).

We start with the density distribution of a three-dimensional BEC within the TF regime

|ψTF(t,x)|2 =
1

g detΛ(t)

{

µTF − m

2
[x−R(t)]TΣ−1(t) [x−R(t)]

}

+
, (40)

which directly follows from Eq. (37). The two-dimensional integrated density distribution in
thex-y plane

n
(2D)
TF (t, x, y) ≡

∫

R

|ψTF(t,x)|2 dz (41)

can be evaluated as discussed in Appendix A.4 and reads

n
(2D)
TF (t, x, y)=

4
√
2

3g
√

m det Σ̄(t) detΩ2(0)

{

µTF − m

2

[

x̄−R̄(t)
]T
Σ̄−1(t)

[

x̄−R̄(t)
]

}
3
2

+
.(42)

Here, we have introduced the reduced vectorsx̄ ≡ (x, y)T andR̄ ≡ (R1,R2)
T together with

the symmetric submatrix

Σ̄ ≡
(

Σ11 Σ12

Σ12 Σ22

)

∈ R
2×2 (43)

which is obtained from the TF matrixΣ, Eq. (39), by removing the rowΣ3i and the
column Σi3 that correspond to thez-coordinate. In a similar way, the two-dimensional
integrated density distributionsn2D

TF(t, y, z) andn2D
TF(t, x, z) depend on the two-dimensional

submatrices in which the rows and columns corresponding to thex- andy-coordinate have
been eliminated, respectively.

For the one-dimensional integrated density distribution along thex-axis

n
(1D)
TF (t, x) =

∫

R

∫

R

|ψTF(t,x)|2 dy dz

we obtain

n
(1D)
TF (t, x) =

π

mg
√

Σ11(t) detΩ2(0)

{

µTF − m

2Σ11(t)
[x−R1(t)]

2

}2

+

. (44)
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The one-dimensional integrated density distributionsn
(1D)
TF (t, y) and n(1D)

TF (t, z) possess a
similar structure. A general derivation of the previous results for arbitrary dimensions is
presented in Appendix A.4.

To reconstruct the unknown three-dimensional density distribution of a BEC within
the TF regime, Eq. (40), from three mutually orthogonal time-of-flight pictures, one needs
to fit the two-dimensional integrated density distributions n(2D)

TF (t, x, y), n(2D)
TF (t, y, z) and

n
(2D)
TF (t, x, z) to the corresponding experimental data and thereby determine the submatrix

(43) and its two other counterparts. These three submatrices provide us with all elements of
the TF matrixΣ, where each diagonal element ofΣ is found twice. This redundancy can be
used to check the quality of the data obtained from the three mutually orthogonal time-of-
flight pictures.

2.2.4. Alternative description of rotating and vortex-free condensatesOur description of the
internal dynamics of a BEC within the TF regime rests upon thesolutionΛ(t) of the nonlinear
matrix differential equation (14) with the corresponding initial conditions, Eq. (15). Based
on the adaptive matrixΛ(t), we then determine the TF matrixΣ(t) and the quadratic phase
matrixC(t) defined by Eqs. (39) and (19), respectively. The two symmetric matricesΣ(t) and
C(t) characterize the time evolution of the absolute value and the phase of the macroscopic
wave functionψ(t,x), Eq. (37). Whereas the TF matrixΣ(t) plays a crucial role in the
context of time-of-flight pictures, the quadratic phase matrix C(t) is of great importance for
BEC based interferometry (Torii et al., 2000; Simsarian et al., 2000; Debs et al., 2011; Altin
et al., 2013; Müntinga et al., 2013).

One might wonder whether there is a way to study the BEC dynamics directly in terms
of the experimentally more accessible matricesΣ−1(t) andC(t) without a link to the adaptive
matrixΛ(t) at all. In fact, such an alternative description is possibleand involves the solution
of the two coupled first order nonlinear matrix differentialequations

dΣ−1

dt
= −C(t)Σ−1(t)−Σ−1(t)C(t) , (45)

dC

dt
= −C2(t)−Ω2(t) +Σ−1(t)

√

detΣ−1(t)

detΩ2(0)
(46)

with the corresponding initial conditions

Σ−1(0) = Ω2(0) ,

C(0) = 0. (47)

These first order differential equations can be derived by taking the time derivative on both
sides of Eqs. (19) and (39) and using the matrix differentialequation (14), the two identities
(dΣ−1/dt) = −Σ−1(dΣ/dt)Σ−1 and detΛ(t) =

√

detΩ2(0)/ detΣ−1(t) as well as the
symmetry of the matrixC(t).

At present, only a simplified version (Edwards et al., 2002) of the system of equations
(45) and (46) has been used to study the dynamics of a freely expanding BEC that was initially
prepared in a rotating anisotropic harmonic trap (Hechenblaikner et al., 2002). The trap was
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instantly turned off at the timet = Toff . In fact, by inserting the trap matrixΩ2(t) = 0 for
all t ≥ Toff into both Eqs. (45) and (46), it can be shown that the resulting matrix differential
equations are mathematically equivalent to the equations of motion (12) and (13) derived
in Ref. (Edwards et al., 2002). However, the approach presented in this article facilitates an
analysis of the time evolution of BECs within the TF regime that goes far beyond the scope
considered in Refs. (Edwards et al., 2002; Hechenblaikner et al., 2002).

Next, we briefly outline how to obtainΛ(t) from the quadratic phase matrixC(t) and the
TF matrixΣ(t). When the time evolution ofC(t) is known, the adaptive matrixΛ(t) follows
from Eq. (19) by simple integration of the first order matrix differential equation

dΛ

dt
= C(t)Λ(t)

with the initial conditionΛ(0) = 1. In contrast, the knowledge of the TF matrixΣ(t) does
not suffice to fully determine the adaptive matrixΛ(t). From Eq. (39), the latter can only be
identified up to an arbitrary orthogonal matrixU(t) via the relation

Λ(t) = Σ
1
2 (t)U(t)Ω(0) ,

where the square root ofΣ(t) is defined in terms of its spectral decomposition. The
specification of the orthogonal matrixU(t) involves again the quadratic phase matrixC(t).

There are two main reasons that make our approach based on theadaptive matrixΛ(t)
more suitable for the characterization of BEC dynamics in the TF regime than the alternative
description just presented. First, the second order matrixdifferential equation (14) forΛ(t) can
be recast in the form of Hamilton’s equations, as shown in subsection 4.1. This fact allows
us to apply the full mathematical machinery available for Hamiltonian mechanics to study
the time evolution ofΛ(t). Second, for studying the density distribution of a BEC nearits
surface at the scale of the corresponding healing length, the TF ground state given by Eq. (29)
provides no longer an adequate solution of Eq. (28) and the macroscopic wave function Eq.
(37) does not suffice for this purpose. Hence, the TF matrixΣ(t), which rests upon the validity
of Eq. (37), loses its immediate physical significance. In contrast, the affine approach based
on the adaptive matrixΛ(t) provides a valuable tool to study scenarios that are beyond the
scope of the TF approximation with the help of dedicated numerical simulations, as discussed
in the next section.

3. Application of the affine approach to numerical simulations

In this section we show how numerical simulations of the BEC dynamics can benefit from
the affine approach and we likewise apply this approach to quantify the accuracy of the
time-dependent TF approximation for several different scenarios. For simplicity, we present
here the study of the dynamics of rotating BECs on a 2D grid. Weemphasize that full 3D
simulations of BECs in the quasi-2D regime (Petrov, Holzmann and Shlyapnikov, 2000;
Salasnich et al., 2002; Mateo and Delgado, 2008) have also been performed, which verify
the validity of our 2D results.
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3.1. Efficient simulation of the time evolution of a BEC

Solving numerically the time-dependent GP equation (1) in the case of a freely expanding
BEC in the original coordinates(t,x), one immediately faces the problem that the size of
the condensate grows by several orders of magnitude after switching off the trap. To deal
with this problem, a large and well resolved grid is required, leading to a huge increase of
the computational costs of the numerical simulations, especially for two or three dimensional
cases.

Here we present an alternative approach to overcome this problem. Namely we are
solving the affinely transformed GP equation (13) in adaptedcoordinates(τ, ξ), rather than
the GP equation (1) in the original coordinates(t,x). Since the external and internal dynamics
of the BEC are handled by the time dependence of the center-of-mass positionR(t) and the
adaptive matrixΛ(τ), respectively, only the time evolution of the affinely transformed wave
function ψΛ(τ, ξ) is left and can be computed very efficiently (Eckart, 2008). As a result,
in order to obtain the macroscopic wave functionψ(t,x) in the original coordinates it is
sufficient to apply the transformation Eq. (17) once at the end of the simulation. Moreover,
our method is not limited to the case of free expansion, but can enhance the efficiency of
numerical simulations for various experimental scenariossuch as rotating traps or delta-kick
collimation (Ammann and Christensen, 1997).

3.2. Quantifying the accuracy of the time-dependent Thomas-Fermi approximation

Since the time-dependent TF approximation plays a key role in deriving the analytic
expression, Eq. (37), for the wave functionψ(t,x) of a BEC, it is worthwhile to have a
closer look at its accuracy. The time-dependent TF approximation is based on assumption (34)
meaning that the wave function in adapted coordinatesψΛ(τ, ξ) remains approximately in its
initial value ψΛ(0, ξ) and does not undergo any time evolution at all. With our numerical
simulations we have quantified the validity of this result for two different scenarios involving
rotating traps.

We take advantage of the Bures distance to quantify how much the numerically obtained
stateψΛ(τ, ξ) differs from the initial stateψΛ(0, ξ). In the following, we first recall the
definition of the Bures distance and its properties and then describe the 2D model of a rotating
BEC. Finally, we discuss the results of the simulations and characterize the parameter regime
where it is safe to apply the TF approximation.

3.2.1. Bures distanceThe Bures distance (Bures, 1969) of two macroscopic wave functions
ψ1 andψ2 is given by

B(ψ1, ψ2) ≡
(

2− 2 |〈ψ1|ψ2〉|
√

〈ψ1|ψ1〉 〈ψ2|ψ2〉

)
1
2

=

(

2− 2

N
|〈ψ1|ψ2〉|

)
1
2

, (48)

where we have used the normalized condition given by Eq. (2).First we note, that one obtains
B(ψ1, ψ2) = 0 if ψ1 = ψ2 andB(ψ1, ψ2) =

√
2 if ψ1 andψ2 are orthogonal. Second, for two
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d-dimensional spherically symmetric Gaussian wave packets

ψG(x, σ1,2) =

√
N

(2πσ2
1,2)

d/4
e
− x

2

4σ2
1,2

with different widthsσ1 andσ2, the Bures distance Eq. (48) reads

B
(d)
G [ψG(x, σ1), ψG(x, σ2)] =

√

√

√

√2

[

1−
(

2σ1σ2
σ2
1 + σ2

2

)d/2
]

. (49)

In the case of two-dimensional Gaussian wave packets with the relative difference
δσ ≡ (σ2 − σ1)/σ1 in their widths, Eq. (49) gives rise to

B
(2)
G (δσ) ≡ B

(2)
G [ψG(x, σ1), ψG(x, (1 + δσ)σ1)] =

δσ
√

1 + δσ +
1
2
δ2σ

. (50)

Thus, a small relative changeδσ in the width of a two dimensional Gaussian wave packet
results in a small Bures distance, that isB(2)

G (δσ) ∼= δσ ≪ 1. Despite the fact that the
macroscopic wave function of a BEC is not typically Gaussian, this estimate can help us
to evaluate the time dependence of the remaining inner dynamics which is not included in the
affine approach.

3.2.2. 2D model of a Bose-Einstein condensate in a rotating trap The numerical simulations
discussed in this section have all been performed with a 2D model based on realistic values
that are accessible in state-of-the-art experiments. Our system consists of atoms of mass
m which are condensed and harmonically trapped along thex- and y-direction with the
frequenciesωx andωy, respectively. The time evolution of this system is described by the
affinely transformed GP equation (13) withd = 2. The number of discretization steps in
time and the physical length of the grid are chosen as a trade-off between accuracy and
computational time.

The free parameters of our system are(i) the anisotropy factorǫ ≡ ωy/ωx, (ii) the
strengthḡN of the zero-range interaction between the atoms, and(iii) the final rotation
rateϕ̇end of the trap. All quantities are measured with respect to the chosen time scale1/ωx
and the length scaleax ≡

√

~/(mωx), respectively. Table 1 displays the parameters for the
numerical simulations as well as the relations between the physical quantities and the free
parameters. For convenience we refer to the dimensionless quantity ḡN = g2DN/(~ωxa

2
x)

as the interaction strength as it combines the 2D coupling constantg2D with the number of
particlesN .

It is worth emphasizing that our 2D model can be experimentally realized as a 3D disk-
shaped BEC in a highly anisotropic trap (Görlitz et al., 2001; Burger et al., 2002; Rychtarik
et al., 2004), with the confinement lengthaz ≡

√

~/(mωz) along thez-direction being much
smaller than those along thex- andy-direction (Petrov, Holzmann and Shlyapnikov, 2000;
Salasnich et al., 2002; Mateo and Delgado, 2008), whereωz is the trap frequency along
the z-axis. As a result, the 2D coupling constantg2D is determined by the 3D oneg3D as
g2D = g3D/(

√
2πaz), whereg3D = 4π~2as/m andas is thes-wave scattering length. Using
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Table 1.List of the grid settings, physical trap frequencies and 2D-interaction strength in terms
of the simulation parameters.

number of discretization steps Nx = Ny = 27

physical length of the grid Lx = Ly = 20 ax

trap frequency along thex-axis ωx
trap frequency along they-axis ωy = ǫ ωx
2D-interaction strength g2DN = ḡN ~ωxa

2
x

these relations, the results based on the full 3D simulations have been shown to be in good
agreement with the results of the 2D simulations.

3.2.3. Time evolution within a rotating trapThe starting point for all simulations is the
ground-state wave functionψΛ(0, ξ) of the BEC obtained by imaginary time propagation
of Eq. (13) withΛ(τ) = 1 in combination with the Newton method. For the time evolution
itself, the affinely transformed GP equation (13) is solved with an implicit Adams-Bashforth-
Moulton multi-step algorithm (Press et al., 2007).

The first scenario in which the accuracy of the time-dependent TF approximation
is checked numerically is the rotating trap. In this case thetime-dependent trap matrix
Ω2(τ) = O(τ)DOT(τ) contains the diagonal matrix

D =

(

ω2
x 0

0 ǫ2ω2
x

)

with the time-independent trap frequencies and an orthogonal matrix

O(τ) =

(

cosϕ(τ) sinϕ(τ)

− sinϕ(τ) cosϕ(τ)

)

describing a rotation around thez-axis with the time-dependent angleϕ(τ).
Triggered by experiments (Hechenblaikner et al., 2002; Müntinga et al., 2013), the

rotation rateϕ̇(τ) of the trap has been chosen to have a sigmoidal ramp for0 ≤ τ ≤ Tend, as
depicted in Fig. 2, and to keep equal to the rotation rateϕ̇end for τ ≥ Tend. We assume that
the characteristic timeTend is large enough, that isωxTend ≫ 1, to have an adiabatically slow
increase of the rotation rate in order to avoid collective excitations of the BEC. In addition,
the final rotation ratėϕend is kept significantly smaller than the trap frequencyωx in order to
avoid the generation of vortices. For the rest of this section we introduce the dimensionless
characteristic timēTend ≡ ωxTend/(2π) and useT̄end = 15 for all numerical simulations.

Fig. 3 shows the time dependence of the Bures distanceB(τ) = B [ψΛ(τ, ξ), ψΛ(0, ξ)],
Eq. (48), between the time evolved stateψΛ(τ, ξ), being the numerical solution of Eq.
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0 Tend/2 Tend

ϕ̇end

τ

ϕ̇(τ)

Figure 2. The dependence of the rotation rateϕ̇(τ) of the harmonic trap on timeτ . After a
smooth ramp within the characteristic timeTend, the rotation ratėϕ(τ) reaches its maximum
valueϕ̇end and is kept constant for allτ ≥ Tend.

(13), and the initial stateψΛ(0, ξ) in adapted coordinates. The Bures distanceB(τ) exhibits
oscillations over the whole simulation timeτ and the local maxima of this oscillation grow as
long as the rotation rate increases until they reach their maximal valueBrot at the characteristic
time T̄end and stay constant from that point on. Since the magnitude of the Bures distance is
very small,Brot < 0.07, the time evolved state does not differ significantly from the initial
state.

0 5 10 15 20

0.02

0.04

0.06

Brot

T̄end

ωxτ/(2π)

B(τ)

Figure 3. Time-dependence of the Bures distanceB(τ) = B [ψΛ(τ, ξ), ψΛ(0, ξ)], Eq. (48),
between the time evolved stateψΛ(τ, ξ) and the initial stateψΛ(0, ξ) in adapted coordinates
for a rotating trap with the anisotropy factorǫ = 1.5, the final rotation ratėϕend = 0.4ωx

and the interaction strength̄gN = 100. The Bures distanceB(τ) exhibits oscillations during
the entire simulation, while the maxima of this oscillationgrow until the rotation ratėϕ(τ),
shown in Fig. 2, reaches its maximum valueϕ̇end at the characteristic timēTend = 15, after
which they remain constant at the valueBrot. The black circles indicate the times for which
the corresponding density distributions are displayed in Fig. 4.

For the parameters used in Fig. 3 the Bures distance oscillates with the frequency
ωBures = 1.8 ϕ̇end for τ > Tend. Since the Bures distance, Eq. (48), only measures the absolute
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value of the overlap between two wave functions, the time evolved stateψΛ(τ, ξ) actually
undergoes collective oscillations with the frequencyωBures/2. In general, the frequency of the
collective oscillations caused by the rotation of the trap depend on the rotation ratėϕ(τ) as
well as the anisotropy factorǫ of the trap.

In Fig. 4 we contrast the dynamics of a rotating BEC in original and adapted
coordinates while the whole time evolution is shown in movie1, which is available in the
online supplementary material. Fig. 4a depicts the two-dimensional (non-integrated) density
distributions|ψ(t,x)|2 of a BEC in the original coordinates at different evolution times,
whereas the first column of Fig. 4b displays the corresponding density distributions|ψΛ(τ, ξ)|2
in the adapted coordinates. In contrast to the density distribution |ψ(t,x)|2, which follows
the clockwise rotation induced by the rotating trap, the density distribution |ψΛ(τ, ξ)|2 in
adapted coordinates does not show any visible changes. To highlight the residual dynamics,
we present in the second column of Fig. 4b the difference||ψΛ(τ, ξ)| − |ψΛ(0, ξ)||2 of the
absolute values of the wave functions, which depends only onlocal effects of the density
distributions and not on their phases. This difference has non-zero values only at the edge of
the BEC forming a ring-like structure, which rotates clockwise in accordance with the density
distribution|ψ(t,x)|2 presented in the first column. However, the magnitude of thisresidual
dynamics is very small compared to the magnitude of the density distribution|ψΛ(τ, ξ)|2 and
it oscillates in accordance with the Bures distance shown inFig. 3.

In summary, we have proven that the time-dependent TF approximation applied to the
affinely transformed GP equation (13) provides an accurate description of the dynamics of a
rotating BEC. Only at the very edge of the BEC a minor amount ofresidual dynamics occurs
that goes beyond the time-dependent TF approximation. In subsection 3.2.5 we study how the
magnitude of this residual dynamics depends on the different setup parameters.

3.2.4. Free expansion after switching off a rotating trapAs a second scenario to verify
the time-dependent TF approximation, we have studied the subsequent free expansion of an
initially rotating BEC. Here, the setup is the same as in the first scenario with the exception
that the trap is switched off atτ = Toff > Tend, that is shortly after the final rotation ratėϕend

is reached. Since the timing of the switch off has a strong influence on the final valueBfree of
the Bures distance, we have variedToff within the first period of the Bures distance afterTend
for each set of parameters to find the maximal value ofBfree.

The time dependence of the Bures distance for this case is depicted in Fig. 5. During
the slow initial ramp, shown in Fig. 2, the Bures distance displays the collective oscillations
discussed in subsection 3.2.3. After switching off the trapat τ = Toff , these oscillations
stop and the Bures distance approaches its final valueBfree. This behavior is a consequence
of the fact that for a freely expanding BEC the adaptive matrix grows linearly for large
times, as discussed in section 5.1, and thus the right-hand side of the affinely transformed
GP equation (13) vanishes asymptotically.

The two-dimensional (non-integrated) density distributions in the original coordinates
|ψ(t,x)|2, Fig. 6a, as well as in the adapted coordinates|ψΛ(τ, ξ)|2, Fig. 6b, are displayed
at different times indicated by the black dots in Fig. 5. The entire time evolution of these



Efficient description of Bose-Einstein condensates in time-dependent rotating traps 20

Figure 4. Density distributions|ψ(t,x)|2 and |ψΛ(τ, ξ)|2 as well as the difference
||ψΛ(τ, ξ)| − |ψΛ(0, ξ)||2 of a rotating BEC plotted for different times as indicated inFig.
3. In original coordinates, Fig. 4 a), the density distribution undergoes a clockwise rotation,
while it stays almost constant in adapted coordinates, Fig.4 b). The residual dynamics
in adapted coordinates are made visible in the third column by considering the difference
||ψΛ(τ, ξ)| − |ψΛ(0, ξ)||2 between the time evolved stateψΛ(τ, ξ) and the initial state
ψΛ(0, ξ). Only at the edge of the condensate this difference obtains non-zero values while
its magnitude corresponds well with the oscillations of theBures distanceB(τ) shown in
Fig. 3. Movie 1 displaying the whole time evolution is available in the online supplementary
material.

density distributions is presented in movie 2, which is available in the online supplementary
material. Whereas the size of the BEC in the original coordinates quickly grows after the
trap is switched off, the rotation of the BEC stops completely after a further rotation of about
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Figure 5. Bures distanceB(τ) = B(ψΛ(τ, ξ), ψΛ(0, ξ)) between the time evolved state and
the initial state in adapted coordinates for free expansionafter switching off a rotating trap
with the anisotropy factorǫ = 1.5, the final rotation ratėϕend = 0.4ωx and the interaction
strength̄gN = 100. The trap is switched off at̄Toff = 16 within the first period of the Bures
distanceB(τ) after the characteristic timēTend = 15. The oscillation of the Bures distance
stops after the trap is swiched off and it approaches its finalvalueBfree. The black circles
indicate the times for which the corresponding density distributions are displayed in Fig. 6.

π/2, in accordance with the irrotationality condition, as wellas the energy and momentum
conservation. It is worth mentioning that our results are ingood agreement with the theoretical
consideration (Edwards et al., 2002) and the experimental data (Hechenblaikner et al., 2002).

However, in adapted coordinates, Fig. 6b, neither an increase of the size of the BEC
nor a significant rotation of the density distribution can beobserved. Only by looking at
the residual dynamics visualized again by the difference||ψΛ(τ, ξ)| − |ψΛ(0, ξ)||2, minor
changes ofψΛ(τ, ξ) become visible at the edge of the condensate. Thus, the time-dependent
TF approximation used within the affine approach is an excellent tool to predict the free
expansion of an initially rotating BEC as well.

3.2.5. Dependence of the Bures distance on the setup parameters In extension of the two
previous scenarios, we now provide a broader study of the accuracy of the time-dependent TF
approximation. In particular, we have solved numerically Eq. (13) for a rotating BEC with and
without subsequent free expansion for many different combinations of the interaction strength
ḡN , the anisotropy factorǫ and the final rotation ratėϕend, thereby usinḡTend = 15 as before.
The results for the Bures distancesBrot andBfree are presented in Fig. 7.

As displayed in Fig. 7a the Bures distanceBrot decreases with an increase of the
interaction strength̄gN and increases for larger values of the anisotropy factorǫ and the
maximal rotation ratėϕend. These observations can be explained as follows.

(i) With an increase of̄gN , the interaction energy term in Eq. (13) becomes more
dominant compared to the kinetic energy term, resulting in an improved accuracy of the
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Figure 6. Density distributions|ψ(t,x)|2 and |ψΛ(τ, ξ)|2 together with the difference
||ψΛ(τ, ξ)| − |ψΛ(0, ξ)||2 of a free expanding BEC after release from a rotating trap plotted
for different times as indicated in Fig. 5. In original coordinates, Fig. 6 a), the rotation of the
condensate comes to an end after an angle of aboutπ/2, while the size of the condensate grows
continuously. In adapted coordinates, Fig. 6 b), no such effects are visible and the density
distribution stays almost constant. In the third column thedifference||ψΛ(τ, ξ)| − |ψΛ(0, ξ)||2
between the time evolved stateψΛ(τ, ξ) and the initial stateψΛ(0, ξ) is illustrating the residual
dynamics in adapted coordinates. This difference only obtains non-zero values at the edge of
the condensate while its magnitude grows together with the Bures distanceB(τ) shown in
Fig. 5. Movie 2 displaying the whole time evolution is available in the online supplementary
material.
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Figure 7. Contour plot of (a) the maximal Bures distanceBrot for a purely rotating trap with
a time-dependent rotation rate as shown in Fig. 2 and (b) the final Bures distanceBfree for
a subsequent free expansion of an initially rotating trap asdiscussed in section 3.2.4. For
both scenarios the interaction strengthḡN increases from left to right, while the range of the
anisotropy factorǫ and the final rotation ratėϕend is the same for all plots, respectively. The
differences between the case of a purely rotating trap (a) and a free expansion after the rotation
(b) are minor. In general, an increase in the interaction strengthḡN leads to smaller values of
the Bures distance, while in contrast the Bures distance takes on larger values as the anisotropy
factorǫ and the final rotation ratėϕend increase.

time-dependent TF approximation. For this reason, the Bures distanceBrot decreases as the
interaction strength̄gN grows.

(ii) Since a spherically symmetric trap withǫ = 1 cannot transfer any angular momentum
to a BEC, the wave functionψΛ(τ, ξ) will remain in the initial stateψΛ(0, ξ), giving rise to
Brot = 0. However, forǫ > 1 the rotation of the trap affects the dynamics of the BEC. The
Bures distanceBrot increases with an increase ofǫ, since the kinetic energy term in Eq. (13)
depends on the spatial derivatives of the wave function and therefore increases for a stronger
confinement along one axis. Thus, the time-dependent TF approximation works better for a
system with small anisotropies.

(iii) For larger values of the maximal rotation ratėϕend, the total energy transfered
from the trap to the BEC increases, raising the chance to excite collective modes of the
condensate. However, these modes are not taken into accountwithin the framework of the
TF approximation. As a result, the amount of residual dynamics grows with the increase of
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the maximal rotation ratėϕend. The quadrupole mode is well known to be excited whenϕ̇end

approaches the critical valueωc = 0.71ωx (Madison et al., 2001; Hodby et al., 2001) and the
time-dependent TF approximation breaks down completely inthis regime. We have verified
this fact with our numerical simulations and for the resultspresented here, we have always
made sure to stay well below the threshold for vortex creation.

Since, the dependencies ofBrot andBfree on the simulation parameters are very similar
to each other, as shown in Fig. 7, we conclude here that the subsequent free expansion of an
initially rotating BEC does not substantially amplify the residual time evolution in the adapted
coordinates.

In summary, we find that the accuracy of the time-dependent TFapproximation depends
on various parameters with the most important one being the interaction strength̄gN . For
valuesḡN ≥ 100, the transformed wave functionψΛ(τ, ξ) is practically constant in time and
the time-dependent TF approximation holds true. In most experimental setups, one typically
aims at a large number of particles in a BEC to improve the signal-to-noise ratio. For this
reason, the TF approximation provides a valuable tool to describe the dynamics of a large
class of rotating BECs.

4. Constants of motion

In the preceding section we have confirmed the accuracy of ourmethod based on the time-
dependent TF approximation by dedicated numerical simulations of the affinely transformed
GP equation (13). However, the reliability of such numerical simulations themselves must
also be guaranteed. One possible way to test it is based on simulations of suitable scenarios
that possess certain underlying symmetries which by Noether’s theorem give rise to specific
constants of motion. In this chapter, we focus on the time-translational invariance and
the rotational symmetry and discuss the corresponding energy and angular momentum
conservation for both, the matrix differential equation (14) and the GP equation (1).

In this section, we first show how the matrix differential equation (14) can be rewritten in
terms of a Hamiltonian formalism. Second, we analyze the center-of-mass motion of the BEC
with regard to a generalized version of the Ehrenfest theorem (Bodurov, 1998) and third, we
present expressions for specific constants of motion of the GP equation (1) valid within the
time-dependent TF approximation.

4.1. Hamiltonian formalism for the matrix differential equation

Here we establish a connection between the matrix differential equation (14) and the
corresponding Hamiltonian formalism. For this purpose, wefirst perform a transformation of
the adaptive matrix and the the time coordinate to bring the matrix differential equation (14)
into a specific form that does no longer contain the initial trap matrixΩ2(0). We call
the resulting equation the canonical form of the matrix differential equation. We then
introduce the Hamiltonian and verify that the corresponding Hamilton equations of motion
are equivalent to the canonical form of the matrix differential equation. With the help of this
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Hamiltonian we finally obtain two constants of motion for thematrix differential equation,
which we later on relate to the conservation of the total energy and the angular momentum of
the BEC.

4.1.1. Canonical form of the matrix differential equationWe start by defining the orthogonal
matrixO and the diagonal matrixD via the diagonalization of the initial trap matrixΩ2(0)

according to

ODOT ≡ Ω2(0) . (51)

Moreover, we introduce a new time scale with the help of the quantity

α ≡
[

detΩ2(0)
]

1
2d . (52)

Based on these new quantities, we now consider the transformation

Λ =
1

α
O Λ̃D

1
2 OT ,

t =
1

α
t̃ (53)

to the new adaptive matrix̃Λ and the dimensionless timẽt. The canonical form of the
matrix differential equation is simply obtained by inserting the transformation (53) into the
matrix differential equation (14) thereby taking into account the relationdet(Λ) = det(Λ̃). It
describes the time evolution of the new adaptive matrixΛ̃(t̃) and reads

Λ̃T(t̄)

[

d2Λ̃

dt̃2
+ Ω̃2(t̃)Λ̃(t̃)

]

=
1

det Λ̃(t̃)
, (54)

where we have introduced the transformed trap matrix

Ω̃2(t̃) ≡ 1

α2
OTΩ2(t̃/α)O. (55)

The initial conditions (15) accordingly transform to

Λ̃(0) = αD− 1
2 and

dΛ̃

dt̃

∣

∣

∣

t̃=0
= 0 , (56)

whereas the irrotationality condition (16) preserves its form under Eq. (53)

Λ̃T(t̃)
dΛ̃

dt̃
=

dΛ̃T

dt̃
Λ̃(t̃) . (57)

Next we show that the canonical form of the matrix differential equation (54) can be embedded
in a Hamiltonian formalism.

4.1.2. Hamiltonian and equations of motionWe start by introducing the momenta

Π̃αβ =
dΛ̃αβ

dt̃
(58)

as conjugate variables to the matrix elementsΛ̃αβ together with the Hamiltonian

H(Λ̃, Π̃, t̃) =
1

2
Tr
{

Π̃TΠ̃ + Λ̃TΩ̃2(t̃)Λ̃
}

+
1

det Λ̃
. (59)
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The Hamilton equations of motion

dΛ̃αβ

dt̃
= {H, Λ̃αβ}(Λ̃,Π̃) =

∂H

∂Π̃αβ

= Π̃αβ ,

dΠ̃αβ

dt̃
= {H, Π̃αβ}(Λ̃,Π̃) = − ∂H

∂Λ̃αβ
= −Ω̃2Λ̃+

1

det Λ̃
Λ̃−T (60)

are mathematically equivalent to the canonical form of the matrix differential equation (54).
Here, we have introduced the corresponding Poisson bracket

{f, g}(Λ̃,Π̃) ≡ −
∑

α,β

(

∂f

∂Λ̃αβ

∂g

∂Π̃αβ

− ∂g

∂Λ̃αβ

∂f

∂Π̃αβ

)

(61)

of two functionsf andg that depend on the matrix elementsΛ̃αβ andΠ̃αβ and made use of
the relation

d

dΛ̃αβ

(

det Λ̃
)

= det Λ̃ · Tr
{

Λ̃−1 ∂Λ̃

∂Λ̃αβ

}

= Λ̃−T
αβ det Λ̃ . (62)

When we accordingly define the “momenta”Π ≡ dΛ/dt, Eq. (53) implies the following
transformation of the conjugate variables

Λ̃ = αOTΛOD− 1
2 ,

Π̃ = OTΠ OD− 1
2 (63)

We emphasize that Eq. (63) is not a canonical transformationand that a corresponding
Hamiltonian formalism for the original matricesΛ andΠ does not exist, as can be seen by
inserting the transformation (63) into the expression for the Poisson-bracket (61). As a result,
we arrive at

{f, g}(Λ̃,Π̃) = − 1

α

∑

µ,ν,λ

(

∂f

∂Λµν
Ω2
νλ(0)

∂g

∂Πµλ

− ∂g

∂Λµν
Ω2
νλ(0)

∂f

∂Πµλ

)

, (64)

which demonstrates that the structure of the Poisson bracket (63) is not preserved by the
transformation (63). Thus, there exist no corresponding Hamilton equations for the original
matrix differential equation (14).

4.1.3. Energy conservationWhen we consider a time-independent trapping potential with
the constant trap matrix̃Ω2(t̃) = Ω̃2

∗ , the energy is a constant of motion given by the
HamiltonianH(Λ̃, Π̃), Eq. (59). In this spirit, we call the quantity

Ẽ(Λ̃, Π̃ ; t̃) ≡ 1

2
Tr
{

Π̃T Π̃ + Λ̃T Ω̃2(t̃) Λ̃
}

+
1

det Λ̃
(65)

the total energy associated with the matrix differential equation in canonical form also for a
time-dependent trap matrix̃Ω2(t̃).

Using Eq. (58) together with the inverse of the transformation (53) in Eq. (65), the total
energy associated with the matrix differential equation reads in terms of the original adaptive
matrix

EΛ(t) =
1

2
Tr

{(

dΛT

dt

dΛ

dt
+ ΛT(t)Ω2(t)Λ(t)

)

Ω−2(0)

}

+
1

detΛ(t)
, (66)
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whereΩ2(t) = α2O Ω̃2(t̃)OT andΩ−2(0) = OD−1OT. The fact that the total energy (66)
is indeed a constant of motion ifΩ2(t) = Ω2

∗ can be easily verified by taking the time derive
of Eq, (66) on both sides and inserting the matrix differential equation (14) on the right hand
side of the resulting equation.

4.1.4. Angular momentum conservationFor an isotropic harmonic potential with corre-
sponding trap matrixΩ̃2(t̃) = ω̃2(t̃)1, the angular momentum of a BEC is preserved. In
order to later see how this conservation law is related to thematrix differential equation (14),
we study the quantity

L̃(Λ̃, Π̃) ≡ Λ̃ Π̃T − Π̃ Λ̃T (67)

which we denote as angular momentum matrix associated with the matrix differential equation
in canonical form. Note, that this quantity is fully independent from the irrotationality
condition (57) which reads in terms of both conjugate variablesΛ̃T Π̃ − Π̃T Λ̃ = 0.

We now prove that this angular momentum matrix is preserved for an isotropic trapping
potential. For this purpose, we take the total derivative ofL̃ with respect to the timẽt and
obtain

dL̃

dt̃
=
∂L̃

∂t̃
+ {H, L̃}(Λ̃,Π̃), (68)

where the Poisson bracket{H, L̃}(Λ̃,Π̃) is defined by Eq. (61). Since the angular momentum

matrix L̃ does not explicitly depend on the timet̃, the partial derivative∂L̃/∂t̃ vanishes. With
the Hamiltonian (59), the evaluation of the Poisson bracketfinally yields

dL̃

dt̃
= Λ̃ Λ̃T Ω̃2(t̃)− Ω̃2(t̃) Λ̃ Λ̃T . (69)

Thus, the angular momentum matrix̃L is a constant of motion if the matrix̃Λ Λ̃T Ω̃2(t̄) is
symmetric, which is indeed the case for an isotropic trap with Ω̃2(t̃) = ω̃2(t̃)1.

When we insert the transformation (63) into the definition (67), we obtain the angular
momentum matrix in terms of the original adaptive matrix

LΛ(t) = αOT

[

Λ(t)Ω−2(0)
dΛT

dt
− dΛ

dt
Ω−2(0)ΛT(t)

]

O . (70)

We emphasize that the angular momentum matrix explicitly depends on the orientation of the
initial trapping potential via the orthogonal matrixO defined by Eq. (51).

4.2. Constants of motion of the Gross-Pitaevskii equation

Our efficient description of the time evolution of a rotatingBEC within the TF regime, Eq. (37)
rests upon two different, but related approximations: (i) the initial macroscopic wave function
ψ (0,x) is assumed to be given by the ground state in the TF approximation, Eq. (29), and
(ii) the kinetic energy part in the affinely transformed GP equation (13) is supposed to be
negligible in comparison to the potential and interaction energies involved. According to this
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second assumption known as the time-dependent TF approximation, the affinely transformed
wave function, being the solution of Eq. (13), does not display any essential dynamics

ψΛ(τ, ξ) ≈ ψΛ(0, ξ). (71)

In section 2.2.2 we used a combination of both approximations, (i) and (ii), to derive the
efficient description of the BEC dynamics in the TF regime given by Eq. (37).

However, for BECs that are not deep in the TF regime and whose ground state differs
significantly from Eq. (29), the assumption (71) can still provide very accurate results for some
scenarios such as freely expanding BECs. For this reason, wefirst seek an efficient description
that does not involve approximation (i), but includes the exact ground stateψ(0,x) of a BEC
or its numerically determined approximation. Based on thisslightly more general description,
we derive approximate expressions for the total energy and the angular momentum of a BEC
that allow further tests of assumption (71) by analyzing possible time dependencies in the
constants of motion that should not occur due to the chosen symmetry of the GP equation.
Eventually, we also include approximation (i) and relate the resulting expressions for the total
energy and the angular momentum based on the TF ground state (29) to the corresponding
constants of motion associated with the matrix differential equation.

4.2.1. Effective description of the dynamics based solely on the time-dependent Thomas-Fermi
approximation In order to determine the slightly generalized efficient description of the BEC
dynamics, we first relate the initial state in adapted coordinatesψΛ(0, ξ) with the original
ground stateψ(0,x) by evaluating Eq. (20) att = 0 giving rise to

ψΛ(0, ξ) = e−
i
~
P(0) [ξ+ 1

2
R(0)] ψ (0, ξ +R(0)) . (72)

Next, we obtainψΛ(τ, ξ) simply by combining Eqs. (71) and (72). We insert the result into
Eq. (17) and thereby use the substitutionξ = Λ−1(t) [x−R(t)]. Hence, we find as efficient
description of the BEC dynamics that is solely based on the time-dependent TF approximation

ψ(t,x) ≈ 1
√

detΛ(t)
eiχ(t,x) ψ

(

0, Λ−1(t) [x−R(t)] +R(0)
)

, (73)

where we have introduced the phase

χ(t,x) =
1

~

{

S2(t)− β(t) +P(t)x+
m

2
[x−R(t)]T C(t) [x−R(t)]

−P(0)
(

Λ−1(t) [x−R(t)] +R(0)
)}

. (74)

Note that by insertion ofψ(0,x) = φTF(x) together with Eq. (29) into Eq. (73), we
consequentially arrive at the expression (37).

4.2.2. Generalized Ehrenfest Theorem for a Bose-Einstein condensate in a harmonic trap
According to the generalized Ehrenfest-Theorem (Bodurov,1998), the expectation values

〈x̂〉ψ(t) ≡ 1

N

∫

Rd

ψ∗(t,x)xψ(t,x) ddx , (75)

〈p̂〉ψ(t) ≡ 1

N

∫

Rd

ψ∗(t,x) p̂ψ(t,x) ddx (76)



Efficient description of Bose-Einstein condensates in time-dependent rotating traps 29

of the position̂x = x and the momentum̂p ≡ −i~∇x operators satisfy the classical equations
of motion

d

dt
〈x̂〉ψ(t) =

1

m
〈p̂〉ψ(t)

d

dt
〈p̂〉ψ(t) = −mΩ2(t)

[

〈x̂〉ψ(t) − ρ(t)
]

+ F (t) . (77)

The expectation values are evaluated with the full solutionψ(t,x) of the GP equation (1) for
the harmonic potential, Eq. (3). Since the Eqs. (77) coincide with the Eqs. (5) for the time-
dependent vectorsR(t) andP(t), we can identify the latter ones with the center-of-mass
position〈x̂〉ψ(t) and the average momentum〈p̂〉ψ(t) by simply choosing the initial conditions
according to

R(0) = 〈x̂〉ψ0
and P(0) = 〈p̂〉ψ0

. (78)

Here, we have introduced the shorthand notation of the exactinitial stateψ0 ≡ ψ(0,x).
We emphasize that the parametersR(t) andP(t) introduced in section 2.1.2, have strictly
speaking no physical meaning unless their initial conditions are fixed in accordance with
Eq. (78).

Next, we discuss if the above assignment

R(t) = 〈x̂〉ψ(t) and P(t) = 〈p̂〉ψ(t) (79)

is also consistent with our efficient description, Eq. (73),based on the time-dependent TF
approximation. For this purpose, we insert Eq. (73) into theEqs. (75) and (76) and make use
of the substitution

x′ = Λ−1(t) [x−R(t)] +R(0) (80)

to arrive at the expectation values

〈x̂〉ψ(t) ≈ R(t) + Λ(t)
[

〈x̂〉ψ0
−R(0)

]

, (81)

〈p̂〉ψ(t) ≈ P(t) + Λ−T(t)
[

〈p̂〉ψ0
−P(0)

]

+m
dΛ(t)

dt

[

〈x̂〉ψ0
−R(0)

]

. (82)

Thus, usingR(0) andP(0) according to Eq. (78), the last two expressions simply reduce
to Eqs. (79), which proves that our efficient description based on the time-dependent TF
approximation, Eq. (73), satisfies the generalized Ehrenfest theorem.

4.2.3. Energy of a Bose-Einstein condensateHere we use the approximate BEC wave
functionψ(t,x) given by Eq. (73) to derive an explicit expression for the total energy

E(t) = Ekin(t) + Epot(t) + Eint(t) (83)

of the BEC within the time-dependent TF approximation, where the kinetic, the potential and
the interaction energy are defined by

Ekin(t) =
~
2

2m

∫

Rd

|∇xψ(t,x)|2 ddx =
N

2m

〈

p̂2
〉

ψ(t)
, (84)

Epot(t) =

∫

Rd

V (t,x) |ψ(t,x)|2 ddx = N 〈V (t,x)〉ψ(t) , (85)

Eint(t) =
g

2

∫

Rd

|ψ(t,x)|4 ddx =
Ng

2

〈

|ψ(t,x)|2
〉

ψ(t)
. (86)
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In Appendix B.1 we evaluate each of these energy terms and obtain as the energy per
particle

E(t)

N
=

P
2(t)

2m
+ V (t,R(t)) +

1

2m
Tr
[

Λ−1(t)Λ−T(t)
〈

p̂⊗ p̂T
〉

|ψ0|

]

+
Eint(0)

N detΛ(t)

+
m

2
Tr

{[

dΛT

dt

dΛ

dt
+ ΛT(t)Ω2(t)Λ(t)

]

〈

[x̂−R(0)]⊗ [x̂−R(0)]T
〉

ψ0

}

, (87)

where we have assumed that the initial wave functionψ(0,x) is given by

ψ(0,x) = φD (x−R(0)) e
i
~
P(0)x . (88)

Here,φD(x) is the real-valued ground state of the BEC in the comoving frame of the trap as
discussed in section 2.1.6 and the phaseiP(0)x/~ accounts for the initial momentumP(0) of
the BEC in the inertial frame of referencex, analogously to the TF ground state (29). The first
two terms in Eq. (87) display the kinetic and the potential energy of the center of mass of the
BEC, respectively, whereby we have usedV (t,R(t)) as shorthand notation for the harmonic
potential (3). The third term corresponds to the quantum pressure and its expectation value is
evaluated with respect to the absolute value|ψ(0,x)| of the initial wave function. The forth
term describes the mean-field interaction energy. The last term is determined by the explicit
form of the initial wave functionψ(0,x) and represent the inner dynamics of the condensate
associated with the deformation of the BEC which corresponds to the evolution of the adaptive
matrixΛ(t).

When the initial wave functionψ(0,x) is given by the TF ground stateφTF(x), Eq. (29),
the energy per particle reads

ETF(t)

N
=

P
2(t)

2m
+ V (t,R(t)) +

2

d+ 4
µTFEΛ(t). (89)

as shown in Appendix B.2. HereEΛ(t) denotes the total energy associated with the matrix
differential equation given by Eq. (66) whereasµTF is the chemical potential within the TF
approximation, Eq. (30).

By applying Eq. (15) to the energy per particle (89) and assuming without loss of
generality thatV (0,R(0)) = 0, the initial energy per particle for a BEC in the TF ground
stateφTF(x) reads

ETF(0)

N
=

P
2(0)

2m
+
d+ 2

d+ 4
µTF (90)

and is determined solely by the initial momentumP(0) and the chemical potentialµTF.

4.2.4. Angular momentum of a Bose-Einstein condensateIn analogy to the previous
subsection, we now discuss the angular momentum of a BEC within the time-dependent
TF approximation. Indeed, as derived in Appendix B.3 the angular momentum operator with
respect to the center-of-mass coordinatesR(t) andP(t) is defined by

L̂ =
(

x̂−R(t)
)

×
(

p̂−P(t)
)

. (91)
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In Appendix B.4 we show that the expectation value of the angular momentum operator,
Eq. (91), evaluated with respect to the approximate wave function (73), is given by the relation

〈

L̂
〉

ψ(t)
=

〈

{Λ(t) [x̂−R(0)]} ×
{

m
dΛ

dt
[x̂−R(0)] + Λ−T p̂

}〉

ψ0

, (92)

where we have used the initial conditions (78). Here, the first vector of the cross product
represents the position, while the second vector corresponds to the momentum associated
with the inner dynamics of the BEC. For the sake of a concise mathematical notation, we
map the angular momentum operator to the so-called angular momentum matrix operator via
L̂kl = ǫjklL̂j , whereεjkl denotes the Levi-Civita symbol. Applied to Eq. (92) this mapping
yields the following expression for the matrix operator
〈

L̂
〉

ψ(t)
= m

[

Λ(t)
〈

[x̂−R(0)]⊗ [x̂−R(0)]T
〉

ψ0

dΛT

dt

−dΛ

dt

〈

[x̂−R(0)]⊗ [x̂−R(0)]T
〉

ψ0

ΛT(t)

]

+Λ(t)
〈

[x̂−R(0)]⊗ p̂T
〉

ψ0
Λ−1(t)− Λ−T(t)

〈

p̂⊗ [x̂−R(0)]T
〉

ψ0

ΛT(t) . (93)

This matrix notation of the angular momentum is especially useful if the initial wave function
ψ(0,x) is approximated by the TF ground stateφTF(x), Eq. (29), since in that case Eq. (93)
reduces to

〈

L̂
〉

TF
=

2µTF

d+ 4

[

Λ(t)Ω−2(0)
dΛT

dt
− dΛ

dt
Ω−2(0)ΛT(t)

]

=
2

d+ 4

µTF

[detΩ2(0)]
1
2d

OLΛ(t)O
T (94)

as discussed in Appendix B.5. The angular momentum matrixLΛ(t) and the orthogonal
matrixO are given by Eqs. (70) and (51), respectively.

In conclusion, the deep connection between the constants ofmotion of the GP equation,
Eq. (1), and the matrix differential equation, Eq. (14), illustrated by Eqs. (89) and (94), once
more highlights the benefit of the affine approach for the description of the BEC dynamics.
Not only grants the solution of Eq. (14) valuable insights into the time evolution of a BEC,
but it is also relevant for numerical applications.

5. Special properties of free expanding Bose-Einstein condensates

Experiments dealing with quantum gases usually involve time-of-flight pictures to deduce the
state of the system under study. It is well known, and we will briefly recall this statement
later, that in the long-time limit the spatial density distribution obtained by time-of-flight
measurements is determined by the initial momentum distribution of the quantum gas if the
free time evolution is described by the Schrödinger equation. In other words, a non-interacting
quantum gas undergoes a ballistic expansion if it is released from the trapping potential.
However, it is not obvious that this statement holds true forfree expanding BECs governed
by the non-linear GP equation. In fact, for BECs a reverse relation applies (Eckart, 2008),



Efficient description of Bose-Einstein condensates in time-dependent rotating traps 32

namely that the momentum distribution in the long-time limit is given by the initial spatial
density distribution. This relation is not only relevant for the interpretation of time-of-flight
pictures of BECs, but it also plays a role for matter-wave interferometry, where the atomic
clouds expand freely between the laser pulses.

This section starts with the discussion of the analytic solutions of the matrix differential
equation (14) in the long-time limit as well as for isotropicinitial traps. We then recall the
long-time behavior for the Schrödinger equation before we turn to the GP equation.

5.1. Analytic solutions of the matrix differential equation

For a pure free expansion, that isΩ2(t) = 0 for all times t > 0, the matrix differential
equation (14) possesses analytical solutions that can be used to determine the macroscopic
wave function of a BEC in the long-time limit. In order to derive these solutions we assume
without loss of generality that the coordinate systemx is aligned with the principal axes of the
trap at the initial timet = 0. As a consequence, the adaptive matrixΛ(t) is diagonal during
the free expansion, that isΛ(t) = diag [λ1(t), . . . , λd(t)] for t > 0, and the scaling parameters
λi with i = 1, 2, ..., d are determined by the system of non-linear differential equations

d2λi
dt2

=
ω2
i (0)

λi
∏d

j=1 λj
, (95)

which are a special case of equations (14) or (22) for free evolution. The initial conditions
(15) reduce to

λi(0) = 1 and
dλi
dτ

∣

∣

∣

∣

t=0

= 0 , (96)

accordingly. Here the frequenciesωi(0) denote the initial trap frequencies along the principal
axes.

5.1.1. Long-time limitSince the scaling parametersλi(t) determine the size of the
condensate, they grow as the condensate expands freely. Hence, the right hand side of Eq. (95)
vanishes in the long-time limit and the scaling parameters approach the linear dependence

λi(t) ∼= ai + bi t (97)

ast → ∞. In general, the constantsai andbi are determined numerically. However, in the
case of an isotropic initial trap Eq. (95) can be solved analytically also yielding the values for
ai andbi as shown in the next subsection.

5.1.2. Isotropic case For an isotropic initial trap, that isωi(0) = ω0, the scaling parameters
λi(t) are given by the single scaling parameterλ(t) for all i = 1, 2, ..., d and the system of non-
linear differential equations, Eq. (95), decouples. We show in Appendix C that the function
λ(t) is a solution of the integral equation

∫ λ(t)

1

dζ
ζd/2

√

ζd − 1
=

√

2

d
ω0t. (98)
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Depending on the dimensionalityd, Eq. (98) gives rise to explicit,d = 2, or implicit,
d = 1 andd = 3, solutions for the scaling parameterλ(t), which are discussed in the next
paragraphs.

The cased = 1 The left-hand side of Eq. (98) gives rise to the transcendental equation
√

λ(λ− 1) + ln
(√

λ+
√
λ− 1

)

=
√
2ω0t

which can also be written as

λ =

√
2ω0t

√

1− 1
λ
+ 1

λ
ln
(√

λ+
√
λ− 1

) . (99)

It is clear that for long times, that isω0t≫ 1, the functionλ ∼=
√
2ω0t, since the denominator

in the right-hand side of Eq. (99) approaches unity asλ → ∞. Taking into account the terms
in the denominator scaling asλ−1 andln(λ)λ−1, we finally arrive at the approximate solution

λ1D(t) ∼=
√
2ω0t−

1

2

[

ln
(

4
√
2ω0t

)

− 1
]

. (100)

Here we have neglected all terms, that vanish in the long-time limit.

The cased = 2 In the case of two dimensions, the integral in the left-hand side of Eq. (98)
yields

√

λ2(t)− 1, leading to the exact solution

λ2D(t) =
√

1 + ω2
0 t

2 (101)

valid for all t ≥ 0.

The cased = 3 For a three dimensional BEC the integral in the left-hand side of Eq. (98)
can be expressed in terms of the Gaussian hypergeometric function 2F1(a, b, c; z) leading to
the implicit equation

2F1

(

−1

3
,
1

2
,
2

3
;
1

λ3

)

λ−
√
πΓ
(

2
3

)

Γ
(

1
6

) =

√

2

3
ω0t (102)

for λ(t), where Γ (x) denotes the Gamma function. Since the hypergeometric function

2F1(−1/3, 1/2, 2/3; 1/λ3) approaches unity asλ → ∞, the solutionλ(t) of Eq. (102) in
the long time limit, that isω0t≫ 1, is given by

λ3D(t) ∼=
√
πΓ
(

2
3

)

Γ
(

1
6

) +

√

2

3
ω0t. (103)

When we compare the relations (100), (101), and (103) with Eq. (97), we find that the
coefficientbi =

√

2/dω0.
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5.2. Connection between the long-time behavior of the wave function and the initial state

Here we show how the long-time behavior of the macroscopic wave function of a BEC can be
estimated in the case of free expansion, although the dynamics is governed by the non-linear
GP equation. Since the approximate analytic result for BECscontrasts the long-time solution
of non-interacting wave functions, we first have a look at theSchrödinger equation before
discussing the GP equation.

5.2.1. Schrödinger equationThe Schrödinger equation describing the free evolution of the
non-interacting wave functionψ(t,x) in ad-dimensional space reads

i~
∂ψ(t,x)

∂t
=

p̂2

2m
ψ(t,x) (104)

and has the formal solution

ψ(t,x) = e−
i
~

p̂
2

2m
tψ(0,x) (105)

in terms of the initial wave functionψ(0,x). When we use the Fourier transformation

ψ̃(0,p) ≡ 1

(2π~)d/2

∫

Rd

e−
i
~
px ψ(0,x) ddx (106)

of the wave functionψ(0,x), we can cast Eq. (105) into the form

ψ(t,x) =
1

(2π~)d/2
e−

i
~

m
2t
x2

∫

Rd

e−
i
~

t
2m(p−

mx

t )
2

ψ̃(0,p) ddp . (107)

For long times, that is in the limitt → ∞, the exponential function inside the integral
on the right-hand side of Eq. 107 oscillates very rapidly andonly the values ofp in a
narrow region aroundp = mx/t contribute to the integral. Hence, when we assume that
the momentum distributioñψ(0,p) is a smooth function ofp in this region, we can evaluate
ψ̃(0,p) atp = mx/t and perform the remaining integral, leading to the relation

ψ(t,x) ∼=
(

im

t

)d/2

e−
i
~

m
2t
x2

ψ̃
(

0,
mx

t

)

. (108)

Consequently, as is well known, the spatial density distribution in the long time limit

|ψ(t,x)|2 ∼=
(m

t

)d ∣
∣

∣
ψ̃
(

0,
mx

t

)
∣

∣

∣

2

(109)

is determined by the shape of the initial momentum distribution ψ̃(0,p).

5.2.2. Gross-Pitaevskii equationFor free expanding BECs a similar relation can be
established based on the affine approach. In order to comparethe results derived for the
Schrödinger equation and the GP equation, respectively, itis suitable to consider the wave
function ψD(t,x) that describes the inner dynamics of the BEC where the center-of-mass
motion has already been eliminated. As shown in section 2.1,the time evolution ofψD(t,x)

is governed by the transformed GP equation (8) which is related to the affinely transformed
wave functionψΛ(τ, ξ) by Eq. (10). If the initial wave functionψD(0,x) coincides with the
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TF ground state, Eq. (32), the time-dependent TF approximation (34) holds true during the
free expansion and we arrive at the solution

ψD(t,x) ∼=
1

√

detΛ(t)
e

i
~ [

m
2
xT dΛ

dt
Λ−1x−β(t)] ψD

(

0, Λ−1(t)x
)

, (110)

where we have used the definition (12) of the symmetric matrixA(t).
In the long-time limit and for free expansion the adaptive matrix Λ(t) grows linearly, Eq.

(97), that isΛ(t) ∼= B t ast → ∞ with the diagonal matrixB = diag(b1, . . . , bd). When we
apply this limit to expression (110), we obtain

ψD(t,x) ∼=
1√

td detB
e

i
~
[m2tx

2−β(t)] ψD

(

0, B−1x

t

)

. (111)

As a result, the spatial density distribution in the long time limit

|ψD(t,x)|2 ∼=
1

td detB

∣

∣

∣
ψD

(

0, B−1x

t

)
∣

∣

∣

2

(112)

is determined by the initial spatial density distribution and the time-dependent scaling.
Obviously, Eq. (112) is a direct consequence of the time-dependent TF approximation
on which this derivation is based and stands in contrast to relation (109) derived for the
Schrödinger equation.

In the next step we obtain a similar relation for the momentumdistribution of a free
expanding BEC in the long-time limit. In order to do so, we insert Eq. (111) into Eq. (106)
for the Fourier transform and arrive at the expression

ψ̃D(t,p) ∼=
e−

i
~
β(t)− i

~

p
2t

2m

(2π~ t)d/2
√
detB

∫

Rd

e
i
~

m
2t
x′2

ψD

(

0, B−1x
′

t
+B−1 p

m

)

ddx′, (113)

where we have introduced the new integration variablex′ ≡ x−pt/m. For long timest→ ∞,
the argument of the initial wave functionψD gets practically independent ofx′, which allows
to perform the remaining integration and to obtain

ψ̃D(t,p) ∼=
e−

i
~
β(t)− i

~

p
2t

2m

(im)d/2
√
detB

ψD

(

0, B−1 p

m

)

. (114)

Hence, in the case of the GP equation for free expansion, the momentum distribution in the
long-time limit

∣

∣

∣
ψ̃D(t,p)

∣

∣

∣

2 ∼= 1

md detB

∣

∣

∣
ψD

(

0, B−1 p

m

)
∣

∣

∣

2

(115)

is given by the initial spatial density distribution, whilefor the Schrödinger equation it is vice
versa, Eq. (109). Moreover, according to Eq. (115) the momentum distribution|ψ̃D(t,p)|2
of a free expanding BEC becomes time-independent in the long-time limit. However, we
emphasize that for the derivation of Eq. (115) we have required the validity of the time-
dependent TF approximation during the free expansion. As a consequence, for a proper
interpretation of time-of-flight pictures of BECs the interactions play an important role,
especially deep within the TF regime.

In addition, we point out that the long-time behavior of a freely propagating BEC is of
particular importance for atom interferometry and that themethods presented in this section
have been successfully applied by (Roura et al., 2014) to study the influence of gravity
gradients on the properties of an atom interferometer.



Efficient description of Bose-Einstein condensates in time-dependent rotating traps 36

6. Conclusion

In this work we have introduced a natural generalization of the scaling approach for
time-dependent rotating harmonic traps, the so-called affine approach. In contrast to the
hydrodynamical approach, we carried out this generalization directly to the GP equation by
(i) eliminating the center-of-mass motion and (ii) by applying a linear map to account for the
main part of the internal dynamics of a BEC. With the combination of this affine approach
and the time-dependent TF approximation, we established anefficient analytic description of
the BEC dynamics.

We verified the accuracy of this method by performing full numerical simulations of the
GP equation for two scenarios: (i) a pure rotation of the trapand (ii) a free expansion of an
initially rotating BEC. In both cases we found an excellent agreement of the numerical results
with our approximate analytical solution for many different combinations of the interaction
strength, the anisotropy factor and the final rotation rate of the trap. Moreover, the affine
transformation can be successfully used to improve the performance of numerical simulations
for a variety of experimentally relevant scenarios by solving the transformed GP equation
rather than the original one.

By employing a further transformation, we introduced the canonical form of the matrix
differential equation that governs the time evolution of the adaptive matrix and presented
its corresponding Hamiltonian formalism. We furthermore analyzed the relation between the
constants of motion of this matrix differential equation and the constants of motion of the GP
equation in connection with the conservation of the total energy and the angular momentum
of a BEC. For both cases, we derived explicit expressions valid in the TF regime.

In agreement with our affine approach, the spatial density distribution of a freely
expanding BEC in the long-time limit does not display the initial momentum distribution in
general, unlike a freely expanding atomic cloud that evolves according to the Schrödinger
equation. Instead, it resembles the affinely transformed initial spatial density distribution.
However, we showed that a converse relation between the spatial and momentum distributions
for a BEC in the TF regime holds true, namely that the momentumdistribution of a free
expanding BEC in the long-time limit is indeed given by its initial spatial density distribution.
These relations are a direct consequence of the nonlinearity of the GP equation and stand
in contrast to the well known ballistic expansion that wave functions governed by the free
Schrödinger equation show. Hence, in order to properly interpret time-of-flight pictures of
BECs, the mean-field interaction has to be taken into account. This is of special importance
deep within the TF regime where the interactions play a dominant role.

In summary, it can be stated that scaling solutions like the affine approach presented
in this chapter are valuable tools for studying the dynamicsof strongly interacting quantum
gases. Not only do scaling approaches provide efficient waysto accurately describe their time
evolution, but they also allow to unravel and separate the different layers of their dynamics.
And even if a scaling approach cannot account for all of the observed dynamical properties,
it can still offer valuable insights by dedicated numericalsimulations that take advantage of
the corresponding affine transformations. Finally, we anticipate further fruitful applications of
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the presented affine approach in the fields of matter-wave interferometry and multi-component
condensates.
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Appendix A. Affine transformation

In this appendix we outline the derivation of the affinely transformed GP equation (13).
This is done by first eliminating the center-of-mass motion of the condensate and second, by
performing a linear transformation of the coordinates together with a unitary transformation of
the wave function. Moreover, we show how to determine the integrated density distributions
of a BEC within the TF regime.

Appendix A.1. Center-of-mass motion

Our starting point is the GP equation (1)

i~
∂ψ

∂t
=

[

− ~
2

2m
∇

2
x + V (t,ρ)− F (x−ρ) +

m

2
(x− ρ)TΩ2 (x−ρ) + g |ψ|2

]

ψ (A.1)

with the explicit time-dependent harmonic potential givenby Eq. (3). We then rewrite the
transformation (4) by making use of the displacement operator in position representation

D̂(R,P) ≡ e
i
~
(P x−R p̂), (A.2)

and obtain

ψ(t,x) = e
i
~
S1(t)D̂(R,P)ψD(t,x) . (A.3)

The displacement operator satisfies the relations

D̂(R,P)ψD(t,x) = e−
i
2~

RPe
i
~
P xψD(t,x−R) , (A.4)

D̂†(R,P) f(x, p̂) D̂(R,P) = f(x+R, p̂+P) (A.5)

for any smooth wave functionψD(t,x) and phase-space operatorf(x, p̂). Taking advantage
of Eqs. (A.3) - (A.5), as well as the fact that

D̂† |ψ(t,x)|2 D̂ = D̂† |ψD(t,x−R)|2 D̂ = |ψD(t,x)|2 ,
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we arrive at the transformed GP equation

i~
∂ψD

∂t
=

{

p̂2

2m
+
m

2
xTΩ2 x+ g |ψD|2 +

[

−F+mΩ2 (R−ρ)+
dP

dt

]

x+

[

P

m
−dR

dt

]

p̂

+
dS1

dt
+

d

dt

(

RP

2

)

− dR

dt
P +

P
2

2m
+ V (t,ρ)− F (R−ρ)

+
m

2
(R−ρ)TΩ2 (R−ρ)

}

ψD (A.6)

for the wave functionψD.
In order to eliminate all terms in Eq. (A.6) that depend linearly on x andp̂, as well as

arbitrarily onρ, we require the parametersR(t) andP(t) to satisfy the classical equations of
motion (5) and the phaseS1(t) to be a solution of the first order differential equation

dS1

dt
= L(R, Ṙ, t)− 1

2

d

dt
(RP) . (A.7)

Here, we have used the first equation in Eq. (5) and the definition of the Lagrange function
L(R, Ṙ, t), Eq. (6). As a result, we have simplified the transformed GP equation (A.6) to
Eq. (8).

Appendix A.2. Linear transformation

We continue the derivation of the affinely transformed GP equation by recalling Eq. (9) for
the linear transformation of the spatial coordinates and the substitution of the time variable.
This mapping implies that the corresponding partial derivatives in Eq. (8) transform as

∂

∂t
=

∂

∂τ
−
(

Λ−1(τ)
∂Λ

∂τ
ξ

)T

∇ξ ,

∇x = Λ−T(τ)∇ξ . (A.8)

As mentioned in subsection 2.1.3, the linear mapping (9) is accompanied by the unitary
transformation of the wave function (10) which guarantees that the affinely transformed wave
functionψΛ(τ, ξ) is again normalized according to Eq. (2). Thus, by using the Eqs. (9), (10)
and (A.8), as well as the identity

d

dτ

(

detΛ
)

= detΛ · Tr
{

Λ−1 dΛ

dτ

}

, (A.9)

we arrive at the GP equation for the affinely transformed wavefunctionψΛ(τ, ξ)

i~
∂ψΛ

∂t
=

(

− ~
2

2m
∇

T
ξΛ

−1Λ−T
∇ξ +

g

detΛ
|ψΛ|2

)

ψΛ

+ i~ψΛ

[

Tr

{

Λ−1

2

(

dΛ

dτ
− 2

m
Λ−TA

)}

+
i

~

dβ

dτ

]

+ ψΛ ξ
T

[

dA

dτ
− 2AΛ−1

(

dΛ

dτ
− 1

m
Λ−TA

)

+
m

2
ΛTΩ2Λ

]

ξ

+ i~
(

∇ξψΛ

)T
Λ−1

[

dΛ

dτ
− 2

m
Λ−TA

]

ξ . (A.10)
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Now we first chooseA(τ) to be given by Eq. (12) which serves the purpose of eliminating
the last term in Eq. (A.10) as well as the part that contains the trace in the second term on the
right-hand side. Next we insertβ(τ) as defined by Eq. (11). In order to simplify the third
term on the right-hand side of Eq. (A.10), we therein replaceA(τ) according to Eq. (12) and
require the adaptive matrixΛ(τ) to satisfy the matrix differential equation (14). Finally,by
taking advantage of the irrotationality condition (16) whose validity is a direct consequence of
Eqs. (14) and (15) as discussed in the next section, we achieve our goal to simplify Eq. (A.10)
to the affinely transformed GP equation (13).

Appendix A.3. Irrotationality condition

Within our approach the adaptive matrixΛ(τ) automatically satisfies the irrotationality
condition, Eq. (16), since the derivative of the auxiliary matrix function

Z(τ) = ΛT(τ)
dΛ

dτ
− dΛT

dτ
Λ(τ)

vanishes for allτ ≥ 0 providedΛ(τ) is a solution of the matrix differential equation (14)
with the initial conditions (15). For this reason, the antisymmetric matrixZ(τ) = Z(0) = 0

representsd(d−1)/2 constants of motion of the second order matrix differentialequation (14)
and the matrixA(τ), Eq. (12), is indeed symmetric.

However, as pointed out by (Storey and Olshanii, 2000), the irrotationality condition, Eq.
(16) can likewise be derived by using the notion of classicalparticle trajectories that constitue
a velocity fieldv(t,x), which is irrotational, namely∇×v(t,x) = 0 at any point in space. We
briefly sketch this derivation within our approach. Letx = x(x0, t) be the classical trajectory
of a particle within a BEC, which depends on the initial positionx0 and the timet. As we have
shown in section 2.2.2 a BEC does not show any time evolution in the adapted coordinates if
the time-dependent TF approximation holds true. Hence, thetrajectory in adapted coordinates
is given byξ(t) = ξ0 = x0, keeping in mind that the original and the adapted coordinates
coincide att = 0. Since the transformation between the two coordinate systems is defined
by the linear mappingξ = Λ−1(t) [x−R(t)] with the center-of-mass positionR(t) and the
adaptive matrixΛ(t), the classical trajectory is given by

x0 = Λ−1(t) [x−R(t)] (A.11)

or rather

x(x0, t) = R(t) + Λ(t)x0 . (A.12)

Thus, the velocity field

v(x, t) ≡ dx

dt
=

dR

dt
+

dΛ

dt
Λ−1 (x−R) (A.13)

is irrotational, that is∇× v(t,x) = 0, if the matrix(dΛ/dt)Λ−1 is symmetric

Λ−T dΛT

dt
=

dΛ

dt
Λ−1, (A.14)

which is equivalent to the irrotationality condition (16).
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Appendix A.4. Integration of the density distribution of a Bose-Einstein condensate in the
Thomas-Fermi regime

In this appendix, we discuss the integration of the density distribution |ψTF(t,x)|2 of a
d-dimensional BEC in the TF regime overn dimensions withn < d. We denote byx[2] ∈ R

n

the vector consisting of the components ofx ∈ R
d over which the integration is performed.

Accordingly, the vectorx[1] ∈ R
d−n is composed of the remaining coordinates. Thus, the

integrated density distribution is given by

nTF(t,x[1]) =

∫

Rn

|ψTF(t,x)|2 dnx[2] . (A.15)

Without loss of generality, we can rearrange the coordinates in the original density
distribution, Eq. (40), such thatxT = (xT

[1],x
T
[2]), which furthermore translates into

R
T = (RT

[1],R
T
[2]) for the center-of-mass position and

Σ =

(

Σ[11] Σ[12]

ΣT
[12] Σ[22]

)

for the TF matrix defined by Eq. (39). By using the decomposition of the matrixΣ into the
Schur complements (Horn and Johnson, 1990)

Σ =

(

1d−n 0

Σ T
[12]Σ

−1
[11] 1n

)(

Σ[11] 0

0 Σ[22]−Σ T
[12]Σ

−1
[11]Σ[12]

)(

1d−n 0

Σ T
[12]Σ

−1
[11] 1n

)T

, (A.16)

the inverse of the TF matrix can be written as

Σ−1=

(

1d−n 0

−Σ T
[12]Σ

−1
[11] 1n

)T(

Σ−1
[11] 0

0
(

Σ[22]−Σ T
[12]Σ

−1
[11]Σ[12]

)−1

)(

1d−n 0

−Σ T
[12]Σ

−1
[11] 1n

)

.

By inserting this expression into Eq. (40), the quadratic form (x − R)TΣ−1(x − R) splits
into two terms:(i) a term involving only the free coordinatesx[1] and(ii) a term depending
on both, the coordinatesx[2] over which the integration is performed and the free coordinates
x[1]. In view of the integration in Eq. (A.15), we perform a changeof the integration variables
from x[2] to y via

y =

√

m

2

(

Σ[22] −Σ T
[12]Σ

−1
[11]Σ[12]

)− 1
2
[

x[2]−R[2]−Σ T
[12]Σ

−1
[11]

(

x[1]−R[1]

)

]

.

Note, that the inverse square root of the matrix(Σ[22] −Σ T
[12]Σ

−1
[11]Σ[12]) is defined in terms of

its spectral decomposition. As a result, we obtain for the integrated density distribution (A.15)

nTF(t,x[1]) =
1

g detΛ

√

2n

mn
det
(

Σ[22] −Σ T
[12]Σ

−1
[11]Σ[12]

)

∫

Rn

{

R2(x[1])− y2
}

+
dny, (A.17)

where we have introduced the auxiliary function

R(x[1]) ≡
{

µTF − m

2

(

x[1]−R[1]

)T
Σ−1

[11]

(

x[1]−R[1]

)

}
1
2

+
.

We perform the integration in Eq. (A.17) with the help ofn-dimensional spherical coordinates
∫

Rn

{

R2 − y2
}

+
dny =

∫

Sn−1

dn−1Ω

∫ R

0

(R2 − r2) rn−1 dr =
4π

n
2

n(n + 2)Γ
(

n
2

)Rn+2, (A.18)
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whereSn−1 denotes the(n − 1)-dimensional spherical surface. Moreover, by applying the
determinant on both sides of the decomposition (A.16), we find with the help of Eq. (39) the
useful relation

det
(

Σ[22]−Σ T
[12]Σ

−1
[11]Σ[12]

)

=
detΣ

detΣ[11]
=

(detΛ)2

detΩ2(0) detΣ[11]
.

Taking advantage of the latter, the integrated density distribution Eq. (A.17) finally reads

nTF(t,x[1]) =
1

Γ(n
2
+2) g

√

(2π/m)n

detΩ2(0) detΣ[11]

{

µTF − m
2

(

x[1]−R[1]

)T
Σ−1

[11]

(

x[1]−R[1]

)

}
n
2
+1

+
.

Forn = 1 andn = 2, this result reduces to Eqs. (42) and (44), respectively.

Appendix B. Energy and angular momentum of a Bose-Einstein condensate

This appendix presents the important steps to determine thedifferent contributions to the total
energy of a BEC and its angular momentum within the time-dependent TF approximation.

Appendix B.1. Energy terms in the time-dependent Thomas-Fermi approximation

We now evaluate the energy terms, Eqs. (84) - (86), by using the approximate wave function,
Eq. (73), valid in the time-dependent TF approximation. With the help of Eq. (80) we can
rewrite the expectation values in Eqs. (84) - (86) in terms ofthe expectation value with respect
to the initial stateψ(0,x). Thus, for the kinetic energy, Eq. (84), we obtain

Ekin(t)

N
=

1

2m

[

P(t)− Λ−T(t)P(0)
]2

+
1

m

[

P(t)− Λ−T(t)P(0)
]T
Λ−T(t) 〈p̂〉ψ0

+
1

2m

〈

p̂TΛ−1(t)Λ−T(t) p̂
〉

ψ0
+
m

2

〈

[x̂−R(0)]T
dΛT

dt

dΛ

dt
[x̂−R(0)]

〉

ψ0

+
[

P(t)− Λ−T(t)P(0)
]T dΛ

dt

[

〈x̂〉ψ0
−R(0)

]

+Re

{

〈

[x̂−R(0)]T
dΛT

dt
Λ−T(t) p̂

〉

ψ0

}

. (B.1)

In the same manner the potential energy given by Eqs. (85) and(3) reads

Epot(t)

N
= V (t,ρ(t)) +

m

2

〈

[x̂−R(0)]TΛT(t)Ω2(t)Λ(t) [x̂−R(0)]
〉

ψ0

−F (t)Λ(t)
[

〈x̂〉ψ0
−R(0)

]

− F (t) [R(t)− ρ(t)]

+m [R(t)− ρ(t)]TΩ2(t)Λ(t)
[

〈x̂〉ψ0
−R(0)

]

+
m

2
[R(t)− ρ(t)]TΩ2(t) [R(t)− ρ(t)] . (B.2)

Likewise, the dependence on time of the interaction energy Eq. (86) is given by

Eint(t)

N
=

Eint(0)

N detΛ(t)
. (B.3)
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We can further simplify Eqs. (B.1) and (B.2) for the kinetic and the potential energies by
taking into account the initial conditions (78) and by usingthe identity

〈

f̂TM f̂
〉

=
∑

j,k

Mj,k

〈

f̂j f̂k

〉

= Tr
[

M
〈

f̂ ⊗ f̂T
〉]

, (B.4)

which is valid for any symmetric matrixM . Hence, Eqs. (B.1) and (B.2) reduce to

Ekin(t)

N
=

P
2(t)

2m
+

1

2m
Tr
[

Λ−1(t)Λ−T(t)
〈

p̂⊗ p̂T
〉

ψ0

]

− 1

2m

[

Λ−T(t)P(0)
]2

+
m

2
Tr

{

dΛT

dt

dΛ

dt

〈

[x̂−R(0)]⊗ [x̂−R(0)]T
〉

ψ0

}

+Re

{

〈

[x̂−R(0)]T
dΛT

dt
Λ−T(t) p̂

〉

ψ0

}

(B.5)

and
Epot(t)

N
= V (t,R(t)) +

m

2
Tr

{

ΛT(t)Ω2(t)Λ(t)
〈

[x̂−R(0)]⊗ [x̂−R(0)]T
〉

ψ0

}

, (B.6)

respectively, whereV (t,R(t)) denotes the harmonic potential (3).
In addition, by making use of the explicit form of the initialwave function, Eq. (88),

we can evaluate the second and last term of Eq. (B.5). We startby inserting Eq. (88) into the
expectation value of the second term of Eq. (B.5) and arrive at the relation
〈

p̂⊗ p̂T
〉

ψ0
=
〈

p̂⊗ p̂T
〉

|ψ0|
+ P(0)⊗P

T(0) + 〈p̂〉|ψ0|
⊗P

T(0) + P(0)⊗ 〈p̂〉T|ψ0|
, (B.7)

where the expectation values are now evaluated with respectto the absolute value of the initial
state. Since the BEC is initially at rest in the comoving frame of the trap, we obtain〈p̂〉|ψ0|

= 0

and thus the second term of Eq. (B.5) fully reads
1

2m
Tr
[

Λ−1(t)Λ−T(t)
〈

p̂⊗ p̂T
〉

ψ0

]

=
1

2m
Tr
[

Λ−1(t)Λ−T(t)
〈

p̂⊗ p̂T
〉

|ψ0|

]

+
1

2m

[

Λ−T(t)P(0)
]2
. (B.8)

Next, we apply Eq. (88), to the last term of Eq. (B.5) and arrive at the expression

Re

{

〈

[x̂−R(0)]T
dΛT

dt
Λ−T(t) p̂

〉

ψ0

}

=
[

〈x̂〉ψ0
−R(0)

]T dΛT

dt
Λ−T(t)P(0) = 0 , (B.9)

which vanishes if we take into account the initial conditions, Eq. (78), for the center-of-mass
positionR(0) of the BEC. Thus, by inserting Eqs. (B.8) and (B.9) into Eq. (B.5), the kinetic
energy is finally given by

Ekin(t)

N
=

P
2(t)

2m
+

1

2m
Tr
[

Λ−1(t)Λ−T(t)
〈

p̂⊗ p̂T
〉

|ψ0|

]

+
m

2
Tr

{

dΛT

dt

dΛ

dt

〈

[x̂−R(0)]⊗ [x̂−R(0)]T
〉

ψ0

}

. (B.10)

In conclusion, by summing up the contributions given by Eqs.(B.3), (B.6) and (B.10),
we arrive at Eq. (87) for the energy per particle of a BEC within the time-dependent TF
approximation.
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Appendix B.2. Energy terms for the Thomas-Fermi ground state

In this appendix we use the TF ground stateφTF(x), Eq. (29), to derive explicit expressions
for the energy of a BEC given by Eq. (87). Since we have neglected the quantum pressure
term in the derivation of the TF ground state, Eq. (29), we consequently neglect it also for the
calculation of the energy within the TF approximation, thatis

〈

p̂⊗ p̂T
〉

|φTF|
≈ 0 . (B.11)

Next we use Eq. (29), the transformationξ = x−R(0), and the relation (30) to rewrite
the expectation value
〈

(

x̂−R(0)
)

⊗
(

x̂−R(0)
)T
〉

φTF

=
1

Ng

∫

Rd

ξ ⊗ ξT
[

µTF − m

2
ξTΩ2(0) ξ

]

+
ddξ

in the form
〈

(

x̂−R(0)
)

⊗
(

x̂−R(0)
)T
〉

φTF

=
2

d+ 4

µTF

m
Ω−2(0) , (B.12)

which is valid ind dimensions. Similarly, by applying Eq. (29) to Eq. (86) we obtain

Eint(0) =
2

d+ 4
N µTF . (B.13)

Finally, when we insert Eqs. (B.11) - (B.13) into Eq. (87), wearrive at the expression for
the total energy of a BEC, Eq. (89), valid in the TF regime.

Appendix B.3. Angular momentum operator in original coordinates

Here we establish a relation for the angular momentum operator with respect to the center
of mass in original coordinates. We start with the displacedwave functionψD(t,x), which is
the solution of the GP equation (8) in the center-of-mass coordinates. In these coordinates the
angular momentum operator̂LD is defined in the usual way by

L̂D = x̂× p̂ . (B.14)

With the help of the inverse of transformation Eq. (4) we can rewrite the expectation
value of the angular momentum operator (B.14) as follows
〈

L̂D

〉

ψD

≡ 1

N

∫

R3

d3xψ∗
D(t,x) L̂D ψD(t,x)

=
1

N

∫

R3

d3xψ∗(t,x) D̂
(

R(t),P(t)
)

L̂D D̂
†
(

R(t),P(t)
)

ψ(t,x)

=
1

N

∫

R3

d3xψ∗(t,x) L̂ψ(t,x) ≡
〈

L̂
〉

ψ(t)
, (B.15)

where D̂
(

R(t),P(t)
)

is the displacement operator which fulfills the relations (A.4) and
(A.5). Hence, the angular momentum operator in original coordinates reads

L̂ =
(

x̂−R(t)
)

×
(

p̂−P(t)
)

. (B.16)
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Appendix B.4. Angular momentum in the time-dependent Thomas-Fermi approximation

We now evaluate the expectation value, Eq. (B.15), of the angular momentum operator defined
by Eq. (B.16) with respect to the approximate wave function,Eq. (73), valid in the time-
dependent TF approximation. By making use of the coordinatetransformation (80) we obtain
the relation

〈

L̂
〉

ψ(t)
=

〈

{Λ(t) [x̂−R(0)]} ×
{

m
dΛ

dt
[x̂−R(0)] + Λ−T(t) p̂

}〉

ψ0

−
{

Λ(t)
[

〈x̂〉ψ0
−R(0)

]}

×
{

Λ−T(t)P(0)
}

. (B.17)

Taking into account the initial condition, Eq. (78), for thecenter-of-mass positionR(0), the
second term in Eq. (B.17) vanishes and we arrive at Eq. (92).

Appendix B.5. Angular momentum for the Thomas-Fermi groundstate

When we consider the TF ground stateφTF(x), Eq. (29), as the initial stateψ(0,x) for the
expectation value of the angular momentum matrix operator,Eq. (93), the last two terms
vanish, that is

Λ(t)
〈

[x̂−R(0)]⊗ p̂T
〉

φTF
Λ−1(t) − Λ−T(t)

〈

p̂⊗ [x̂−R(0)]T
〉

φTF

ΛT(t) = 0 . (B.18)

This results from the fact that the contributions of these two terms cancel out each other when
the momentum operator is applied to|φTF(x)|. In addition, the contributions due to the phase
iP(0)x/~ of the TF ground state, Eq. (29), vanish in consequence of theinitial condition,
Eq. (78), ofR(0). What remains is the contribution of the first term in Eq. (93), which can be
evaluated with the help of Eq. (B.12). Hence, we obtain the expression

〈

L̂
〉

TF
=

2µTF

d+ 4

[

Λ(t)Ω−2(0)
dΛT

dt
− dΛ

dt
Ω−2(0)ΛT(t)

]

(B.19)

for the expectation value of the angular momentum matrix operator in the TF regime. By
applying the angular momentum matrix associated with the matrix differential equation as
given by Eq. (70) to (B.19), we obtain Eq. (94).

Appendix C. Solutions of the matrix differential equation for the isotropic trap

In this appendix we find the solution of the non-linear differential equation (95) in the implicit
form given by Eq. (98) valid for isotropic initial traps. In the case of a rotationally invariant
trap, that isωi(0) = ω0, all scaling parametersλi(t) are identical,λi(t) = λ(t), and Eq. (95)
then reads

d2λ

dt2
=

ω2
0

λd+1
(C.1)

with the initial conditions

λ(t = 0) = 1
dλ

dt

∣

∣

∣

∣

t=0

= 0, (C.2)

resulting from Eq. (96).
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By considering Eq. (C.1) as the classical Newton equation for the “coordinate”λ, we can
integrate this equation with the integral of motion

1

2

(

dλ

dt

)2

+
ω2
0

d

1

λd
=
ω2
0

d
, (C.3)

which plays the role of “energy” corresponding to Eq. (C.1).Here we have used the initial
conditions given by Eq. (C.2). After solving Eq. (C.3) with respect todλ/dt and using again
Eq. (C.2), we obtain the implicit solution

∫ λ(t)

1

dλ̃
λ̃

d
2

√

λ̃d − 1
=

√

2

d
ω0 t (C.4)

of Eq. (C.1) for the functionλ(t).
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