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We investigate the feasibility of UV lasing without inversion at a wavelength of 253.7 nm utilizing interacting dark
resonances in mercury vapor. Our theoretical analysis starts with radiation-damped optical Bloch equations for all
relevant 13 atomic levels. These master equations are generalized by considering technical phase noise of the
driving lasers. From the Doppler broadened complex susceptibility we obtain the stationary output power from
semiclassical laser theory. The finite overlap of the driving Gaussian laser beams defines an ellipsoidal inhomo-
geneous gain distribution. Therefore, we evaluate the intra-cavity field inside a ring laser self-consistently with
Fourier optics. This analysis confirms the feasibility of UV lasing and reveals its dependence on experimental
parameters. © 2014 Optical Society of America
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1. INTRODUCTION
Developing powerful, coherent light sources ranging from UV
to X-ray is a major quest in laser development, with relevant
applications from spectroscopy and lithography to material
science. Conventional lasing requires population inversion,
which becomes increasingly difficult for shorter wavelengths,
since the threshold pumping power scales with the laser fre-
quency ω4 to ω6. In the UV regime, lasing without inversion
(LWI) is a possible pathway to overcome this problem [1–7].

To date, several experiments [8–11] have been conducted
showing that inversionless lasing is, in fact, feasible. However,
the lasing wavelengths were not significantly shorter than the
driving fields’ wavelengths. Despite all commitment, a laser
based on the LWI concept operating in the UV regime is
yet to be built. The large majority of existing UV lasers are
based on nonlinear harmonic frequency generation. Develop-
ing an alternative to this technique using LWI might allow for
new applications.

Doppler broadening is a major obstacle in UV LWI when
driving frequencies are strongly disparate [6]. One path to cir-
cumvent this problem is transient LWI [12–14]. However, it is
limited to pulsed lasing. Another path allowing for Doppler-
free cw LWI has been proposed by Fry et al. [15]. It is based
on the concept of interacting dark resonances [16]. The pro-
posed experiment allows for lasing on the 63P1↔61S0 transi-
tion in mercury at a wavelength of 253.7 nm. This idea can also
be applied to similar schemes, for example, in mercury and
krypton [17] at wavelengths of 185 and 116.5 nm, respectively.

In this paper, we provide a realistic three-dimensional theo-
retical analysis of the experiment proposed by Fry et al. The
article is structured as follows. In Sections 2 and 3, the basic
LWI scheme is introduced and applied to the realistic 13-level
scheme of mercury. Section 4 introduces the Doppler-free
three-photon resonance [15], which shields the linear gain

coefficient from inhomogeneous line broadening. Further
broadening effects are considered in Section 5. We consider
technical phase noise of the driving fields and assess its effect
on laser gain in Section 6. In Section 7, the stationary laser
power is calculated using self-consistent semiclassical laser
theory. In the concluding Section 8, we use the linear gain
coefficient of the spatially inhomogeneous mercury vapor
and evaluate the intracavity field modes of a four-mirror ring
laser resonator self-consistently within Fourier optics.

2. INTERACTING DARK RESONANCES
We implement LWI in a four-level scheme, as shown in Fig. 1.
In such a scheme, with three allowed dipole transitions driven
by a strong and a weak external electric field Es and Ew,
respectively, and a probe field Ep, one finds interacting dark
resonances.

For each of these fields, j � s; w; p, the positive frequency
components are given by

E���
j �r; t� � Ej�r; t�ϵj exp�−iωjt�; (1)

with the angular frequencies ωj , polarization vectors ϵj , and
slowly varying amplitudes Ej . For each of the three dipole
transitions we obtain the corresponding Rabi frequencies
Ωp � dab · ϵpEp∕ℏ, Ωs � dca · ϵsEs∕ℏ, and Ωw � dcd · ϵwEw∕ℏ
with the dipole matrix elements of the respective transitions
dab, dca, and dcd.

Within the dipole and rotating wave approximation [18],
one finds for the Hamiltonian matrix

H � −ℏ

0
BB@

0 Ω�
p Ωs 0

Ωp −Δp 0 0
Ω�

s 0 Δs Ω�
w

0 0 Ωw Δs − Δw

1
CCA; (2)
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where the matrix elements are sorted in the order of the basis
fjai; jbi; jci; jdig. The detunings are defined as Δp � ωp−

�ωa − ωb�, Δs � ωs − �ωc − ωa�, and Δw � ωw − �ωc − ωd�, with
ℏωj being the energy of the respective atomic state.

The origin of LWI can be understood best in the dressed
state picture. There, one finds for the eigenstates and energies
of the Hamiltonian

j0i � jdi − Ω�
w

Ω�
s
jai; E0 � 0; (3)

j�i � 1���
2

p
�
jai∓ jΩsj

Ωs
jciΩw

Ωs
jdi
�
; E� � �ℏjΩsj; (4)

assuming vanishingΩp and first order contributions inΩw. For
the sake of simplicity, resonant coupling fields were chosen.
For vanishing Ωw, the states j�i and j−i correspond to the
well-known Autler–Townes doublet of the three-level ladder
system jbi, jai, and jci. Hence, probing the transition a↔b,
one observes the Autler–Townes splitting in the absorption
spectrum. For finite values of Ωw, the state j0i, originally cor-
responding to the bare state jdi, contains an admixture of jai
and, by this means, couples to jbi. This transition corresponds
to the three-photon transition d↔b in the bare state picture
and is responsible for a sharp absorption feature that can
be used for LWI, as we will see in the following section.

3. RADIATION-DAMPED OPTICAL BLOCH
EQUATIONS
As atoms are embedded in an open system, they experience
radiation damping, which is described by means of optical
Bloch equations,

∂tρ̂ � �Lc � Li�ρ̂; (5)

for the reduced density operator ρ̂ of the atomic system.
Within the Born–Markov approximation [19,20], one finds
for the coherent evolution the Liouvillian

Lcρ̂ � −

i
ℏ
�Ĥ; ρ̂�; (6)

which is the free Hamiltonian evolution of a multilevel
atom in presence of coherent laser radiation, i.e., Eq. (2).
Irreversible radiation damping is represented by the incoher-
ent Liouvillian

Liρ̂ �
X
k∈D

Γk
nk � 1

2
�2ŝkρ̂ŝ†k − ŝ†kŝkρ̂ − ρ̂ŝ†kŝk�

�
X
k∈D

Γk
nk

2
�2ŝ†kρ̂ŝk − ŝkŝ

†
kρ̂ − ρ̂ŝkŝ

†
k�: (7)

The sum extends over all allowed transitions D � fab; ca; cdg
and the corresponding natural decay rates Γab, Γca, and Γcd.
The mean photon number of the transition k is labeled by
nk and corresponds to the lowering operator ŝk. For the
scheme shown in Fig. 1, they are defined as ŝab � jbihaj,
ŝca � jaihcj, and ŝcd � jdihcj. Since the thermal population
of optical modes is negligible in the proposed experiment,
we choose nca � ncd � 0. However, to model an incoherent,
bidirectional pump on the lasing transition a↔b, we set the
photon number nab � r∕Γab proportional to the pump rate r.

The polarization density of the gas is

P � N Trfd̂ ρ̂g (8)

with the atomic densityN and the dipole operator d̂. The part
of the polarization density associated to the probe transition is
spectrally well separated from the other parts and will be
called Pp.

In the mercury vapor cell the atomic density is calculated
for a given temperature T using the ideal gas law and the
vapor pressure of mercury [21,22]. If not specified
otherwise, then a temperature of T � 300 K is used for calcu-
lations in this paper, resulting in an atomic density
of N � 9.2 × 1013 cm−3.

Assuming linear response [23] and an isotropic medium, the
polarization density on the probe transition is proportional to
the applied field

P���
p � ϵ0χ

�1�E���
p ; (9)

defining the linear complex susceptibility as

χ�1� � χ 0 � iχ 00 � jdabj2N
ϵ0ℏΩp

ρab: (10)

The susceptibility’s real part χ 0 accounts for dispersion while
its imaginary part χ 00 describes absorption/gain. For z, the
probe field is attenuated (absorption), whereas for χ 00 < 0 it
is amplified (gain). To find the linear absorption spectrum
χ 00�Δp�, we solved Eq. (5) in the stationary limit. Figure 2
shows the resulting spectra. The absorption spectra show
peaks at Δp � �jΩsj, corresponding to the Autler–Townes
splitting, as expected. At the three-photon resonance
Δp � Δw − Δs, in the center of the spectra a very sharp peak
occurs that can be explained by the interaction of the dark
resonances j0i and jbi [15,16].

These results reveal that even a small amount of incoherent
pumping can invert the sharp absorption peak into a gain dip
and lead to lasing on the probe transition. The fact that only
the central peak is inverted while the rest of the spectrum is
merely unchanged, indicates that the population on the lasing
transition is not inverted. Based on this idea [16], a proposal
for an LWI experiment in mercury was published [15] that
allows for cw lasing in the UV and VUV regime. The goal
of the following sections will be to investigate the feasibility
of this proposal with regard to a realistic setting.

Fig. 1. Basic four-level coupling scheme for LWI. The solid arrows
represent coherent coupling, the dashed arrows incoherent decay
and the dotted arrow incoherent pumping. Here, a↔b represents
the probe transition while c↔a and c↔d are the coherent driving
transitions.
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A. Realistic Coupling Scheme for Mercury
Following [15], we introduce the full coupling scheme (Fig. 3)
for all relevant two-electron states of mercury [24], including
an additional trapping state jei. These 13 states can be clas-
sified by the Zeeman manifolds

Za � fjna � 6; Ja � 1;ma � 0;�1ig; (11)

Zb � fjnb � 6; Jb � 0;mb � 0ig; (12)

Zc � fjnc � 7; Jc � 1;mc � 0;�1ig; (13)

Zd � fjnd � 6; Jd � 2;md � 0;�1;�2ig; (14)

Ze � fjne � 6; Je � 0;me � 0ig: (15)

The atomic states are labeled as jni; Ji;mii with the principal
quantum number ni, the total angular momentum quantum
number Ji, and the projection quantum number mi.

To prevent population trapping in jei, a repump field

E���
r �r; t� � Er�r; t�ϵr exp�−iωrt�; (16)

is introduced with a detuning Δr � ωr − �ωc − ωe�. Further, an
incoherent pump rate rcd on the Δm � 0 transitions between
jci and jdi prevents population trapping in j6; 2;�1i.

Using a convenient interaction picture, the system’s
Hamiltonian Ĥ � Ĥ0 � V̂ in dipole and rotating wave approxi-
mation is given by

Ĥ0 � ℏΔpŝbb − ℏΔsŝcc � ℏ�Δw − Δs�ŝdd � ℏ�Δw − Δr�ŝee;
(17)

V̂ � −ℏ
X

q�0;�1

�Ωq
pŝ

q
ab �Ωq

s ŝ
q
ca � Ωq

wŝ
q
cd �Ωq

r ŝ
q
ce� � H:c: (18)

The projection operators are defined as

ŝjj �
X
k∈Zj

jkihkj; (19)

and the lowering operators are given by

ŝqij �
X
Zi;Zj

�−1�Ji−mi
�����������������
2Ji � 1

p

×

 
Ji 1 Jj

−mi q mj

!
jnj; Jj;mjihni; Ji;mij; (20)

employing Wigner 3-j symbols [24] and the spherical polariza-
tion vectors eq�0 � ez, eq��1 � ∓�ex � iey�∕

���
2

p
. The Rabi

frequencies polarization components are given by

Ωq
p � e�q · ϵp

ha‖d̂‖biEp

ℏ
�����������������
2Ja � 1

p ; Ωq
s � e�q · ϵs

hc‖d̂‖aiEs

ℏ
�����������������
2Jc � 1

p ; (21)

Ωq
w � e�q · ϵw

hc‖d̂‖diEw

ℏ
�����������������
2Jc � 1

p ; Ωq
r � e�q · ϵr

hc‖d̂‖eiEr

ℏ
�����������������
2Jc � 1

p ; (22)

with hi‖d̂‖ji being the i↔j transition’s reduced dipole matrix
element [24]. Experimental values have been taken from the
NIST database [25] and are summarized in Table 1.

The laser fields’ polarization vectors are given by

ϵp � ex ϵs � ϵw � ϵr � ey: (23)

The system’s Bloch equations generalize Eq. (5) by summing
over all polarizations and allowed transitions.

4. DOPPLER BROADENING
Doppler broadening is the main obstacle for LWI at short
wavelengths. This becomes increasingly problematic if the
drive and probe field’s frequencies differ strongly [6], as is
the case in the discussed scheme. To overcome this problem,
[15] proposes a Doppler-free three-photon transition. A par-
ticle moving at velocity v relative to the emitter of the electro-
magnetic wave with angular frequency ω and wave vector k,

Fig. 2. Absorption χ00�Δp� on the lasing transition versus detuning Δp
with Ωs � 2π × 20.7 MHz, Ωw � 2π × 0.3 MHz, and Δs � Δw � 0. In
the absence of incoherent pumping (r � 0), we obtain pure absorp-
tion (black line); however, in the presence of an incoherent pump
(r � 5 kHz), one finds gain (red line). The characteristic features
of the plot are the Autler–Townes doublet at �Ωs, as well as the
extremely sharp LWI resonance (∼1 kHz) in the center. For represen-
tation purposes, we have truncated the central peaks.

Fig. 3. Coupling scheme of mercury, including all relevant states for
the experiment and their Zeeman structure. The optical couplings are:
the coherent driving fields (solid blue), the incoherent pumping fields
and the spectrally broad repump field (dotted red), the lasing transi-
tion (dashed green).
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experiences a linear Doppler-shifted frequency ω0 � ω − k · v.
Therefore, a moving atom senses the Doppler-shifted three-
photon detuning

Δ3 � Δp � Δs − Δw − �kp � ks − kw� · v: (24)

If the fields satisfy the three-photon resonance for an atom at
rest, i.e., Δp � Δs − Δw � 0, then this is true for every velocity
group by choosing kp � ks − kw � 0, as shown in Fig. 4.

The resulting velocity averaged linear susceptibility
χ�1��T� � R

χ�1��v�f �v; T�d3v is defined by the Doppler distri-
bution

f �v; T� �
�

m
2πkBT

�
3∕2

exp
�
−

mv2

2kBT

�
; (25)

at the temperature T with the atomic mass of mercury m and
the Boltzmann constant kB.

In Fig. 5(a), the central narrow feature of LWI for atoms at
rest is shown (cf. Fig. 2). At finite temperature, this gain peak
persists, even though at reduced magnitude [see Fig. 5(b)].
Both spectra are approximately Lorentzian, with a width
(FWHM) of 171 kHz (a) and 256 kHz (b). As a comparison,
the probe transition’s Doppler width (FWHM) for a tempera-
ture of 300 K is 1.04 GHz.

5. OTHER BROADENING MECHANISMS
In this section, we discuss further broadening mechanisms
that may affect the performance of LWI and estimate their in-
fluence on the considered system for realistic experimental
conditions.

For the atomic density and temperature under considera-
tion (cf. Section 3), we estimate the ratios of dephasing
rates to radiative coherence decay rates [26–29] to
γdephab ∕γradab � 0.07, γdephca ∕γradca � 0.08, and γdephcd ∕γradcd � 0.06.
The collisional dephasing rates of all other coherences are
considerably smaller than these [27]. Therefore, we neglect
collisional line broadening in our calculations. The coherence
ρbd is of special importance, since it is closely connected to
the aforementioned three-photon transition. We neglect its de-
phasing rate γdephbd assuming that it is considerably smaller than

the coherence decay induced by the technical noise of the
driving lasers, which we elaborate on later.

Further, we estimate the frequency shift induced by the
recoil an atom exhibits during absorbing or emitting a
photon [30,31]. For the lasing transition this shift is
δωrec

p � ℏω2
p∕�2mc2� � 2π × 15 kHz, with the atomic mass of

mercury m � 200.6 u and the speed of light c. For the other
relevant transitions, this shift is even smaller. The results of
realistic calculations of the gain peak, presented later in this
paper, show a width more than an order of magnitude larger
than this shift. Therefore, we neglect the effect of recoil shifts
in our calculations. However, it is worth mentioning that for
possible generalizations of the discussed scheme toward
shorter wavelength recoil effects may need to be considered.

6. TECHNICAL NOISE OF DRIVING FIELDS
To implement the driving laser fields Es and Ew, we plan to
utilize single-mode external cavity diode lasers, which exhibit
predominately phase diffusion [32,33] with linewidths below
1 MHz. Further, the repump field Er will be implemented as a
spectrally broadened laser with a linewidth of ∼25 MHz.
Clearly, technical fluctuations in the phase affect coherent
multiphoton processes negatively. Therefore, we will investi-
gate the influence of phase noise on the LWI system’s gain in
this section. The influence of phase noise on the absorption
spectra has been discussed for two-level atoms [32,34,35]
and three-level LWI schemes [36–39]. A lucid introduction
to stochastic methods can be found in [40,41].

We start by writing the complex amplitudes of the slowly
varying driving fields [cf. Eq. (1)] as

Ej�r; t� � Ej�r�eiφj�t�; (26)

with the deterministic amplitude Ej�r�, the stochastic phase
φj�t�, and j � s; w; r.

The phases are modeled as stochastic processes under-
going diffusion characterized by a linewidth bj satisfying
the stochastic Ito differential equations

Table 1. Properties of Atomic Transitionsa

Transition λ (nm) Γ (MHz) S (a20e
2)

a↔b 253.7 2π × 1.27 0.19
c↔a 435.8 2π × 8.86 6.83
c↔d 546.1 2π × 7.75 11.8
c↔e 404.7 2π × 3.45 2.1

aTransition, wavelength, natural line width, line strengths Sij �
hi‖d̂‖ji2 in atomic units (Bohr radius a0 and elementary charge e).

Fig. 4. Orientation of the lasers’ wave vectors for a Doppler-free
three-photon transition.

Fig. 5. Velocity-averaged absorption spectra χ00�Δp; T� of the 13-level
system versus probe field detuning Δp. The spectrum shown in (a)
was calculated for atoms at rest while (b) is the Doppler average
at T � 300 K, Δw � Δs � Δr � 0, Ω�1

s � 2π × 33.5 MHz, Ω�1
w �

2π × 3.7 MHz, Ω�1
r � 2π × 2.8 MHz, r � 1.1 MHz, and rcd � 10 MHz.
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dφj�t� �
�������
2bj

q
dWj�t�; (27)

with Wj�t� being a standard Wiener process [40] with a
vanishing mean hdWj�t�i � 0 and variance hdW 2

j �t�i � dt.
Therefore, the probability density function p�φs;φw;φr; t� sat-
isfies the pure diffusion Fokker–Planck equation

∂tp � �bs∂2φs
� bw∂2φw

� br∂2φr
�p: (28)

The stochastic average of a quantity X�φs;φw;φr; t� with
respect to the stochastic phases is given by

hXi �
ZZZ

2π

0
pXdφsdφwdφr: (29)

It is worth noting the difference between this stochastic
average, the quantum mechanical average, and the Doppler
average. Throughout this paper h·i will always denote the sto-
chastic average over the phase fluctuations. This stochastic
phase-diffusion model (PDM) leads to a stationary field auto-
correlation function

hE�
j �r; t� τ�Ej�r; t�i � jEj�r�j2e−bj jτj; (30)

and a Lorentzian spectrum with linewidth bj .
The Bloch equations depend functionally on the stochastic

driving fields; therefore, they become stochastic differential
equations as well. Applying the rules of stochastic Ito calculus,
one can derive ordinary differential equations for the stochas-
tic averaged Bloch equations (cf. Appendix A).

The physical observables are stochastic averaged popula-
tions hρiii and contributions to the dipole energy hρijeiφk�t�i.
Therefore, it is useful to introduce a unitary transformation
of the stochastic density operator

ϱ̂�t� � Û�t�ρ̂�t�Û†�t�; (31)

that gauges away the stochastic phases. The resulting equa-
tions of motion for the averaged density operator hϱ̂i over
the driving fields’ phase fluctuations are given by

∂thϱ̂i � �Lc � Li � Lpd�hϱ̂i: (32)

The full expression of the phase diffusion Liouvillian Lpd can
be found in Appendix A which contains additional damping
terms for the atomic coherences, depending on the fields’ line-
widths.

In Fig. 6, the resulting Doppler-averaged absorption spectra
calculated from Eq. (32) are shown for different linewidths.
The gain peak of the calculated absorption spectra shows a
strong dependency on the driving fields’ linewidths. Although
its width increases with increasing linewidth, its magnitude
decreases.

The dependency of the susceptibility’s imaginary part at
resonance Δp � 0 on the driving fields’ linewidths is shown
in Fig. 7 for different temperatures. For increasing tempera-
tures in the vapor cell the atomic density and with it the linear
gain increases. However, this comes at the cost of increasing
collisional dephasing rates that affect the atomic coherence
used for LWI. By neglecting these rates we are not able to de-
termine the optimal density at which the trade-off between

optical depth and collisional dephasing maximizes the gain.
This has to be determined experimentally.

Figure 8 shows the dependency of the linear gain on the
strength of the incoherent pump applied to the probe transi-
tion for different linewidths. This result shows that the loss in
linear gain caused by phase noise can, to some extent, be com-
pensated by stronger pumping on the probe transition.

Fig. 6. Velocity-averaged, phase noise-averaged absorption spectra
hχ00�Δp; T�i versus detuning Δp on the probe transition, for different
linewidths of the driving fields bs � bw � 0 kHz (red dots), bs � bw �
2π × 8 kHz (green triangles), bs � bw � 2π × 16 kHz (blue squares),
bs � bw � 2π × 24 kHz (magenta diamonds), bs � bw � 2π × 32 kHz
(cyan triangles), and br � 2π × 25 MHz for all lines. All other param-
eters are chosen as in Fig. 5.

Fig. 7. Velocity-averaged, phase noise-averaged absorption hχ00i is
plotted for temperatures of 290 K (solid line), 300 K (dashed line),
and 310 K (dotted line) against the driving fields’ linewidths
bs � bw � b. Δp � 0, whereas all other parameters are chosen as
in Fig. 5.

Fig. 8. Velocity-averaged, phase noise-averaged absorption hχ00i plot-
ted against the incoherent pump rate r on the probe transition for b �
0 kHz (red line), b � 2π × 16 kHz (blue line), b � 2π × 32 kHz (green
line), b � 2π × 48 kHz (cyan line), b � 2π × 64 kHz (magenta line). All
other parameters are chosen as in Fig. 5.
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7. EXPECTED LASER POWER
In the previous sections, the gain medium’s linear response to
the external probe field was investigated, whereas in this sec-
tion the field Ep will be treated as a dynamical quantity: the
lasing field. By applying semiclassical laser theory [42–45] this
will lead to the stationary laser power.

The dynamics of the lasing field are determined by the
Maxwell equations, from which the wave equation

�
1

c2
∂2t � μ0σ∂t − Δ

�
Ep�r; t� � −μ0∂2tPp�r; t�; (33)

can be deduced under the assumptions that the charge den-
sity, the gradient of Pp, and the magnetization vanish and the
current density is given by conductivity σ times the electric
field Ep. The polarization density Pp couples this wave equa-
tion to the medium’s Bloch equations.

To solve this problem, we start by expanding the laser field

Ep�r; t� �
X
n

En�t�un�r� exp�iϕn�t��; (34)

in the resonator’s Hermite–Gauss modes un�r� (cf.
Appendix B), which are known to accurately describe modes
in ordinary optical resonators [46]. ϕn is the phase and En is
the real amplitude of the nth mode. Choosing a convenient
normalization, the Hermite–Gauss modes obey the orthogo-
nality relation

Z
R3

u�
m�r�un�r�d3r � Vcδmn; (35)

with Vc being the resonator’s mode volume. The next step is to
project Eq. (33) onto un using Eqs. (1), (34), and (35). If we
assume the paraxial approximation to be valid, small losses in
the resonator, and further apply the slowly varying envelope
approximation (SVEA), then we obtain the equation of motion
for the nth mode amplitude

∂tEn�t� �
σ

2ϵ0
En�t� � −

ωpV
�n�
0

2ϵ0Vc
I�Pn�t��; (36)

with

V �n�
0 �

Z
V
u�
n�r�un�r�d3r; (37)

Pn�t� �
Z
V
u�
n�r�Pp�r; t�e−iϕn�t�d3r; (38)

and V denoting the volume of the gain medium. In the deriva-
tion of Eq. (36), we used the dispersion relation kp � ωp∕c for
the wave vector of the Hermite–Gauss modes and the fact that
these modes approximately obey the Helmholtz equation (cf.
Appendix B). In the following, we will assume that the ampli-
tude E0 of the TEM00 is much larger than all higher amplitudes
En with n > 0. Consequently, these higher amplitudes will be
neglected. For convenience, we drop the index 0.

To solve Eq. (36), the dependency of the medium’s polari-
zation amplitude P on the amplitude of the laser field E needs
to be known. This dependency is determined by the Bloch

equations averaged over the Maxwell–Boltzmann distribution
and the phase fluctuations exhibited by the external fields.
As we are interested in the stationary limit, we expand the
medium’s polarization density in powers of the lasing field
with the instantaneous (non-)linear susceptibilities hχ�n�i
using the ansatz

P���
p � ϵ0

X∞
m�0

hχ�2m�1�i�E���
p · E�−�

p �mE���
p : (39)

These susceptibilities are averaged over the driving fields’
phase fluctuations and the Maxwell–Boltzmann velocity distri-
bution and are assumed to be homogeneous over the laser
mode’s spatial extension in the medium. This assumption will
be rectified in the next section. It is worth noting that, for
Eq. (39), we assumed frequency conversion effects to be neg-
ligible. Furthermore, the usage of instantaneous susceptibil-
ities causes Eq. (39) to be only valid if E varies slowly
compared with the time it takes for the medium to respond.
Using the expansion given in Eq. (39), the polarization ampli-
tude can be written as

P � ϵ0
V0

X∞
m�0

hχ�2m�1�iVmE2m�1; (40)

� Ndab
X∞
m�0

Vm

�2m� 1�!
∂2m�1 ~ρab
∂Ω2m�1

����
Ω�0

Ω2m�1; (41)

with Ω � dabE∕ℏ

Vm �
Z
V
ju�r�j2m�2d3r; (42)

~ρab �
Z
V
u��r�hρab�r�ie−iϕd3r: (43)

We calculate the expansion parameter of Eq. (41) by fitting a
polynomial of degree 2M � 1 to the numerically calculated
~ρab�Ω�. A coefficient comparison between Eqs. (40) and
(41) then yields the nonlinear susceptibilities. Our calcula-
tions show a truncation with M � 2 to be sufficient. We intro-
duce the photon number as n � 2ϵ0VcE2∕�ℏωp�. Inserting
Eq. (40) in Eq. (36), and truncating the series at m � 2, we
arrive at

∂tn � αn − βn2
− γn3; (44)

with the linear gain parameter

α � −

σ

ϵ0
−

ωpV0

Vc
χ 001; (45)

the nonlinear saturation parameters

β � ℏω2
pV 1

2ϵ0V2
c
χ 003 γ � ℏ2ω3

pV2

4ϵ0V 3
c
χ 005; (46)

and χ 00m � I�hχ�m�i�. Thus, the stationary photon number is
given as
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nst �
�
−

β
2γ �

��������������
β2

4γ2
� α

γ

q
� α

β � O�γ�; α > 0
0; α ≤ 0

: (47)

The sign of the linear gain parameter α indicates whether the
laser system is above (α > 0) or below (α ≤ 0) threshold
while β and γ are saturation parameters that determine the
stationary power when above threshold. For γ → 0, we obtain
the standard form of the photon number equation for a
laser [44].

Assuming the laser mode to be transversely well localized
in the medium, the approximation Vm � V0∕2m is justified.
Further, the stationary laser power can be calculated to
P � ℏωpcπw2

0n∕�2Vc�, with w0 being the mode’s beam waist.
Figure 9 shows the dependency of the calculated stationary
laser power on the pumping power Ppump for different line-
widths of the driving fields. The pumping power is related
to the incoherent pump rate r by

Ppump �
���
2

p
ℏω3

pσωA�����
π3

p
c2Γab

r: (48)

We assume the pump field to have a Gaussian spectrum with
central frequency ωp and variance σω � 2π × 440 MHz, corre-
sponding to a Doppler spectrum at temperature T � 300 K.
Further, A denotes the effective area cross section of the
pump field’s beam. The graphs show the expected behavior,
no lasing until a threshold pump power Pthr, and a merely
linear dependency on the pump power above threshold.
Increasing linewidths shift the threshold toward larger pump
intensities and result in a flatter slope.

Figure 10 shows the dependency of the threshold pump
power on the driving fields’ linewidths. This graph reveals
the importance of reducing the phase noise of the external
laser for the feasibility of this experiment.

8. RESONATOR MODES
In the previous section, it has been assumed that the spatial
distribution of the laser field is that of a Gaussian mode. In this
section, this assumption’s validity will be proved by calculat-
ing the spatial gain distribution in the medium. Using this re-
sult, we obtain the real modes of the laser system. Assuming

the laser field Ep to be highly monochromatic, we can neglect
the time dependency of its amplitude Ep and write

Ep�r� � ψ�x; y; z� exp�ikp · r�: (49)

In the paraxial approximation, we assume that x and y are
variables and z becomes the chronological parameter. Within
the linear response approximation, the slowly varying
envelope ψ�z� ≡ ψ�x; y; z� obeys the Schrödinger-like wave
equation

i∂zψ�z� � �T � V�z��ψ�z�: (50)

We have used the following definitions:

Tψ�z� ≡ −

1
2kp

�∂2x � ∂2y�ψ�x; y; z�; (51)

V�z�ψ�z� ≡ −

kp
2
hχ�1��x; y; z�iψ�x; y; z�; (52)

and the wave vector’s norm kp � jkpj. It is worth noting that
V�z� is a non-Hermitian complex potential, accounting for
changes in the index of refraction and absorption.

A. Propagation through the Empty Resonator
Before including the gain medium in our considerations, we
will calculate the modes of the empty open resonator. In
the following, we will briefly review the basic procedure of
light propagation in open cavities [45,47,48].

In free space (χ�1� � 0), the solution to Eq. (50) is given by

ψ�z� � F �z − z0�ψ�z0� � e−iT�z−z
0�ψ�z0�; (53)

with the initial field distribution ψ�z0�. The explicit form of
Eq. (53) for ψ�x; y; z� is just the Fresnel diffraction integral,
and can be evaluated efficiently with fast Fourier-transform
algorithms.

To simulate the round trip in an optical resonator, the ac-
tion of a mirror with radii of curvature Rx and Ry and aperture
function A�x; y� on the field ψ needs to be specified

Mψ�z� ≡ e−ikp�x
2∕Rx�y2∕Ry�A�x; y�ψ�x; y; z�: (54)

Combining free propagation with equal length L and the ac-
tion of the four mirrors in the ring cavity shown in Fig. 11,

Fig. 9. Stationary laser power P inside the cavity versus pumping
power Ppump for bs � 2π × 45 kHz and bw � 2π × 21.6 kHz (red dots),
bs � 2π × 50 kHz and bw � 2π × 24 kHz (green triangles), and bs �
2π × 55 kHz and bw � 2π × 26.4 kHz (blue crosses). The parameters
T � 300 K, A � 4 mm2, Q � ε0ωp∕σ � 198 × 106 (quality factor),
and V0∕Vc � 0.01 were used. All other parameters are chosen as in
Fig. 5.

Fig. 10. Threshold pumping power Pthr is plotted against the external
laser linewidths bs and bw. The same parameters as in Fig. 9 were
used.
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defines a round trip operator R ≡ �MF �L��4. This yields an
eigenvalue problem

Rψγ � γψγ ; (55)

for the eigenmodes ψγ labeled by the complex eigenvalue γ.
The mirrors have a curvature radius R and a tilt angle of
45°. We choose the x-direction to be in the sagittal plane
and the y-direction to be in the tangential plane. From this
follows Rx � R cos�45°� and Ry � R∕ cos�45°�.

Starting from Fox and Li [49], different methods [46,50–52]
have been developed to solve this eigenvalue problem. In our
work, we use the Arnoldi–Krylov method [53,54] to find the
largest eigenvalues γmn and the corresponding eigenvectors
ψmn, which are the self-consistent transverse electromagnetic-
modes (TEM) of the ring cavity defined byR. Figure 12 shows
the calculated modes’ intensity patterns on the output mirror.
As expected, these modes show strong resemblance to the
Hermite–Gauss functions used for the mode expansion in
the previous section.

B. Propagation in Inhomogeneous Media
In Section 7, we have assumed spatially homogeneous suscep-
tibilities to calculate the stationary intensity of the laser field.
This does not correspond to the real situation, where the
intersection of external Gaussian laser beams creates a tilted,

ellipsoidal gain distribution, as shown in Fig. 13. The orienta-
tions of the driving fields’ wave vectors are fixed by the three-
photon Doppler-free configuration in Fig. 4.

The central yellow–orange structure provides gain for the
laser, whereas in the blue structures, on both sides, amplified
absorption is observed. This can be explained by considering
the ratioΩs∕Ωw in both areas. The gain region is basically cen-
tered on the laser beam associated with Ωs, resulting in the
mentioned ratio to be large while increased absorption is
observed in regions with a small ratio Ωs∕Ωw. For small Ωs,
the described coherence effect is not observed, since the
needed Autler–Townes splitting cannot be achieved, whereas
a relatively large Ωw prevents population trapping in the state
jdi and by this means increases absorption on the lasing
transition.

To investigate the influence of the inhomogeneous gain dis-
tribution hχ�1��r�i on the mode structure, we need to propagate
the field through the medium with length Lm

ψ�zf � � Kψ�zi� ≡ T e
−i
R

zf
zi

�T�V�z��dz
ψ�zi�; (56)

with zi � −Lm∕2 and zf � Lm∕2. This formal definition of the
chronological ordered (T ) propagator K is evaluated approx-
imately by splitting the medium into N short slices of length
δz � Lm∕N and using the split operator method [55,56]

K � e−iT
δz
2

�YN−1

l�0

e−iV�zl�δze−iTδz
�
eiT

δz
2 ; (57)

where we have evaluated the potential at posi-
tions zl � zi � lδz.

Now, this modifies the round trip operator of the cavity and
the gain medium to

Fig. 11. Scheme of the LWI system’s resonator. The one-directional
ring resonator design and the orientation of the driving fields, repre-
sented by the blue and the green arrow, respectively, is enforced by
the Doppler-free configuration described earlier.

Fig. 12. Transverse intensity patterns on the output mirror are
shown for the modes TEM00, TEM10, TEM11, and TEM32 of the empty
ring resonator. A quadratic aperture with a diameter of 1.38 mm was
used together with mirror radii R � 100 cm and distance L � 20 cm.

Fig. 13. Iso-surfaces of the gain distribution hχ00�x; y; z�i versus posi-
tion. The green (weak driving laser), blue (strong driving laser) and
violet (probe laser) arrows correspond to the laser beams’ directions
obeying the Doppler-free scheme. The external driving fields are
Gaussian beams with waists w0 � 2 mm, powers Ps � 200 mW and
Pw � 1.4 mW, linewidths bs � 2π × 50 kHz and bw � 2π × 24 kHz,
and polarizations as given in Eq. (23). The given laser powers corre-
spond to peak Rabi frequencies of Ω�1

s � 2π × 33.5 MHz and
Ω�1

w � 2π × 3.7 MHz, respectively. r � 2.3 MHz and all other parame-
ters are chosen as in Fig. 5.
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R0 � e−νMF �L0�KF �L0��MF �L��3; (58)

with L0 � �L − Lm�∕2. The additional factor e−ν phenomeno-
logically models the cumulative loss per round trip caused
by output coupling and imperfection of optical elements.
The corresponding resonator modes can again be calculated
using the Arnoldi–Krylov method.

C. Results
The crucial parameters for the experiment are the gain per
round trip jγj2 and the beam quality, which can be measured
by the M2 parameter [57,58] defined for the transverse
x-direction as

M2
x � πϑxdx

4λ
; (59)

with the wavelength λ, the divergence angle in x-direction ϑx,
and beam diameter in x-direction dx at the beam’s waist.
Hermite–Gauss modes of order m have a beam quality char-
acterized by M2

x � 2m� 1.
The most important control parameter for the gain medi-

um’s structure is the spatial field distributions of the driving
lasers. We assume the driving fields to be Gaussian beams,
focused in the center of the gain medium. Consequently,
the field distributions are determined by the beams’ waists.
Since the driving fields’ peak intensities are constrained to
have optimal gain in the focal region, a certain beam waist
corresponds to a certain required power.

Figures 14 and 15 show the dependencies of the linear am-
plification per round trip jγj2 and the beam quality parameter
M2

x on the driving field waistw0, respectively. For smallw0, the
laser field is attenuated in the medium, resulting in jγj2 < 1,
whereas for larger w0, the gain region increases and, at some
point, the gain in the medium compensates for the absorption
and diffraction losses (jγj2 � 1); for yet larger w0, the field is
amplified after each round trip and the laser process starts. If
w0 is much larger than the laser field’s extension in the gain
medium, then the gain saturates. In the case of large w0, the
beam quality of the laser field reaches the beam quality of
the empty resonatormodes (cf. Fig. 12). For smallw0, the beam
quality is worse and M2

x exceeds the former mentioned value
considerably. This can be explained by interpreting the gain
region in the medium as an effective aperture for the laser
beam. If this aperture is much larger than the transverse

extension of the laser beam’s intensity distribution, then the
aperture has no significant influence on the laser beam and
the resulting modes are those of the empty resonator. For
smaller w0, the effective aperture of the gain region becomes
smaller and the laser beam is diffracted at this aperture, result-
ing in poorer beam quality and larger M2

x values. In the inter-
mediate regime, one observes a minimum inM2

x optimal mode
quality. This is obtainedwhen the gain structure in themedium
and the respective mode’s intensity distribution have the best
match. Diffraction patterns in the outer regions of the intensity
distributions are absorbed while the relevant part of the mode
is not diffracted.

9. CONCLUSION
We have developed a realistic multilevel model for the UV
lasing scheme in mercury vapor proposed in [15], including
technical noise of the driving field, Doppler broadening, the
spatial inhomogeneous structure of the gain medium, and
self-consistent eigenmodes of a four-mirror ring cavity. This
model was used to identify crucial experimental parameters,
such as the linewidths and the waists of the driving fields, and
to investigate the dependency of linear gain, stationary power,
and mode quality of the laser system on these parameters. The
results of this analysis demonstrate the parameter ranges and
the expected performance of the laser system.

APPENDIX A: DETAILS OF PDM
CALCULATION
The stochastic phases φs, φw, and φr appear in the Bloch equa-
tions as parameters. To separate the stochastic and determin-
istic dynamics, we apply the transformation given in Eq. (31)
with

Û�t� � exp
�
i
2

X
k

φk�t�
X
j

ξkjŝjj

�
; (A1)

ξ � s
w
r

a b c d e0
@−1 −1 1 1 1

1 1 1 −1 1
1 1 1 1 −1

1
A : (A2)

The sum over j extends over the atomic states, whereas
k ∈ fs; w; rg. Applying the rules of Ito calculus [40] on the
variable substitution dρ̂ → dρ̂, we obtain

Fig. 14. Linear amplification jγ00�w0�j2 per cavity round trip for
TEM00 plotted against driving field waist w0. The cavity design shown
in Fig. 11 was used with the same parameters as in Fig. 12, and
e−ν � 0.95. All other parameters are chosen as in Fig. 13.

Fig. 15. Beam quality parameter M2
x plotted against driving field

waist for TEM00 (black dots), TEM01 (green squares), and TEM10
(red triangles). All parameters are chosen as in Fig. 14.
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dϱ̂ � Lϱ̂dt� 1
4

X
k;k0

dφkdφk0
X
i;j

ξkjξkiŝjj ϱ̂ŝii

−

1
8

X
k;k0

dφkdφk0
X
j

�ŝjj ϱ̂� ϱ̂ŝjj�; (A3)

with L � Lc � Li. It is worth noting that L is deterministic as
the transformation Û separated the deterministic evolution
from the stochastic fluctuations. Under the assumption that
ϱ̂ is non-anticipating hϱ̂dφki � 0, the average of Eq. (A3) over
the phase fluctuations is given by

hdϱ̂i � �Lc � Li � Lpd�hϱ̂idt: (A4)

The phase–diffusion Liouvillian appearing in Eq. (32) is thus
given by

Lpdhϱ̂i �
X
k

bk
2

X
i;j

ξkjξkiŝjjhϱ̂iŝii −
X
k

bk
4

X
j

�ŝjjhϱ̂i � hϱ̂iŝjj�:

(A5)

For Eq. (A4), the equations [Eq. (27)] for the stochastic phases
were used together with the properties of the independent
Wiener increments hdWkdWk0 i � δkk0dt.

APPENDIX B: HERMITE–GAUSS MODES
The Hermite–Gauss mode [45] of order �mn� is given by

umn�x; y; z� � N�z�um�x; z�un�y; z�e−ikpz�iΦmn�z�; (B1)

with the one-dimensional mode function

um�x; z� � Hm

� ���
2

p
x

w1�z�

�
exp

�
−x2

w2
1�z�

−

ikpx2

2R1�z�

�
; (B2)

the normalization factor N�z�, the Guoy phase Φmn�z�, the
beam widthwj�z�, and the curvature radius Rj�z�.Hm denotes
themth Hermite polynomial. In the case of the ring resonator,
it is important to note that the z-direction is the direction of
the optical axis tilted by the mirrors and that the x- and
y-directions are the corresponding local transverse directions.

The Hermite–Gauss modes are solutions to the paraxial
wave equation in vacuum [cf. Eq. (50)]. In the paraxial case,
they approximately obey the Helmholtz equation

Δumn�r� ≈ −k2pumn�r�: (B3)
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