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Rapid generation of Mott insulators from arrays of noncondensed atoms
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We theoretically analyze a scheme for a fast adiabatic transfer of cold atoms from the atomic limit of isolated
traps to a Mott insulator close to the superfluid phase. This gives access to the Bose-Hubbard physics without
the need of a prior Bose-Einstein condensate. The initial state can be prepared by combining the deterministic
assembly of atomic arrays with resolved Raman-sideband cooling. In the subsequent transfer the trap depth is
reduced significantly. We derive conditions for the adiabaticity of this process and calculate optimal adiabatic
ramp shapes. Using available experimental parameters, we estimate the impact of heating due to photon scattering
and compute the fidelity of the transfer scheme. Finally, we discuss the particle number scaling behavior of the
method for preparing low-entropy states. Our findings demonstrate the feasibility of the proposed scheme with
state-of-the-art technology.
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I. INTRODUCTION

Deterministic preparation of cold atoms in optical microtrap
arrays [1–5] combined with Raman-sideband cooling [6,7]
constitutes a promising source for low-entropy many-body
states [8,9]. This approach assembles quantum many-body
systems atom-by-atom, contrasting the loading schemes used
in optical lattice experiments which start from the bulk, i.e.,
Bose-Einstein condensates, or degenerate Fermi gases [10,11].
The assembly of atomic arrays with unit filling and the Raman-
sideband cooling of the atoms to the respective motional
ground state require tight isolated traps which prohibit intersite
tunneling. Therefore, after the cooling process the trap depth
or the trap spacing needs to be reduced significantly in order to
explore the itinerant physics of the Hubbard model. This was
demonstrated in double wells for bosonic atom pairs [12] and
for fermionic atom pairs [13] using the spilling “technique”
[14] instead of Raman-sideband cooling.

In this article, we investigate the time-dependent transfer
of bosonic atoms from an array of isolated traps to a tunnel-
coupled array. A detailed analysis shows that this bottom-up
approach to a Mott-insulator state is achievable. Reducing the
trap depth instead of the trap spacing is preferred, because
the latter results in a large overlap of the optical microtraps,
prohibiting cross-talk-free single-site control [15]. Clearly, the
time-dependent transfer has to be “as fast as possible, but
as slow as necessary” to avoid ramp-induced excitations on
one hand and to suppress external heating mechanisms or loss
processes on the other hand. In order to satisfy these conflicting
conditions, we derive optimal intensity ramp shapes.

The article is organized as follows: In Sec. II, we formulate
an adiabatic variational procedure for optimal time-dependent
parameter ramps. In Sec. III, we set up the model for ultracold
atoms in optical microtraps, discuss the regimes traversed
during the transfer process, and apply the formalism developed
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in Sec. II. Current experiments with optically trapped atoms
are used as benchmarks to obtain realistic system parameters
in Sec. IV. Employing these results, we compute an optimal
adiabatic ramp in Sec. V. For this ramp we estimate the impact
of heating due to light scattering and compute the transfer
fidelity by solving the time-dependent Schrödinger equation
for the one-dimensional Bose-Hubbard model. The particle
number scaling behavior of the procedure is discussed in
Sec. VI. Finally, in Sec. VII we summarize our findings and
provide an outlook.

II. RAPID ADIABATIC PARAMETER RAMPS

Time-dependent manipulations of atom traps have to be
sufficiently slow to avoid excitations. Therefore, one has to
specify the conditions of adiabaticity and define error measures
for time-dependent transfer processes.

Let us consider a quantum system with Hamilton operator
Ĥ (γ ), which is controlled by an �-dimensional time-dependent
parameter γ (t) within a time interval τ . Its instantaneous
energies Ei(γ ) and eigenstates |i(γ )〉 are obtained from the
stationary Schrödinger equation

Ĥ (γ )|i(γ )〉 = Ei(γ )|i(γ )〉. (1)

The adiabatic theorem [16,17] states that systems prepared
initially in the energy eigenstate |i[γ (0)]〉 will remain in
|i[γ (t)]〉, if the rate of change of the parameters γ is sufficiently
small and the energy levelsEi(γ ) are well separated. In absence
of induced resonant transitions, a sufficient criterion [18,19] for
adiabaticity is given by

max
0�t�τ

∣∣∣∣αij (γ,γ̇ )

h̄ω2
ij (γ )

∣∣∣∣
2

� 1, ∀j �= i. (2)

Here, we have introduced the transition frequencies

ωij (γ ) = Ej (γ ) − Ei(γ )

h̄
(3)
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and the transition matrix elements

αij (γ,γ̇ ) = 〈j |∂t Ĥ |i〉 =
�∑

l=1

γ̇l〈j |∂γl
Ĥ |i〉. (4)

Based on measuring the instantaneous loss out of the state |i〉
into any other state |j 〉 by

L(γ,γ̇ ) =
∑
j �=i

∣∣∣∣αij (γ,γ̇ )

h̄ω2
ij (γ )

∣∣∣∣
2

, (5)

one can express the cumulative adiabatic error as

E∞[γ,γ̇ ] = max
0�t�τ

L[γ (t),γ̇ (t)], (6)

within the interval [0,τ ]. The smallness of E∞ defines an
optimality criterion for adiabaticity [cf. Eq. (2)] for a time-
dependent process γ (t), starting from γ (0) and reaching γ (τ )
within duration τ .

Alternatively, the time-averaged functional

E1[γ,γ̇ ] = 1

τ

∫ τ

0
L[γ (t),γ̇ (t)] dt (7)

is also a cumulative measure for the nonadiabaticity of the
process. Here, the error measures Ep are analogs of p-norms
‖x‖p = p

√∑
i |xi |p for finite-dimensional vectors x. Clearly,

the definition of Eq. (7) is more amenable to extremization
using variational analysis than the definition of Eq. (6). In
Appendix A, we show that for the case of a one-dimensional
parameter function, as considered in this manuscript, a param-
eter curve which minimizes E1 also minimizes E∞.

By considering the structure of L in Eqs. (4) and (5), one
obtains a quadratic form in terms of the velocities γ̇ ,

L(γ,γ̇ ) =
�∑

k,l=1

1

2
γ̇kMkl(γ )γ̇l , (8)

and a symmetric, parameter-dependent “mass matrix” M(γ )
in close analogy to the Lagrangian mechanics. Optimal trajec-
tories γ are obtained from the Euler-Lagrange equations

d

dt
∂γ̇l

L = ∂γl
L. (9)

Clearly, we can also introduce a canonical momentum πi =
∂γ̇i

L = (Mγ̇ )i and obtain a Hamiltonian function

H(γ,π ) =
�∑

l=1

πlγ̇l − L =
�∑

k,l=1

1

2
πkM−1

kl (γ )πl, (10)

via a Legendre transformation. From Eq. (10) Hamilton’s
equation of motion can be derived as

γ̇l = ∂πl
H = [M−1(γ )π ]l , π̇l = −∂γl

H. (11)

If the system is not subject to any additional external time
dependence, then the Hamiltonian function is constant,

H[γ (t),π (t)] = H0. (12)

In the special case of one-dimensional parameter processes
� = 1, which is considered in Sec. V, this leads to completely

integrable dynamics∫ γ (t)

γ (0)
dγ

√
M(γ ) = ±

√
2H0t (13)

for the optimal adiabatic process γ (t).
Our approach is equivalent to the concept of the “quantum

adiabatic brachistochrone” [20] and is strongly related to con-
stant adiabaticity pulses used in nuclear magnetic resonance
[21].

III. COLD ATOMS IN OPTICAL MICROTRAPS

The physics of dilute atomic gases is determined by the
interplay of single-particle motion in the parameter-dependent
external potential V (r,γ ) and internal pressure arising from
the van der Waals interaction [22–24]. In the s-wave limit,
the latter can be described by a contact interaction of strength
g = 4πh̄2as/m, with the atomic mass m and the scattering
length as . Therefore, the system’s Hamilton operator reads

Ĥ (γ ) =
∫

	̂†(r)Hsp(r,γ )	̂(r) d3r

+ g

2

∫
	̂†(r)	̂†(r)	̂(r)	̂(r) d3r, (14)

with the position representation of the single-particle Hamilton
operator

Hsp(r,γ ) = − h̄2

2m
∇2 + V (r,γ ). (15)

As we consider ultracold bosonic atoms the field operator 	̂(r)
obeys [	̂(r),	̂†(r ′)] = δ(r − r ′). For arrays of deep traps, it
is convenient to expand 	̂(r) using orthogonal atomic orbitals
which are localized around the trap minima. For regular lattices
the natural choice are Wannier functions wn

i (r,γ ) for the ith
trap site and the nth band [25–27] with the corresponding
quantized amplitudes,

ân
i (γ ) =

∫
wn

i (r,γ )	̂(r) d3r. (16)

In order to have a compact notation, we suppress the parameter
dependence if unambiguous. From Eqs. (14) and (16) one
obtains the multiband Bose-Hubbard Hamilton operator [28]

Ĥ (γ ) =
∑
n,i

εn
i (γ )ân†

i â
n

i −
∑
n,i �=j

J n
ij (γ )ân†

i â
n

j

+ 1

2

∑
nopq

∑
ijkl

U
nopq

ijkl (γ )ân†
i â

o†
j â

p

k â
q

l , (17)

with on-site energies εn
i , tunneling parameters J n

ij , and inter-
action strengths U

nopq

ijkl given by

εn
i (γ ) =

∫
wn

i (r)Hsp(r,γ )wn
i (r) d3r, (18)

J n
ij (γ ) = −

∫
wn

i (r)Hsp(r,γ )wn
j (r) d3r, (19)

U
nopq

ijkl (γ ) = g

∫
wn

i (r)wo
j (r)wp

k (r)wq

l (r) d3r. (20)
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FIG. 1. Excitation pathways in a microtrap array: interband ex-
citations dominate in deep traps since intraband tunneling is expo-
nentially suppressed. However, for shallower potentials, intraband
tunneling prevails as long as the two-particle interaction energy
U ≡ U 0000

iiii remains smaller than the band gap h̄ω.

An arbitrary state |ψ〉 can be expanded in the Fock basis,

|ψ〉 =
∑

|η|=N

ψη|η〉, η = (
η0

1, . . . ,η
0
M,η1

1,η
1
2, . . .

)
. (21)

Here, ηn
i ∈ N0 is the occupation of the Wannier mode cor-

responding to the nth band and the ith site. The set N0

includes the natural numbers and zero. The occupations ηn
i

are constrained to the number of atoms N = |η| ≡ ∑
n,i ηn

i .

A. Atomic limit

The transfer process starts from an array of tight isolated
traps with one atom per site prepared in the respective motional
ground state. The corresponding many-body state is given by
|gal〉 = |η〉 with ηn

i = δ0n. This regime is called the atomic
limit, where intersite tunneling is strongly suppressed. There-
fore, the only possible reaction of the system to time-dependent
modulations of the trap depth are local interband excitations
(cf. Fig. 1) resulting in states of the form â

n†
i â0

i |gal〉.
Due to the tight confinement of the atoms around the

respective potential minima, each trap can be described
by a harmonic oscillator. The corresponding frequencies
[�x(t),�y(t),�z(t)] = γ (t) are the control parameter for the
adiabatic transfer procedure. The multiband Bose-Hubbard
Hamilton operator of Eq. (17) reduces to the sum of local
harmonic oscillators:

Ĥal(γ ) =
∑
n,i

εn
i (γ ) â

n†
i â

n

i , (22)

εn
i (γ ) = h̄

∑
l=x,y,z

(
nl + 1

2

)
�l. (23)

If we introduce local Cartesian coordinates ξ = r − Ri around
the trap minimum Ri of the ith site, then the Wannier function

wn
i (r) = wn(ξ ) = (ξ |nxnynz) (24)

factorizes into one-dimensional harmonic oscillator states,

(ξl|nl) = e
− ξ2

l

2a2
l

4
√

π (2nl nl!al)2
Hnl

(
ξl

al

)
. (25)

Here, al = √
h̄/(m�l) denote the three oscillator lengths, n =

(nx,ny,nz) ∈ N3
0 are the motional quantum numbers, and Hm

is the mth Hermite polynomial.
In order to determine the adiabatic Lagrangian function

Lal(γ,γ̇ ) from Eq. (5), parameter derivatives of the form

∂Ĥal

∂γl

=
∑
n,i

∂εn
i

∂γl

â
n†
i â

n

i + εn
i

(
∂â

n†
i

∂γl

ân
i + â

n†
i

∂ân
i

∂γl

)
(26)

need to be calculated. The derivatives of the operators ân
i can

be found from Eq. (16) [27,29]:

∂ân
i

∂γl

=
∑
p,j

C
np

ij ;l â
p

j , C
np

ij ;l =
∫

∂wn
i (r)

∂γl

w
p

j (r) d3r. (27)

The coefficients C
np

ij ;l can be interpreted geometrically as the
generators of a basis rotation and satisfy the relation C

np

ij ;l =
−C

pn

ji;l . Using the harmonic approximation for the Wannier
functions given in Eq. (25), we obtain

Cn0
ii;l = δnl2√

8γl

�∏
l′ �=l

δnl′ 0. (28)

The calculation of the transition amplitudes defined in Eq. (4)
requires evaluation of the matrix element between the ground
and excited state. Using Eqs. (26) and (27) we find

〈gal|â0†
i ân

i ∂γl
Ĥal|gal〉 = (

εn
i − ε0

i

)
Cn0

ii;l , (29)

yielding

α0n
ii =

3∑
l=1

γ̇l

(
εn
i − ε0

i

)
Cn0

ii;l . (30)

The energy of interband excitations,

h̄ωn
i (γ ) = εn

i − ε0
i = h̄

3∑
l=1

nlγl, (31)

can be inferred from the harmonic oscillator level spacing.
Finally, by summing over all excited states, we determine the
adiabatic error Lagrangian function in the atomic limit

Lal(γ,γ̇ ) =
3∑

l=1

1

2
Mal(γl)γ̇

2
l , (32)

with the extensive mass function Mal(γl) = M(2γl)−4 and the
number of sites M .

Fortunately, Lal is separable. Due to the integrability con-
dition of Eq. (13), we obtain the optimal adiabatic ramp with
the well-known hyperbolic shape [30]

γ −1
l (t) = �−1

l0 + (
�−1

lτ − �−1
l0

) t

τ
(33)

for the transfer of trapped particles from an initial trap at
t = 0 with γ (0) = (�x0,�y0,�z0) to a final trap at τ with
γ (τ ) = (�xτ ,�yτ ,�zτ ). The quantitative measure for residual
excitations,

Eal
∞[γ,γ̇ ] = M

32τ 2

∑
l=x,y,z

(
�−1

lτ − �−1
l0

)2
, (34)

is inversely proportional to the square of the ramp duration τ .
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In an experiment the trap frequencies are determined by
the optical potential. Therefore, the actual control parameter
is the trap depth. In Sec. IV B the relations between the trap
frequencies and the trap depth are derived for realistic system
parameters obtained from experiments.

B. Mott insulator

For shallower traps, one obtains an itinerant many-body
state. In this regime intraband excitations due to tunneling
between adjacent traps (cf. Fig. 1) are energetically fa-
vored over interband excitations. We assume that the initial
cooling process was efficient and the preceding adiabatic
transfer has not populated higher bands. Therefore, we re-
strict the following analysis to the lowest band. We fur-
ther assume sufficiently deep traps such that only nearest-
neighbor tunneling and on-site interactions need to be con-
sidered and that the trap array is homogeneous, ε ≡ ε0

i ,J ≡
J 0

i,i+1,U ≡ U 0000
iiii . In this case, the single-band Bose-Hubbard

model [10,11,31–33]

Ĥbh(γ ) = εN − J
∑
〈i,j〉

â
0†
i â

0
j + U

2

∑
i

â
0†
i â

0†
i â

0
i â

0
i (35)

emerges from Eq. (17). The notation 〈i,j 〉 indicates a summa-
tion over nearest-neighbor pairs of traps. The relevant control
parameter is γ = (J,U ), since the on-site single-particle en-
ergy ε results only in a constant energy offset.

In order to evaluate the adiabatic Lagrangian function from
Eq. (5), one needs to find the energy eigenstates of Ĥbh.
For U � J , this can be done perturbatively starting from the
ground state in the atomic limit |gal〉 [34]. In the Mott-insulator
phase, low-lying excited states, |p,q〉 = â

0†
p â0

q |gal〉/
√

2, trans-
port an atom from site q to an occupied site p �= q. These
transitions are called particle-hole or intraband excitations (cf.
Fig. 1). To first order in perturbation theory, the ground state
reads

|gbh〉 = |gal〉 +
√

2J

U

∑
〈p,q〉

|p,q〉 + O
(

J 2

U 2

)
. (36)

The energy corresponding to a particle-hole excitation is given
by

h̄ωpq = 〈p,q|Ĥbh|p,q〉 − 〈gbh|Ĥbh|gbh〉 (37)

= U + O
(

J 2

U 2

)
. (38)

The transition matrix elements can be calculated from Eq. (4),
yielding

αpq = U̇ 〈p,q|∂UĤbh|gbh 〉 + J̇ 〈p,q|∂J Ĥbh|gbh〉

=−
√

2U∂t

(
J

U

)
+ O

(
J 2

U 2

)
. (39)

It is worth noting that a change in the parameters U and J is
connected to a change in the Wannier functions. Therefore, the
derivative of the operators âi with respect to U and J needs to
be considered. However, terms connected to these derivatives
are neglected in Eq. (39) since they do not induce intraband
excitations [27,35].

From Eqs. (38) and (39) the adiabatic functional on a two-
dimensional parameter space γ = (J,U ) can be derived,

Lbh(γ,γ̇ ) = 1

2

2∑
k,l=1

γ̇kMkl(γ )γ̇l + O
(

J 3

U 3

)
, (40)

M = 4Mzh̄2

U 6

(
U 2 −JU

−JU J 2

)
, (41)

with z being the average number of nearest-neighbor sites,
commonly called coordination number.

In experiments [10], the on-site interaction strength U (t) =
U [V(t)] and the tunneling parameter J (t) = J [V(t)] are not
independent variables but functionally depend on the depth of
the optical potentialV(t). This is described in Sec. IV B. There-
fore, we obtain a one-dimensional parameter curveγ (t) = V(t)
and adiabatic Lagrangian function

Lbh(γ,γ̇ ) = 1
2Mbh(γ )γ̇ 2, (42)

Mbh(γ ) = 4Mzh̄2

U 2(γ )

[
∂γ

(
J (γ )

U (γ )

)]2

, (43)

with a well-defined positive mass function Mbh(γ ) > 0.

C. Additivity of errors

Clearly, the transfer crosses from the atomic limit to the
Mott-insulator limit. The full description of the dynamics
between the two extreme limits is very complex, because inter-
as well as intraband excitation become relevant simultaneously.
Therefore, we propose as an approximate measure for the
instantaneous adiabaticity of the transfer process the sum of
errors

L(γ,γ̇ ) = Lal(γ,γ̇ ) + Lbh(γ,γ̇ ). (44)

This additivity of errors follows directly from Eq. (5), which
measures the error L by a sum of squares. However, we
have approximated the individual terms by using the limiting
expression derived in previous sections.

IV. REALISTIC EXPERIMENTAL SETTING

In this section we discuss details of an implementation based
on recent experiments. From this we determine a realistic
set of experimental parameters and derive relations for trap
frequencies, interaction strengths, and tunneling parameters.

A. Optical potential

There are multiple techniques to generate arrays of optical
microtraps. Among these are acousto-optic deflectors (AODs)
[1,12,36], spatial light modulators (SLMs) [2,37], and mi-
crolens arrays (MLAs) [15,38,39]. Here, we make no assump-
tions about the used approach. However, we presume that the
microtraps have an approximately Gaussian shape with a waist
of w0 = 0.71 μm and are generated by linearly polarized light
with a wavelength of λ⊥ = 852 nm as in [12]. Further, we
consider the species 87Rb, which is the workhorse for the field
of ultracold atoms and has been used in most of the experiments
relevant to this work, e.g., [1,2,6,12,36]. We assume that the
atoms are prepared in the state |52S1/2,F = 2,mF = 2〉 as they
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were in [6,12]. In [36] the setup from [12] has been used to
generated a 2 × 2 optical tweezer array with one atom per trap.
The minimal trap spacing that allows for a high preparation
efficiency of 90% has been determined to d = 1.7 μm. For this
trap spacing the overlap of adjacent traps is negligible, which
facilitates cross-talk-free single-site control over the optical
potential [15].

For the experiments in [6,7,12] the cooling efficiency in
axial direction was considerably lower than in the transverse
direction. This results from weaker confinement in the axial
direction. The effect can be compensated by additional axial
confinement. Further, this prevents atoms from tunneling to
diffraction patterns along the optical axis that exist if the trap
array is generated by a MLA or a SLM (cf. the Talbot effect).
Therefore, we consider axial confinement implemented by a
standing wave, which is produced by two laser beams with a
wavelength λ‖ = 1064 nm that enclose an angle of θ = 24.6◦.
This results in a spacing of 2.5 μm between the antinodes of the
optical potential, which is large enough to prohibit tunneling
in axial direction for the considered potential depths. The total
optical potential reads

V (r,t) = V⊥(r,t) + V‖(r,t) (45)

with the optical microtrap array potential

V⊥(r,t) ≈ −
N∑

i=1

V⊥(t)e
−2

(x−Xi )2+(y−Yi )2

w2
0 (46)

and the standing-wave potential for axial confinement

V‖(r,t) ≈ −V‖(t) cos2(κz). (47)

Here, we introduced the potential depths V⊥ and V‖ as well
as the ith site’s coordinates Xi and Yi . The projection of
the wave vector onto the lattice direction κ = sin(θ/2) 2π/λ‖
determines the periodicity of the one-dimensional (1D) optical
lattice used for axial confinement. For Eqs. (46) and (47)
it is assumed that the out-of-plane confinement from V⊥ is
weak in comparison to that from V‖ and that the laser beams
generating V‖ have a waist that is larger than the extent of
the microtrap array. During the cooling process we assume
V⊥/kB = 1 mK, which is consistent with the values used
in experiments [6,7,12]. In order to have an equally strong
confinement in the out-of-plane direction we choose V‖/kB =
2.5 mK. The chosen parameters are summarized in Table I.

B. Trap frequencies and Bose-Hubbard parameters

In order to evaluate the expressions for the adiabatic
Lagrangian functions derived in Sec. II, we need to express
the trap frequencies and the Hubbard parameters as functions
of the optical potential depths V⊥ and V‖. This will be done in
the present section. The harmonic trapping frequencies can be
computed from the curvature of the potentials given in Eqs. (46)
and (47), yielding

�x = �y =
√

4V⊥
mw2

0

, �z =
√

2κ2V‖
m

. (48)

In combination with Eq. (32), these expressions allow us to
estimate the adiabaticity of the transfer process in the atomic
limit.

TABLE I. Experimental parameters used for obtaining realistic
estimates for the adiabatic transfer procedure.

Quantity Symbol Value

Atomic mass of 87Rb m 86.9 u
Scattering length as 5.24 nm
Energy scale E 38.1 nK kB

Wavelength for V⊥ λ⊥ 852 nm
Wavelength for V‖ λ‖ 1064 nm
Trap spacing d 1700 nm
Trap waist w0 710 nm
Inclination angle θ 24.6◦

Initial depth of V⊥ V⊥(0) 1 mK kB

Final depth of V⊥ V⊥(τ ) 158 nK kB

Initial depth of V‖ V‖(0) 2.5 mK kB

Final depth of V‖ V‖(τ ) 395 nK kB

In order to obtain the Hubbard parameters for tunneling
J and on-site interaction U , we need to compute the Wannier
functions wi . Since the optical potential is a sum of the in-plane
part V⊥ and the axial part V‖, the Wannier functions factorize
to

w0
i (r) = ϕi(x,y)φ(z). (49)

In axial direction the tunneling is strongly suppressed at all
times. Therefore, a natural choice for φ is the ground state of
one slice of the standing-wave potential given in Eq. (47). We
calculate φ by solving the corresponding 1D time-independent
Schrödinger equation numerically. For the potential in the
x-y plane we assume a regular square lattice of 20 × 20
sites and periodic boundary conditions. ϕi is the lowest band
Wannier function for this potential obtained from a numerical
band-structure calculation [26]. The Hubbard parameters for
tunneling J between adjacent sites i and j and the on-site
interaction U can be calculated from Eqs. (19) and (20),
respectively. It is worth noting that the results for U and
J can be adopted for different lattice geometries, such as
one-dimensional, triangular, and hexagonal lattices, since the
relative deviations are small.

For convenience, in later computations simple expressions
for the Hubbard parameters are advantageous. The on-site
interaction strength can be reliably approximated by using
Gaussian wave functions for φ and ϕi [40]. For the out-of-plane
direction the harmonic oscillator length a‖ can be used as 1/

√
e

width for the Gaussian wave function

a‖ = 4

√
d2E

4π2κ2V‖
. (50)

Here, we have introduced the natural energy scale of a lattice
E = h2/(2md2) with trap spacingd. For 87Rb andd = 1.7 μm,
this yields E = kB 38.1 nK = h 794 Hz. In order to obtain
a satisfying approximation for the Wannier function ϕi , we
perform a variational calculation to find the wave function’s
width that minimizes the energy in a Gaussian potential well
(cf. Appendix B). This yields

a⊥ =
√

w2
0d

2πw0
√

2V⊥/E − 2d
. (51)
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One can evaluate the on-site interaction given in Eq. (20)
using the above expressions and the factorization ansatz for the
Wannier function of Eq. (49) and obtain

U = g U⊥ U‖, (52)

with the in-plane and axial part defined by

U⊥ =
∫∫

ϕ4
i (x,y) dx dy ≈

√
2V⊥

w2
0d

2E
− 1

πw2
0

, (53)

U‖ =
∫

φ4(z) dz ≈ 4

√
κ2V‖
d2E . (54)

The tunneling parameter J cannot be well approximated
using the Gaussian wave-function ansatz because it signif-
icantly underestimates the Wannier function’s value at the
position of neighboring sites. Instead, we parametrize J using
a semiclassical ansatz [41,42]

J = A (V⊥
E )C e−B

√
V⊥/EE . (55)

A fit to our numerical calculations yields A = 2.26 ±
0.05, B = 4.02 ± 0.01, C = 1.00 ± 0.03. Figure 2 shows the
comparison between the discussed approximations and the re-
sults from the numerical band-structure calculations, revealing
quantitative agreement.

V. RAPID ADIABATIC PREPARATION
OF A MOTT INSULATOR

In this section the transfer from the atomic limit to a Mott
insulator close to the quantum phase transition is investigated.
The challenge is to find ramps V⊥(t) and V‖(t) that minimize
excitations during this process. This is resolved by minimizing
the functional Eq. (7) with the error measure Eq. (44).

Before optimal ramp shapes can be computed, the initial and
final values for the potential depth need to be determined. The
initial values are fixed by the requirement of efficient sideband
cooling and given in Sec. IV A, whereas the final values are
determined by the targeted many-body regime. In this case we
want to prepare the system in the Mott-insulator phase close to
the phase transition, occurring at U/J = 3.4 for a 1D lattice.
Therefore, we choose a final value of U/J = 10.

In order to obtain equal trap frequencies in all directions
�x = �y = �z, we choose a constant ratio

V⊥(t)

V‖(t)
= κ2w2

0⊥
2

. (56)

This determines the final potential depthsV⊥(τ )/kB = 158 nK
and V‖(τ )/kB = 395 nK, yielding U/h = 22 Hz and J/h =
2.2 Hz. Due to the constant ratio between the potential depths,
the instantaneous adiabatic Lagrangian function L can be
expressed as a function of V⊥ and V̇⊥ only.

A. Optimal ramps for the potential depth

To gauge the quality of the procedure of Sec. II, we chose
a standard approach for finding an adiabatic ramp V⊥(t) as
a reference. We use a suitable set of test functions as an
ansatz and optimize the parameters. Since the system traverses
two different regimes, which are associated with two different
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U ⊥
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2
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0

1

2
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V‖/E

U ‖
d

FIG. 2. Comparison between results from the numerical solution
of the single-particle Schrödinger equation (circles) and the approx-
imate closed-form expressions (lines) for the Hubbard parameters.
(a) Tunneling parameter J as a function of the potential depth V⊥
for 87Rb atoms in a square lattice of Gaussian dipole traps with waist
w0 = 0.71 μm and trap spacing d = 1.7 μm. (b) The in-plane partU⊥
of the on-site interaction parameter versusV⊥ for the same parameters
as in (a). (c) The out-of-plane part U‖ of the on-site interaction
parameter versus V‖ for the same parameters as in (a).

time scales for an adiabatic transfer (cf. Sec. II), we choose a
biexponential ansatz of the form

V⊥(t) = Vae
−t/τa + Vbe

−t/τb , (57)

with time constants τa,τb and amplitudes Va,Vb. The ampli-
tudes are fixed by imposing the boundary values at t = 0
and t = τ . The time constants are computed by numerically
minimizing the quantity E∞, i.e., calculating

min
τa,τb

E∞(V⊥,V̇⊥). (58)

The red line in Fig. 3 shows the resulting ramp V⊥(t) for
the given parameters and τ = 50 ms. For this ramp the time
dependencies of Lal and Lbh are shown in Fig. 4 (dotted and
solid red line, respectively). The fact that during the first 15 ms
both Lal and Lbh are much smaller than E∞ indicates that a
better ramp can be realized with a faster decrease during this
time interval.
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FIG. 3. Potential depth V⊥(t) versus time t . The red dashed line
shows the ramp resulting from the biexponential ansatz, whereas the
blue solid line is the optimal adiabatic ramp.

The variational approach proposed in this article follows
from solving the Euler-Lagrange equation

d

dt

∂L
∂V̇⊥

= ∂L
∂V⊥

, (59)

as discussed in Sec. II. The explicit form of the above equation
can be obtained by using Eqs. (32), (42)–(44), (48), and
(50)–(55). In general, a solution V⊥(t) to the above equation
makes the functional E1 stationary. However, in Appendix
A we show that in this particular case it also minimizes E1

and E∞. Therefore, a solution to Eq. (59) can be considered
as an optimal adiabatic ramp. It is worth noting that L is
a constant of motion. Therefore, the optimal adiabatic ramp
is equivalent to constant adiabaticity pulses used in nuclear
magnetic resonance [21]. For a ramp duration of τ = 50 ms,
this ramp is shown in Fig. 3 (blue line). As expected from
the discussion of the biexponential ramp function, the optimal
ramp shape shows a much faster decrease for t < 15 ms. The
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FIG. 4. The adiabatic Lagrangian functions per site Lal/M

(dashed) and Lbh/M (solid) are plotted versus time t for a biexpo-
nential (red) and an optimal adiabatic (blue) transfer sequence of
duration τ = 50 ms.

FIG. 5. The mass function per site Mbh/M is plotted versus the
potential depth V⊥. The blue points represent the full mass function
obtained from Eqs. (42), (43), (52), (53), (54), and (55), whereas the
orange line corresponds to the approximation given in Eq. (61).

dashed and solid blue lines in Fig. 4 show the time dependence
of the componentsLal andLbh, respectively. This demonstrates
that interband excitations are only relevant during the first
millisecond. Thereafter, intraband excitations dominate. The
transition point between the regimes is given by the condition
Mal(Vc

⊥) = Mbh(Vc
⊥) and specifies a characteristic value of

the parameter Vc
⊥/kB = 479 nK.

In the following, we derive analytic expressions for the
optimal adiabatic ramp shapes in the regimes of intraband
and interband excitations, respectively. It is straightforward
to obtain the ramp shape for the initial time interval, in which
interband excitation dominates, using Eqs. (33) and (48):

V⊥(t) = V1V2[√
V2 + (√

V1 − √
V2

)
t
τ1

]2 , ∀t < τ1. (60)

Here, we have introduced V1 = V⊥(0), V2 = V⊥(τ1), and τ1 =
0.7 ms, which marks the end of the first time interval (cf. inset
of Fig. 4).

For the second time interval intraband transitions dominate.
The corresponding mass functionMbh can be determined from
Eqs. (42), (43), (52), (53), (54), and (55). This complicated
expression prohibits an analytic calculation of the integral in
Eq. (13). However, for the relevant parameter regime we find
that

Mbh(V⊥) ≈ Mh̄2

E3V⊥
exp(a − b

√
V⊥), (61)

with fit parameters a = 24.4 and b = 9.66 E−1/2. The above
approximation is compared to the full expression for Mbh in
Fig. 5. Using Eqs. (61) and (13), an approximate expression
for the optimal adiabatic ramp can be derived,

V⊥(t) = V0 ln2

(
t − t0

τ2

)
, ∀t > 1 ms, (62)

with τ2 = 651 s, V0/kB = 1.75 nK, and t0 = 0.83 ms. In
Fig. 6 the closed-form expressions for the optimal adiabatic
ramp are compared to the numeric result, showing excellent
agreement in the respective time intervals.
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FIG. 6. Optimal adiabatic potential ramp V⊥(t) versus time t :
comparison between the numerical solution of the Euler-Lagrange
equation (blue solid lines) and the analytic approximation (dashed
red lines) given in Eqs. (60) and (62). For t < 0.7 ms (a) interband
excitations dominate, whereas for t > 1 ms (b) intraband excitations
are the most relevant.

We proceed by investigating the dependency of E∞ on the
ramp duration τ . It is worth noting that due to the structure of
the Euler-Lagrange equation [cf. Eqs. (8) and (9)], the optimal
adiabatic ramp γ ′ for a duration τ ′ can be obtained from a
given optimal adiabatic ramp γ for a duration τ via γ ′(t) =
γ (tτ/τ ′). In Fig. 7(a), E∞(τ ) is shown for the biexponential
and the optimal ramp shape. In both cases the data agrees
very well with a k τ−2 dependency, with k being a constant.
Least-square fits yield k = 8.01(ms)2 and k = 1.66(ms)2 for
the biexponential and the optimal ramp, respectively. This
dependency can be explained by E∞ ∝ (∂tV⊥)2 ∝ τ−2, which
also coincides with the result for the atomic limit given in
Eq. (34).

B. Impact of light scattering

The physical process that limits the usage of long ramp
durations is heating due to light scattering. This effect has been
studied in [43,44] and recently, with regard to optical lattices,
in [45–47]. In order to estimate the impact of this process, we
calculate the number of scattering events per atom during the
transfer process (cf. Appendix C). Figure 7(b) shows the de-
pendency of Nsc on ramp duration τ for both the biexponential
and the optimal ramp. The relation is linear, with slopes of
1.04 s−1 and 0.08 s−1 for the biexponential and the optimal
ramp, respectively. Again, this can be explained using the
timescale argument. The number of scattering events per atom
can be reduced further by using light with a larger detuning,

e.g., λ⊥ = 1064 nm. However, already for the parameters used
in this work, an adiabatic transfer processes with negligible
scattering can be realized.

C. Fidelity of the transfer process

In order to validate the adiabaticity of the transfer process
we perform simulations of the many-body system using the
calculated ramps. For this purpose we use the 1D single-band
Bose-Hubbard model with periodic boundary conditions. This
disregards possible excitations to higher bands. However,
Fig. 4 shows that these excitations are negligible for the
majority of the ramp duration.

We solve the time-dependent Schrödinger equation,

ih̄∂t |ψ(t)〉 = Ĥ (t)|ψ(t)〉, (63)

for the Hamilton operator Ĥ [J (t),U (t)] given in Eq. (35). The
time dependence of the parameters U and J is determined by
the ramp γ (t) = V⊥(t) computed in Sec. V A. In order to solve
Eq. (63), we expand the system’s state using the Fock basis
[cf. Eqs. (21)]. This results in a system of ordinary differential
equations:

ih̄ψ̇η(t) =
∑

|η′|=N

Aηη′(t) ψη′(t), (64)

Aηη′(t) = 〈η|Ĥ (t) + Ŵ (t)|η′〉. (65)

The operator Ŵ (t) stems from the temporal change in the
Wannier functions and is given by

Ŵ (t) = ih̄V̇⊥(t)
∑
np

∑
ij

C
np

ij ;1[V⊥(t)] â
n†
i â

p

j . (66)

However, as stated earlier, this term does not induce intraband
excitation, i.e., Cnn

ij ;1 = 0 [27,35]. Therefore, we neglect it for
our single-band simulation.

The initial state |ψ(0)〉 is the ground state of Ĥ (0). From
the final state |ψ(τ )〉 two figures of merit are obtained:

F = |〈φ|ψ(τ )〉|, (67)

� = 〈ψ(τ )|Ĥ (τ )|ψ(τ )〉 − 〈φ|Ĥ (τ )|φ〉. (68)

Here, |φ〉 is the ground state of the final Hamilton operator
Ĥ (τ ),F is the transfer fidelity, and � is the energy difference
between |φ〉 and |ψ(τ )〉. Figures 7(c) and 7(d) show the
dependency of F and � on τ for the biexponential and
the optimal adiabatic ramp. As expected, the transfer fidelity
increases and the excess energy decreases for increasing
ramp durations. This indicates a reduction of ramp-induced
excitations. At τ ≈ 40 ms the slopes change significantly and
saturation can be observed. In the case of the biexponential
ramp, this is accompanied by small-amplitude oscillations,
indicating excitations due to nonadiabaticity.

The calculations are performed with particle numbers up
to N = 8 and unit filling, i.e., M = N . For ramp durations
τ > 40 ms, both transfer fidelity and excess energy are size
independent.

The results of this section show that a high transfer fidelity
F > 98% can be achieved with ramp durations below 50 ms
and negligible photon scattering Nsc < 0.01. It is worth noting
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FIG. 7. Figures of merit for the biexponential (dashed red) and the optimal adiabatic (solid blue) ramp versus the ramp duration τ : (a)
maximal value E∞/M of the adiabatic Lagrangian function per site during the ramp, (b) number of scattering events per atom Nsc during the
ramp, (c) transfer fidelity F , (d) excess energy � of the final state in units of the interaction energy U at t = τ . The results shown in (c) and
(d) are obtained from a many-body calculation for a 1D lattice with periodic boundary conditions, N = 8 particles and M = 8 sites.

that the ramp shape might be further improved by finding
shortcuts to adiabaticity using optimal control [48]. However,
the presented approach has the advantage to result in simple
and robust ramps.

VI. LIMITS ON SCALABILITY

Clearly, there are limitations for the maximum number of
atoms that can be prepared. One limitation arises from the

P

N

5 10 15 20
0

0.2

0.4

0.6

0.8

1

FIG. 8. Joint probability P = pN
0 to prepare N atoms in the

motional ground state of N isolated traps versus particle number N for
various single-site success probabilities p0 = 0.9 (blue circles), p0 =
0.92 (red triangles), p0 = 0.94 (green squares), p0 = 0.96 (orange
stars), and p0 = 0.98 (violet diamonds).

necessity to provide an array of many, sufficiently deep optical
microtraps. With AODs, SLMs, or MLAs and laser powers of
a few watts, it is possible to produce arrays of a few hundred
traps [2,37,39].

The next challenge is to prepare exactly one atom per trap.
For arrays of up to 50 microtraps, unit filling is experimentally
feasible [1,2]. According to Ref. [2], this could be extended to
a few hundred traps using state-of-the-art technology.

Another prerequisite of the discussed scheme is the prepa-
ration of atoms in the motional ground state with high fidelity.
Using Raman-sideband cooling, an occupation probability of
p0 = 90% has been achieved [6]. This value was limited by a
weak confinement in axial direction. If this preparation tech-
nique is applied to an N-trap array then the joint success prob-
ability P = pN

0 to cool all atoms to the motional ground state
decreases exponentially and constitutes the biggest challenge
on the path to large atom numbers. Application of additional
axial confinement, as considered in this work, should enhance
the probability p0 and even more P = pN

0 . This trend is shown
in Fig. 8 for several values of p0.

VII. CONCLUSIONS AND OUTLOOK

In conclusion, we have analyzed a preparation scheme for
a Mott-insulator state in the itinerant regime, starting from
an ensemble of individual atoms in the atomic limit. On this
behalf, the depth of the optical potential is ramped down
significantly. In order to minimize both ramp-induced exci-
tations and external heating during this process, we propose
a variational procedure to obtain optimal, rapid, adiabatic
ramp shapes. The choice of error functionals is physically
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motivated by the adiabatic theorem and can be generalized
readily to optimize multidimensional time-dependent control
parameters. In comparison to a full optimal control procedure
[48], the presented approach is simple and robust.

For realistic experimental parameters, we investigate the
fidelity of the resulting optimal ramps and asses the detrimental
impact of spontaneous photon scattering. This demonstrates
the feasibility of the proposed scheme with state-of-the-art
technology. These conclusions are based on simulations of the
one-dimensional Bose-Hubbard model. However, we expect
similar results for two dimensions, taking into account the
scaling of the adiabatic error function Eq. (43) with the
coordination number.

If the depth of the microtrap array is reduced beyond
the point discussed in this work, then first the superfluid
phase of the Bose-Hubbard model and finally a Bose-Einstein
condensate (BEC) can be prepared. Here, the analysis of the
preparation process based on the adiabatic theorem breaks
down, because the energy gap between the ground state and
the lowest excited state vanishes. However, this process cor-
responds to the time-reversed loading scheme used in optical
lattices. The feasibility of this approach for microtrap arrays
with similar parameters as discussed in this work is shown
in [15]. This opens an alternative route for the preparation
of BECs by direct laser cooling [49], which is especially
appealing for the investigation of atomic and molecular species
that cannot be cooled evaporatively.
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APPENDIX A: EQUIVALENCE OF MINIMIZING
E1 AND E∞

In this Appendix we consider the situation of Sec. V. In
the time interval [0,τ ] the system is controlled by a one-
dimensional and monotonically decreasing parameter curve
γ (t) with γ (0) = γi and γ (τ ) = γf . The Lagrange function

L(γ,γ̇ ) = 1
2M(γ )γ̇ 2 (A1)

is convex, and the mass function M(γ ) is sufficiently smooth,
monotonically decreasing, and positive. Under these condi-
tions the following Proposition can be stated.

Proposition. The parameter curve γ0(t) is a minimum of
the functionals E1[γ,γ̇ ] and E∞[γ,γ̇ ], if γ0(t) satisfies the
corresponding Euler-Lagrange equation (9).

Proof. The fact that γ0(t) is also a minimum of E1[γ,γ̇ ]
follows from the convexity of the Lagrange function [50].
In order to prove that γ0(t) is a minimum of E∞[γ,γ̇ ], the
following intermediate steps are used.

I. L[γ0(t),γ̇0(t)] is constant for t ∈ [0,τ ].
II. γ0(t) minimizes the functional maxt

√
L(γ,γ̇ ).

Using the fact that γ0 satisfies the Euler-Lagrange equation,
it is straightforward to show I,

d

dt
L[γ0(t),γ̇0(t)] = M(γ0)γ̇0γ̈0 + γ̇ 3

0

2

∂M
∂γ

∣∣∣∣
γ=γ0

(A2)

= γ̇0

(
d

dt

∂L
∂γ̇

− ∂L
∂γ

)∣∣∣∣
γ=γ0

= 0. (A3)

The key to prove the implication I ⇒ II is to observe that∫ τ

0

√
L dt is a geometric invariant and therefore is path in-

dependent:

∫ τ

0

√
L[γ (t),γ̇ (t)] dt = −

∫ τ

0
γ̇ (t)

√
1

2
M[γ (t)] dt (A4)

= −
∫ γf

γi

√
1

2
M(γ ) dγ. (A5)

From this observation follows that the functional
maxt

√
L(γ,γ̇ ) is minimized if

√
L is constant. The latter

is obviously true if L is constant, which is achieved by
the parameter curve γ0 (cf. statement I). Consequently, γ0

minimizes the functional maxt

√
L(γ,γ̇ ), i.e., I ⇒ II. It is

apparent that II implies that γ0 is a minimum of E∞[γ,γ̇ ],
since the function x �→ x2 is monotonically increasing for
x > 0.

APPENDIX B: VARIATIONAL GROUND STATE IN A
TWO-DIMENSIONAL GAUSSIAN POTENTIAL

We consider a Gaussian variational ansatz of the form

ϕ(x,y) = 1√
πa⊥

exp

(
−x2 + y2

2a2
⊥

)
(B1)

for the ground state of a two-dimensional Gaussian potential
well

V (x,y) = V⊥ exp

(
−2

x2 + y2

w2
0⊥

)
. (B2)

We determine the wave function’s width a⊥ by minimizing the
energy functional

E(a⊥) =
∫∫

ϕ(x,y) H2D ϕ(x,y) dx dy (B3)

= h̄2

2ma2
⊥

− V⊥
w2

0⊥
w2

0⊥ + 2a2
⊥

. (B4)

This yields the expression given in Eq. (51). In the above
equation the position representation of the two-dimensional
single-particle Hamilton operator is used:

H2D = − h̄2

2m

(
∂2
x + ∂2

y

) + V (x,y). (B5)

A similar calculation for a one-dimensional Gaussian well is
given in [51].
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APPENDIX C: SCATTERING RATES AND LIGHT SHIFTS

In the time interval [0,τ ], the cumulative number of scattered photons per atom is given by

Nsc(τ ) =
∫ τ

0
�sc(t) dt. (C1)

For alkali atoms, trapped by far-off-resonant, linearly polarized laser beams with intensity I and angular frequency ω, the scattering
rate �sc and the light shift V read [52]

�sc = πc2Iω3

2h̄

[
�2

1

ω6
1

(
1

ω − ω1
− 1

ω + ω1

)2

+ 2�2
2

ω6
2

(
1

ω − ω2
− 1

ω + ω2

)2
]
, (C2)

V = πc2I

2

[
�1

ω3
1

(
1

ω − ω1
− 1

ω + ω1

)
+ 2�2

ω3
2

(
1

ω − ω2
− 1

ω + ω2

)]
. (C3)

The decay rates �i and the transition frequencies ωi correspond to the D1 and D2 lines of the respective species.
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