
PHYSICAL REVIEW A 100, 013847 (2019)
Editors’ Suggestion
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We study optical pulse propagation through a hollow-core fiber filled with a radially inhomogeneous cloud
of cold atoms. A copropagating control field establishes electromagnetically induced transparency. In analogy
to a graded index fiber, the pulse experiences microlensing and the transmission spectrum becomes distorted.
Based on a two-layer model of the complex index of refraction, we can analytically understand the cause of the
aberration, which is corroborated by numerical simulations for a radial Gaussian-shaped function. With these
insights, we show that the spectral distortions can be rectified by choosing an optimal detuning from one-photon
resonance.
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I. INTRODUCTION

Tight transverse confinement of atoms and light fields over
macroscopic distances produces strong light-matter coupling.
In recent years, this has been achieved by loading laser-cooled
atomic ensembles into hollow-core fibers (HCFs) [1–16]. This
strong coupling can then be exploited to observe nonlinear
optical effects at the few-photon level [17–19], or to create
strongly correlated photonic quantum gases [20–25], to men-
tion a few applications.

The coupling strength between a resonant light field and
an atom depends on the ratio of the light-mode cross section
and the atomic absorption cross section. The more closely the
light mode matches the atomic cross section, the more likely
it is that a photon is absorbed by an atom [17]. Therefore,
the focus in recent years has been on using either small-core
photonic bandgap fibers with core diameters d ∼ 10 μm
[4–8,10,15], or medium-core fibers with core diameters of
several 10 μm [9,11–14,16], instead of large-core capillaries.
In order to prevent collisions of the laser-cooled atoms with
the fiber wall at room temperature, the atoms are usually
guided into the fiber by a Gaussian-shaped, red-detuned, far-
off-resonant optical trap (FORT). As the light-mode diameter
of the FORT is in the range of the fiber core diameter and
the temperature of the atomic ensemble inside the HCFs is
usually much smaller than the trap depth, the atomic density
distribution is strongly radially dependent across the light-
mode cross section. For a thermalized atomic ensemble, e.g.,
a Gaussian radial density distribution can be expected [26].
This, in principle, requires one to consider the radially varying
index of refraction when calculating the light propagation, as
frequency-dependent lensing can occur [27,28]. For a purely
absorptive medium this was done recently [29].

All the aforementioned proposals using HCFs [18–25]
rely on establishing electromagnetically induced transparency
(EIT) [30,31] within the atomic ensemble to allow for strong
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photonic nonlinearities while suppressing linear absorption.
The general �-type level structure for EIT is shown in Fig. 1.
The two metastable ground states | j = 1, 2〉 are coupled to
the excited state |3〉 by a weak probe field, denoted by its Rabi
frequency �p(ω, r), and a strong control field, denoted by its
Rabi frequency �c(r), respectively, as defined in Appendix
C. Note that �p(ω, r) depends on the frequency of the probe
pulse as well as on the radial position. The strong control
field modulates the refractive index for the weak probe field
on transition |1〉 ↔ |3〉. As this modulation is dependent on
the control Rabi frequency, a spatially varying control beam
results in a spatially modulated refractive index. Incoherent
interaction with the vacuum field leads to decay from the
excited state |3〉 to the ground states | j = 1, 2〉 with rates � j .
When no ground state decoherence or dephasing processes
are present, EIT leads to perfect transmission at exactly the
two-photon resonance between states |1〉 and |2〉. The effect
of a radially varying control beam intensity in a homogeneous
ensemble on the radial propagation dynamics of a probe beam
has been studied both experimentally and theoretically [27,
32–42]. It was shown that a spatial variation of the control
beam intensity in EIT can be used, e.g., to achieve electro-
magnetically induced focusing [32,34].

In this work we analytically and numerically study the
propagation of a weak light field under EIT conditions with a
Gaussian-shaped control beam intensity and a radially depen-
dent atomic density distribution of comparable width. To the
best of our knowledge, a combination of spatially dependent
control Rabi frequency as well as atomic density distribution
has not yet been considered analytically. However, in a recent
work, microlensing under EIT conditions was observed in
a HCF and studied numerically [13]. Although our work is
applicable not only to cold atomic ensembles loaded into
HCFs, we specifically discuss the results in the context EIT
in HCFs. The reason is that, so far, narrow-band EIT (using
laser-cooled atoms) and related effects have been observed in
HCFs by several groups [10,13,43,44], but the experimental
results have not yet been compared to a thorough theoreti-
cal analysis including the radial propagation dynamics. As
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FIG. 1. Atomic level scheme in Raman configuration with transi-
tion frequencies ω31 = ω3 − ω1 and ω32 = ω3 − ω2 interacting with
the control pulse �c and probe pulse �p. The one- and two-photon
detunings are denoted by � and δ, respectively. Spontaneous decay
rates �1 and �2 couple the excited state |3〉 to the ground states |1〉
and |2〉. Residual perturbations are accounted for by a ground-state
decoherence rate �g. Experimentally, the presence of level |4〉 can be
relevant, but will not be considered at present.

we will show, the spatially varying index of refraction due
to the inhomogeneous atomic density and the control Rabi
frequency can lead to frequency-dependent lensing and dis-
tortion of the probe beam. However, by a correct choice of
parameters, these effects can be mitigated.

This paper is organized as follows: Sec. II briefly discusses
the considered experimental setup. By estimating the order of
magnitude of its physical properties, we thereby establish the
conditions for the theoretical model. In Sec. III, we formulate
the EIT response of the atomic medium to the light fields
and derive a propagation equation in Sec. IV. In Sec. V, we
use these results to quantify and mitigate the lensing effects
in an atom-filled HCF in the EIT regime. The results are
summarized in Sec. VI.

II. CONSIDERED EXPERIMENTAL SETUP

Experimentally, HCFs are loaded with laser-cooled atoms
from a magneto-optical trap [4–16]. The HCFs have an inner
radius in the range of 3.5 � a0 � 25 μm and a length L in
the range of centimeters. For wavelengths λp ∼ 1 μm, the
fibers have a nearly Gaussian eigenmode that we will refer
to as u(1)

e (r). In the following, we will establish a simple
model for the single-mode HCF assuming its walls to be
ideally conducting, while we externally suppress propagation
of higher fiber modes. Due to the small radial dimension of
the fiber, we introduce the reduced wavelength λ̄p = λp/2π =
k−1

p and define a fiber parameter [45] as

v = a0kp. (1)

It compares the wavelength to the fiber radius, which will
have a critical influence on light propagation, as we will
show later. In the current experimental cases, we have v ∼ 25
[6,8,10,15,43] to v ∼ 200 [12,13,16,44].

In order to avoid collisions of the cold atoms with the
fiber-core wall at room temperature, a FORT is created inside
the HCF by a red-detuned laser field and a mode field radius

FIG. 2. Propagation of a probe pulse Ep (red) through a HCF
of length 2l + L with core radius a0. The fiber is filled with an
inhomogeneous cold gas of density na(r, z). Along the propagation
direction, the fiber is divided into the entrance and exit zones 1© and
3©, where the atomic density rises slowly to its homogeneous value
na(r) in 2©. The polarizability is controlled by the copropagating
immutable control beam Ec (blue). The inhomogeneous, frequency
dependent susceptibility will alter the mode shape and phase of the
probe pulse.

σd . With the available laser power a trap depth of TFORT of
up to several mK is achieved. Because the induced dipole
potential depth V0 = kBTFORT is deep compared to the kinetic
energy of the atoms, the resulting thermalized atomic density
distribution

na(r) = n0e
− r2

σ2
a (2)

has a radial Gaussian shape varying with the distance r from
the fiber axis and a width σa(T ) = σd

√
T/TFORT depending on

the potential and the temperature of the atoms inside the HCF
(see Appendix A). Integrating the density over the volume
of the fiber yields the total particle number Na = πσ 2

a Ln0.
For around Na = 2.5 × 105 atoms loaded into the HCF and
an atomic temperature of several hundred μK [8], this corre-
sponds to an atomic peak density of around n0 ∼ 1012 cm−3.

Throughout this paper we will assume that the atomic
density na(r) is basically independent of the longitudinal
position z inside the HCF, apart from the short regions l � L
near the HCF entrance and exit (see Fig. 2). In these regions
the density decreases quickly, but still adiabatically, towards
zero. This, for instance, can be due to the quickly decreasing
dipole potential outside the HCF from the diverging dipole
trap beam, the inhomogeneous density above the fiber, or
optical pumping or pushing away of the atoms left outside of
the fiber.

Once the atoms are loaded into the fiber, the FORT is
switched off rapidly before the start of any measurements to
avoid AC Stark shifts by the strong FORT. This leads to a
ballistic expansion and loss of the atoms due to collisions with
the fiber wall on a timescale of τloss ∼ a0/

√
2kBT/matom. If the

timescale of the measurements is sufficiently short, t < τloss,
then one can assume the density na(r) is time independent
during the measurement.

III. ELECTROMAGNETICALLY INDUCED
TRANSPARENCY

In our EIT experiment, the control field is given by

Ec(x, t ) = Re
[
ece−i(ωct−kcz)u(1)

e (r)Ec
]
, (3)
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and it copropagates with the probe field along the z direc-
tion. It is linearly polarized along ec, monochromatic with
frequency ωc, and has a complex amplitude Ec. Due to the
cylindrical symmetry of the fiber, the field depends only
on (z, r =

√
x2 + y2). Unaffected by the atomic medium,

this field propagates in a mode u(1)
e (r), as in an empty

fiber. Assuming EIT conditions, the atomic gas becomes
then transparent and ultradispersive for the weak probe
pulse

E(in)
p (x, y, t ) = Re

[
epe

−iωpt− t2

τ2
p u(1)

e (r)Ep

]
, (4)

specified at the entrance side of the fiber at z = 0 with |Ep| �
|Ec|. Here, the probe pulse lasts for a duration τp and has a
linear polarization ep and a carrier frequency ωp.

As EIT is a highly frequency sensitive effect, we will
study the propagation of a probe pulse Ep(x, ω) in the fre-
quency domain. However, when the pulse emerges from the
fiber, one observes the temporally delayed, real time signal
Ep(x, t ). Clearly, both fields are connected through the tem-
poral Fourier transformation

Ep(x, t ) =
∫ ∞

−∞
dω

e−iωt

√
2π

Ep(x, ω). (5)

As all physical fields are real-valued, we have the auxiliary
constraint that Ep(x,−ω) = E∗

p(x, ω). Inside the HCF, the
confined atomic gas exhibits a radial density variation. Thus,
we describe the wave propagation in the spatial domain. In
this sense, we find that the boundary condition for the probe
pulse at the fiber entrance of Eq. (4) reads, in the frequency
domain,

E(in)
p (x, y, ω) = epu(1)

e (r)
[
E (in)

p (ω) + E (in)∗
p (−ω)

]
, (6)

E (in)
p (ω) = e

−
(

ω−ωp
�ω

)2

√
2�ω

Ep. (7)

These are narrow Gaussian envelopes at ω = ±ωp with a
frequency width �ω = 2/τp � ωp.

Due to the low temperature of the atoms within the HCF,
we can neglect their spatial displacement during the probe
pulse duration. Thus, the atomic gas responds locally to an ap-
plied probe field Ep(x, ω). All spatial variations are accounted
for by the corresponding amplitude change. Consequently, we
will suppress the position parameter in the following.

For weak probe pulses the atomic gas responds linearly,
with a polarization density

Pp(ω) = ε0 χ (1)(ω)Ep(ω), (8)

defining a linear complex susceptibility χ (1)(ω) on the p
branch using the vacuum permittivity ε0. Microscopically, the
polarization density

Pp(ω) = nad(ω) (9)

is obtained from a small local sample of atoms, weighing
the particle number distribution na with the average atomic
dipole moment d = Tr{d̂ρ̂}. Here, we specify the state of the
atomic ensemble with the single particle density operator ρ̂.
Eventually, this defines the optical susceptibility tensor on the

probe transition as

χ (1)
rs = na

ε0

∂dr

∂Ep,s

∣∣∣∣
Ep=0

, (10)

with respect to the Cartesian coordinates r, s.

A. Optical master equation

The dynamics of the Raman transition depicted in Fig. 1
are given by the interplay of the coherent probe �p and
control pulses �c with dissipation. The Rabi frequencies
here measure the effective dipole coupling strength of the
transition at the probe and control frequencies ωp and ωc,
respectively. Within the rotating-wave approximation, one
obtains the Hamiltonian matrix

H ′ = h̄

⎛
⎜⎜⎝

� + δ 0
�∗

p

2

0 �
�∗

c
2

�p

2
�c
2 0

⎞
⎟⎟⎠, (11)

in a suitable interaction frame (cf. Appendix C), intro-
ducing the two-photon detuning δ = ω − ωc − ω21 and the
one-photon detuning � = ωc − ω32, where ωi j is the tran-
sition frequency between levels |i〉 and | j〉. The condition
of two-photon resonance ωp = ωc + ω21 defines the carrier
frequency of the probe beam.

The basic mechanism of EIT [31,46,47] follows from
the three dressed eigenstates {|D〉 , |+〉 , |−〉} of H ′ at two-
photon resonance δ = 0. In particular, one finds the dark state
|D〉 = cos θ |1〉 − sin θ |2〉, as a superposition of ground states
mixed at an angle tan θ = �p/�c. Preparing a system in this
state implies that there are no allowed dipole transitions to
other states of the manifold as 〈±| d̂ · E |D〉 = 0 and that
|D〉 is immune to spontaneous emission from the excited
state |3〉.

Embedding atoms in an open environment introduces fun-
damental as well as technical decoherence [47–51]. Thus, one
needs to use a master equation for the density operator ρ̂:

˙̂ρ = − i

h̄
[H ′, ρ̂] +

2∑
i=1

�i
(
σ̂i3ρ̂σ̂

†
i3 − 1

2 σ̂
†
i3σ̂i3ρ̂ − 1

2 ρ̂σ̂
†
i3σ̂i3

)

+ �g
(
σ̂iiρ̂σ̂ii − 1

2 σ̂iiρ̂ − 1
2 ρ̂σ̂ii

)
. (12)

While the first term describes the coherent dynamics, the
second term represents spontaneous emission from the
excited state to the ground states with rates �1 and �2,
respectively. Stimulated processes are not relevant at room
temperature. The third term models the experimentally
relevant ground state dephasing occurring at rate �g due to
transit-time broadening [10] or decoherence due to magnetic
field gradients. This breaks the stationarity of the dark
state, leading to finite absorption under EIT conditions. By
regrouping the atomic density matrix elements as a column
vector � = (ρ11, ρ12, ρ13, ρ21, ρ22, ρ23, ρ31, ρ32, ρ33), one
obtains

∂t� =iL�, (13)
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with a system Liouville matrix L ∈ C9×9 that reads

L =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 �p

2 0 0 0 −�∗
p

2 0 −i�1

0 i�g − δ �c
2 0 0 0 0 −�∗

p

2 0
�∗

p

2
�∗

c
2 i �

2 − δ − � 0 0 0 0 0 −�∗
p

2

0 0 0 δ + i�g 0 �p

2 −�∗
c

2 0 0

0 0 0 0 0 �c
2 0 −�∗

c
2 −i�2

0 0 0
�∗

p

2
�∗

c
2 i �

2 − � 0 0 −�∗
c

2

−�p

2 0 0 −�c
2 0 0 δ + � + i �

2 0 �p

2

0 −�p

2 0 0 −�c
2 0 0 � + i �

2
�c
2

0 0 −�p

2 0 0 −�c
2

�∗
p

2
�∗

c
2 i(�1 + �2)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (14)

Here, we have defined � = �1 + �2 + �g. For simplicity,
we will assume in the following an equal branching ratio
�1 = �2 = �0/2, which defines a timescale τ0 = 1/�0 for the
irreversible atomic relaxation of state |3〉.

B. Linear susceptibility

The Rabi frequency �p arises from the weak probe pulse
of duration τp propagating through the HCF. Therefore, there
is also a slow implicit time dependence present. However,
we want to consider pulses lasting longer than the atomic
relaxation time τp � τ0. In this case, the atomic system is in
equilibrium �s with respect to the instantaneous field

L�s = 0, (15)

and the system remains in steady state when parameters
change slowly. From the steady state solution of Eq. (15), one
obtains the polarization density as

Pp(ω) = nad13ρ
s
31. (16)

From now on we will refer synonymously to the frequency
of the pulse either by ω, or through the two-photon detuning
δ = ω − ωp. In the limit of weak probe fields |�p| � � the
linear susceptibility from Eq. (8) reads

χ (1) = χ
(1)
0 f , χ

(1)
0 = naα0, α0 = |d13|2SFF ′

2ε0h̄�
, (17)

where the dimensionless shape function

f (δ,�, |�c|) = (δ + i�g)�
|�c|2

4 − (δ + i�g)
[
(δ + �) + i �

2

] (18)

contains all frequency dependencies. Please note that we have
introduced ad hoc in Eq. (17) the hyperfine transition strength
factor SFF ′ . It considers that our effective three-level system
is formed by manifolds of hyperfine states. For negligible
ground-state dephasing �g = 0, and close to two-photon res-
onance, this reduces to

f = δ�

|�2
c |

4 − δ(δ + �) + iδ �
2[ |�2

c |
4 − δ(δ + �)

]2 + δ2
(

�
2

)2

= δ

(
1 + �

�
δ

)
+ i

δ2

2

(
1 + 2�

�
δ

)
+ · · · (19)

where the detuning δ = δ/δEIT is specified in units of the
transparency window width δEIT = |�c|2/4�. From the real
part of Eq. (19), one can also determine the left and right
zero crossings at δ± = ±(

√
�2 + |�c|2 ∓ �)/2. Within those

limits the absorption is a convex function.
In general, the linear susceptibility χ (1) = χ ′ + iχ ′′, is a

complex, analytic function whose real part χ ′ leads to re-
fraction and whose imaginary part χ ′′ causes absorption. The
magnitude of the susceptibility is of the order χ

(1)
0 ∼ 10−2 �

1. In Fig. 3, we depict the typical dependence of the suscepti-
bility on the two-photon detuning δ. Without the control beam,
�c = 0, this leads to the conventional Lorentzian absorption
and dispersion spectrum with a full width at half maximum
(FWHM) spectral size �, shown in Fig. 3(a). In Fig. 3(b),
we irradiate the gaseous sample with a control beam Rabi
frequency �c = �. This opens a transparency window around
δ = 0 and strong anomalous dispersion reduces of the speed
of light drastically [52]. The spectrum becomes asymmetric
when driving the system out of one-photon resonance, as seen
in Fig. 3(c). A finite decay rate �g �= 0 would lead to residual
absorption, even at δ = 0.

IV. LIGHT PROPAGATION

A gas-filled HCF is analogous to a dielectric wave guide
with a graded index (GRIN) medium [45,53]. The propa-
gation equation for the electric field can be obtained from
the macroscopic Maxwell equations of a nonmagnetic, but
linear dielectric material with electric permittivity εr (x, ω) =
1 + χ (1)(x, ω) from Eqs. (8) and (16). The spatial dependence
of the susceptibility arises on the one side from the spatial
density variation na(x) in Eq. (2) and on the other side from
the mode profile of the control field �c(x). Considering these
aspects of the setup, one finds a vectorial Helmholtz-type
equation for the probe field

[∇2 + k2εr (x, ω)]Ep(x, ω) = −∇(Ep · ∇ ln εr ), (20)

where k ≡ ω/c0 describes the vacuum dispersion and c0 the
speed of light in vacuum.

The term on right-hand side of the equation is important
for stratified media [53] with a significant gradient of the
permittivity in the propagation direction. However in a GRIN
fiber, where the gradient is in the radial direction, this can be
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FIG. 3. Real part χ ′(δ) (solid red) and imaginary part χ ′′(δ)
(dashed blue) of the complex susceptibility versus two-photon detun-
ing δ for (a) (�c,�, �g) = (0, 0, 0)�, (b) (�c, �, �g) = (1, 0, 0)�,
(c) (�c,�, �g) = (1, 1, 0)�, with χ

(1)
0 = 0.1.

neglected as long as the wavelength λ is much smaller than the
characteristic scale of the longitudinal density variation or the
radius of the fiber a0. This criterion is still satisfied for typical
fiber parameters v � 1 from Eq. (1). Hence, we will disregard
the term.

A. Optical Schrödinger equation

As the longitudinal spatial variations of the atomic densi-
ties na are minute they do not cause reflections. Therefore, we
can only consider forward-propagating wave trains

Ep(x, ω) = epeikpzEp(x, ω), (21)

with a carrier wave number kp = ωp/c0 > 0 and amplitude
Ep(x, ω) varying only slowly in the z direction: ∂zEp � kpEp

and ∂2
z Ep � kp∂zEp. As we focus our discussion on optical

frequencies, i.e., ω ≈ ωp ± �ω, we can also disregard the
exponentially small term on the negative frequency side of
Eq. (6).

For the simple effective three-level system considered here,
the specific polarization is not relevant. We therefore assume
for simplicity linearly polarized laser fields. If the sublevels
of the Zeeman manifolds become relevant, effects like Fara-
day rotation can occur and a more sophisticated analysis

is required. In the absence of polarization-selective effects,
we obtain the scalar optical paraxial Schrödinger equation
[26,54,55]

iλ̄p∂zEp(x, ω) =
[
− λ̄2

p

2a2
0

�⊥ + U (x, ω)

]
Ep, (22)

U (x, ω) = ω2
p − ω2εr (x, ω)

2ω2
p

≈ − 1
2χ (1)(x, ω). (23)

Here, we have introduced a complex optical potential U and
approximated it by the susceptibility for pulses of frequency
bandwidth |�ω| � ωpχ

(1)
0 (cf. Appendix B). Due to the

cylindrical geometry of the fiber with the hollow-core radius
a0, we introduce dimensionless polar coordinates (r, ϕ) with
x = a0r cos ϕ and y = a0r sin ϕ and a corresponding polar
Laplacian operator �⊥.

The analogy to the quantum mechanical motion of a
fictitious particle moving in two dimensions with mass a0

comes from identifying the smallness parameter of the theory
λ̄p ↔ h̄ with the reduced Planck constant and the increas-
ing propagation distance z ↔ t with time. This is a typical
result from the short-wave asymptotics of partial differential
equations. However, the absorption in the complex optical po-
tential renders the paraxial Schrödinger equation lossy. Thus,
the Hamilton operator is not self-adjoint. It has eigenvalues
ε(δ) ∈ C and does not necessarily provide a complete set of
orthogonal eigenmodes.

B. Adiabatic propagation

Its an experimental fact that the gas-filled hollow-core fiber
supports well formed, time-delayed, and attenuated probe
pulses propagating downstream. Therefore, we need to dis-
cuss the properties of the optical potential

U (r, z; δ) = −na(r, z)α0

2
f (δ,�, |�c(r)|). (24)

The spatial dependence of the Rabi frequency |�c(r)| origi-
nates from the axially symmetric ground mode of the empty
fiber and exhibits a width σd . The magnitude of the control
Rabi frequency is independent of the propagation distance z,
as the control field couples the basically unpopulated states
|2〉 and |3〉. In the considered experiments, the main radial
and longitudinal dependence arises from the atomic density
distribution na(r, z), where the radial width of the atomic
density distribution σa < σd , a0 (cf. Appendix A). This is in
contrast to other reports [32,34,56], where the inhomogeneity
is dominated by |�c(r)|.

According to Fig. 2, the HCF has short, l � L, but still
adiabatic, λ̄p � l , entrance and exit zones 1© and, 3©, where
the density tapers off smoothly. This implies good mode
matching u(1)

e ( 1©) → u(1)( 2©) → u(1)
e ( 3©) from the input to

the exit port. In general, this is a robust assumption for
gaseous media, which do not exhibit sudden changes of the
index of refraction. This assumption should also apply to
experiments with HCFs either completely filled with room-
temperature atoms [57,58], or partially filled with cold atoms.
Thus, we will study the eigenmodes of Eq. (22) with an

013847-5



SULZBACH, PETERS, AND WALSER PHYSICAL REVIEW A 100, 013847 (2019)

adiabatic factorization ansatz

Ep(r, ϕ, z; δ) = e−iφ(z)u(r, ϕ, z; δ)Ep(δ), (25)

φ(z) =
∫ z

0
dζ qpε(ζ ; δ), (26)

with qp = kp/2v2. Consequently, we have to find the eigen-
values and modes of the paraxial Schrödinger equation from

ε(z; δ)u(r, z, ϕ; δ) = [−�⊥ + w(r, z; δ)]u, (27)

with the rescaled optical potential

w(r, z; δ) = −w0(r, z) f (δ,�, |�c(r)|), (28)

where w0(r, z) = v2na(r, z)α0. We assume that the modes are
well localized inside the fiber and pose the following hard
boundary conditions:

∂ru(r = 0, ϕ, z; δ) = 0, u(r = 1, ϕ, z; δ) = 0, (29)

valid ∀ϕ, z. The modes are normalized,
∫

A d2 f |u|2 = 1, over
the fiber cross-section area A.

Given that the eigenfunctions u of Eq. (27) are known, one
can construct an energy functional according to

ε(z; δ) =
∫

A
d2 f

[
|∂ru|2 + |∂ϕu|2

r2
+ w|u|2

]
. (30)

In analogy to wave-mechanics it consists of kinetic as well as
potential energies.

Without an interferometric phase reference, we consider
only the phase φ2 accrued in the long inner region 2©,
l � z � l + L, and add the free phase η = 2lkp(1 − j2

0/2v2)
accumulated from zones 1© and 3© [cf. Eq. (38)]. This results
in an input-output relation at z = 2l + L:

E (out)
p (δ) = T (δ)E (in)

p (δ), (31)

T (δ) = eiη+ik(δ)L, k(δ) = kp − qpε(δ). (32)

This transfer function T is the response of the inhomoge-
neously filled HCF. For convenience, we have incorporated
the carrier wave phase from Eq. (21) into this definition as
well.

C. Stationary modes and spectrum

The electrical eigenmodes and eigenvalues of the gas-filled
HCF in zone 2© are at the center of the pulse propagation
problem. However, the problem is more involved, as in the
conventional theory of dielectric wave guides. There, one
considers propagation in piecewise constant core and cladding
material. Here, we have a smooth radially shaped density
distribution, as well as strong EIT dispersion. This leads to
a focusing or defocusing effect for each spectral component,
which is known as micro-lensing. In the following, we will
analyze the eigenvalue problem for a homogeneously filled
fiber and a two-layer model analytically, as well as the real
Gaussian-shaped optical potential numerically.

Pulses with cylindrical symmetry are of most relevance for
the experiment. Therefore, we will compute axially symmetric

modes u(r; δ) of the Schrödinger equation (27):

εu(r; δ) = − 1
r (ru′)′ + w(r; δ)u. (33)

At first, it is interesting to first consider small local regions
where the potential w is almost constant. Then Eq. (33) can
be rephrased as a cylindrical Bessel differential equation [59]
with index ν = 0:

ρ2h′′(ρ) + ρh′(ρ) + (ρ2 − ν2)h(ρ) = 0, (34)

where u(r) = h(ρ), ρ = κr, and κ2 = ε − w ∈ C.
Then, the solution of Eq. (33) reads

u(r) = aJ0(κr) + bY0(κr), (35)

which is a superposition of cylindrical Bessel functions of the
first and second kind J0 and Y0, respectively. It is important to
note that Y0(r) diverges at the origin.

1. Homogeneous potential

A relevant special case is the radially homogeneously gas-
filled fiber, where

w(δ) = −w0 f (δ,�, |�c|). (36)

Then, the general solution (35) has to satisfy the boundary
conditions of Eq. (29). This leads to the discrete set of
unnormalized eigensolutions

u(m)(r; δ) = J0( jmr), (37)

ε(m)(δ) = j2
m + w(δ), (38)

where κ = {m ∈ N+, | jm = 2.40, 5.52, 8.65, . . .} denotes the
mth zero of J0( jm) = 0. Thus, the eigenvalue ε(m)(δ) disperses
like −χ (1)(δ) with a positive offset as shown in Fig. 3.

2. Two-layer potential

Partitioning the fiber radially at r1 in two sections and
defining a piecewise constant optical potential as

w(s)(r, δ) =
{
w1 = w(r = 0; δ), 0 � r < r1,

w2 = w(r1; δ), r1 � r < 1 (39)

introduces a new degree of freedom into the system. In
particular when w2 = 0 and �g = 0,1 we can easily anticipate
the response of the wave function u to a changing two-photon
detuning δ.

From the susceptibility χ shown in Fig. 3, one can infer
the behavior of the potential w1(δ) ∼ −χ (δ), as depicted in
Fig. 4. Thus, we infer that the dispersion χ ′ changes sign
between the left and right zero crossings located at δ±. On
the red side of the resonance, δ− < δ < 0, the potential is
repulsive, Re[w1(δ)] > 0. This central hump enhances the
spreading of the wave function like in a diverging lens. On
the blue side, 0 < δ < δ+, the potential has an attractive
trough Re[w2(δ)] < 0, leading to light focusing similar to
a converging lens. This lensing effect is the basis of wave
guiding in dielectric fibers with a piecewise change in the

1Any potential offset can be removed with a gauge transformation.
In the new gauge, we can assume w′

2 = 0 and discuss w′
1 = w1 − w2.
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FIG. 4. Real-part of the two-layer potential Re[w(r, δ)] (solid
black) versus radius r for different two-photon detunings: (a) δ =
−0.2 �, (b) δ = −0.1 �, (c) δ = 0 �, (d) δ = 0.2 � with other pa-
rameters w0 = 12.5, �c = �, � = 0, r1 = 0.301. The corresponding
radial intensities |u(1)|2 are shown for a Gaussian (blue, solid) and
a two-layer potential (red, dashed) in arbitrary units. The radially
weighted intensity r′|u(1)|2 (dashed •) are for the two-layer potential
in arbitrary units. The yellow area is proportional to the potential
energy of Eq. (30).

index of refraction between the core and cladding material.
However, in optical communication strongly frequency de-
pendent materials are deprecated.

The general solution for the modes of Eq. (35) can be used
to define the solutions in each of the two sections as(

un(r)
u′

n(r)

)
= Mn(r)

(
an

bn

)
, (40)

Mn(r) =
(

J0(κnr) Y0(κnr)
−J1(κnr)κn −Y1(κnr)κn

)
, (41)

with κ2
n = ε − wn and 1 � n � N = 2. Requiring that the

solutions match smoothly in terms of value and gradient at
the intersection r1, one can define a transfer matrix as Tn =
M−1

n+1(rn)Mn(rn). With these definitions, the solution in the
outer section reads(

u2(r)
u′

2(r)

)
= M2(r)T1

(
a1

b1

)
. (42)

The boundary conditions (29) at the center of the fiber u′(r =
0) = 0 can be met by a1 = 1, b1 = 0. The required node of
the mode at the outer boundary

uN (r = 1; ε(δ)) = 0, (43)

defines a nonlinear equation for the complex eigenvalue ε(δ),
which has to be found numerically for each value of the
detuning δ. For the simple two-layer model, Eq. (43) can be
expressed explicitly as H (κ1, κ2, r1) = 0 with

H = J0(κ1r1)J1(κ2r1)κ2

J0(κ2r1)J1(κ1r1)κ1
− G0(κ2r1) − G0(κ2)

G1(κ2r1) − G0(κ2)
, (44)

introducing an auxiliary Gi(x) ≡ Yi(x)/Ji(x).
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r1 = 0.35

FIG. 5. (a)–(c) Complex dispersion relation ε(1,2)(δ) of the two-
layer model versus two-photon detuning δ: Re[ε(1)] ( , solid),
Re[ε(2)] ( , dashed), Im[ε(1)] ( , solid), Im[ε(2)] ( , dashed). (d)–(f)
Corresponding intensities of eigenmodes |u(1)(r; δ = 0.2 �)|2 (black)
and |u(2)(r; δ = 0.2 �)|2 (black, dashed) versus radius r for different
atomic distribution widths r1 = 1 (a,d), 0.7 (b,e), 0.35 (c,f). The
overlap between |u(i)|2 and the atomic medium is highlighted in
gray shades. Note the different sign in the curvatures of Re[ε(m)] for
r1 = 0.35, indicating a different sign of the microlensing effect. The
other parameters are (�c, �, �g) = (1, 0, 0) � and w0 = 12.5.

In Fig. 5, we depict the numerical solutions for ε(m)(δ, r1)
and the corresponding radial mode intensities for u(m)(r, δ, r1)
at δ = 0.2. If the gas extends over the full width r1 = 1,
one recovers the result of the homogeneously filled fiber in
Eq. (38) [see Fig. 5(d)]. Reducing the radius to r1 = 0.7
reduces on the one hand the amplitude of the complex eigen-
values and on the other hand reveals an intermodal dispersion
between m = 1 and 2 [see Fig. 5(e)]. The shapes of the modes
are altered only slightly, indicating that lensing is very weak.
For r1 = 0.35 [see Fig. 5(f)], a significant quadratic dispersion
becomes noticeable due to microlensing. The effect has the
opposite behavior for the two modes considered.

3. Arbitrarily-shaped potential

In general, we need to solve the Schrödinger eigenvalue
Eq. (27) for a smoothly changing optical potential w(r, δ). The
transfer matrix method is a robust procedure to obtain the gen-
eral solution for arbitrarily shaped potentials. By partitioning
the integration domain into N sections 0 = r0 < r1 < · · · <

rN = 1, one can assume that an optical potential

wn = w(rn−1; δ), 1 � n � N, (45)
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FIG. 6. (a) Complex energies versus two-photon detuning δ:
Re[ε(1)] for two-layer (solid ) and Gaussian (dashed ) potential
as well as Im[ε](1) for both potential types (solid , dashed ). For
comparison, we superimposed the input amplitude E (in)(δ) (black,
solid) in arbitrary units with w0 = 12.5, �c = �, r1 = 0.301, � = 0
and other parameters as in Figs. 4 and 5. (b) Transmitted power
P(out)

p (t ) in the two-layer potential versus time t for different one-

photon detunings: �/� = −1 ( ), −0.5 (�), 0 ( ), 0.5 ( ) with
r1 = 0.301, w0 = 25.0, �c = �, dopt = 100, τp = 150 ns.

is almost constant within each interval. Now the solution
in each interval is given by Eq. (40). Promoting the inner
solution with the transfer matrix to the outer section, one finds

(
uN (r)
u′

N (r)

)
= MN (r)

N−1∏
n=1

Tn

(
1
0

)
, (46)

and Eq. (43) defines the eigenvalues ε(m)(δ) implicitly.
In Fig. 4, we present the modes for the Gaussian potential

from Eq. (24) as well as the two-layer potential (39). Cor-
respondigly, Fig. 6 shows ε(m) containing the same number
of atoms and having the same width r1 = σa. Both models
agree well for detunings that are small compared to the EIT
window width. Deviations for larger detunings reflect the
different large-scale potential shape. Yet, the two-layer model
reproduces the relevant central dispersion with high accuracy.

V. PULSE CHARACTERIZATION

A. Spectral output power

A key feature of the complex transfer function T from
Eq. (31) is the strong frequency dependence of the intensity
transfer function T (δ) = |T (δ)|2, defined by

I (out)
p (δ) = T (δ)I (in)

p (δ), T (δ) = e−dopt (δ), (47)

which maps intensities I = |E |2. It follows from the imaginary
part of the complex dispersion function and defines the optical
density as

dopt(δ) = −2θ Im[ε(δ)] > 0, (48)

with θ = qpL. Within the transparency window one can Tay-
lor expand [cf. Fig. 6(a)] the complex dispersion as

ε(δ) = ε + ε′δ + ε′′

2
δ2 + O(δ3), (49)

where ε = ε(0), ε′ = ε′(0), etc. For vanishing ground-state
dephasing, the conventional definition of an optical density
dopt(δ = 0) fails to be a good measure for light-matter inter-
action as it vanishes quadratically:

dopt(δ) =
(

2δ

σEIT

)2

+ · · · , σEIT = 2√−θ Im[ε′′]
. (50)

Here, we have defined a 1/e full-width σEIT of a Gaussian
distribution, from the imaginary part of the curvature of the
dispersion relation.

In analogy to the homogeneous EIT medium [31,52,60],
one obtains through this definition a more suitable optical
density dEIT and window width σEIT,

dEIT = |�c|2L

�vg
, σEIT = |�c|2

�
√

dEIT
, (51)

also for an inhomogeneous HCF (see Appendix D). The
inhomogeneous optical potential enters into this definition
only through the modification of the group velocity

vg = 1

Re[k′(δ = 0)]
= − 1

qp Re[ε′(0)]
> 0. (52)

Please note that the unconventional signs arise from the
negative exponent in the separation ansatz of Eq. (25). If we
use Eq. (D8) for the two-layer system without ground-state
dephasing, we obtain

vg(r1) = 1

μ(r1)

|�c|2λ̄p

2�naα0
. (53)

This is the group velocity in a homogeneously filled HCF
divided by a geometric factor, which looks approximately like
μ ≈ sin ( π

2 r1)2 as a function of the core radius r1.

B. Temporal output power

Apart from the spectral response, we are also interested
in the time-resolved output power Pp(t ) of the probe pulse
emerging at the end of the fiber. Illuminating a photodetector
with a field Ep(t ) = E(+)

p (t ) + E(−)
p (t ), that is formed by

positive and negative frequency components, causes an output
signal [47]

Pout
p (t ) = 2cε0

∫
A

d2 f E(−)
p (r, t ) · E(+)

p (r, t ). (54)

Thus, we have to Fourier transform the output field in fre-
quency space:

E(out)
p (r, ω) = epu(1)

e (r)
[
E (out)

p (ω) + E (out)∗
p (−ω)

]
. (55)
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For the Gaussian probe pulse input amplitudes (6) and the
transmission function of Eq. (31), one obtains the real-time
output amplitudes

E (out)
p (t ) = e−i[ωpt−kpL−η]�(t )Ep, (56)

�(t ) =
∫ ∞

−∞
dδ

e−iθε(δ)−itδ− δ2

�ω2

2
√

π�ω
. (57)

Consequently, the observable output power reads

P(out)
p (t ) = 2cε0

∣∣E (out)
p (t )

∣∣2
. (58)

In Fig. 6, we show the results of a numerical evaluation of
the complex energies and the output pulse power (58) for a
specific set of parameters and different one-photon detunings
�. The finite slope of the dispersion relation [see Fig. 6(a)],
leads to a pulse delay. Moreover, the asymmetric dispersion
translates into an asymmetric broadening and distortion of the
output pulse for one-photon resonance (� = 0). However, the
simulations in Fig. 6(b) also show a pathway to minimize this
broadening by driving the system off one-photon resonance
with � ≈ −0.5�.

C. Time delay and distortion

While the time delay of the probe pulse is a consequence of
causal interactions with the atomic medium, the undesirable
pulse distortion [see Fig. 6(b)] can be rectified to some degree.
To be specific, we will assume the Gaussian input pulse is
well localized within the EIT window. Then, we can use
the second-order expansion of dispersion relation (49) and
evaluate the real-time transfer function as

�(t ) = e
−iθε− (t−τlag )2

τ2
p (1+iξ )

2
√

1 + iξ
, ξ = 2θ

τ 2
p

ε′′ ∈ C. (59)

Thus, the output pulse maintains its Gaussian shape with a
positive time lag

τlag = −θε′ = L

vg
> 0 (60)

and pulse width τ out
p > 0 that can be obtained from the com-

plex denominator in the exponent of Eq. (59),

(
τ out

p

)2 ≡ (1 − Im[ξ ])2 + (Re[ξ ])2

1 − Im[ξ ]
τ 2

p � τ 2
p , (61)

provided Im[ε]′′ � 0. Indeed, by inspection of the complex
dispersion relation of Fig. 6(a), one finds a negative curvature
of the absorptive part. This is no coincidence but a conse-
quence of causality [61].

D. Mitigation of lensing effects

The output pulse width points to a strategy to suppress the
additional pulse broadening: (τ out

p )2 from Eq. (61) is the sum
of two widths that are added in quadrature. Therefore, the sum
is minimal if

Re[ε′′(δ = 0,�)] = 0. (62)

The shape of the output power is shown in Fig. 6(b) and
varies with the one-photon detuning �. Using the expilict
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FIG. 7. (a) Refraction strength functions C (1,2,3)(r1) vs width of
gas filled core r1. C (1) shows the local minimum C (1)(r1 = 0.301) =
−0.0183 ( ). C (2) exhibits two zero crossings, indicating a com-
plete mitigation of lensing effects ( ), while C (m) for higher modes
is an increasingly oscillating function with diminishing amplitude
(m = 3, •). (b) Contour plot of �

(1)
opt(v, n0) for a specific experi-

mental system using rubidium atoms (87Rb D1 line, SFF ′ = 1/6) and
C (1)(r1 = 0.301).

expression for Re[ε′′] from Eq. (D9), we can determine an
optimal detuning as

�
(m)
opt (r1) = �w0 C (m)(r1), (63)

with C (m)(r1) = HεεHw

2H2
ε

− Hwε

Hε

+ Hww

2Hw

. (64)

The superscript m has been restored to account for different
modes of the complex eigenenergy. We refrain from providing
the explicit function C (m), which is an uninformative combina-
tion of Bessel functions exclusively depending on r1. Instead
we depict the shape functions C (1,2,3)(r1) in Fig. 7(a). While
C (1)(r1) represents a strictly negative convex function with a
local minimum at r1 = 0.301, C (2) has two zero crossings,
indicating that a variation of r1 for higher modes can lead to
lensing with a different sign and even a complete mitigation of
lensing for a certain r1 (see Fig. 5). In Fig. 7(b), we plot �

(1)
opt

for different fiber parameters v and atomic peak densities n0

to show the expected magnitude.
In closing this section we note that the foregoing discussion

relies on the transparency condition w1(0) = 0. Ground-state
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dephasing with �g �= 0 breaks this condition and results in a
nonlinear generalization of Eq. (63).

E. Suppression of microlensing

Following the results of the last section, pulse-broadening
induced by microlensing can be completely mitigated by
applying a certain one-photon detuning �

(m)
opt , that depends

upon the parameters of the experimental setup [see Eq. (63)].
Using higher-order fiber modes (m > 1) would allow for sup-
pression of microlensing even at � = 0 for certain values r1,
as their corresponding functions C (m)(r1) have multiple zero
crossings [see Fig. 7(a)]. However, these radially oscillating
modes are experimentally undesirable. Therefore, we discuss
in the following only the suppression of microlensing for
the fundamental mode. In case one is restricted to using a
certain one-photon detuning � and therefore cannot use this
parameter for suppressing microlensing, |�(1)

opt − �| can be
seen as an effective scale for the strength of the observed
lensing effect. Thus, micro-lensing can be suppressed by min-
imizing |�(1)

opt − �| under a variation of other experimental
parameters. For simplicity, we will set � = 0 in the following.

In general, microlensing is reduced by choosing fibers with
a rather small fiber parameter v and for low atomic number
density na, since |�(1)

opt| ∼ v2na. The latter one, however, is in
contrast to achieving a high light storage and retrieval effi-
ciency, which depends linearly on the optical density dopt ∼
na. Therefore one might also think about a minimization of
|C(1)(r1)| to decrease the lensing strength. As Fig. 7(a) shows,
this implies having either r1 → 1 (homogeneous medium
inside the fiber) or r1 → 0 (atoms concentrated near the fiber
axis). The former approach leads to large collision rates of
atoms with the fiber wall, resulting in large decoherence.
Therefore it is not a good solution.

The latter approach could be realized by modifying the
atomic density distribution, e.g., via altering the ensem-
ble temperature T or the trapping potential depth V0 (see
Appendix A) as the atoms are inside the HCF. This will result
in a change of the atomic number density na = Na/πr2

1 L while
leaving the number of atoms Na inside the HCF more or less
constant. Therefore, we obtain from Eq. (63)

�
(1)
opt(r1)

∣∣
Na=const = �v2α0

Na

πL

C (1)(r1)

r2
1

. (65)

As C(1)(r1)/r2
1 does not exhibit local extrema, but diverges

for r1 → 0 in contrast to C(1)(r1), microlensing cannot be
completely suppressed by a simply better localization of the
atoms on the fiber axis. Nonetheless, we note that concen-
trating all atoms into a very small region, r1 → 0, is an in-
teresting limit. There, the optical potential approaches a two-
dimensional Fermi pseudopotential w(r) = −w0 f (δ)δ(2)(r),
and many interesting analogies to condensed- or nuclear-
matter physics can be drawn [62]. We further note that the
transverse localization will also be limited by the extension of
the harmonic oscillator ground mode of the FORT potential.
There, one might also have to consider that our theory is only
valid for transverse extensions larger than the wavelength λp

(see Sec. IV).
In order to avoid the divergence of C(1)(r1)/r2

1 for r1 → 0,
one would have to keep the atomic number density na constant

during the compression, i.e., reduce the number of atoms
inside the HCF. The optimum detuning for constant density
is then given by

�
(1)
opt(r1)

∣∣
na=const = �v2α0naC (1)(r1), (66)

which vanishes for r1 → 0. Reducing the number of atoms
loaded into the HCF, however, is of course contradicting
the typical goal to maximize the optical depth for obtain-
ing strong light-matter coupling, and therefore usually better
avoided. This discussion illustrates how the particularities of
the experimental parameters critically influence mircolensing.
Probably the best way to mitigate it is by choosing fibers
of small core diameters and long lengths to keep the atomic
number density as low as possible, and to concentrate the
atoms near the fiber axis. If lensing then still occurs, it can be
suppressed by an optimum one-photon detuning � according
to Eq. (63).

F. Experimental observability

In this subsection we describe how to observe the here
discussed microlensing effects and discuss their estimated
strength for several experimental systems. As a measure of
the effect strength, we use the magnitude of the one-photon
detuning needed to suppress microlensing [see Eq. (63)] for
the fundamental fiber mode.

The frequency-dependent microlensing will manifest itself
in a more or less pronounced asymmetry in the fiber inten-
sity transmission T (δ) = e−dopt (δ), with optical density dopt(δ)
defined in Eq. (48). This is shown in Fig. 8 for different
potential depths w0. For the experimental setups using a
small-core fiber with a0 ∼ 3.5 μm [8,10,15,43] and a peak
atomic density below 1012 cm−1 [8,10], lensing leads to minor
modification of the transmission [Fig. 8(a)]. Microlensing
effects will therefore be currently hard to observe in such
systems. For higher potential depths, i.e., medium-core fibers,
microlensing effects should be easily observed. For instance,
for w0 = 25 and w0 = 50 [Figs. 8(b) and 8(c)] defocusing
for δ < 0 leads to an enlarged transmission since the overlap
of light and medium is decreased. For δ > 0, on the other
hand, the transmission window width will be reduced due
to focusing. Asymmetries will be easier to observe for low
optical densities since in this case the transmission window is
wider. In this case the lensing effect is no longer dominated by
Re[w]. Instead Im[w] dominates and alters the lensing prop-
erties, causing small deviations from the expected window
widths. This can be seen in all three plots on the right edge
of the transmission window.

Regarding the effect of microlensing on slow light, we
plot in Fig. 7(b) the required optimal control beam detuning
�(1) as a function of the fiber parameter v [see Eq. (1)],
which is proportional to the ratio of fiber core radius and
probe wavelength, and the peak atomic number density n0 [see
Eq. (A3)]. As can be seen, the larger the core radius, the lower
the atomic density required to obtain a significant detuning
�(m) �= 0. If, e.g., we consider again the experimental setup
using a small-core fiber [8,10], the optimum detuning will
be in the range of �

(1)
opt ∼ 0.03� and therefore microlensing

effects will be currently hard to observe with such a setup.
On the other hand, for the medium-core fibers with v ∼ 200,
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FIG. 8. Intensity transmission T (δ) vs detuning δ normalized to
the EIT window width [see Eq. (51)] for different potential depths
w0 = 5 (a), 25 (b), 50 (c) with r1 = 0.301 and different optical
densities dopt = 5 ( ), 25 (�), 250 ( ). The one-photon detuning
is � = 0.

the same atomic density will lead to �
(1)
opt ∼ 1� and therefore

microlensing (and its suppression) will be more relevant in
these systems.

VI. CONCLUSIONS

We developed a simple two-layer model for light propa-
gation in an atom-filled HCF under EIT conditions to derive
an effective description of microlensing effects. We showed
that a highly dispersive interior of a linear waveguide acts
like a confined lens with a highly dispersive curvature causing
frequency-dependent focusing and defocusing inside the fiber.
Since we assumed perfect adiabatic guidance, this lensing
manifests itself in an effectively distorted intramodal light
dispersion, modifying group velocity and absorption due to
modulation of the light-matter coupling. The magnitude and
sign of this lensing effect depend critically on the distribution
width of the dispersive medium and on the field distribution of
the propagating mode (intermodal dispersion), i.e., fiber core
diameter.

We further proved, in the framework of the developed
two-layer model, that lensing-induced intramodal dispersion
can be compensated in the center of the EIT window by
applying an optimal one-photon detuning. This detuning has a
nonlinear dependence on the distribution width of the atomic
medium and also serves as an effective reference for the lens-
ing strength. With the help of this reference we showed that
current experimental realizations using medium-core HCFs
are expected to show microlensing effects, whereas small-core
HCFs will be subject to microlensing for larger densities only.
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APPENDIX A: THERMAL ATOMIC
DENSITY DISTRIBUTION

Atoms are loaded into a HCF by use of an auxiliary far-off-
resonant red-detuned laser beam in the ground mode u(1)

e (r)
which establishes an optical dipole potential [26]

Vdip(r) = −V0

∣∣u(1)
e (r)

∣∣2
, (A1)

of width σd and sufficient depth V0 > 0 to localize the high
field seeking atoms in the center of the fiber. After collisional
relaxation, a thermal atomic density distribution emerges as

na(r) = ñ0e− Vdip (r)

kBT , Na =
∫

d3x na (A2)

at temperature T with particle number Na. If the temperature
is low enough, kbT � V0, one can Taylor expand the dipole
potential around the center to obtain a generic Gaussian
atomic density distribution

na(r) = n0e
− r2

σ2
a , (A3)

with a thermal width σa(T ) = σd
√

kBT/V0.

APPENDIX B: COMPLEX OPTICAL POTENTIAL

In the slowly varying envelope approximation, we assume
that the amplitude E (x, ω) has a finite support only in a small
frequency domain around the carrier frequency ωp of the
probe pulse. By introducing a parameter ζ = (ω − ωp)/ωp,
this condition reads |ζ | � 1 and the optical potential reads

U = ω2
p − ω2εr

2ω2
p

= −χ (1)

2
− εr

(
ζ − 1

2ζ 2
)
. (B1)

Now, one can easily see that the first term dominates the
expression by considering the magnitude of the ratio of χ (1)

and the second term:

|χ (1)|
|2εrζ | ≈ χ

(1)
0 ωp

�c
≈ χ

(1)
0 ωp

�
≈ 106. (B2)

Here, we have assumed that the pulse bandwidth matches the
EIT window |ω − ωp| = �c = � = 10 MHz, ωp = 1 PHz,
and χ

(1)
0 = 10−2.
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APPENDIX C: RAMAN TRANSITION IN
THE INTERACTION PICTURE

Given the Raman configuration of Fig. 1 and coupling of the
three atomic levels by a monochromatic control laser Ec(t ) =
Re[ecEce−iωct ] and a probe laser Ep(t ) = Re[epEpe−iωpt ], the
dipole interaction energy reads V̂ (t ) = −d̂ · [Ep(t ) + Ec(t )].
In the optical domain, the rotating-wave approximation [47]
applies and the atomic energy Hamilton operator reads

Ĥ (t )/h̄ =ω1σ̂11 + ω2σ̂22 + ω3σ̂33

+ 1
2 (σ̂31�pe−iωpt + σ̂32�ce−iωct + H.c.). (C1)

Here, h̄ωi is the energy of the state |i〉, the transition oper-
ators are defined as σ̂i j = |i〉 〈 j|, di j are dipole matrix ele-
ments, and the Rabi frequencies �p = −d31epEp/h̄ and �c =
−d32ecEc/h̄ quantify the coupling strength of the correspond-
ing transition. In order to eliminate oscillating amplitudes
in the Schrödinger picture, one transforms to an interaction
picture |ψ (t )〉 = Û (t ) |ψ (t )〉′ with

Û (t ) = exp [−i(ω3 − ωpσ̂11 − ωcσ̂22)t]. (C2)

This results in a interaction picture Hamilton operator

Ĥ ′/h̄ = Û †(t )[Ĥ (t )/h̄ − i∂t ]Û (t )

= (� + δ)σ̂11 + �σ̂22 + 1
2

(
σ̂31�p + σ̂32�c + H.c.

)
,

(C3)

where � = ωc − ω32 denotes the one-photon detuning and
δ = ωp − ωc − ω21 the two-photon detuning as in Eq. (11).
In a matrix representation this reads

H ′
i j = h̄

⎛
⎜⎜⎝

δ + � 0
�∗

p

2

0 �
�∗

c
2

�p

2
�c
2 0

⎞
⎟⎟⎠. (C4)

APPENDIX D: SHAPE OF THE COMPLEX DISPERSION

In the considered parameter range, the analytical two-
layer model and the Gaussian potential model predict sim-
ilar dispersions close to resonance, as shown in Fig. 6(a).
Therefore, we will pursue the two-layer model, assuming that
there are no atoms in the outer fiber (w2 = 0), and disregard
ground-state dephasing �g = 0. This implies w1(δ = 0) = 0
on resonance.

With the aid of the implicit function theorem, we can
determine all coefficients ∂n

δ ε(0) of the Taylor series of the
dispersion relation (49) from Eq. (44),

H (w(δ), ε(δ)) = 0, (D1)

which defines a relation between the complex energy ε and
w ≡ w1 as functions of δ implicitly. On resonance, we have
a solution P = (w(0), ε(0)) = (0, j2

1 ) where the medium is
transparent. If P is a regular point, we can obtain higher
derivatives from the condition

∂n
δ H (w(δ), ε(δ)) = 0. (D2)

For the first and second derivatives of the complex dispersion,
we find

ε′ = μw′, μ = −Hw

Hε

, (D3)

ε′′ = μw′′ − ε′2Hεε + 2ε′w′Hwε + w′2Hww

Hε

, (D4)

where we have abbreviated partial derivatives of H with sub-
scripts and denote w′ = w′(0) and w′′ = w′′(0). The partial
derivatives can be evaluated explicitly in terms of Bessel
functions, i.e.,

μ = πr2
1 j1Y0( j1)[J0(r1 j1)2 + J1(r1 j1)2]

2J1( j1)
. (D5)

Higher order expressions can be calculated but are not shown.
We can also obtain explicit values for the potential deriva-

tives on resonance from Eqs. (19) and (28) as

w′ = − w0

δEIT
, w′′ = 2� + i�

�δEIT
w′. (D6)

Due to the fact that all partial derivative of H evaluated at
the stationary point are real, one can explicitly evaluate the
Taylor coefficients of the dispersion series as

Re[ε] = j2
1 , Im[ε] = 0, (D7)

Re[ε′] = μ Re[w′], Im[ε′] = 0, (D8)

Re[ε′′] = μ Re[w′′] − ε′2Hεε + 2ε′w′Hwε + w′2Hww

Hε

, (D9)

Im[ε′′] = μ Im[w′′]. (D10)
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