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ABSTRACT

Technical optics with matter waves requires a universal description of three-dimensional traps, lenses, and complex matter-wave fields. In
analogy to the two-dimensional Zernike expansion in beam optics, we present a three-dimensional multipole expansion for Bose-condensed
matter waves and optical devices. We characterize real magnetic chip traps, optical dipole traps, and the complex matter-wave field in terms
of spherical harmonics and radial Stringari polynomials. We illustrate this procedure for typical harmonic model potentials as well as real
magnetic and optical dipole traps. Eventually, we use the multipole expansion to characterize the aberrations of a ballistically interacting
expanding Bose–Einstein condensate in (3þ 1) dimensions. In particular, we find deviations from the quadratic phase ansatz in the popular
scaling approximation. The scheme is data efficient by representing millions of complex amplitudes of a field on a Cartesian grid in terms of
a low order multipole expansion without precision loss. This universal multipole description of aberrations can be used to optimize matter-
wave optics setups, for example, in matter-wave interferometers.

VC 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1116/5.0174884

I. INTRODUCTION

In 1934, Frits Zernike introduced the orthogonal
“Kreisfl€achenpolynome” to describe the optical path difference
between light waves and a spherical reference wavefront.1

Understanding the phase differences and minimizing the optical aber-
rations laid the base for the first phase-contrast microscope.2 This
invention was awarded with the Nobel Prize in Physics in 1953.
Nowadays, Zernike polynomials are widely used in optical system
design as a standard description of imperfections in optical imaging.3

Typical wavefront errors are known as defocus, astigmatism, coma,
spherical aberration, etc.4 Balancing aberrations is also relevant for
optical imaging with electron microscopes.5–8 In contrast to visible
light, massive particles, such as electrons, atoms, and even larger mole-
cules,9 have a much smaller de Broglie wavelength, kdB ¼ h=p, and
therefore a higher resolution.

Nowadays, atom-interferometers with ultracold atoms are used
to study fundamental scientific questions like tests of the Einstein
equivalence principle,10–12 probing the quantum superposition on
macroscopic scales,13 the search for dark matter candidates14 and grav-
itational waves.15,16 Kip Thorne’s multipole representation of weak
gravitational waves17 was a major step stone toward the discovery18

and the efficient data analysis. Being very sensitive to accelerations and
rotations, atom interferometry could be used for inertial sensing,
replacing commercial laser gyroscopes, and satellite navigation in
space.19 Common to all lg-interferometric measurements with Bose–
Einstein condensates are long expansion times20 to reduce mean-field
interaction as well as to increase the sensitivity of the interferometer.
Hence, it is crucial to understand the actual shape of the condensate’s
phase as it determines the interference patterns at the end of the inter-
ferometer.21–23

Inspired by Zernike’s work, we will adopt his approach to analyze
these aberrations in the world of matter waves:

First, we introduce a multipole expansion with suitable polyno-
mial basis functions in Sec. II. We consider spherical-, spheroidal-, dis-
placed asymmetric harmonic-, and generally asymmetric trapping
potentials in Sec. III. In particular, we characterize the magnetic poten-
tial from a realistic atom chip model. In Sec. IV, we extend the multi-
pole analysis to Bose–Einstein condensates in the strongly interacting
Thomas–Fermi as well as in the low interacting limit. Finally, we inves-
tigate the shape of the phase profile for a ballistically expanding con-
densate in Sec. V and discuss the efficiency of our multipole expansion
in Sec. VI.
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II. MULTIPOLE EXPANSION WITH STRINGARI
POLYNOMIALS
A. Orthogonal function within a sphere

Cold atoms can be trapped or guided in either optical dipole or
Zeeman potentials.24 If these potentials are applied for short times
(impact approximation, phase imprinting25), one modifies only the
phase of the atomic wave packet, thus, the momentum distribution of
the condensate. This process is equivalent to a thin lens in optics, but
now in (3þ 1) dimensions.26 Systematically analyzing the features of
different potentials becomes crucial for achieving the ultimate preci-
sion in long-time atom interferometry.27

The standard Taylor expansion of a potential, in the vicinity
of a point r0, reads in three-dimensional Cartesian coordinates
r ¼ r0 þ f,

UðrÞ ¼ U0 þ f>rUjr0 þ
1
2
f>Kfþ � � � : (1)

This interpolation polynomial is useful for extracting forces from the
gradient or trapping frequencies from the eigenvalues of the Hesse
matrix K ¼ ðr�rUÞjr0 . However, the Taylor series are notoriously
inefficient approximation schemes.

Alternatively, we introduce a multipole expansion in spherical
coordinates ðr; #;uÞ,

hrjUi ¼ UðrÞ ¼
X1
n¼0

X1
l¼0

Xl
m¼�l

Unlmhrjnlmi; (2)

in terms of multipole coefficients, Unlm ¼ hnlmjUi, and orthonormal
basis functions,

hrjnlmi ¼ SnlmðrÞ ¼ SnlðrÞYlmð#;uÞ; (3)

hn0l0m0jnlmi ¼ dn;n0dl;l0dm;m0 ; (4)

consisting of spherical harmonics Ylmð#;uÞ and radial polynomials
SnlðrÞ. Explicitly, they have support within a hard three-dimensional
“aperture” of radius R. In terms of a scaled aperture radius
0 � ~r ¼ r=R � 1, they read

SnlðrÞ ¼ N nl ~r
lJðlþ1=2;0Þ
n ð1� 2~r2Þ; (5)

where Jðlþ1=2;0Þ
n denotes the Jacobi polynomials28 (see Appendix A). The

polynomials in Eq. (5) describe the sound wave excitations of a Bose–
Einstein condensate in the strong interacting Thomas–Fermi limit for
an isotropic three-dimensional harmonic oscillator potential, originally
described by Stringari29 and €Ohberg et al.30 Thus, these fundamental
modes are well adapted for condensates in harmonic as well as in more
realistic trapping geometries (see Secs. IIIC and V). In hindsight, it
almost seems natural to recover Jacobi polynomials Jðlþ1=2;0Þ

n with half-
integral indices in the three-dimensional situation, if we compare this to
the circle polynomials of Zernike in two-dimensional beam optics.31

The normalization N nl ¼ ½ð4nþ 2l þ 3Þ=R3�1=2 renders the polyno-
mials orthonormal on the interval 0 � r � R,ðR

0
dr r2Sn0 lðrÞSnlðrÞ ¼ dn;n0 : (6)

Therefore, the potential expansion coefficientsUnlm in Eq. (2) are given
by the overlap integral

Unlm ¼ hnlmjUi ¼
ð
V
d3r S�nlmðrÞUðrÞ; (7)

within a spherical volume V ¼ 4pR3=3. Typically, the characteristic
size of the wave packet in the trap determines the aperture radius R.
For cold clouds, this size is of the order of the harmonic oscillator
length ‘ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�h=ðMxÞp
for a non-interacting gas or for an interacting

condensate, the Thomas–Fermi radius rTF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l=ðMx2Þp

. For ther-
mal clouds, the radius R � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kBT=ðMx2Þp
is proportional to the tem-

perature T.
Instead of a multipole expansion of the potential in Eq. (36), it is

also possible to decompose the logarithm of the potential,

hðrÞ ¼ �log
UðrÞ
U0

¼
X1
n¼0

X1
l¼0

Xl
m¼�l

hnlmhrjnlmi: (8)

This cumulant expansion32 is particularly useful for Gaussian func-
tions as the series terminates quickly after the second order. In Sec. III,
we analyze both the potentials and their cumulants in terms of these
multipole expansions.

B. Spectral powers

For interpreting and visualizing the complex expansion coeffi-
cient Unlm or hnlm, we introduce relative spectral powers, pnl 	 0. The
latter is independent of the potential’s orientation to the reference
coordinate system. This also holds for the cumulant expansion in Eq.
(8). Let us consider a coordinate transformation r0 ¼ Rr, where R
denotes an orthogonal rotation matrix RR> ¼ 1. In both frames, the
values of the potential agree,

hrjUi ¼ hr0jU 0i ¼
X
nlm0

hr0jnlm0iU 0
nlm0 : (9)

The coefficients in the new reference frameU 0
nlm are given by

U 0
nlm0 ¼

Xl
m¼�l

DðlÞ
m0mðRÞUnlm; (10)

where the DðlÞ
m0mðRÞ ¼ hlm0jR̂jlmi are the Wigner D-matrices as the

matrix representation of the rotation operator R̂ in the angular
momentum basis.33–35 Using the unitarity of the rotation operator,
R̂R̂

† ¼ R̂
†
R̂ ¼ 1, as well the orthonormality of the Stringari polyno-

mials (3), we specify rotational invariant measures such as the total
power,

PðUÞ ¼
ð
V
d3r jUðrÞj2 ¼

X
nlm

jUnlmj2: (11)

Moreover, we define the marginals Pnl and Pl,

PnlðUÞ ¼
Xl
m¼�l

jUnlmj2; PlðUÞ ¼
X
n

PnlðUÞ; (12)

as well as the relative fractional powers pnlðUÞ by

pnlðUÞ ¼ PnlðUÞ
PðUÞ

X
nl

pnlðUÞ ¼ 1: (13)

Thus, the relative fractional powers add up to one.
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III. MULTIPOLE EXPANSION OF TRAPS
A. Harmonic, isotropic, three-dimensional oscillator

A stiffness parameter k characterizes a harmonic, isotropic, three-
dimensional oscillator potential,

UðrÞ ¼ k
2
r2 ¼

X1
n¼0

Un00hrjn00i ¼ 3
5
uhrj000i �

ffiffiffiffiffiffiffi
12
175

r
uhrj100i:

(14)

For a particle with mass M, the angular frequency x ¼ ffiffiffiffiffiffiffiffiffiffi
k=M

p
. An

isotropic potential is invariant under rotations. Thus, only the s-waves
contribute. A Stringari polynomial Sn0 from Eq. (5) is of the order r2n,
which limits the radial modes to two monopoles. The expansion coeffi-
cients Un00 are given in terms of a dimensional factor (Jm3=2),

u ¼ k
2
R2

ffiffiffiffi
V

p
: (15)

For the total power, one finds

PðUÞ ¼ 3
7
u2; (16)

as well as the fractional powers,

p00ðUÞ ¼ 21
25

¼ 0:84; p10ðUÞ ¼ 4
25

¼ 0:16: (17)

B. Harmonic, anisotropic, three-dimensional oscillator

1. Spheroidal potential

For a prolate or oblate spheroidal harmonic oscillator, the poten-
tial is characterized by two stiffness constants k? and kk, but it is still
rotational symmetric around the z-axis,

UðrÞ ¼ k?
2
ðx2 þ y2 þ a2z2Þ: (18)

The anisotropy is measured by a2 ¼ kk=k?. In contrast to the isotro-
pic oscillator, one needs also a quadrupole within the multipole
expansion,

U000 ¼ 2þ a2

5
u; U100 ¼ � 4þ 2a2ffiffiffiffiffiffiffi

525
p u;

U020 ¼ � 2� 2a2ffiffiffiffiffiffiffi
105

p u; u ¼ k?
2
R2

ffiffiffiffi
V

p
:

(19)

Using the coefficients in Eq. (19), we can evaluate the total power

PðUÞ ¼ 8þ 4a2 þ 3a4

35
u2 (20)

and the relative fractional powers

p00ðUÞ ¼ 7
5

ð2þ a2Þ2
8þ 4a2 þ 3a4

;

p10ðUÞ ¼ 4
15

ð2þ a2Þ2
8þ 4a2 þ 3a4

;

p02ðUÞ ¼ 4
3

1� a2

8þ 4a2 þ 3a4

(21)

for the cylindrical symmetric oscillator potential. It is noteworthy
that this expansion encompasses degenerate traps with vanishing
z-confinement a¼ 0 as well as isotropic traps with a¼ 1 from
Eq. (17).

2. Tilted, shifted anisotropic harmonic oscillator
potential

We consider a general harmonic oscillator potential with a sym-
metric stiffness matrix K localized at a position r0,

Uðr; r0Þ ¼ ðr � r0Þ> K

2
ðr � r0Þ

¼ r>0
K

2
r0 � r>0 Kr þ r>

K

2
r

¼ U ð0Þðr0Þ þ Uð1Þðr; r0Þ þ U ð2ÞðrÞ; (22)

and gather it into homogeneous potentials U ðnÞðrÞ of degree n. In
order to determine the multipole expansion, we transform the position
vectors r ¼ xex þ yey þ zez given in a Cartesian basis fex; ey; ezg to
the spherical basis fe1; e0; e�1g,

e1 ¼ � ex þ ieyffiffiffi
2

p ; e0 ¼ ez; e�1 ¼
ex � ieyffiffiffi

2
p ; (23)

which are orthogonal with respect to the standard complex scalar-
product en e�m ¼ dn;m. It is convenient to introduce also a dual basis
fe1; e0; e�1g with

em ¼ ð�1Þme�m ¼ e�m; (24)

en e
m ¼ en e

�
m ¼ dn;m: (25)

Now, the position vector in the co- and contravariant spherical basis33

reads

r ¼
X1
m¼�1

qmem ¼
X1
m¼�1

qme
m; (26)

q61 ¼ 7
x6iyffiffiffi

2
p ; q0 ¼ z: (27)

More generally, one can express the spherical vector components36

qm by

qm ¼ 4p
3

� �1=2

Y1mð#;uÞr ¼ Tð1Þ
m ð#;uÞr; (28)

with the spherical tensor Tð1Þ
m ð#;uÞ.

Obviously, the constant Uð0Þðr0Þ ¼ r>0 Kr0=2. The dipole coeffi-
cients for Uð1Þðr; r0Þ in Eq. (22) are then given by the spherical com-
ponents of the vector r0,

Uð1Þðr; r0Þ ¼ r
X1
m¼�1

Uð1Þ
1m ðr0ÞTð1Þ

m ðr̂Þ; (29)

U ð1Þ
1m ðr0Þ ¼ �

X1
s¼�1

q�0;sKms: (30)
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The second order contribution U ð2ÞðrÞ in Eq. (22) contains a product
of two spherical tensors that can be simplified using the Clebsch–
Gordan expansion,36

Tðl1Þ
m1

ðr̂ÞTðl2Þ
m2

ðr̂Þ ¼
Xl1þl2

l¼jl1�l2 j

Xl
m¼�l

Cl1 l2 l
m1m2mT

ðlÞ
m ðr̂Þ; (31)

with Clebsch–Gordan coefficients35 Cl1 l2 l
m1m2m ¼ hl1m1l2m2jlmi. Hence,

we can rewrite U ð2ÞðrÞ as

U ð2ÞðrÞ ¼ r2

2

X2
l¼0

X2
m¼�2

Uð2Þ
lm TðlÞ

m ðr̂Þ; (32)

Uð2Þ
lm ¼

X1
r;s¼�1

ð�1ÞsC11l
rð�sÞmKrs; (33)

with multipole coefficients that contain the matrix elements of K in
the spherical basis and Clebsch–Gordan coefficients. For the radial
part, one can use the results from the expansion of isotropic oscillator
III A in terms of the s-wave Stringari polynomials. The total power in
Eq. (11) of U ð2Þ evaluates to

PðUð2ÞÞ ¼ 9
2Tr K2½ � þ Tr K½ �2

35Tr K½ �2 u2; u ¼ Tr K½ �
6

R2
ffiffiffiffi
V

p
: (34)

For an isotropic stiffness K ¼ k1, Eq. (34) reduces to the result of the
isotropic harmonic oscillator in Eq. (16).

C. Magnetic Zeeman potential of an atom chip

Magnetizable atoms can be trapped in a static magnetic field,37

UZðrÞ ¼ lBmFgF jBðrÞj: (35)

Here, lB denotes the Bohr magneton, gF the Land�e factor,mF the mag-
netic quantum number of the total angular momentum, and BðrÞ the
magnetic induction field. In this work, we analyze the Zeeman poten-
tial in Eq. (35) obtained by a real-world model of a magnetic chip
trap.38 These have become popular when a miniaturization of the
experimental setup is required, for example, at drop towers39,40 and in
space.41,42 The atom chip and its functionalities are described in detail
in Ref. 43. In Appendix B, we present a realistic finite-wire model of
the microtrap from which we deduce the magnetic induction field [see
Eq. (B2)]. Here, we consider 87Rb atoms in the magnetic hyperfine

state jF ¼ 2;mF ¼ 2i with gF ¼ 1=2 with the set of currents as pre-
sented in Table I. The corresponding Zeeman potential, evaluated in
the chip coordinate system, is depicted in Fig. 1.

For an efficient representation of the three-dimensional Zeeman
potential, we use the multipole expansion in Eq. (2). For a compari-
son, we extract also the multipoles of the cumulant as discussed in
Eq. (8). As we represent the potential on discrete lattice points, we
use a least-square optimization (see Appendix C) to calculate the
expansion coefficients Unlm and hnlm, respectively. The results of
the multipole expansion are summarized in Fig. 2. There, we show
the relative fractional angular powers pnl for the harmonic approxi-
mation pnlðUhoÞ (a), the full Zeeman potential pnlðUZÞ (b), and the
cumulant pnlðhÞ (c). In each subfigure, we have used the same num-
ber of basis functions with maximal principle and angular momen-
tum quantum numbers nmax ¼ 3; lmax ¼ 5. Moreover, the multipole
expansion is performed at the position of the trap minimum, shifting
the position vector in Eq. (22) by r ¼ r0 þ r0. The latter implies a
vanishing dipole component U ð1Þðr; r0Þ ¼ 0 for the harmonic
approximation.

As discussed in Sec. III B, the anisotropic harmonic oscillator
potential exhibits just two monopoles and one quadrupole contribu-
tion, depicted in Fig. 2(a). For a real Z-wire trap on the atom chip,
the Zeeman potential exhibits all multipoles: in particular, the
monopoles p00, p10, dipoles with p01, p11, a quadrupole p02, as well as
the octupole with p03, which is depicted in Fig. 2(b). From the dipole
coefficients, we deduce that in the anharmonic trap, the position of
the trap minimum does not coincide with the center-of-mass posi-
tion of the trap. Thus, the application of a Zeeman lens-potential
causes a finite momentum-kick to the atomic density distribution.
While the dipoles affect the center of mass motion, the additional
octupole causes density distortions in long-time matter-wave optics
and interferometry.

Finally, we note that multipoles of higher order l> 3 are decreas-
ing rapidly for our trap configuration. Comparing the direct multipole
expansion to the cumulant expansion, one finds that the expansion of
the cumulant series converges more slowly due to the logarithmic
character of Eq. (8), see Fig. 2(c).

D. Optical dipole potential from Laguerre–Gaussian
beams

In addition to magnetic trapping, atoms can be also trapped by
an optical dipole potential,44,45

UDðrÞ ¼ U0 e
�hðrÞ; U0 ¼ �hjX0j2=ð4DÞ; (36)

FIG. 1. Magnetic Zeeman potential of an atomic chip trap for 87Rb in the magnetic substate jF ¼ 2;mF ¼ 2i. Two-dimensional contour plots along all three spatial planes at
position r0 ¼ r � r0. The principle axis of the trap obtained by the Hesse matrix K Eq. (1) marked as dashed lines. Parameters of the trap are summarized in Tables I and II.
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which is created by laser light far detuned from the atomic resonance.
Here, D ¼ xL � x0 describes the laser detuning, and X0 is the Rabi
frequency. For red-detuned lasers xL < x0 with respect to the atomic
transition x0, the dipole potential is attractive, and it is repulsive for
blue-detuning xL > x0.

46

For a single Laguerre–Gaussian beam,47 the exponent hðrÞ in Eq.
(36) has the spatial dependence,

hðrÞ ¼ 2
x2 þ y2

wðzÞ2 þ ln 1þ z2

z2R

 !
� 2

x2 þ y2

w2
0

þ z2

z2R
; (37)

where the Rayleigh range zR ¼ pw2
0=kL is typically much larger than

the extension of the condensate wave packet. The laser wavelength is
kL ¼ 2p=kL, and the beam waist is denoted by wðzÞ ¼ w0ð1
þz2=z2RÞ1=2. The dipole potential Eq. (37) describes an optical wave-
guide48 or can act as an optical matter-wave lens in the time domain.49

For the latter, we depict the optical potential for 87Rb in Fig. 3.
The harmonic approximation of Eq. (37) corresponds to the

spheroidal trapping potential in Eq. (18) with stiffness

k? ¼ 4U0

w2
0
; kk ¼ 2U0

z2R
; (38)

and the anisotropy a2 ¼ w2
0=ð2zRÞ depending on the ratio of the mini-

mal waist and the Rayleigh length.
As in Subsection III C, we evaluate the relative powers, see Fig. 4,

for the harmonic approximation pnlðUhoÞ Eq. (18) (a), the dipole
potential pnlðUDÞ Eq. (36) (b), and the cumulant pnlðhÞ in Eq. (37) (c).
Due to the Gaussian laser beam, the cumulant expansion of the dipole
potential is much more efficient than the direct multipole expansion
[compare Figs. 4(b) and 4(c)]. For large Rayleigh length zR 
 R, the
spatial dependence of the exponent hðrÞ is almost Gaussian, which is
shown in Figs. 4(a) and 4(b). Additional corrections to the harmonic
cumulant in higher angular momentum components l> 2 are of the
order 10�9 and smaller.

IV. MULTIPOLE EXPANSION OF BOSE–EINSTEIN
CONDENSATES

In addition to the external trapping potentials, we are also
interested in an efficient representation of a three-dimensional
Bose–Einstein condensate. Within the classical field approximation
for Bosons, the evolution of the complex matter-wave field is
described,

i�h@tWðr; tÞ ¼ � �h2$2

2M
þ Uðr; tÞ þ gnðr; tÞ

� �
Wðr; tÞ; (39)

N ¼
ð
d3r nðr; tÞ; (40)

by the time-dependent Gross–Pitaevskii equation. Here, the contact-
interaction strength is denoted by g ¼ 4p�h2as=M, with the atomic
mass M and the s-wave scattering length as. The atomic density
nðr; tÞ ¼ jWðr; tÞj2 is normalized to the particle number N.
Equivalenty to Eq. (39), one can represent the classical complex
Gross–Pitaevskii field in terms of the two real hydrodynamical varia-
bles, the density of the condensates nðr; tÞ and its phase /ðr; tÞ,

Wðr; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
nðr; tÞ

p
ei/ðr;tÞ; (41)

also known as a Madelung transform.50

FIG. 2. Multipole expansion of the magnetic chip trap potential. Relative powers pnlðUÞ vs angular momentum l of the Zeeman potential shown in Fig. 1. Different principle num-
bers: red n¼ 0, blue n¼ 1, green n¼ 2, and purple n¼ 3. (a) Harmonic approximation pnlðUhoÞ, (b) Zeeman potential pnlðUZÞ, and (c) cumulant pnlðhÞ. We used R ¼ 40 lm
and nmax ¼ 3; lmax ¼ 5 in Eqs. (5), (2), and (8).

FIG. 3. Optical dipole potential for a single Laguerre–Gaussian laser beam. Two-
dimensional contour plots along all two spatial planes. Parameters of the trap as in
Ref. 49, trap depth jU0j=kB ¼ 5lK, Rayleigh range zR ¼ 3:2mm; w0 ¼ 33 lm,
and the trapping frequencies m ¼ ð211:0 ; 211:0; 1:5ÞHz for 87Rb.

AVS Quantum Science ARTICLE pubs.aip.org/aip/aqs

AVS Quantum Sci. 6, 014406 (2024); doi: 10.1116/5.0174884 6, 014406-5

VC Author(s) 2024

 04 M
arch 2024 12:38:33

pubs.aip.org/aip/aqs


To represent the three-dimensional matter-wave field, we choose
the same multipole expansion as in Eq. (2),

nðr; tÞ ¼
X1
n¼0

X1
l¼0

Xl
m¼�l

nnlmðtÞhrjnlmi; (42)

/ðr; tÞ ¼
X1
n¼0

X1
l¼0

Xl
m¼�l

/nlmðtÞhrjnlmi; (43)

for the density as well as for the phase.
In the stationary case, the time-dependent field is governed by

Wðr; tÞ ¼ WðrÞe�ilt=�h, where lðNÞ is the chemical potential of the
condensate. Thus, the Gross–Pitaevskii equation for stationary field
WðrÞ reads

� �h2$2

2M
þ UðrÞ þ gnðrÞ

� �
WðrÞ ¼ lWðrÞ: (44)

In the limit of large repulsive interactions, one can neglect the quan-
tum pressure that arises from the localization energy of the classical
field,

UðrÞ þ gnTFðrÞ � lTF½ �WTFðrÞ ¼ 0: (45)

Eq. (45) admits algebraic solutions of the form

nTFðrÞ ¼
lTF � UðrÞ

g
; lTF � UðrÞ 	 0;

0 else;

8><
>: (46)

known as the Thomas–Fermi approximation.51

In the following, we apply the multipole expansion in Eq. (42) for
the condensate density in some of the trapping potentials discussed in
Sec. III. Thereby, we discuss the strongly interacting Thomas–Fermi
regime as well as the exact numerical solution of the stationary Gross–
Pitaevskii equation.

We should note that in principle the Stringari polynomials in Eq.
(42) can exhibit negative values, which are nonphysical when regarding

positive-valued atomic densities. In order to avoid this anomaly, we con-
sider coordinates in the interval 0 � r � R and densities nðrÞ 	 0.

For the Thomas–Fermi density in Eq. (46), we expect an exact
interpolation by the Stringari basis functions, if the potential is of poly-
nomial form. In contrast, setting the interaction strength in Eq. (44) to
g¼ 0 and considering a harmonic oscillator potential, one obtains a
Gaussian density distribution as the harmonic oscillator ground state,35

nðrÞ ¼ n0 e
�hðrÞ; hðrÞ ¼

X3
j¼1

r2j
2r2j

: (47)

The widths of the Gaussian correspond to the harmonic oscillator
lengths rj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�h=ðMxjÞ

p
, j¼ 1, 2, and 3 for the three spatial direc-

tions. For the latter, the cumulant expansion

hðrÞ ¼ �log
nðrÞ
n0

¼
X1
n¼0

X1
l¼0

Xl
m¼�l

hnlmhrjnlmi (48)

is always of a quadratic form. Thus, we recover the expansion coeffi-
cients for the optical dipole potential of a single Laguerre–Gaussian
beam in Sec. IIID.

A. Isotropic, three-dimensional density

We consider atomic density distributions in an isotropic har-
monic oscillator potential (14). As the symmetry of the external poten-
tial determines the symmetry of the density, the condensate is
interpolated by monopoles only. The efficiency of the interpolation
depends on the actual radial shape nðrÞ ¼ nðrÞ, which will be deter-
mined by either the Thomas–Fermi density (46) or the stationary
Gross–Pitaevskii equation (44). For the Gross–Pitaevskii density, we
also evaluate the cumulant expansion to investigate the effect of differ-
ent mean-field interactions.

1. Thomas–Fermi density

As the Thomas–Fermi density is directly proportional to the trap-
ping potential, the interpolation is obtained by two Stringari

FIG. 4. Multipole expansion of the optical dipole potential for a single Laguerre–Gaussian beam shown in Fig. 3. Relative powers pnlðUÞ vs angular momentum l. Different princi-
ple numbers: red n¼ 0, blue n¼ 1, green n¼ 2, and purple n¼ 3. (a) Harmonic approximation pnlðUhoÞ, (b) optical dipole potential pnlðUDÞ, and (c) cumulant pnlðhÞ. We used
R ¼ 40 lm and nmax ¼ 3; lmax ¼ 5 in Eqs. (5), (2), and (8).
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polynomials only, as discussed in Sec. IIIA. The Thomas–Fermi
approximation in its dimensionless form is

nTFðrÞ ¼ 15N
8p

n0ðr0Þ; n0ðr0Þ ¼ ð1� r02Þ; (49)

with dimensionless radial coordinate r0 ¼ r=rTF and the Thomas–
Fermi radius rTF ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lTFðNÞ=ðMx2Þp

. The chemical potential scales
with the particle number as

lðNÞ ¼ �hx
2

asN
‘

� �2=5

; ‘ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�h=ðMxÞ

p
: (50)

We find the monopole coefficients

n0000 ¼
4
5

ffiffiffi
p
3

r
; n0100 ¼

4
5

ffiffiffi
p
7

r
: (51)

2. Gross–Pitaevskii density

We represent the three-dimensional matter-wave field on a dis-
crete, Cartesian Fourier grid. Therefore, we solve the stationary Gross–
Pitaevskii equation (44) using Fourier spectral methods. To study the
behavior of the radial expansion coefficients in different interaction
regimes, we choose different particle numbers for the condensate. The
nnlm’s in the multipole expansion of density in Eq. (42) are obtained
using the method of least-squares [see Eq. (C2)] replacing the target
potential with the numerical, discrete Gross–Pitaevskii target density
ntðrjÞ. In contrast to the Thomas-Fermi density, the radius R ¼ rTF of
the spherical integration volume in Eq. (5) is not known a priori.
Therefore, we are minimizing the least-square error eðRÞ with respect
to a variable aperture radius R,

min eðRÞ ¼ jjSðRÞn� nt jj2; (52)

for a fixed number of basis functions. The monopole coefficients
pn0ðnÞ for the isotropic Gross–Pitaevskii density are depicted in Fig. 5

on a semi-logarithmic scale for nmax ¼ 14 basis functions. For small
particle numbers [Fig. 5(a)], the coefficients are declining exponen-
tially for n> 6, whereas the magnitude of the tenth coefficient is
p10;0ðnÞ < 10�6. Entering the intermediate and strong interacting
regime, the decline in magnitude becomes more irregular, as the
Gaussian-like shape of the density is modified toward a polynomial
shape. In Fig. 5(b), the most contributions to the polynomial
expansion are within the first five coefficients, and in Fig. 5(c),
within the first three. The latter reflects the transition to the pure
quadratic Thomas–Fermi regime. However, we also recognize that
the magnitude of the expansion coefficients does not converge to
the same level as in the low interacting regime. In contrast to the
Thomas–Fermi solution, the density also contains high-energetic
modes close to the Thomas–Fermi radius, whose interpolation
requires a lot of Stringari polynomials. As we are interested in good
interpolation in the region of significant density, we introduce a
cutoff at

pc ¼ jnnlmj2
PðnÞ ¼ 10�6; PðnÞ ¼

X
nlm

jnnlmj2; (53)

which disregards some of the highly energetic modes. In Fig. 6, we plot
the corresponding expansion in terms of the polynomials, which
matches the Gross–Pitaevskii density quite well. We also use the
Stringari polynomials with a reduced number of basis functions,
neglecting coefficients smaller than the chosen cutoff.

In addition to the multipole coefficients for the density, we also
look into the cumulant expansion in Eq. (8), for which we expect a
faster convergence in the low-interacting limit. The pn0ðhÞ in Fig. 7(a)
confirm that the density distribution is more of a Gaussian shape, as
the cumulant expansion almost terminates for monopole powers
n> 3. For larger particle numbers, Figs. 7(b) and 7(c), the cumulant
expansion works quite efficiently as the polynomial series converges
faster as in Fig. 5. Cross sections of the cumulant and the interpolation
with the Stringari polynomials are shown in Fig. 8.

FIG. 5. Multipole expansion of the Gross–Pitaevskii density nðrÞ, Eq. (44), for the isotropic harmonic oscillator, Eq. (14). Monopole coefficients pn0ðnÞ vs principle number n up
to nmax ¼ 14. Parameters: trap frequency � ¼ 22:1Hz, particle number, chemical potential, aperture radius R: (a) N ¼ 10; l=h ¼ 35:6 Hz; and R ¼ 9:21 lm; (b)
N ¼ 1000; l=h ¼ 55:8 Hz; and R ¼ 8:95 lm; and (c) N ¼ 105; l=h ¼ 289:2 Hz; and R ¼ 14:1lm. For the reconstruction of the density in Fig. 6, we mark the cutoff
pc ¼ 10�6 (gray dashed line).
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B. Anisotropic three-dimensional density

As discussed in Ref. 52, the Thomas–Fermi field in a general har-
monic oscillator potential can always be re-scaled to an isotropic s-
wave by an affine coordinate transformation. Hence, this simplifies the
search for the optimal aperture radius R and adapts the polynomial
expansion on the finite interval to the anisotropic extension of the den-
sity distribution. The latter becomes necessary for an optimal and effi-
cient interpolation of the Gross–Pitaevskii matter-wave field, which
reaches beyond the Thomas-Fermi radius.

For this purpose, we evaluate the covariance matrix

Rr ¼ hðr � r0Þ � ðr � r0Þi; (54)

r0 ¼ hri ¼
ð
d3r r nðrÞ; (55)

for the three-dimensional Gross–Pitaevskii field. The positive,
semi-definite matrix Rr admits a Cholesky decomposition of the
form

Rr ¼ CC>; C ¼ Qr: (56)

The matricesQ and r are defined by the eigenvalue equation

RQ ¼ Qr2: (57)

The matrix C and the expectation value r0 define the required affine
coordinate transformation

f ¼ C�1ðr � r0Þ; (58)

that we use to evaluate a multipole expansion of the form

FIG. 6. Cross sections of the scaled Gross–Pitaevskii ground-state density distribution nðx; 0; 0Þ vs the Cartesian coordinate x in a three-dimensional isotropic harmonic oscilla-
tor potential. Gross–Pitaevskii solution (blue solid line). Interpolation of the density with Stringari polynomials nðrÞ, Eq. (42), (red dashed line) and alternatively with the cutoff
pc ¼ 10�6 n0ðrÞ (green dotted line). Parameters: trap frequency � ¼ 22:1 Hz, particle number, chemical potential, aperture radius R: (a)
N ¼ 10; l=h ¼ 35:6 Hz; and R ¼ 9:21 lm; (b) N ¼ 1000; l=h ¼ 55:8 Hz; and R ¼ 8:95 lm; and (c) N ¼ 105; l=h ¼ 289:2 Hz; and R ¼ 14:1lm.

FIG. 7. Multipole expansion of the isotropic Gross–Pitaevskii cumulant hðrÞ, Eq. (48). Monopole coefficients pn0ðhÞ vs principle number n with nmax ¼ 14. For the reconstruc-
tion of the cumulant in Fig. 8, we mark the cutoff pc ¼ 10�6 (gray dashed line). Parameters: trap frequency � ¼ 22:1 Hz, particle number, chemical potential, aperture radius
R: (a) N ¼ 10; l=h ¼ 35:6 Hz; and R ¼ 9:21 lm; (b) N ¼ 1000; l=h ¼ 55:8 Hz; and R ¼ 8:95 lm; and (c) N ¼ 105; l=h ¼ 289:2 Hz; and R ¼ 14:1lm.
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nðrÞ ¼
X1
n¼0

X1
l¼0

Xl
m¼�l

nnlmhfjnlmi;

hðrÞ ¼
X1
n¼0

X1
l¼0

Xl
m¼�l

Hnlmhfjnlmi;
(59)

where the Stringari polynomials are evaluated with respect to the new
coordinates f. For the new multipole coefficients nnlm and Hnlm, we
define also the corresponding spectral powers,

pnlðnÞ ¼
Xl
m¼�1

jnnlmj2
PðnÞ ; PðnÞ ¼

X
nlm

jnnlmj2; (60)

pnlðhÞ ¼
Xl
m¼�1

jHnlmj2
PðhÞ ; PðhÞ ¼

X
nlm

jHnlmj2: (61)

1. Thomas–Fermi density. As a benchmark test, we investigate the
Thomas–Fermi density in an anisotropic harmonic oscillator with
cylindrical symmetry, which we discussed in Sec. IIIB 1. For the ratio
of angular frequencies, we use a¼ 2. From analyzing the potential, we
know that the multipole expansion in Eq. (48) just exhibits monopoles
as well as one quadrupole. Applying the coordinate transformation Eq.
(58), we obtain the angular powers pnlðnTFÞ shown in Fig. 9. As the
multipole expansion is now performed in the scaled reference frame
(59), where the ellipsoid is re-scaled to a sphere, we expect monopoles
only, see Eq. (51). Indeed, we find good agreement with the isotropic
Thomas–Fermi density as the quadrupoles are pn2ðnTFÞ < 10�9 as
displayed in Fig. 9. Using the monopoles nn00 and the quadrupoles
within the transformation matrix C, one can reconstruct the original
oblate-shaped Thomas–Fermi density as depicted in Fig. 10.

2. Gross–Pitaevskii density. As in Sec. IVA2, we study the inter-
polation of the Gross–Pitaevskii density for different particle numbers
varying the effective mean-field interaction in Eq. (44). In addition, we

compare the multipole expansion of the density with the multipole
expansion of the cumulant. In both cases, the expansion coefficients
are evaluated in the scaled reference frame defined by Eq. (59). In con-
trast to the ellipsoidal Thomas–Fermi density, we observe non-
negligible quadrupole contributions in the relative angular powers
pnlðnÞ for the low as well as for the high interacting regime, which is
presented in Fig. 11. For low particle numbers, Fig. 11(a), the angular
powers pn0ðnÞ; pn2ðnÞ; and pn4ðnÞ are decaying exponentially with
respect to the principle number n as we already stated in the isotropic
case. Increasing the angular momentum for a fixed value of n, the
magnitudes of the pnlðnÞ decrease by roughly 1.5–2 orders of magni-
tude. The angular momentum dependence decreases for increasing
interactions as shown in Figs. 11(b) and 11(c). In particular, the pow-
ers pn4 < 10�6 are emphasizing the change of the Gross–Pitaevskii
density toward the Thomas–Fermi shape. Moreover, the spectrum of
the monopoles pn0ðnÞ in the re-scaled reference frame exhibits the
same structure as in the isotropic case (see Fig. 5), reflecting again the

FIG. 8. Cross sections of the cumulant of the isotropic ground-state density distribution hðx; 0; 0Þ vs the Cartesian coordinate x in a three-dimensional harmonic oscillator poten-
tial. Cumulant evaluated up to the aperture radius R. Gross–Pitaevskii solution (blue solid line), interpolation of the cumulant with Stringari polynomials h (red dashed line) and
alternatively with the cutoff pc ¼ 10�6h0 (green dotted line). Parameters: trap frequency � ¼ 22:1Hz, particle number, chemical potential, aperture radius R: (a)
N ¼ 10; l=h ¼ 35: 6 Hz; and R ¼ 9:21 lm; (b) N ¼ 1000; l=h ¼ 55:8 Hz; and R ¼ 8:95 lm;and (c) N ¼ 105; l=h ¼ 289:2 Hz; andR ¼ 14:1lm.

FIG. 9. Multipole expansion of the scaled Thomas–Fermi density nTFðrÞ for the
spheroidal harmonic oscillator, Eq. (18), with anisotropy a¼ 2. Relative angular
power pnlðnTFÞ vs principle number n. Different principle numbers: red n¼ 0, blue
n¼ 1, and green n¼ 2. nmax ¼ 14; lmax ¼ 4; and R ¼ 6:6lm.
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high-energetic modes in the Gross–Pitaevskii density that require a
large number of Stringari polynomials.

Nevertheless, we can interpolate the ground-state density distri-
butions also in the anisotropic harmonic oscillator as depicted in
Fig. 12. In particular, we can neglect modes with l¼ 4 for the conden-
sate with large particle numbers to obtain a good approximation with
the Stringari polynomials.

The results for the anisotropic cumulant expansion are presented
in Figs. 13 and 14. The monopoles pn0ðhÞ exhibit again the same fea-
tures as for the isotropic density, while the cumulant expansion works
more efficiently describing the low-interacting regime. The latter is
well described by just three multipole coefficients H000; H020 and,
H200, Fig. 13(a). In contrast to the direct multipole expansion of the
density, the cumulant expansion contains significant angular powers
pn4ðhÞ, which needs to be considered for the polynomial interpolation.

V. RELEASE AND FREE EXPANSION
OF A BOSE–EINSTEIN CONDENSATE

Time of flight measurements is one of the standard techniques to
image the density distribution of a Bose–Einstein condensate53 after a
ballistic expansion and to extract equilibrium as well as dynamical
properties. Here, we investigate the release of the condensate initially
trapped in the Zeeman potential of the magnetic chip trap that we
characterized in Sec. IIIC.

Within the Thomas–Fermi approximation, Eq. (46), it is well-
known54–56 that the time evolution of the density nTFðr; tÞ as well as
the phase /TFðr; tÞ is given in terms of the three adaptive scales kjðtÞ,
j¼ 1, 2, 3,

nTFðr; tÞ ¼
nTFðfrj=kjðtÞg; 0Þ

k1k2k3
; (62)

/TFðr; tÞ ¼
M
2�h

X3
i¼j

r2j
_k jðtÞ
kjðtÞ ; (63)

if the condensate is initially trapped in a harmonic trap. The adaptive
scales evolve during the ballistic expansion according to the differential
equations,

€k j ¼
x2

j ð0Þ
kjk1k2k3

; (64)

with initial conditions chosen as kjð0Þ ¼ 1 and _k jð0Þ ¼ 0. Therefore,
the conjugate variables nTFðr; tÞ; /TFðr; tÞ evolve quadratically in
time, making the multipole expansions with the introduced Stringari
polynomials in Eqs. (42) and (43) very efficient, as only monopoles as
well as quadrupole contribute to Eqs. (42) and (43). Beyond, the
Thomas–Fermi approximation, the initial Gross–Pitaevskii matter-
wave field in the harmonic trap consists of non-quadratic polynomials,

nðrÞ ¼ nTFðrÞ þ n1ðrÞ; (65)

FIG. 10. Cross sections of the scaled Thomas–Fermi density nTFðx; 0; 0Þ; nTFð0;
0; zÞ (blue solid line) vs Cartesian coordinates x; z in a spheroidal harmonic oscilla-
tor, Eq. (18). Interpolation of the density with Stringari polynomials nðrÞ, Eq. (42)
(red dashed line). Parameters: a¼ 2, Thomas–Fermi radii xTF ¼ yTF ¼ 14:4lm;
zTF ¼ 7:2lm, particle number N ¼ 105, chemical potential lTF=h ¼ 304 Hz.

FIG. 11. Multipole expansion of the scaled Gross–Pitaevskii density nðrÞ, Eq. (44), for the spheroidal harmonic oscillator, Eq. (18), with anisotropy a¼ 2. Relative angular pow-
ers pnlðnÞ vs principle number n. Different angular momenta: red l¼ 0, blue l¼ 2, and green l¼ 4, with nmax ¼ 14; lmax ¼ 4. For the reconstruction of the density in Fig. 12,
we mark the cutoff pc ¼ 10�6. Particle number, chemical potential, aperture radius: (a) N ¼ 10; l=h ¼ 37:2 Hz; and R ¼ 11:6 lm; (b) N ¼ 1000; l=h ¼ 60:6 Hz;
and R ¼ 12:1lm; and (c) N ¼ 105; l=h ¼ 307 Hz; R ¼ 17:6lm.
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as analyzed numerically by our multipole expansion in Sec. IV and
described analytically in Ref. 57. During the ballistic expansion of the
condensate, the density deviation n1ðrÞ leads to additional phase
perturbations,

/ðr; tÞ ¼ /TFðr; tÞ þ /1ðr; tÞ; (66)

to the quadratic Thomas–Fermi phase /TF in Eq. (63). We obtain the
total phase in Eq. (66) by solving the differential equation (64) for the
adaptive scales kjðtÞ and the Gross–Pitaevksii equation,

i�h@twðn; tÞ ¼ � �h2

2M

X
j

1

k2j ðtÞ
@2
nj
wðn; tÞ

þ 1
k1k2k3

M
2

X
j

x2
j ð0Þn2j þ gnðn; tÞ � l

 !
wðn; tÞ;

(67)

in the co-expanding frame of reference with the coordinates
nj ¼ rj=kjðtÞ. The transformed field wðn; tÞ is related to the original
one in Eq. (39) by

FIG. 12. Cross sections of the scaled ground-state density distributions nðx; 0; 0Þ, n(0, 0, z) vs Cartesian coordinates x; z in a spheroidal harmonic oscillator, Eq. (18). Gross–
Pitaevskii solution (blue solid line). Interpolation of the density with Stringari polynomials nðrÞ, Eq. (42) (red dashed line), alternatively with the cutoff n0ðrÞ at pc ¼ 10�6 (green
dotted line). Particle number, chemical potential, aperture radius: (a) N ¼ 10; l=h ¼ 37:2Hz; R ¼ 11:6lm; (b) N ¼ 1000; l=h ¼ 60:6 Hz; and R ¼ 12:1lm; (c)
N ¼ 105; l=h ¼ 307 Hz; and R ¼ 17:6 lm.

FIG. 13. Multipole expansion of the Gross–Pitaevskii cumulant hðrÞ, Eq. (48), for the spheroidal harmonic oscillator, Eq. (18), with anisotropy a¼ 2. Relative angular powers
pnlðhÞ vs principle number n. Different angular momenta: red l¼ 0, blue l¼ 2, and green l¼ 4, with nmax ¼ 14; lmax ¼ 4. For the reconstruction of the cumulant in Fig. 14, we
mark the cutoff pc ¼ 10�6 (gray dotted line). Particle number, chemical potential, aperture radius: (a) N ¼ 10; l=h ¼ 37:2 Hz; and R ¼ 11:6lm; (b)
N ¼ 1000; l=h ¼ 60:6 Hz; and R ¼ 12:1lm; and (c) N ¼ 105; l=h ¼ 307 Hz; and R ¼ 17:6lm.
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Wðr; tÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
k1k2k3

p wðn; tÞei /TFðn;tÞ�bðtÞ½ �; (68)

bðtÞ ¼
ðt dt0

�h
l

k1k2k3
: (69)

At t¼ 0, the field wðn; 0Þ satisfies the stationary Gross–Pitaevskii
equation (44) with N ¼ 105 87Rb atoms. As an external potential
UðrÞ, we choose the Zeeman potential UZ as well as the harmonic
approximation. For the chosen parameter, we find the Thomas–Fermi
size rTF ¼ ð25:5; 8:3; 9:4Þ lm and maximal density deviations of
max dn ¼ 0:1% within the two different trapping configurations.

To analyze the impact on the phase during the ballistic expansion
after a flight of flight t1 ¼ 80ms, we apply the multipole expansion of
the total phase in Eq. (66) with respect to the re-scaled coordinates n
for these two different initial states. The relative angular powers
pnlð/Þ,

pnlð/Þ ¼
Xl
m¼�l

j/nlmj2
Pð/Þ ; Pð/Þ ¼

X
nlm

j/nlmj2; (70)

are shown in Fig. 15. In the two subfigures, we compare the phase of
the condensate that was initially trapped in the Zeeman potential (a)
to the condensate initially in the harmonic approximation (b). From
the latter, we state that the next leading orders to the scaling approxi-
mation (63) are of the form r4 with spectral powers p20ð/Þ; p12ð/Þ,
and p04ð/Þ. In addition, we find that their values are approximately
three orders of magnitude higher than the anharmonic corrections,
which populate the dipole pn1ð/Þ and the octupole moments pn3ð/Þ
in the phase of the condensate.

VI. COMPUTATIONAL VERSUS DATA EFFICIENCY

Choosing good basis states is important for efficient computa-
tions with real trapping potentials or complex wave functions.
Unfortunately, no single best basis can be identified that suits all other
purposes equally well.

This was studied for the Zeeman potential of an atomic chip in
Sec. IIIC, for the optical dipole potential in Sec. IIID and for the inter-
acting BEC with varying particle number in Secs. IVA and IVB. By
comparing the direct multipole expansions to the cumulant series

FIG. 14. Cross section of the cumulants hðx; 0; 0Þ; hð0; 0; zÞ of the ground-state density distribution vs Cartesian coordinates x; z in a spheroidal harmonic oscillator Eq. (18).
Cumulant evaluated up to the aperture radius R. Gross–Pitaevskii solution (blue solid line). Interpolation of the cumulant with Stringari polynomials hðrÞ Eq. (8) (red dotted
line), alternatively with the cutoff h0ðrÞ at pc ¼ 10�6 (green dashed line). Particle number, chemical potential, aperture radius: (a) N ¼ 10; l=h ¼ 37:2 Hz; and R ¼ 11:6lm;
(b) N ¼ 1000; l=h ¼ 60:6 Hz; and R ¼ 12:1lm; (c) N ¼ 105; l=h ¼ 307 Hz; and R ¼ 17:6lm.

FIG. 15. Multipole expansion of the phase /ðr; t1Þ, Eq. (66), of an expanding
Bose–Einstein condensate after t1 ¼ 80ms time-of-flight. Relative angular powers
pnlð/Þ, Eq. (70), vs angular momentum l. (a) condensate initially trapped in the
Zeeman potential (see Sec. III C) of an atom chip, (b) condensate initially trapped in
the anisotropic harmonic approximation of the Zeeman potential, Eq. (22).
Parameters of the trap as in Table II. Different principle numbers: red n¼ 0, blue
n¼ 1, green n¼ 2, purple n¼ 3, with nmax ¼ 3; lmax ¼ 4.
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multipole expansion,32 which favors Gaussian states, we demonstrated
in Fig. 4 that the dipole potential of the Gauss–Laguerre laser beam is
better represented by the cumulant series than the direct multipole
expansion. The analogous behavior was discussed in Fig. 7, which
shows that Gaussian states represent weakly interacting condensates
very well, while a few Stringari polynomials are the better choice for
the strongly interacting case. Thus, a prudent choice of a set of basis
states fjuiig results in a data-efficient representation with only a few
amplitudes.

Another objective for a choice of basis states is the flexibility
to represent experimental situations without symmetries or
depending on the requirements of numerical algorithms. Typical
split-step codes for the numerical solution of time-dependent
three-dimensional Schr€odinger-type equations rely intimately on
the position representation fjvjig for the action of local potentials
and the Fourier representation fjwkig for the kinetic evolution.
Thus, a given trial wave-function jwi can be decomposed in multi-
ple ways,

jwi ¼
X
i

juiihuijwi ¼
X
j

jvjihvjjwi ¼
X
k

jwkihwkjwi: (71)

When the local operator (LO) has performed numerical simula-
tions on the available hardware (CPU, GPU, memory), he has to pro-
cess the data to extract the information from it. This information has
to be shared with the peers over classical communication (CC) chan-
nels. In the past, CC was a printed article with colored two-
dimensional view-graphs. In the present, CC can be the information
on the shape of the trapping potential on the up-link channel for
space-borne experiments like the MAIUSmission58 or the CAL experi-
ment59 on the International Space Station. This protocol is known as
LOCC in quantum communication.

The efficiency of the data representation of a state depends on the
spread of the state-occupation pi ¼ jhuijwij2 in N-dimensional
Hilbert-space. For a normalized state

P
i pi ¼ 1, the Shannon-

entropy,

S ¼
X
i

pi log2ð1=piÞ; (72)

is a measure of the efficiency of a representation. On one hand, if one
picks the ideal communication basis, which matches the trial wave
function jwi ¼ ju1i perfectly, there is no uncertainty S¼ 0. On the
other hand, in the computational position basis jvji, state-occupations
will spread out in Hilbert space, in the extreme limit, even completely
homogeneously pj ¼ jhvjjwij2 ¼ 1=N . This maximizes the uncer-
tainty S ¼ log2ðNÞ.

For our simulation of the ballistically expanding BEC in Sec. V,
we use three-dimensional Cartesian grids with N ¼ ð28Þ3 ¼ 16:8
�106 points. Then, a time-dependent wave function wðx; y; z; tÞ is a
four-dimensional field of complex double precision numbers (32 byte).
At one instant, this is 0.5GB. This has to be compared to � 2ðn
< 4Þðl < 5Þðjmj � lÞ ¼ 200 complex multipole coefficients ðnnlm;
/nlmÞ that capture the same information, shown in Fig. 15. This is data
efficient.

VII. CONCLUSION AND OUTLOOK

In conclusion, we have introduced a multipole expansion with
suitable radial polynomials to characterize different trapping

geometries and the matter-wave field of a three-dimensional Bose–
Einstein condensate. In addition to the optical dipole potential for a
single Laguerre–Gaussian beam, we have examined the multipole
moments for the Zeeman potential of a realistic atom chip model. For
both, we quantified deviations from their harmonic approximation
and introduced an expansion of the cumulant, which is superior for
Gaussian-shaped functions. In the Thomas–Fermi approximation, the
shape of the condensate is directly proportional to the external poten-
tial. Hence, it is natural to characterize the three-dimensional shapes of
density and phase in terms of the same polynomial basis functions.
Moreover, we have examined the efficiency of our multipole expansion
for the different mean-field interactions in the Gross–Pitaevskii equa-
tion. In addition, we studied the phase of an expanding condensate in
the same manner. We identified possible aberrations for long-time
atom interferometry in the different multipole moments that are
caused either by the external potentials or the intrinsic properties of
interacting Bose–Einstein condensates.

Our work provides a general and universal framework for an
aberration analysis in matter-wave optics with interacting Bose–
Einstein condensates. The multipole analysis allows the design for
aberration balanced matter-wave lenses in single or multiple lens set-
ups,40,49 e.g., with programable optical dipole potentials using digital
micromirror devices.60 Finally, the multipole expansion of the mag-
netic field could be used to exploit different trapping geometries and
for designing new atom chips.61
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APPENDIX A: JACOBI POLYNOMIALS

The Jacobi polynomials are defined by a Gaussian hypergeo-
metric function 2F1ða; a; bÞ28 for integer values a ¼ �n,
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Jða;bÞn xð Þ ¼ aþ 1ð Þn
n!

� 2F1 �n;nþ aþ bþ 1;aþ 1;
1� x
2

� �
; (A1)

where ð�Þn denotes the Pochhammer symbol. They are orthogonal
on the interval x 2 ½�1; 1�,ð1

1
dx wa;bðxÞJða;bÞn ðxÞJða;bÞm ðxÞ ¼ A ndn;m; (A2)

A n ¼ 2aþbþ1

2nþ aþ bþ 1
Cðnþ aþ 1ÞCðnþ bþ 1Þ

Cðnþ aþ bþ 1Þn! ; (A3)

with respect to the weight function

wa;bðxÞ ¼ ð1� xÞað1þ xÞb: (A4)

The Stringari polynomials in Eq. (5) are shifted Jacobi polynomials
with a ¼ l þ 1=2 and b¼ 0 substituting the coordinate as
x ¼ 1� 2ðr=RÞ2; r 2 ½0;R�. The normalization constant N nl in Eq.
(5) is obtained by using Eq. (A3).

APPENDIX B: MAGNETIC TRAPPING ON AN ATOM CHIP

The atom chip model is a representation of the experiment43

and is shown in Fig. 16. The chip consists of three isolated conduct-
ing layers providing several possible trapping configurations. The
first layer holds the largest mesoscopic structures. The U-shaped
wires form a quadrupole field that is used for the three-dimensional
magneto-optical trap (MOT). The second layer, the base chip (BC),
and the third layer, the science chip (SC), consist of four- and five-
wire two-dimensional strips, respectively, which intersect with one
central orthogonal wire. We regard the active conductors on the
base as well as on the science chip in Z-trap configuration, which
are marked in red and blue colors in Fig. 16. Both create an Ioffe–
Pritchard-type trapping potential that is used for releasing and colli-
mating the condensate. The field is superposed by a magnetic bias
field B0 created by three pairs of Helmholtz coils.

The magnetic induction field Bc of the atom chip is calculated
by splitting N two-dimensional wire strip segments into M finite
wire elements (cf. Fig. 17) that describe the shape of all wire strips

in all layers. We use finite wires with lengths li ¼ jrðiÞ2 � rðiÞ1 j that
point into the directions wðiÞ ¼ ðrðiÞ2 � rðiÞ1 Þ=li and carry a steady
current Ii ¼ I=M, where M is the number of wires representing a
segment i (see Fig. 17). The magnetic induction for a single finite
wire element follows from the Biot–Savart law63 using the parame-
trization of one wire r0ðsÞ ¼ r1 þ wls; s 2 ½0; 1�,

BcðrÞ ¼ l0
4p

I
q

e1 � w

1� ðe1 � wÞ2
e2 � e1ð Þ � w; (B1)

where the unit vectors e2; ðe1Þ are pointing from the conductor’s
end (start) to the observation point r, and q ¼ jr � r1j denotes the
distance to the head of the wire element at r1. Hence, the total mag-
netic induction field of M wires in N segments is just the sum of all
individual fields,

BðrÞ ¼ B0 þ
XNM
i¼1

BðiÞ
c ðrÞ;

BðiÞ
c ðrÞ ¼ l0

4p
Ii
qi

eðiÞ1 � wðiÞ

1� ðeðiÞ1 � wðiÞÞ2
eðiÞ2 � eðiÞ1
� �

� wðiÞ:
(B2)

APPENDIX C: NUMERICAL EVALUATION

While the multipole coefficients may be evaluated analytically
using the scalar product in Eq. (7), we are using a least-square eval-
uation64 when the potential is represented on a numerical grid. As
the discretized Stringari polynomials are non-orthogonal basis func-
tions, we introduce the finite complex scalar product

FIG. 16. QUANTUS II atom chip model as described in Refs. 43, and 62. Light-gray
wires belong to the base chip structure. Gray wires belong to the science chip struc-
ture. Active conductors in Z-trap configuration in blue (science chip) and red (base
chip) colors. External Helmholtz coils creating a homogeneous field are not
depicted.

FIG. 17. Subsection with N¼ 5 segments from a finite two-dimensional conducting
strip of the QUANTUS II atom chip in Fig. 16. Each segment is modeled by M finite
wires, here M¼ 3. The magnetic induction BðrÞ at an observation point r created
by a current Ii in the finite wire element pointing into direction w1.

TABLE I. Typical set of currents applied to the atom chip to generate a magnetic trap.

Wire Current

Science chip 2.0A
Base chip 6.0A
x-coils 0.1A
y-coils �0.37431A
z-coils 0.0A
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ðajbÞ ¼
X
rj2V

V a�ðrjÞbðrjÞ ¼ a†b; (C1)

with the discrete position coordinates frjg, the measure of the
Cartesian volume element V ¼ DxDyDz, and its norm
jjajj ¼ ffiffiffiffiffiffiffiffiffiffiðajaÞp

. Hence, the distance of the squared residuals is given by

e ¼ jjSu� U jj2: (C2)

Here, we have introduced the complex coefficient vector
u ¼ fUnlmg, the values of the discrete target potential U ¼ fUðrjÞg,
and the complex matrix S ¼ fSnlmðrjÞg that contains the discrete
set of the finite Stringari basis functions. One finds the least square
minimum

@e=@u� ¼ 0; (C3)

which leads to the best potential parameter estimate

�u ¼ ðS†SÞ�1S†U : (C4)
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