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Raman velocity filter as a tool for collinear laser spectroscopy
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The velocity distribution of a hot ionic beam can be filtered with a narrow stimulated Raman process to
prepare a colder subensemble, as substantiated in this theoretical analysis. Using two counterpropagating far-
detuned lasers, we can define a π pulse for the resonant velocity to transfer atoms within the linewidth of the
Raman resonance between the ground states of a � system. Spontaneous emission from the two single-photon
resonances, as well as the ground-state decoherence induced by laser noise, diminishes the efficiency of the
filter. From a comprehensive master equation, we obtain conditions for the optimal frequency pair of lasers and
evaluate the filter performance numerically as well as analytically. If we apply this analysis to current 40Ca+ ion
experiments, we obtain a sensitivity for measuring high ion acceleration voltages on the ppm level or below.
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I. INTRODUCTION

“The wonderful blue opalescence of the Mediterranean
Sea” is one of the phenomena that Raman attributes to the
effect he discovered [1–3] a century ago. Inelastic two-photon
scattering, as we know it today, has found innumerable ap-
plications from solid-state spectroscopy and enhanced micro-
scopic imaging [4] to actively cooling atoms with velocity-
selective coherent population trapping [5]. It is our aim to
extend the use of Raman transitions for spectroscopy on fast
ion beams with several-keV kinetic energy. We propose a
Raman velocity filter to selectively prepare the population of
a metastable state for subsequent precision spectroscopy.

A. Motivation

In the context of fast ion and atom beams, collinear laser
spectroscopy [6–8] allows us to perform investigations of opti-
cal transitions with high resolution and sensitivity. The salient
feature is the kinematic compression of the velocity width
due to the electrostatic acceleration that reduces the Doppler
width of initially hot thermal samples to the typical natural
linewidth of allowed optical dipole transitions [6]. This and
the fast transport of the ions make it the ideal tool to study
short-lived isotopes with lifetimes in the millisecond range
that are produced at online facilities [9,10]. Such investiga-
tions are usually performed to determine nuclear ground-state
properties such as spins, charge radii, and electromagnetic
nuclear moments [10–13]. Collinear laser spectroscopy has
also been used for ultratrace analysis of long-lived isotopes at
very low abundance [14] and was proposed as a technique to
measure high voltages U with very high precision by Doppler
velocimetry [15–17].

*Antje.Neumann@tu-darmstadt.de

While the kinematic compression of collinear laser spec-
troscopy can produce spectra with resolution close to the
limit of the natural linewidth, this is not always the case.
Especially if the ions are generated in a plasma, e.g., in an
electron-cyclotron resonance source, or in a region with strong
electric fields such as a liquid metal ion source, a substantial
residual broadening can remain. Moreover, the ground state
of the ion is not always the most appropriate initial level
for the spectroscopy. An excited metastable level might be
better suited for the purpose of an experiment, for example,
if the transition from this level can provide atomic hyperfine
fields with better accuracy or a higher angular momentum
provides the possibility to determine the nuclear spin. In such
cases population transfer has already being used for collinear
laser spectroscopy [18] but only while the ions are stored
in a linear Paul trap filled with buffer gas to accumulate
and store the ions. Pulsed lasers address ions of all velocity
classes and efficiently excite them into a higher-lying state
that has a decay branch into the metastable state to be ad-
dressed by collinear laser spectroscopy after ejection from
the trap. Such a scheme often suffers from various decay
paths into a multitude of levels after the resonant excitation.
In a Raman transition, population is transferred between two
levels without real occupation of a third level with potential
leakage into dark states. Only a single experiment has reported
a Raman transition in collinear laser spectroscopy so far: In
[19] a transition between two hyperfine components of Y+
was induced using a single laser beam which was frequency
modulated with an electro-optic modulator.

Here we investigate theoretically the possible use of Ra-
man transitions in collinear laser spectroscopy to selec-
tively transfer ions from the ground state to a higher-lying
metastable state. Beams from different lasers have to be used
to bridge the large excitation energy. We are particularly
interested in the usage of the Raman scheme as a velocity filter
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FIG. 1. Three-level energy diagram for 40Ca+. Laser 1 induces eg
transitions with ωeg = ωe − ωg and laser 2 couples the em transition
with ωem = ωe − ωm. In the inertial rest frame of the ions, we define a
one-photon detuning � = ω′

2 − ωem and a two-photon detuning δ =
ω′

1 − ω′
2 − ωmg with respect to the Doppler-shifted frequencies ω′

1

and ω′
2 given by Eq. (2). The spontaneous decay rates �eg and �em

couple the excited state |e〉 to the ground state |g〉 and metastable
state |m〉. Further, laser noise induces ground-state decoherence with
rates �gg and �mm.

to prepare ions with a very narrow velocity distribution in an
excited state to perform afterward high-resolution collinear
laser spectroscopy on this excited population. As a potential
application for such a scheme, we have addressed high-
voltage measurements using Ca+ ions. We investigate the
influence of interaction time, atomic velocity, laser linewidth,
and laser intensity on the excitation efficiency. Our results
suggest that Raman transitions can be used with the avail-
able laser beams to considerably improve the measurement
accuracy with Ca+ ions for high-voltage measurements. This
approach will be tested experimentally in the near future and
might become the basis for further improvements of laser-
based high-voltage measurements, which is of great interest
for several applications, e.g., the neutrino mass measurement
of the KATRIN experiment [20–22].

B. Spectroscopic high-voltage measurements

Recently, it was demonstrated that an accuracy s = �U/U
of at least a few ppm can be reached for high voltages up to
20 kV [23] in laser spectroscopic high-voltage measurements.
This is very close to the performance of the world’s best
high-voltage dividers [20,21]. In the corresponding measure-
ments two transitions in calcium, shown in Fig. 1, have been
employed. The |g = (4s 2S1/2)〉 → |e = (4p 2P3/2)〉 resonance
transition was first used to transfer population from the ionic
ground level into the metastable level |m = (3d 2D5/2)〉 via
a sequential stimulated absorption and spontaneous emission
cycle. For this process laser 1 is counterpropagating to the
ion beam and the laser frequency determines the longitudinal
velocity of the ions required to match the Doppler-shifted
resonance condition. Afterwards, the ions are accelerated and
the velocity of those ions that are in the metastable state is
determined with a second laser tuned to the Doppler-shifted
|m〉 → |e〉 transition. The resonance is observed using the
fluorescence light emitted in the subsequent decay into the
ground state. The frequencies in the laboratory frame of both
lasers are measured with a frequency comb and are used
to calculate the shift in frequency and the corresponding
acceleration voltage.

FIG. 2. Two counterpropagating lasers with wave number vec-
tors k1 = −k1ez and k2 = k2ez interact with the ions, which move
with velocity v = vez parallel to laser 2. Wave numbers and scalar
velocities are positive quantities ki, v > 0.

While an s = 5 ppm uncertainty level has been achieved
by now, we are investigating other approaches that promise
even higher accuracy for high-voltage measurements. One of
the critical issues using the Ca+ ionic beam is the remaining
transverse emittance of the beam. Due to the 23-MHz width
of the resonance transition, ions with small angles relative to
the laser beam direction might also be excited and the angle
with respect to the laser beam might be changed during the
acceleration with the high voltage to be measured; however,
measures to avoid this have been taken: The ion optics of
the acceleration region has been designed to suppress such
effects by accelerating in the focal region and shaping the
beam afterward again into a beam with similar parameters
(size and opening angle) as before. A second point is that
several excitations are often needed to transfer the ion from
the ground state to the metastable state, which is accompanied
by uncontrollable recoil effects due to the momentum transfer
in absorption and emission.

C. Raman velocimetry

Here we elaborate on the possible use of Raman transitions
between |g〉 and |m〉 by applying a co- and a counterprop-
agating laser beam, as depicted in Fig. 2, to reduce corre-
sponding uncertainties with the existing excitation scheme.
The advantage is that the selectivity of the narrow Raman
transition with respect to the atoms’ initial velocity as well
as to the angle between the laser direction and the atoms’
movement is considerably higher than for the allowed dipole
transitions used so far. This will provide better control of the
initial conditions of the atoms prepared in the metastable state
before the acceleration. The theoretical treatment is based
on the experimental boundary conditions at the collinear
apparatus for laser spectroscopy and applied sciences at TU
Darmstadt, where the previous high-voltage measurements
were performed. However, the derived models are universally
applicable to three-level � systems together with fast atomic
motion.

D. Structure of the article

This article is organized as follows. In Sec. II we present
the experimental setup and formulate an appropriate master
equation in the classical kinetic regime in Sec. II B. Section III
contains analytical models and their results for the population
transfer into the metastable state, matching the numerical
results. Therewith we can answer the question if the achieved
transferred population into the metastable state is sufficient
for the realization of optical high-voltage measurements with
spectroscopic precision.
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FIG. 3. Ionic velocity distribution f (v) vs velocity v with mean
velocity v̄ and width �vi (dash-dotted line). Superimposed are
the initial growth rate rm (16) (dotted line) of the metastable-state
population from perturbation theory and the exact stationary solution
ρ∞

mm (B4) and (B5) (solid line), which exhibit resonances at v1,
v2, and vR. Note that the velocity distribution emerging from the
accelerator is rather flat topped.

II. ION-LASER INTERACTION

The Raman spectroscopy is formed with two counterprop-
agating laser beams that interact with 40Ca+, moving with
velocity v in the same direction as laser 2 (cf. Fig. 2).

A. Ionic velocity distribution

In the beamline, ions get accelerated by a high voltage U .
For the typical value U = 14 kV, one can estimate the mean
velocity v̄ from energy conservation

eU = mv̄2

2
. (1)

For singly charged 40Ca+, one finds a mean velocity of v̄ =
260 km s−1 = 8.7×10−4c, which is much smaller than the
speed of light c and justifies a nonrelativistic treatment.

Due to technical reasons, the ensemble emerges with
an artificial velocity distribution f (v), which is depicted in
Fig. 3. It exhibits an initial residual velocity spread �vi =
10–100 m s−1 (FWHM). The spectroscopy is performed in
an interaction zone of length L = 1.2 m. This gives a mean
transit time τ̄ = L/v̄ = 4.62 μs. Due to the velocity spread,
an interaction time spread �τ/τ̄ = �vi/v̄ arises. For the

maximal velocity width �vi = 100 m s−1, one finds a time
spread �τ = 1.7 ns, which is negligible. In the short time of
the spectroscopy pulse, we can neglect binary interactions or
other charge effects.

Due to the large momentum uncertainty m�vi � h̄ki com-
pared to the photon momentum recoil, we disregard mechani-
cal light effects. Therefore, the position z and the momentum
of the particle p = mv can be treated as parameters. Conse-
quently, observables are obtained by static averaging over the
initial phase-space distribution. At first, we will assume that
the laser and the ion beam are spatially homogeneous. This is
rectified in Sec. III C 3, when we consider spatial variations.

B. Optical Bloch equations

We assume a closed three-level system for the electronic
structure of the ions, consisting of the ground-state manifold
4s 2S1/2, the excited state 4p 2P3/2, and the metastable state
3d 2D5/2, depicted in Fig. 1. The lifetime τmg = 1.168(7) s
[24] of the metastable state is much longer than the duration
of the spectroscopy and therefore it is considered as stable.
Further calcium data and laser parameters are provided in
Tables I and II.

To model the interaction, we use the rest frame of an
ion moving with velocity v. Thus, the laboratory frame laser
frequencies get Doppler shifted

ω′
i = ωi − kiv =

{
ω1 + k1v,

ω2 − k2v,
(2)

using the vacuum dispersion ωi = cki. Furthermore, we as-
sume that the ions and lasers propagate exactly in the z
direction with no relevant transversal inhomogeneity. This
leads to an effective one-dimensional description with the
effective � Hamilton matrix

Hi j =h̄

⎛
⎝�1


∗
1

2 0

1
2 0 
2

2

0 
∗
2

2 �2

⎞
⎠. (3)

It is based on the electric dipole interaction in the rotating-
wave approximation [25] with basis states sorted as i ∈
{g, e, m}. The strength of the dipole interaction is measured

TABLE I. Parameters for 40Ca+ transitions between the states |g〉, |e〉, and |m〉, of the configurations 4s 2S1/2, 4p 2P3/2, and 3d 2D5/2.

Quantity Symbol Value Reference

mass m 39.962 042 286(22) u [34,35]
angular transition frequency ωeg 2π×761.905 012 599 (82) THz [36]
partial linewidth (FWHM) �ge 2π×23.396 MHz [35]
lifetime τge = �−1

ge 6.8 ns

transition dipole matrix element
〈
J = 1

2

∥∥er
∥∥J ′ = 3

2

〉
2.301 129×1029 Cm

angular transition frequency ωem 2π×350.862 882 823(82) THz [36,37]
partial linewidth (FWHM) �me 2π×1.576 MHz [35]
lifetime τme = �−1

me 101 ns

transition dipole matrix element
〈
J = 5

2

∥∥er
∥∥J ′ = 3

2

〉
1.250 998×10−29 Cm

acceleration voltage U 14 kV
mean velocity v̄ 260 km s−1

initial width of velocity distribution (FWHM) �vi 10–100 m s−1
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TABLE II. Laser parameters, where the Rabi frequency is calculated with (C1) and (C2).

Quantity Symbol Parameter set A Parameter set B1 Parameter set B2

Laser 1

frequency (THz) f1 761.243 795 50 761.241 765 92 761.241 765 92
wavelength (nm) λ1 393.8192 393.8203 393.8203
wave number (μm−1) k1 15.954 490 15.954 448 15.954 448
power (mW) P1 3.29 10 30
Rabi frequency/2π (MHz) 
1/2π 14.828 25.852 44.777
beam radius (mm) w0 1.7 1.7 1.7
linewidth (kHz) �gg 300 300 300

Laser 2

frequency (THz) f2 351.166 422 00 351.164 388 90 351.164 388 90
wavelength (nm) λ2 853.7048 853.7097 853.7097
wave number (μm−1) k2 7.359 904 7.359 861 7.359 861
power (mW) P2 11.13 33 500
Rabi frequency/2π (MHz) 
2/2π 14.827 25.531 99.379
beam radius (mm) w0 1.7 1.7 1.7
linewidth (kHz) �mm 300 300 300

by the Rabi frequency 
i = −εidgeEi/h̄, with dipole matrix
element dge, laser polarization εi, and electric field amplitude
Ei. The detunings of laser 1 (�1) and laser 2 (�2) define the
one- (�) and two-photon detuning (δ), following from the
energy diagram in Fig. 1,

�1 = ω1 + k1v − ωeg = �1,0 + k1v,

�2 = ω2 − k2v − ωem = �2,0 − k2v ≡ �,

δ = �1 − �2,

(4)

denoting transition frequencies as ωi j = ωi − ω j . Herein we
will frequently consider the limit of weakly saturated tran-
sitions. This is conveniently captured by the saturation pa-
rameter si = |
i|2/2�2

i 
 1. From second-order perturbation
theory of the Schrödinger equation Hwi = h̄�iwi (3), one
obtains the ac Stark-shifted eigenfrequencies

�1 = �1

(
1 + s1

2

)
, �2 = �2

(
1 + s2

2

)
, (5)

and �3 = �1 + �2 − �1 − �2 to O(s2
1, s2

2).
An ensemble of ions interacting with lasers in free space

establishes an open quantum system and must be described
by a master equation for the semiclassical density operator
ρ̂(t ; z, v),

˙̂ρ = − i

h̄
[H, ρ̂] + (Leg + Lem + Lgg + Lmm)ρ̂, (6)

with the Lindblad operators (cf. Appendix A)

Lλρ̂ ≡ �λ

2
(2σ̂λρ̂σ̂

†
λ − σ̂

†
λ σ̂λρ̂ − ρ̂σ̂

†
λ σ̂λ). (7)

The first term of the master equation describes the coher-
ent dynamics. The second and third terms represent spon-
taneous transitions to the ground state |g〉 and metastable
state |m〉 with decay rates �eg and �em, respectively. The
fourth and fifth terms consider ground-state dephasing due
to finite laser linewidths �gg of laser 1 and �mm of laser 2
[26–31]. If one represents the master equation in a basis and

arranges the matrix elements of ρ = ρi j as a list accordingly
(cf. Appendix B), one obtains

ρ̇(t ; v) = L(v)ρ(t ; v). (8)

Explicitly, these optical Bloch equations (OBEs) read

ρ̇ee = −�ρee + i

2
(
∗

1ρeg + 
∗
2ρem − H.c.),

ρ̇gg = �egρee + i

2
(
1ρge − 
∗

1ρeg),

ρ̇mm = �emρee + i

2
(
2ρme − 
∗

2ρem)

(9)

for the populations and

ρ̇eg = (i�1 − �1)ρeg + i

2
[
1(ρee − ρgg) − 
2ρmg],

ρ̇em = (i�2 − �2)ρem + i

2
[
2(ρee − ρmm) − 
1ρgm], (10)

ρ̇gm = −(iδ + γ )ρgm + i

2
[
2ρge − 
∗

1ρem]

for the coherences ρi j = ρ∗
ji, with composite rates � = �eg +

�em, �1 = (� + �gg)/2, �2 = (� + �mm)/2, and γ = (�gg +
�mm)/2.

C. Resonance conditions

The objective for using the stimulated Raman transition is
to filter a velocity group vR from the ionic ensemble with a
resolution below the natural linewidth. From energy conser-
vation (cf. Fig. 1) and the ac Stark-shifted eigenfrequencies
�i (5), one obtains the kinematic condition for the two-photon
resonance as

δ(vR) = �1 − �2 = 0. (11)

Thus, the Doppler-shifted laser frequencies must match the ac
Stark-shifted transition frequencies of the ground states (5).
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FIG. 4. Linkage pattern for two-photon transitions connecting
the ground state |g〉 with the metastable state |m〉.

This defines the Raman resonance velocity

vR = − δ0

k1 + k2
+ |
2|2 − |
1|2

4(k1 + k2)�̃
, (12)

where vR,0 = −δ0/(k1 + k2) is the dominant contribution and
around the Raman resonance we can approximate


∗
i 
 j

�i(v)
≈ 
∗

i 
 j

�̃
, �̃ ≡ �i(vR,0) = �2,0k1 + �1,0k2

k1 + k2
(13)

within the limit of weak saturation. It is interesting to recog-
nize the magic spot |
1| = |
2|, where second-order energy
shifts cancel in (12). There are also two rogue resonances at
velocities v1 and v2, where each laser couples resonantly to
the excited state

�1(v1) = 0, v1 = −�1,0/k1, (14)

�2(v2) = 0, v2 = �2,0/k2. (15)

The width and strength of the resonances are determined
by the OBEs (9) and (10). From the linkage pattern of Fig. 4,
one obtains three pathways to reach state |m〉, starting at |g〉.
Perturbatively, the initial growth rate rm = ρ̇mm(t = 0) of the
metastable state reads (cf. Appendix B)

rm = �1s1

�

[
�em + �2s2

{
1 + �δ

2(γ 2 + δ2)

(
�1

�1
− �2

�2

)

+ �γ

2(γ 2 + δ2)

(
1 + �1�2

�1�2

)}]
, (16)

where we generalize the saturation parameter from the co-
herent limit to si = |
i|2/2(�2

i + �2
i ), now broadening the

resonances with the linewidths �i. The first two resonances
occur spontaneously at �1 = 0 and �2 = 0, while the last
two describe the stimulated Raman process at the two-photon
resonance δ = 0. Due to laser noise, it acquires the finite
linewidth γ . This growth rate rm is schematically depicted
in Fig. 3 together with the stationary solution ρ∞

mm (B5),
also derived in Appendix B. The narrow stimulated Raman
resonance at vR is clearly distinguishable from the resonance
of laser 1 at v1, where |e〉 gets populated followed by spon-
taneous emission into |m〉. This process limits the velocity
determination, due to the broad tail. Therefore, it is called
the rogue resonance in the following. In contrast to the rate
rm, the stationary solution ρ∞

mm suppresses the resonance at v2,
because stimulated emission is compensated with stimulated
absorption.

D. Isolating resonances

The positions of the resonances are controlled by the laser
frequencies. Obviously, the Raman resonance at vR should be
within the ion velocity distribution, also depicted in Fig. 3. In

−400 −200 0 200 400
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−1

0

1

β
i

(a)

−664 −663 −662 −661 −660

Δ1,0 (GHz)

−4

−2

0

2

cβ
i
(k

m
s−

1
) (b)

−4

−2

0

2

Δ
(G

H
z)

FIG. 5. (a) Velocity distances β1 (solid line) and β2 (dashed
line) between the Raman resonance and the rogue resonances versus
detuning �1,0. The inadmissible range ω2 < 0 is shaded in gray.
(b) Real velocities cβi and the Doppler-shifted one-photon detuning
� (dotted line) on a small scale. The detunings for parameter sets A
and B are marked with vertical lines (Table II).

contrast, the rogue resonances at vi should be spread far apart.
Therefore, we want to determine laser frequencies such that
the resonance separations

βi = vi − vR,0

c
(17)

are maximized. First, for a given Raman resonance velocity
vR,0 (12), one obtains a linear frequency relation

ω2(ω1; vR,0) = ω1α+ − ωmg

α−
, α± = 1 ± vR,0

c
, (18)

where we disregard ac frequency shifts, deliberately. Second,
the distances between the resonances

β1(ω1) = ωeg

ω1
− α+, (19)

β2(ω1) = α−

(
1 − ωem

ω1α+ − ωmg

)
(20)

are now functions of ω1, which is depicted in Fig. 5. The
requirement of positive laser frequencies ω2(ω1) > 0 leads to
a lower limit for ω1 > ωmg/α+. For ultraviolet to near-infrared
frequencies |β2| > |β1|. Therefore, we only need to maximize
the distance β1, within the range −α+ < β1 < α+ωem/ωmg.
For detunings |�1,0| < 1 THz, the hyperbolic shape of the
distance

β1(�1,0) = −vR,0

c
− �1,0

ωeg
+ �2

1,0

ω2
eg

+ · · · (21)

is almost linear. Then the maximal distance of β1 is only
limited by the available laser powers and interaction time.
The time should last at least for one π pulse tπ (32) of
a Raman transition, where maximal population transfer is
achieved. This time will be derived in the next section and
is proportional to the Doppler-shifted one-photon detuning �
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and antiproportional to the laser power. Therefore, � is also
depicted in Fig. 5(b) and the values of �1,0 for the parameter
sets A and B (cf. Table II) are highlighted. These parameter
sets lead to two distinct velocity distances cβA

1 = 400 m s−1

and cβB
1 = 1200 m s−1, keeping � small enough for the ex-

perimentally given interaction time and provided laser power.
The distances to resonance 2 are cβA

2 = 867 m s−1 as well as
cβB

2 = 2601 m s−1.

III. TIME-RESOLVED POPULATION TRANSFER

In principle, we want to optimize the population transfer
from the initial state |g〉 to the metastable state |m〉. There-
fore, the velocity averaged quantum expectation value of the
observable σ̂mm,

〈m(t, v)〉v =
∫ ∞

0
dv f (v)Tr[σ̂mmρ̂(t ; v)], (22)

should be maximized. The uncertainty of the voltage measure-
ment is defined by the logarithmic derivative (1),

s = �U

U
= 2�v

vR
. (23)

The smallest uncertainties are obtained for minimal velocity
widths �v of the transferred metastable-state population.
Both objectives require the solution of the OBEs (8),

ρ(t ; v) = V (v)e�(v)tV (v)−1ρ(t = 0; v), (24)

L(v)V (v) = V (v)�(v), (25)

for each velocity within the distribution f (v). Here �i are
the eigenvalues and V (v) is the eigenmatrix of the Liouvillian
matrix L(v).

We have implemented a numerical procedure to solve these
equations for all velocities and obtain averages. We refer to
this as the exact solution. However, in order to get insights
in the underlying physical mechanisms, we will discuss in the
following simple approximations that match the exact solution
very well. These approximations emphasize the relevance of
the individual processes contributing cumulatively to the exact
result.

A. Stimulated Raman transition

For far-detuned lasers � � �i, the excited state stays
nearly unpopulated, and spontaneous emission is not an issue.
Hence, in a small regime around the resonant velocity vR,
the dynamics can be approximated by an effective two-level
system, consisting of the ground and metastable states. This
describes the process of the stimulated Raman transition.

We are dealing with laser linewidths γ ∼ 102 kHz, much
larger Rabi frequencies 
i ∼ 102 MHz and even larger one-
photon detunings �0,i ∼ 102–103 GHz. Around the Raman
resonance, the two-photon detuning δ is very small, leading to
the inequality

γ , δ 
 
i 
 �i. (26)

We will frequently make use of this relation.

FIG. 6. Rabi oscillations of the metastable-state population
m(t, vR) (red solid line) for the resonant velocity, together with the
velocity averaged population 〈m(t, v)〉v for �vi = 50 m s−1 (blue
dashed line). Three parameter sets (Table II) are compared: A (×),
B1 (◦), and B2(�).

1. Coherent dynamics

The ideal coherent dynamic is described by the
Schrödinger equation

i∂t |ψ〉 = (H/h̄ − � )|ψ〉, (27)

with |ψ〉 = ψg|g〉 + ψe|e〉 + ψm|m〉 and using the Hamilton
matrix (3). In order to apply the standard adiabatic elimination
methods [32] to eliminate the tiny excited-state population
using ψ̇e 
 �ψe, we have to transform to another frame. This
can be accomplished by introducing the frequency shift � =
� + δ/2, leading only to an unobservable, global, dynamical
phase. The resulting effective two-level system reads

i∂t

(
ψg

ψm

)
=

(
δ
2 + ωac1


R
2


∗
R

2 − δ
2 + ωac2

)(
ψg

ψm

)
, (28)

with the Raman Rabi frequency and the ac Stark shifts


R = 
∗
1
2

2�
+ O

(
δ

�

)
, ωaci = |
1|2

4�
+ O

(
δ

�

)
, (29)

using the separation of the frequency scales (26). The two-
level dynamics (28) can be solved by diagonalization as stated
in Eqs. (24) and (25). For the initial condition ψg(t = 0) = 1,
the metastable-state population reads

m0(t, v) = |ψm(t, v)|2 = |
R|2

2

sin2

[

t

2

]
,


 =
√

|
R|2 + δ2, (30)

with the effective detuning δ(v) = �1 − �2. For weak satu-
ration solution m0(t, v) (30) can be simplified with


R ≈ 
̃R ≡ 
∗
1
2

2�̃
, δ ≈ d ≡ (k1 + k2)(v − vR), (31)

approximating the velocity-dependent Rabi frequencies with
their on-resonance values (13). Figure 6 shows Rabi oscilla-
tions of the population of the metastable state for the reso-
nant velocity m(t, v = vR) together with its velocity average
〈m(t, v)〉v , calculated with (22). In our calcium experiment,
ions emerge from the accelerator with a flat-top velocity
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FIG. 7. The velocity-dependent metastable-state population
m(tπ ) after a π pulse (tA

π = tB1
π = 4.62 μs and tB2

π = 0.68 μs) is
indiscernible for parameter sets A and B1. For maximal laser power
B2 the resonance is broadened as well as shifted. The approximation
m0 (33) matches the full solution.

distribution f (ν) = 1/�vi for |ν| � �vi/2, vanishing else-
where, with the relative velocity ν = v − v̄.

Three different laser parameter sets, listed in Table II,
are compared, demonstrating the essential impact of different
laser frequencies and powers. Parameter sets A and B1 gen-
erate a π pulse for the experimental transit time τ̄ = 4.62 μs.
For the resonant velocity [d (v = vR) = 0], a complete popu-
lation transfer is achieved. Applying the approximations for
the Raman Rabi frequency and the effective detuning (31) to
the metastable-state population m0(t, v) (30), we obtain the
π -pulse duration

tπ,0 ≡ tπ (γ = 0) = π

|
̃R| . (32)

Parameter sets A and B differ in the laser frequencies, result-
ing in vastly different distances between the stimulated and
the spontaneous Raman resonances β

B1
1 > βA

1 , as mentioned
in Sec. II C. However, this does not affect the Rabi oscillations
and 〈m(t, v)〉v , because for the purely coherent population
transfer via the Raman transition the spontaneous one is not
an issue at all. The parameter set B2 provides the same
laser frequencies as B1, while the maximum laser power,
available in the experiment, is applied. Therefore, 〈m(t, v)〉v
is slightly enlarged, effectively due to power broadening.
This is apparent in Fig. 7, depicting the velocity dispersion
of the metastable-state population after a π pulse. Using
approximations (31) and the expression for the π -pulse time
(32), this population reads

m0(tπ,0, v) = π2

4
sinc2

[
π
̃

2|
̃R|
]
, (33)

with sinc[x] = sin[x]/x. It is plotted for B2, matching the
exact analytical solution (30). The sinc2 behavior is the typ-
ical response to constant interaction. For smooth temporal
envelopes the side maxima vanish. The results for A and B1

show no difference. For B2 the resonance is ac Stark shifted
(
B2

1 �= 

B2
2 ) to ν

B2
R = vR − v̄ = −0.17 m s−1 as predicted

by (12).

We define the velocity width (FWHM) of m0 (33) by the
first zero of the sinc function

�v0(tπ,0) =
√

3
|
̃R|

k1 + k2
. (34)

For maximal laser power �v(tπ ) increases from �vB1 (tπ =
4.62 μs) = 0.05 m s−1[0.05 m s−1] to the width �vB2 (tπ =
0.68 μs) = 0.32 m s−1[0.34 m s−1], where the results of ap-
proximation (34) are displayed in square brackets and provide
very good predictions.

2. Finite laser linewidths

For finite laser linewidths, the ground-state decoherence
must be considered. Adiabatic elimination of the fast coher-
ences ρge and ρme in the OBEs (9) and (10) leads to the
equations of motion in matrix representation ρ̇ = Lρ, with
ρ = (ρgg, ρgm, ρmg, ρmm) and

L =

⎛
⎜⎜⎜⎜⎝

0 i 
∗
R

2 −i 
R
2 0

i 
R
2 −γ − iδ 0 −i 
R

2

−i 
∗
R

2 0 −γ + iδ i 
∗
R

2

0 −i 
∗
R

2 i 
R
2 0

⎞
⎟⎟⎟⎟⎠. (35)

Furthermore, we neglect the spontaneous emission rates as
well as population of the excited state. In addition, we exploit
the separation of the frequency scales (26). Applying the
initial condition ρgg(t = 0) = 1 leads to the solution for the
population of the metastable state

mR(t, v) = 1
2 + e−ϑt (A cos θt + B sin θt ) − e2(ϑ−γ )tC. (36)

The stationary solution approaches limt→∞ mR = 1/2. The
complex velocity-dependent frequency θ and damping rate
ϑ as well as the coefficients A, B, and C define damped
oscillations (cf. Appendix D).

3. The π pulses for underdamped oscillations

The solution (36) includes regimes from underdamping
to overdamping, depending on the ratio η = √

3|
̃R|/γ . For
η > 1 and v = vR, the coefficient C(vR) = 0. The oscillation
frequency θ and damping rate ϑ are real. In order to maximize
the population transfer, we define a π -pulse time tπ for the
resonant velocity v = vR from the condition ṁR(tπ , vR) = 0
and obtain

tπ = 1

θ
cos−1

(
Aθ + Bϑ√

(A2 + B2)(θ2 + ϑ2)

)

≈ π

θ
= 2

√
3πξ

γ (ξ 2 − 1 + η2)
,

ξ =
[

1 − η2

2
(1 −

√
4η2 − 3)

]1/3

, (37)

using again the approximations 
R ≈ 
̃R and δ ≈ d (31). In
the limit γ = 0, we recover tπ,0 (32).

For tπ , an upper bound for the velocity width of mR(tπ , v)
is given by the FWHM of

e2(ϑ−γ )tπC ≈ 1

2

d2

ζ 2 + d2
exp

[
Dtπ

1 + Ed2

]
, (38)
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where ζ 2 = γ 2(η2 − 1)/3 and D and E are velocity-
independent functions, given in Appendix D. We get

�vR(tπ ) = 2

k1 + k2

√
p +

√
p2 + q,

p = ζ 2E − Dtπ − ln(2)

2 ln(2)E
, q = ζ 2

ln(2)E
, (39)

using ln(d2 + ζ 2)= ln(d2)+ζ 2/d2+O((ζ 2/d2)2). Together
with the lower bound, provided by the limit of vanish-
ing laser linewidths �v0 (34), the width is constrained
by

�v0(tπ ) � �v(tπ ) � �vR(tπ ) (40)

for arbitrary η > 1.

4. Limit of large laser linewidths

In the limit t � 1/γ of large laser linewidths and long in-
teraction times, the populations of the ground and metastable
state can be approximated with the solutions of the rate equa-
tions derived from the two-level OBEs (35) with adiabatic
elimination, using ρ̇gm 
 γ ρgm,

∂t

(
ρgg

ρmm

)
= r

(−1 1
1 −1

)(
ρgg

ρmm

)
. (41)

The decay rate r = γ |
̃R|2/(γ 2 + d2) < r0 = r(d = 0) in-
volves the approximations 
R ≈ 
̃R and δ ≈ d (31) and the
solution reads

mRE(t, v) = 1
2 (1 − e−rt ). (42)

The velocity width of mRE follows with

�vRE(t ) = 2γ

k1 + k2

√
r0t

ln
(
1 + tanh r0t

2

) − 1, (43)

where �vRE(t ) � γ /(k1 + k2) ∀ r0, t . The rate equation limit
is a good approximation when the transient part in (36)
vanishes, which is the case if γ t � 1, because γ /2 � ϑ < γ .

5. The π pulses for overdamped oscillations

For η < 1, the solution mRE (42) is overdamped with
mRE(t ) < 1/2 ∀ t . Therefore, we define the time of a π

pulse, when mRE(v = vR) is saturated after several decay
times tπ = n/r0 with n > 1. We choose n by the condition
limη→1− n/r0 = limη→1+ tπ with tπ (η > 1) from Eq. (37),
leading to

tπ = 2πγ√
3|
̃R|2 , 0 < η � 1. (44)

B. Spontaneous Raman transition

The atomic transition between the ground and the excited
state can be coupled resonantly, depending on the frequency
of laser 1 and the ion velocity. In this limit, the population
transferred into the metastable state can be approximated with
the solution of the rate equations for the ground, excited,
and metastable states, approximating the steady state of all

FIG. 8. Velocity-dependent population of the metastable state
after applying a π pulse m(tπ ), conforming with the analytical
approximation (47). The narrow Raman resonance at νR ≈ 0 m s−1,
shown in detail in Fig. 7, and the broad resonance of laser 1 at
νA

1 = 400 m s−1 and νB
1 = 1200 m s−1 are apparent.

coherences. Therewith, the OBEs (9) and (10) simplify to

∂t

⎛
⎝ ρgg

ρmm

ρee

⎞
⎠=

⎛
⎝−R1 0 �eg + R1

0 −R2 �em + R2

R1 R2 −� − R1 − R2

⎞
⎠
⎛
⎝ ρgg

ρmm

ρee

⎞
⎠, (45)

with Ri = �i|
i|2/(4�2
i + �2

i ). Additionally, we approximate
ρgm(t ) ≈ 0, being important only in the regime of the transfer
via the Raman transition. For t > 1/� the population of the
metastable state reads

msp(t, v) =
�em
R2

+ 1
�em
R2

+ �eg

R1
+ 3

(1 − e−rt ),

r = R1�em + R2(�ge + 3R1)

� + 2(R1 + R2)
. (46)

C. Maximizing the population transfer

After studying the individual population transfer into the
metastable state via the stimulated Raman transition mR (36)
and the spontaneous population transfer msp (46) separately,
we will analyze the total population transfer now. We assume
that we can incoherently combine both processes, as long as
they do not interfere. The ad hoc analytical ansatz

mana(t, v) = 1
w
mR(t, v) + msp(t, v),

w = mR(tπ,0, vR) + msp(tπ,0, vR) (47)

superposes the populations such that mana(tπ,0, vR) = 1.

1. Vanishing laser linewidths

Using the numerical solutions of the OBEs (9) and (10), we
can calculate the population distributions over a wide velocity
range, depicted in Fig. 8. The approximation mana (47) clearly
matches the numerical results. The rogue resonance of spon-
taneous population transfer, located at νA

1 = 400 m s−1 and
νB

1 = 1200 m s−1, is clearly distinguishable from the narrow
Raman resonance at νA

R = ν
B1
R ≈ ν

B2
R ≈ 0 m s−1. Obviously

parameter sets B are more favorable, because here it can
be ensured that for wider velocity distributions of the ions
the transferred population into |m〉 remains less influenced
by the tail of the rogue resonance as for A. However, for
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FIG. 9. Velocity-dependent difference between the metastable-
state populations, considering (m) and neglecting (m0) spontaneous
emission effects, after tπ .

all parameter sets there is indeed a small deviation to the
reference m0 (30), considering exclusively the coherent trans-
fer via the Raman transition. This difference is depicted in
Fig. 9. For A the deviation and especially the roughly constant
offset besides the Raman resonance is clearly larger than for
B1 and B2, because of a smaller separation of the rogue to
the Raman resonance βA

1 < βB
1 . However, with enlarging the

laser power B2, especially the reduction exactly on the Raman
resonance is, as expected, slightly enlarged again. Neverthe-
less, the velocity width of the transferred population is quasi
purely defined by the width of the Raman transition �vana =
�vR, showing no differences from the results of Sec. III A 1
[cf. �v0(tπ,0) (34) and Fig. 7].

The negative impact of a small distance β1 can be fur-
ther illustrated comparing the velocity averaged population
〈m(t, v)〉v (22) in Fig. 10. Already for the as narrow as
possible initial ion velocity distribution with �vi = 10 m s−1,
the effect of the incoherent population transfer is discernible
for A. For �vi = 50 m s−1 and A the total transferred pop-
ulation is more than twice the population transferred via the
Raman transition. So for A this regime is already unsuitable

FIG. 10. Time evolution of the velocity averaged metastable-
state population 〈m(t, v)〉v for two chracteristic ion velocity widths
(a) �vi = 10 m s−1 and (b) �vi = 50 m s−1 and the parameters
A (×), B1 (◦), and B2 (�). The numerical solutions considering
incoherent effects (solid line), well predicted by the analytical ap-
proximation (47) (black dashed line), are compared to the analytical
ones, indicating the transferred population purely due to the Raman
transition (30) (dotted line).

to properly determine the ion velocity. However, the major
portion of 〈m(t, v)〉v for B1 and B2 results still from the
narrow Raman transition. In addition, the necessary, larger
Rabi frequencies are still reachable, viz., this represents a
good working regime for available initial ion velocity widths.

For parameter sets A and B1 the analytical approximation
mana (47) describes exactly the numerical results. Only for the
maximum laser power within B2 are there tiny deviations after
the first π pulse.

2. Finite laser linewidths

For a finite laser linewidth (γ = �gg = �mm = 300 kHz),
the velocity selectivity of the Raman transition is signifi-
cantly affected. On the one hand, its width is enlarged, so
the velocity determination is less exact. On the other hand,
even on the resonance vR the maximum transfer efficiency of
almost 100% for tπ cannot be reached any longer. Both effects
are visible in Fig. 12(a), depicting the velocity-dependent
population of the metastable state after time tπ,0. However,
the Raman resonance is still clearly discernible and just as
for γ = 0 the analytic approximation mana (47) can predict
the numerical full solution. We have foregone plotting the
results for parameters A, because they are very similar to
B1. However, the differences are not negligible, becoming
apparent in Fig. 13(a), where the velocity average 〈m(t, v)〉v is
visualized. Again the analytic approximation mana (47) gives
reliable predictions; only for the maximum laser power and
longer times are tiny deviations visible.

The disappearance of Rabi oscillations indicates that the
laser linewidths and the interaction time are sufficient to
yield the rate equation limit. Only for B2 is the time of
a π pulse discernible with tB2

π = 0.70 μs, slightly different
from tB2

π,0 = 0.68 μs. The width of the velocity dispersion
is �v(tπ ) = 0.42 m s−1, where the analytical approximations
�v0(tπ,0) (34) and �vR(tπ ) (39) provide an appropriate range
�v(tπ ) ∈ [�v0(tπ,0),�vR(tπ )] = [0.34, 0.60] m s−1. The π -
pulse times for the other parameter sets tA

π ≈ tB1
π = 14.8 μs

are much larger than tA
π,0 = tB1

π,0 = 4.62 μs, demonstrating
the overdamping for A and B1 with γ = 300 kHz. Hence,
we get for the interaction time τ̄ = 4.62 μs, �v(τ̄ ) =
[0.22, 0.22, 1.34] m s−1 for [A, B1, B2], demonstrating the
broadening of the Raman transition due to finite laser
linewidths and well predicted by the analytical approxima-
tion �vRE(τ̄ ) = [0.21, 0.21, 1.38] m s−1 (43). In this way, in
particular for B2, the total amount of the metastable-state
population is substantially enlarged. At the same time, the
ratio of population transferred into the metastable state via the
Raman transition to the whole population

μ = 〈mR(t, v, r)〉v,r

〈mana(t, v, r)〉v,r
, (48)

depicted in Figs. 13(e) and 13(g), remains larger in compar-
ison to the simulations with γ = 0. The comparison of the
parameter sets demonstrates the compelling necessity of a
careful choice of laser frequencies, providing a sufficiently
large distance between Raman and rogue resonance β1, es-
pecially for wider velocity distributions of the ions. It is worth
mentioning that the ratio μ decreases with time, more crucial
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FIG. 11. Velocity width �v (FWHM) of the metastable-state
population depending on the laser powers P1 and P2 for different
times: (a) and (b) after applying a π pulse and (c) and (d) τ̄ =
4.62 μs. The FWHM of mana (47) (a) �vana(tπ ) and (c) �vana(τ̄ ) is
compared to the approximations (b) �vR(tπ ) (39) and (d) �vRE(τ̄ )
(43). The pluses highlight the laser powers used with parameter set
B1 and the border between under- and overdamping is highlighted
(dashed white line).

for the idealized scenario with γ = 0 than for γ �= 0. There-
fore, it is important to carefully choose the interaction time
in combination with the laser powers, achieving a significant
absolute population amount and simultaneously keeping a re-
liable ratio, optimally μ → 1 but at least μ > 0.5. To identify
the maximum laser powers to reach a prescribed maximum
uncertainty of the velocity determination, the widths �v(tπ )
as well as �v(τ̄ ) are depicted in Fig. 11. Indeed, �vana(tπ )
(39) provides an upper bound for �v(tπ ), and due to γ τ̄ =
9 � 1, �vRE(τ̄ ) (43) matches the actual results �vana(τ̄ ) very
well. It is worth mentioning that the relative deviation between
�vana and �v of the numerical solution of the OBEs (9) and
(10), not depicted here, is in the lower single-digit percentage
range with no qualitative difference.

3. Spatial intensity variations

So far we approximate the lasers as plane waves with no
spatial dependences. In reality, they are collimated Gaussian
laser beams with beam waist w0 and


(r) = 
0 e−r2/w2
0 . (49)

The ions are also spatially inhomogeneously distributed and
assumed to be Gaussian with width σ ,

g(r) = 1

2πσ 2
e−r2/2σ 2

. (50)

We average over the cross-sectional area of the ion and the
laser beams, assuming that the respective maxima of all are
perfectly overlapped

〈m(t, v, r)〉r = 2π

∫ ∞

0
dr r g(r)m(t, v, r). (51)

FIG. 12. Velocity-dependent population of the metastable state
after tπ,0 for different spatial distributions: (a) no intensity variations
according to σ 
 w0 and (b) averaged over the spatial intensity
variations for an ion beam width σ = w0. Considering finite laser
linewidths, γ = 300 kHz (dashed line) is compared to γ = 0 (solid
line). The analytic approximation (47) (dotted line) matches the
simulation results.

We solve this integral numerically with Gauss-Laguerre
quadrature [33]. Finally, the population of |m〉 is additionally
averaged over the velocity distribution according to (22).

We compare two scenarios, the results of which are de-
picted in Figs. 12 and 13. For σ 
 w0, the calcium beam
is much narrower than the laser beam, corresponding to the
case we assumed so far in which all ions experience the same
Rabi frequency [Figs. 12(a), 13(a), 13(c), 13(e), and 13(g)].
For σ = w0, the calcium beam is broader than the laser beam,
viz., some ions are not affected at all, representing the current
experimental scenario [Figs. 12(b), 13(b), 13(d), 13(f), and
13(h)]. For σ = w0, essentially, 〈m(tπ,0, v, r)〉r (Fig. 12) and
〈m(t, v, r)〉v,r (Fig. 13) are reduced overall.

The off-axis Rabi frequencies are reduced and therewith
the Raman resonance velocity vR is shifted. This effect is
more crucial, the larger 
2 is. Averaging over the results
for different r, for B2 the velocity of maximum transfer ef-
ficiency is shifted from νR = vR − v̄ = −0.17 m s−1 to νR =
−0.11 m s−1. However, the resonance of the Raman transition
is still visible. In addition, the considered spatial intensity
variations lead to a small reduction of the ratio μ (48),
primarily for A and B1.

IV. CONCLUSION

Our calculations show that ion velocity classes with
widths as low as �v = 0.2 m s−1 can be transferred into the
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FIG. 13. (a)–(d) Time evolution of the metastable-state population summed over a certain velocity width. (e)–(h) Time-dependent ratio μ

(48) of the population transferred into the metastable state via the Raman transition to the whole transferred population, including spontaneous
population transfer. Initial ion velocity widths (a), (b), (e), and (f) �vi = 10 m s−1 and (c), (d), (g), and (h) �vi = 50 m s−1 are considered.
Two spatial intensity distributions are analyzed: (a), (c), (e), and (g) neglecting spatial variations according to σ 
 w0 and (b), (d), (f), and (h)
averaging over the spatial distributions for an ion beam width σ = w0 for the parameter sets A (×), B1 (◦), and B2 (�), the latter scaled with a
factor of 0.5 in (a)–(d). (a)–(d) The numerical results for � �= 0 and γ = 300 kHz (solid line) are well predicted by the analytic approximation
for the full solution (47) (black dashed line). The analytic approximation (36) (dash-dotted line) gives the populations purely transferred via
the Raman transition. The numerical solutions for γ = 0 (dotted line) are given for the sake of completeness. (e)–(h) Considering a finite laser
linewidth γ = 300 kHz (solid line) is compared to neglecting it γ = 0 (dotted line).

metastable state via the Raman transition, achieving a sig-
nificant population proportion 〈m(t, v, r)〉v,r = 10−3–10−2.
Thereby it is important to carefully choose the laser frequency
combination to ensure that the transferred population into the
metastable state originates mainly by the Raman process and
not by incoherent spontaneous emission processes, when laser
1 couples resonantly to |e〉. This also supports an initially
narrow ion velocity distribution.

For infinitely sharp laser linewidths (γ = 0) and an ion
beam much smaller than the laser beams the smallest FWHMs
of the ion velocity distribution in the metastable state can be
reached with �v(tπ,0) = [0.05, 0.05, 0.32] m s−1, for param-
eter sets [A, B1, B2]. With (23) this results in a voltage width
s = [0.4, 0.4, 2.4] ppm on the sub-ppm level for A and B1.
The analytical expressions for the resonance velocity of the
Raman transition vR (12), the population of the metastable
state after applying a π pulse m0(tπ,0, v) (33), and the cor-
responding FWHM �v0(tπ,0) (34) give reliable predictions.

Considering finite laser linewidths, the analytical approxi-
mation for the velocity- and time-dependent metastable-state
population mana (47) matches the full numerical solution very
well. In addition, the approximations for the velocity width
after applying a π -pulse �vR(tπ ) (39) and in the rate equation
limit �vRE(tπ ) (43) are also suitable. Therewith, almost exact

results for large parameter regimes are possible with small
computational effort. Moreover, the presented analytical mod-
els lead to physical insights, verified by the numerical results.

Finite laser linewidths lead to a significant broadening
of the Raman transition. With γ = 300 kHz the velocity
width of m is enlarged to �v(tπ,0) = [0.22, 0.22, 0.43] m s−1,
leading to s = [1.7, 1.7, 3.3] ppm, still on the ppm level.
Note that the width of the distribution does not represent the
ultimate limit of the determination of the resonance velocity
vR. Therefore, sub-ppm high-voltage measurements are still
attainable. The related width in the frequency domain is
� f = (k1 + k2)�v/2π = [0.8, 0.6, 1.6] MHz, much smaller
than the natural linewidth �eg = 23.396 MHz. The Raman
transition therefore has the potential to provide a signifi-
cant reduction in uncertainty. Moreover, it avoids additional
uncertainties caused by varying and unknown momentum
transfers in multiple resonant excitations along the 4s → 4p
transition and the subsequent spontaneous decay in the current
measurement scheme. The momentum transfer during the
Raman transition is very small and exactly defined as h(k1 +
k2)2/2m = 69 kHz in the direction of laser 2. Therefore, it can
be taken into account in the analysis process.

For the velocity acceptance of the Raman transition, we
can approximate the maximum angle between ion and laser
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beams, where ions can be transferred into the metastable
state α � arccos[(vR − �v/2)/(vR + �vi/2)] ≈ 6 mrad for
all parameter sets. In comparison, the natural linewidth in-
duces a much larger angle α′ � arccos[(v1 − �eg/2k1)/(v1 +
�vi/2)] = 11 mrad.

Spatial intensity variations of both the laser beams and the
ion beam mainly reduce slightly (less than an order of magni-
tude) the transfer efficiency for all velocities. Therewith, the
velocity width of the transferred population is approximately
not affected. Note that for maximum laser powers the velocity
of maximum population transfer is slightly shifted in com-
parison to infinitely large laser beams. However, considering
these experimental imperfections, the resonance of the Ra-
man transition is still clearly identifiable. This demonstrates
the feasibility of high-voltage measurements using coherent
Raman spectroscopy on the ppm level, under realistic con-
ditions. Finally, high-precision collinear laser spectroscopy
from metastable states might also profit from such a Raman
velocity filter due to the reduction in Doppler linewidth.
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APPENDIX A: RAMAN TRANSITION
IN INCOHERENT BEAMS

We consider a Raman transition with counterpropagating
lasers E i(t, r) = Re(εiEiei(kir−ωit ) ) as shown in Fig. 2. The
coordinate r refers to the laboratory frame S. Assuming that
the ion beam and the lasers are aligned along the z direction,
we can specify the ion velocity v = vez and the laser wave
vectors k1 = −k1ez and k2 = k2ez. During the interaction of
the laser pulses, no relevant transversal motion occurs, which
is why we will discuss only the one-dimensional evolution in
the z direction.

In the optical domain, the electric dipole interaction in
the rotating-wave approximation is dominant [25]. Thus, the
Hamilton operator of an ion with quantized canonical coordi-
nates [ẑ, p̂z] = ih̄ is

H (t ) = p̂2
z

2m
+ h̄(ωgσ̂gg + ωmσ̂mm + ωeσ̂ee)

+ h̄

(
σ̂eg


1

2
eiφ1 + σ̂em


2

2
eiφ2 + H.c.

)
, (A1)

with phases φ1 = −k1ẑ − ω1t and φ2 = k2ẑ − ω2t . It accounts
for the kinetic and the internal energy of the ion, where h̄ωi is

the energy of state |i〉. The electronic transition operators are
σ̂i j = |i〉〈 j|. The complete internal and motion state �̂(t ) of
the ionic beam evolves according to

˙̂� = −i[H/h̄, �̂]. (A2)

One eliminates the ballistic evolution by the transformation
�̂ = exp(−it p̂2

z/2mh̄)�̂′ exp(it p̂2
z/2mh̄). Then the Liouville–

von Neumann equation �̇′ = −i[H ′/h̄, �̂′] reads

H ′(t )/h̄ = ωgσ̂gg + ωmσ̂mm + ωeσ̂ee

+
(

σ̂eg

1

2
eiφ′

1 + σ̂em

2

2
eiφ′

2 + H.c.

)
, (A3)

with Doppler-shifted phases φ′
1 = −k1ẑ − (ω1 + k1 p̂z/m)t

and φ′
2 = k2ẑ − (ω2 − k2 p̂z/m)t . The motional state of the

ionic beam smoothly extends over a large phase-space area
�ẑ� p̂z � h̄/2. The photon recoil momenta h̄ki 
 �p̂z are
tiny compared to the momentum width and the recoil energy
h̄2(k1 + k2)2/2m 
 h̄�i, h̄
i is tiny compared to the level
shifts or widths; however, the Doppler shifts ki� p̂z � �i,
i

are significant. Hence, we use the classical approximation
(ẑ, p̂z ) → (z, pz = mv) of kinetic theory [26]. Consequently,
the full quantum state �̂′(t ) → ρ̂ ′(t ; z, v) is replaced by an in-
ternal state operator denoting the motional variables to the role
of parameters. Using the Doppler-shifted frequencies ω′

i from
Eq. (2), the phases read φ′

1 = −k1z − ω′
1t and φ′

2 = k2z − ω′
2t

and the Hamilton operator in the classical approximation
H ′ → H′ is given by

H′(t )/h̄ = ωgσ̂gg + ωmσ̂mm + ωeσ̂ee

+
(

σ̂eg

1

2
eiφ′

1 + σ̂em

2

2
eiφ′

2 + H.c.

)
. (A4)

The remaining optical and spatial oscillations are eliminated
by the transformation ρ̂ ′ = U (t, z)ρ̂U †(t, z), with

U (t, z) = e−iωet−iφ′
1σ̂gg+iφ′

2σ̂mm . (A5)

This results in the Liouville–von Neumann equation for the
semiclassical state ˙̂ρ = −i[H/h̄, ρ̂], with

H
h̄

= �1σ̂gg + �2σ̂mm +
(

σ̂eg

1

2
+ σ̂em


2

2
+ H.c.

)
, (A6)

with a one-photon detuning �1 = ω′
1 − ωeg for laser 1 and

�2 = ω′
2 − ωem for laser 2. With this approximation for the

Hamiltonian evolution, we have essentially disregarded any
photon recoil effects. One can apply the same arguments to
the spontaneous contributions of the Lindblad equation [26].

APPENDIX B: BLOCH MATRIX

Representing the master Eq. (6) in the sorted basis
{|g〉, |e〉, |m〉} and arranging the matrix elements as linear
arrays ρ = (ρg, ρe, ρm) with ρi = (ρig, ρie, ρim), one finds the
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Bloch Eq. (8) with a Bloch matrix

L =
⎛
⎝Lgg Lge 0

Leg Lee Lem

0 Lme Lmm

⎞
⎠ = i

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 
1
2 0 −
∗

1
2 −i�eg 0 0 0 0


∗
1

2 i�1 − �1

∗

2
2 0 −
∗

1
2 0 0 0 0

0 
2
2 iγ − δ 0 0 −
∗

1
2 0 0 0

−
1
2 0 0 �1 + i�1


1
2 0 −
2

2 0 0
0 −
1

2 0 
∗
1

2 i� 
∗
2

2 0 −
2
2 0

0 0 −
1
2 0 
2

2 �2 + i�2 0 0 −
2
2

0 0 0 −
∗
2

2 0 0 δ + iγ 
1
2 0

0 0 0 0 −
∗
2

2 0 
∗
1

2 i�2 − �2

∗

2
2

0 0 0 0 −i�em −
∗
2

2 0 
2
2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(B1)

with δ = �1 − �2. It exhibits the block structure of two
coupled two-level systems. The Bloch equations define
an initial value problem with ρ(t = 0) = (ρ0

g , ρ0
e , ρ0

m) =
(1, 0, 0, 0, 0, 0, 0, 0, 0). The Laplace transform

�(s) =
∫ ∞

0
dt e−stρ(t ) (B2)

is ideally suited to transform the system of differential equa-
tions with initial values to an algebraic equation

⎛
⎜⎝G0

g
−1 −Lge 0

0 G0
e
−1 −Lem

0 0 G0
m

−1

⎞
⎟⎠

⎛
⎝�g

�e

�m

⎞
⎠ =

⎛
⎝ ρ0

g
Leg�g

Lme�e

⎞
⎠, (B3)

where G0
λ (s) = (s − Lλλ)−1 is the resolvent matrix. The for-

mal inversion of the Bloch matrix is facilitated by the block
structure and by backward substitution. This leads to the
explicit solution

�g(s) = Gg(s)ρ0
g , G−1

g = G0
g
−1 − LgeGeLeg,

�e(s) = Ge(s)Leg�g(s), G−1
e = G0

e
−1 − LemG0

mLme,

�m(s) = G0
m(s)Lmeρe(s), �i = (ρig, ρie, ρim).

(B4)

One can find the stationary solution using the final value
theorem of the Laplace transformation

ρ∞
mm ≡ lim

t→∞ ρmm(t ) = lim
s→0

s�mm(s). (B5)

The Laplace transform can also be used to approximate
the initial growth rate ρ̇mm(t = 0) of the population of the
metastable state. This provides insights into the contribu-
tions of different processes of population transfer. Therefore,
in Fig. 4 the processes generating population in |m〉 are
schematically visualized. Following this scheme and starting
initially with the whole population in the ground state, the
Laplace transform, considering only the initial processes in

perturbation theory, denoted by �̃mm, results in

�̃mm = Gmm

[(
�em + |
2|2

2
Re(Gme)

)
�̃ee

+|
2|2|
1|2
8

Re(GmeGmgGeg)Ggg

]
,

�̃ee = |
1|2
2

GeeRe(Geg)Ggg,

G−1
gg = s, G−1

ee = s + �, G−1
eg = s − i�1 + �1,

G−1
mm = s, G−1

gm = s + iδ + γ , G−1
em = s − i�2 + �2.

(B6)

The initial growth rate of the metastable-state population is
then given by rm = lims→0 s2�̃mm(s).

APPENDIX C: PARAMETERS

Relevant spectroscopic data for 40Ca+are given in Table I,
while laser parameters are specified in Table II. The listed
Rabi frequency, defining the interaction strength, can be cal-
culated with the total laser power P and the effective dipole
moment deff to [38]


0 = |deff|
h̄

√
4P

πε0cw2
0

, (C1)

with the laser beam waist w0 = FWHM/
√

2 ln 2, the vacuum
permittivity ε0, and the speed of light c. Due to the nonexistent
nuclear spin of the considered level configurations, there is
no hyperfine splitting and consequently the lasers interact
with the J → J ′ transition. In addition, the lasers are linearly
polarized, wherefore they interact only with one (of three)
component of the dipole operator and the effective coupling
strength is [38]

|deff|2 = 1
3 |〈J‖er‖J ′〉|2. (C2)

The numerical values of the reduced matrix elements, listed in
Table I, can be calculated from the lifetime [38]

1

τ
= ω3

0

3πε0 h̄c3

2J + 1

2J ′ + 1
|〈J‖er‖J ′〉|2. (C3)
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APPENDIX D: COEFFICIENTS OF mR (36) AND �vR (39)

The analytic approximation for metastable-state population, transferred via the Raman transition mR, results in (36), with
velocity-dependent coefficients

ϑ = 1

12

(
8γ + x + y

x

)
, θ = x2 − y

4
√

3x
, A = 1

3

mn + op

m2 + o2
, B = 1

3

mp − no

m2 + o2
, C = 36x2δ2/γ 2 + [x(x + 2) + y]2

6(x4 + x2y + y2)
,

m =
√

3(x4 − 4y2), n =
√

3(y − x2)[x(x − 4) + y], o = (x2 − y)2, p = 4xy(x − 1) − y2 + x2[8(1 + 9δ2/γ 2)−x(4 + x)],

x = (z +
√

z2 − y3)1/3, y = 4

(
1 − 3

δ2 + 
2
R

γ 2

)
, z = 8

(
1 + 9

δ2 − 
2
R/2

γ 2

)
.

The corresponding width �vR can be analytically approximated for tπ , resulting in (39) with coefficients

D = 3F (d = 0), E = 1

2

d2

dd2

9F (d = 0)

3F (d ) − 2

∣∣∣∣

R=
̃R,d=�

, F = x2 + y

6x

∣∣∣∣
δ=d

.
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