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Tailoring spatially unpolarized light on the Poincaré sphere: From equator states via meridian
states to generalized great-circle states
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In this paper we investigate the generation, manipulation and invariance properties of spatially unpolarized
light in the context of classical optics. We generate spatially randomly polarized light by exploiting the optical
activity of a so-called Cornu depolarizer and demonstrate tailored, spatial polarization distributions on the
Poincaré sphere. We begin with the generation of equator states of spatially unpolarized light, i.e., the manifold
of the superposition of all linearly polarized light states in the spatial domain. A quarter-wave plate is utilized
to transform these equator polarization states into meridian states and finally a second, subsequent quarter-wave
plate results in tilted meridian states or generalized great-circle states on the Poincaré sphere. These results of
all realized unpolarized states are visually confirmed by tomographic reconstruction of the spatially distributed
polarization states on the Poincaré sphere by extracting the data from the spatially resolved Stokes parameter
measurements. Furthermore, all these experimental results are in excellent agreement with classical Mueller
formalism calculations based on the Mueller matrices for the Cornu depolarizer and the wave plates, yielding
the tailored manifold of polarization states on the Poincaré sphere’s surface, confirming the naming of the
unpolarized light states in accordance with geodesy. Therefore, we have realized a scheme for the tailored
generation of spatially depolarized light based on the Cornu depolarizer and quarter-wave plates with interesting
application perspectives and giving further insight into polarization.
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I. INTRODUCTION

Polarization is even 170 years after Stokes still a fas-
cinating hot topic at the center of investigations of the
characteristics of electromagnetic waves and their applica-
tions. Recently, novel concepts in the field of polarization
have been realized, such as full Poincaré beams [1], angu-
lar momentum states [2], and vector beams [3,4] and have
stimulated developments in related fields such as plasmonics.
Polarization is an essential degree of freedom in the gener-
ation of structured light [5], which itself has established its
own field of research with a plethora of potential applications
and the promise of tailoring light right at the source [6].
Furthermore, polarization can be regarded both under its pure,
simple classical aspects, as well as nowadays even more under
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its quantum aspects [7]. Here, exactly at this border, thus
bridging the quantum and classical nature of polarization, our
research can be seen as leading to further insights as well as
establishing perspectives for relevant applications.

Polarized light has been studied by analyzing higher or-
der correlations [8,9] using theoretical concepts such as the
Simon-Mukunda polarization gadget [10–14]. Besides the
well-defined class of polarization states in space and time, so-
called unpolarized or randomly polarized light has attracted
attention, with respect to both fundamental aspects and appli-
cations [7]. Unpolarized light is generated in various ways. In
the spatial domain, depolarizers are used to produce light that
is fully polarized locally, but appears unpolarized on spatial
average. In the temporal domain it is generated by means of
rotating polarization optics, for instance [15]. Sunlight is an
example of unpolarized light in nature.

While unpolarized light and depolarized light has a long
history dating back to the 1930s [16–18], it has been in
the focus of recent developments of applications such as the
generation of vector beams [3,4], in metrology [19,20], and to-
mography of polarization states [21,22]. Unpolarized light has
also very recently played a central role in Floquet engineering
[23,24] and in the shape of nonuniformly totally polarized
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beams (or full Poincaré beams) [25,26]. An extensive current
survey of unpolarized light is given by Luis [27].

Recently, a new framework for the understanding of un-
polarized light was developed by Shevchenko et al. [28,29],
who experimentally demonstrated that for unpolarized light
an instantaneous polarization state, represented by a single
Stokes vector, exists and can be measured on the femtosecond
scale. Based on this model, in the field of ghost imaging
the theory of polarization correlations [30] was consolidated
and used to implement applications such as ghost polarization
communication [31].

From a theoretical point of view, unpolarized light has
been formalized [32] and classified by Paul et al. [33–35]
in two categories, depending on three invariance and symme-
try properties which are accessible through Stokes parameter
correlations [36,37]. Type II unpolarized light satisfies in-
variance with respect to the direction of propagation and
handedness, while type I unpolarized (or “natural light,” e.g.,
sunlight) additionally satisfies invariance with respect to phase
changes. In the picture of the Poincaré sphere [38], type I
unpolarized light relates to a spatial distribution uniformly
covering the entire sphere, while type II unpolarized light
displays other distributions, e.g., in the form of a ring en-
compassing the sphere. In this context, light scattered by
compressed powders has been used to gain a better under-
standing of the correlations of spatially depolarized light [39].
Discriminating randomly polarized fields that underpin un-
polarized light is possible by introducing measures such as
the complex degree of mutual polarization [40]. Recently, we
investigated temporally unpolarized light from a fiber am-
plifier and have successfully proven that it represents type I
unpolarized light [41] according to these required invariance
properties. Very recently, we also demonstrated the generation
of type II spatially unpolarized light [42] by utilizing a Cornu
depolarizer [43].

The polarization state of polarized light or spatially unpo-
larized light can be both represented on the Poincaré sphere
[44], as either a single stationary vector or a polarization
distribution on the sphere’s surface, respectively. This rep-
resentation is also used to model dynamic changes of the
polarization state of monochromatic sources [45] as well as
random light sources [46]. Here we use this Poincaré sphere
depiction to discuss and realize experimentally unpolarized
light [46]. We tailor on-demand well-selected arbitrary spa-
tial polarization state distributions which represent spatially
depolarized, i.e., unpolarized light.

We investigate classical polarization states of unpolarized
light in the framework of Stokes parameters by exploiting a
Cornu depolarizer for spatial depolarization combined with
polarization state engineering with additional wave plates and
polarization state characterization by spatially resolved Stokes
parameter measurements. In order to generate spatially de-
polarized type II light, we exploit the spatial depolarization
properties of an optically active Cornu depolarizer [47–49].
First, with only the Cornu depolarizer, we conclude from
data analysis the generation of equator states of polarization,
encompassing all linear polarization states on the Poincaré
sphere’s equator.

We then manipulate these equator states by applying var-
ious wave plate operations on these states. This is in the

spirit of searching for quantum symmetries, such as SU(2)
transformations, where here we now focus on the invariance
properties of type II unpolarized light, providing a theoreti-
cal foundation using Stokes formalism [50] and experimental
results for this particular type of light. Our exploitation of
a Cornu depolarizer in combination with wave plates finally
yields the realization of the full manifold of all generalized
“great-circle states” on the Poincaré sphere, thus exhibiting
full SU(2) transformation symmetry. This is proven via tomo-
graphic reconstruction of the great-circle states from spatially
resolved polarization distributions that are obtained via Stokes
parameter analysis. Furthermore, we reveal invariance prop-
erties of these great-circle states by systematically placing
additional wave plates in the beam path with well-selected
rotation angles. In the following, we describe the central con-
cepts and our setup and develop a detailed theoretical model
of these unpolarized states.

II. TAILORING UNPOLARIZED LIGHT

The key idea for manipulating unpolarized light states on
the Poincaré sphere is in the spirit of polarization structuring
or polarization engineering of light. The mathematical model
for this is the Poincaré sphere, on which polarization states
are usually visualized as single points on the sphere’s sur-
face for fully polarized light. Unpolarized light is depicted
here in terms of areas, regions, distributions, or trajectories
on the sphere. Here we investigate generalized great-circle
states whose polarization distribution encompasses circles on
the Poincaré sphere and whose spatially integrated total de-
gree of polarization results in an overall value of zero, i.e.,
fully unpolarized light. Some examples of these generalized
great-circle states are shown in Fig. 1 as solid circles. The
generation, manipulation, and invariance properties of these
polarization distributions will be in the focus of this paper.
The experimental realization of these unpolarized light states
will be discussed in the following section.

III. EXPERIMENTAL SETUP AND METHODS

A. Setup

The experimental setup is depicted in Fig. 2. Linearly
y-polarized light from a helium-neon laser is emitted as a
monochromatic, collimated, plane-wave beam, impinges on
the Cornu depolarizer (CD) and fully illuminates its front
facet. A half-wave plate (HWP) and two rotatable quarter-
wave plates [QWP1(α) and QWP2(β )] placed behind the CD
are then used to manipulate the polarization state of the output
light. The transformed output light then enters a Schaefer-
Collett [51] or Berry-Gabrielse-Livingston [52] polarimeter,
which consists of a rotatable quarter-wave plate [QWPpol(θ )]
and a fixed linear polarizer (LP). Finally, a spatially resolving
CCD camera is used to investigate the light’s polarization
properties via spatially resolved Stokes parameter analysis. In
previous work a similar setup was used, where the beam form-
ing and sources of measurement uncertainties are discussed in
detail [43]. Compared to this previous setup, notably, here the
circular iris aperture in front of the CD is removed to have
full spatial polarization dispersion. The core component of
our setup is the CD, which depolarizes the input light in the
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FIG. 1. Schematic depiction of exemplary generalized great-
circle states (shown as circles in green, yellow, red, and cyan) of
unpolarized light on the Poincaré sphere, which is spanned by the
three normalized Stokes vectors s1, s2, and s3.

spatial domain and is illustrated in Fig. 2 on the left. The CD
consists of two prism wedges consisting of uniaxial crystalline
quartz joined at a slanted interface with a cut angle of 30◦.
One wedge consists of left-handed quartz and the other of
right-handed quartz, with the fast axis of both wedges aligned
in parallel to the direction of optical propagation. The circular
birefringence causes an optical rotation of the polarization
axis of linearly polarized input light, depending on a spatially
dependent retardance �.

FIG. 2. Experimental setup: Cornu depolarizer (CD) followed by
an optional half-wave plate (HWP), two rotatable quarter-wave plates
(QWP1 and QWP2, angles α and β with respect to the y-axis), a
polarimeter consisting of a rotatable quarter-wave plate (QWPpol),
angle θ with respect to the LP), and linear polarizer (LP). A HWP
and two subsequent rotatable QWPs are placed into the beam path
depending on the desired output polarization state. A CCD camera
acquires spatially resolved polarization properties.

B. Methods

In our experimental setup shown in Fig. 2, a CCD cam-
era records spatially resolved intensity distributions for fixed
angle settings of the imaging polarimeter. While the LP re-
mains fixed, a QWPpol(θ ) is rotated in 10◦ increments and
for every angle position, a CCD image is taken. The data
are then processed by performing Stokes parameter analysis
using Fourier series [53] for every pixel of the CCD im-
age and the normalized, spatially resolved Stokes parameters
s1(x, y), s2(x, y), and s3(x, y) are obtained. From these spa-
tial normalized Stokes parameter distributions, we reconstruct
tomographically the achieved unpolarized light states in the
frame of the Poincaré sphere depiction (Figs. 5–9), the key re-
sult of the paper. For this purpose, we take a spatial coordinate
pair (Pixel pair) (xi, y j ) on the CCD sensor and read out the
corresponding values of s1, s2, and s3, which are then plotted
as a single point in 3D space spanned by s1, s2, and s3. A
small spatial binning procedure is performed to ensure a clear
visual representation of the polarization distributions. The
match (coincidence of the spatial coordinates) of the spatial
orientation of s1, s2, and s3 in space is extremely challeng-
ing, because a small offset between them creates the cloudy
appearance visible in Figs. 5–9 being the major error source.
This measuring procedure is repeated for various constella-
tions of wave plates behind the CD, which is accompanied
by simulations of these polarization distributions, as will be
discussed in the following.

IV. THEORETICAL FRAMEWORK

In this section, we summarize our theoretical model for
generating spatially unpolarized light states on the Poincaré
sphere prior to the experimental investigations. The polar-
ization properties of depolarized light are easily understood
in the context of Stokes formalism, where the polarization
state of light is quantified by a normalized four-valued vector
�s = (1, s1, s2, s3) with its components representing linear and
elliptical polarization parts [53]. Any modifications to this
polarization state are then carried out by multiplying this
vector with a series of Mueller matrices, which depend on
the polarization optics placed in the beam path. Notably, the
matrix of the CD is given as [54]

MCD =

⎛
⎜⎝

1 0 0 0
0 cos(�) sin(�) 0
0 − sin(�) cos(�) 0
0 0 0 1

⎞
⎟⎠, (1)

where � is a retardance that is induced by the birefringent
wedges of the depolarizer that depends on material parameters
and geometry of the CD [43].

For a linearly polarized input Stokes vector, the polariza-
tion axis is rotated about its propagation axis, depending on
the retardance �. Therefore, the CD redistributes both linear
components s1 and s2, which translates into a polarization
distribution that is known as a depolarized equator state, with
Stokes vector components that are spread across the equator
of the Poincaré sphere, thus spatially averaging to zero.
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FIG. 3. Depiction of the Poincaré sphere, which is spanned by
the three normalized Stokes vectors s1, s2, and s3. Shown are an
equator state (solid red circle), three meridian states for QWP1(α)
rotation angles of 0◦ (blue circle), −22.5◦ (cyan circle), and −45◦

(green circle) as well as a great-circle state (QWP1(α = 0◦) and
QWP2(β = 67.5◦), magenta circle).

A. Equator polarization states

We begin by generating such an equator distribution of
unpolarized light Peq from linearly y-polarized input light Py,
which is parallel to the y-axis shown in Fig. 2. An equator
polarization distribution is produced by multiplying Py with
the Mueller matrix of the CD:

Peq = MCDPy (2)

=

⎛
⎜⎝

1 0 0 0
0 cos(�) sin(�) 0
0 −sin(�) cos(�) 0
0 0 0 1

⎞
⎟⎠

⎛
⎜⎝

1
−1
0
0

⎞
⎟⎠ =

⎛
⎜⎝

1
−cos(�)
sin(�)

0

⎞
⎟⎠.

(3)

This equator state is shown in Fig. 3 as a solid red circle
encompassing the entire equator. For the investigation of the
invariances of this polarization state, we then simulate the
insertion of a HWP placed into the beam behind the CD with
a suitable Mueller matrix. Setting the HWP to an arbitrary
rotation angle leaves the distribution’s position unchanged and
results in another equator distribution P′

eq, which indicates that
the equator distribution’s position is invariant with respect
to an HWP. Here the HWP’s influence on the polarization
distribution is equivalent to a rotation about the s3-axis.

B. Meridian polarization states

We now proceed with tailoring or manipulating these equa-
tor states into meridian polarization states, by removing the
HWP and inserting a QWP1(α) into the beam behind the

CD and observe the change of the polarization state as the
angle α is varied. The generation of these meridian states
on the Poincaré sphere is now modeled by multiplying the
appropriate Mueller matrix of a rotated QWP1 (rotation angle
α) with Peq:

Pm = MQWP1
(α)Peq. (4)

These polarization distributions are distinguished by the fact
that their position is perpendicular to the equator plane. For il-
lustrative purposes, three QWP1 rotation angles of 0◦, −22.5◦,
and −45◦ are chosen in the following to generate distinct
meridian states. We start by calculating a “prime meridian”
[55] distribution with a QWP1 rotation angle of 0◦:

Pm,0◦ = MQWP1
(0◦)Peq =

⎛
⎜⎝

1
−cos(�)

0
sin(�)

⎞
⎟⎠. (5)

Comparing Eq. (5) with Eq. (3), the intensity of s2 is re-
duced to zero, while the meridian state consists of s1 and s3

components with a sinusoidal distribution with respect to the
retardance �. This prime meridian distribution (equivalent to
the “Greenwich” meridian in geodetic terms) [55] is indicated
by a blue circle in Fig. 3 which encompasses the sphere.

Decreasing the QWP1 angle α further to −22.5◦, the fol-
lowing polarization distribution is obtained:

Pm,−22.5◦ = MQWP1
(−22.5◦)Peq (6)

=

⎛
⎜⎜⎝

1
− 1

2 cos(�) − 1
2 sin(�)

1
2 cos(�) + 1

2 sin(�)
− 1√

2
cos(�) + 1√

2
sin(�)

⎞
⎟⎟⎠. (7)

In Fig. 3 this polarization distribution (“São Paulo”) [55] is
shown as a cyan circle. Here the components of the spatial
Stokes parameters are redistributed such that s1(x, y) and
s2(x, y) are equal with opposite sign, with their amplitude
reduced by 1/2 in comparison with the s1 component of the
Pm,0◦ distribution. Compared to the s3(x, y, ) component of the
previous distribution Pm,0◦ in Eq. (5), the distribution s3(x, y, )
is shifted by π/4.

Decreasing the QWP1 angle even further to −45◦, the
polarization distribution of the third meridian state (“New
Orleans”) [55] is obtained:

Pm,−45◦ = MQWP1
(−45◦)Peq =

⎛
⎜⎝

1
0

sin(�)
−cos(�)

⎞
⎟⎠. (8)

In this polarization distribution, the s1(x, y) component van-
ishes and the Stokes vector �s now consists of sinusoidal
s2(x, y) and cosinusoidal s3(x, y) components and its repre-
sentation is visualized by a green circle in Fig. 3. These
selected polarization distributions of the meridian states are
illustrated in Fig. 3 as continuous circles extending across
the Poincaré sphere’s surface. The three particular QWP1(α)
rotation angles of 0◦, −22.5◦, and −45◦ were chosen to il-
lustrate the positioning of the meridian states depending on
α. The distribution P90◦ is equivalent to P0◦ due to rotational

043131-4



TAILORING SPATIALLY UNPOLARIZED LIGHT ON THE … PHYSICAL REVIEW RESEARCH 3, 043131 (2021)

symmetry. This behavior can be understood in analogy to how
a QWP acts upon linearly polarized light. Now the invariance
of the meridian states with respect to phase changes is checked
by inserting additional wave plates behind the first QWP1.
Inserting a HWP behind the QWP1(α) and calculating the
resulting distributions for various HWP angles indicates that
the meridian states are rotated about the s3-axis yet again, with
a HWP angle of −90◦ transforming the prime meridian onto
itself:

MHWP(−90◦)Pm,0◦ = Pm,0◦ . (9)

After these successful modeling predictions of the meridian
states we now proceed to the generalized great-circle states.

C. Generalized great-circle polarization states

Finally, inserting an additional QWP2 (rotation angle β)
after the first QWP1, enables the generation of “tilted” merid-
ian states, i.e., meridian polarization distributions on the
Poincaré sphere that are rotated about an axis that lies in
the plane spanned by s1 and s2. Some of these exemplary
generalized great-circle states are shown schematically in
Fig. 1. Borrowing from nomenclature in geodesy, we refer
to these as distributions as generalized “great-circle states.”
The generation of these generalized great-circle states Pgc is
accomplished similarly using appropriate Mueller matrices.

We present a prominent example of a generalized great-
circle state by choosing a rotation angle of β = 67.5◦ to
generate it from a prime meridian state [Eq. (5)]:

Pgc,67.5◦ = MQWP2
(67.5◦)Pm,0◦ (10)

=

⎛
⎜⎜⎜⎝

1
− 1

2 cos(�) + 1√
2
sin(�)

1
2 cos(�) + 1√

2
sin(�)

1√
2
cos(�)

⎞
⎟⎟⎟⎠. (11)

This distribution contains contributions in all three Stokes
parameters and is displayed in Fig. 3 as magenta circle on the
Poincaré sphere.

Since these generalized great-circle states are mathemat-
ically derived from the meridian states, we calculate two
extreme cases where the generalized circle states coincide
with previously shown polarization distributions.

In the first example, we start with a prime meridian state
and set a second QWP2 to β = 0◦, which produces an equator
state [cf. Eq. (3)]:

Pgc,0◦ = MQWP2
(0◦)Pm,0◦ = Peq. (12)

In the second example, setting the QWP2(β ) rotation angle
to −45◦ transforms the prime meridian state back into another
prime meridian state:

Pgc,−45◦ = MQWP2
(−45◦)Pm,0◦ = Pm,0◦ . (13)

Inspecting the great-circle states distribution’s position and
tilt angle with respect to the Poincaré sphere’s equatorial plane
as β is varied reveals two aspects of the great-circle states:
first, the two points, where the great-circle states distributions
intersect with the equator, are rotated about the s3-axis as β is
varied. Second, the tilt angle of the distribution also depends
on the angle β.

Finally, we probe the invariance properties of the great-
circle states by placing a single additional HWP behind both
QWPs (QWP1 and QWP2) and varying the HWP’s rotation
angle for fixed rotation angles of the QWPs. This produces a
similar result as the previous wave-plate constellation consist-
ing of QWP1(α) and a HWP (cf. Sec. IV B): as the HWP angle
is increased, the generalized great-circle states are rotated
about the s3-axis. This shows that the generalized great-circle
states are not invariant with respect to the phase change of a
HWP.

In the following section, we now present experimental
results, which confirm the generation of the previously pre-
sented simulations of the polarization distributions and their
invariance properties.

V. EXPERIMENTAL RESULTS

A. Equator polarization states

First, we verified the imaging quality of our setup
without the CD to ensure that a Gaussian intensity distri-
bution is maintained throughout. Next, we investigated the
polarization-dispersed output light behind the CD as shown in
the experimental setup in Fig. 2, i.e., without any wave plates
between depolarizer and polarimeter. Using the polarimeter,
the spatial polarization distributions of the Stokes parame-
ters s1(x, y), s2(x, y), and s3(x, y) were obtained from images
recorded by the CCD camera. We measured characteristic
polarization fringe patterns schematically represented by the
spatial Stokes parameter distributions shown in Fig. 4, which
could be explained conclusively within the Mueller matrix
formalism [43]. The granular structure shown in Fig. 4 is
partly due to the error bars introduced by imperfect wave
plates (off-axis spatial inhomogeneuity), the beam quality, and
the CCD’s noise floor.

The position of the polarization fringe pattern with respect
to the y-axis as well as the contrast of the si(x, y) values in
these spatial Stokes parameter distributions is manipulated,
depending on the constellation of wave plates between the CD
and the polarimeter, which we call polarization engineering.
From the polarization fringe patterns, their change in position
and the contrast, we are able to tomographically reconstruct
the spatial polarization distributions for every constellation.

Here we now present from these spatial Stokes parameter
distributions, a tomographic reconstruction of an equator state
and obtain a red annular ringlike polarization distribution in
Fig. 5 that is slightly skewed due to measurement errors,
but still closely resembles the theoretically calculated and
expected equator state calculated in Eq. (3). Finally, placing a
HWP between the CD and the polarimeter revealed an invari-
ance of these polarization distributions for arbitrary rotation
angles of the HWP, which implies that in fact we produced
type II unpolarized light [42].

B. Meridian polarization states

We then proceed by replacing the HWP with a rotatable
QWP1(α) between the CD and polarimeter to produce the
meridian states. The spatial distributions of the Stokes param-
eters shown in Fig. 4, which we obtained from images of the
CCD camera placed behind the polarimeter in Fig. 2, display
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FIG. 4. Spatial distribution of the normalized Stokes parameters s1(x, y) (first row), s2(x, y) (second row), and s3(x, y) (third row) obtained
from the CCD camera and plotted for linearly y-polarized input light impinging on the CD with a subsequent QWP1(α) for three QWP1 angles
of 0◦ (first column), −22.5◦ (second column), and −45◦ (third column), representing three prominent meridian states. The x- and y-axes are
scaled in terms of the pixel number of the CCD. Red indicates positive values, blue indicates negative values. A small degree of barrel distortion
is visible around the profile’s edges.

evenly spaced characteristic polarization fringes where the
Stokes parameters range between values of −1 and 1. We
demonstrate the generation of the three previously calculated
meridian states for three distinct QWP1(α) rotation angles of
0◦, −22.5◦, and −45◦.

For a QWP1 rotation angle of 0◦ (left column in Fig. 4),
the spatial distributions of s1(x, y) and s3(x, y) are dominated
by broad polarization fringes, while they are almost absent in
the distribution of s2(x, y). In the Poincaré sphere model, this
set of si(x, y) distributions corresponds to the prime meridian
state. This correspondence becomes clearly apparent in the
subsequent tomographic reconstructions of these polarization
states.

When comparing the distributions of s1(x, y) of all three
meridian states (top row in Fig. 4), a high contrast of 2 for its
values is observed for the s1(x, y)-distribution of the prime
meridian in the left column. This contrast decreases as the
QWP1 angle is set to 0◦, −22.5◦, and finally −45◦, where
the fringe contrast reaches a minimum value of roughly 0.5.
For the s2(x, y) distributions in the second row, an opposite
trend emerges: the contrast is lowest for a QWP1 angle of
0◦, increases with the decreasing QWP angle and reaches
its maximum value of 2 for a QWP1 angle of −45◦. This
redistribution of the s1(x, y) and s2(x, y) values is proof of the
meridian state being rotated about the s3-axis. For all three
QWP1 rotation angles, the s3(x, y)-distributions in the third
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FIG. 5. Equator distribution generated by only the CD: the
spatial Stokes parameter distribution of the corresponding CCD po-
larization distributions was mapped to the Poincaré sphere and is
indicated by a red annular ring. The slight tilt is a due to measurement
errors. A corresponding simulation of the equator state is shown as a
solid red circle.

row exhibit a polarization fringe pattern, which is spatially
shifted along the y-axis by π/4 when setting the QWP1 angle
from 0◦ to −22.5◦ and shifted once again by π/4, when
setting it to −45◦. This spatial shift is also verified by our
previous simulations of all three polarization distributions.

To better visualize the computed Stokes polarization vec-
tors for each pixel of the recorded CCD images, we show
them on the Poincaré sphere to see the distribution of the
sets of the Stokes vectors. Therefore, we take a rectangular
shaped area around a defined center of the beam in the CCD
images. The rectangle has a width of 256 pixels wide and
length of 128 pixels, resulting in 32 768 dedicated Stokes
vectors, which are then plotted on the Poincaré sphere.

As a result, the annular rings are formed by mapping
the si(x, y) distributions corresponding Stokes vectors on the
Poincaré sphere, thus representing a tomographic reconstruc-
tion of a meridian state. Utilizing this method, the spatial
polarization distributions of the Stokes parameters shown in
Fig. 4 are also visualized as red annular rings in Fig. 6,
Fig. 7, and Fig. 8 for QWP1 rotation angles of 0◦, −22.5◦,
and −45◦, together with simulated distributions indicated in
colors (blue, cyan, and green), respectively. It is noteworthy
that due to some remaining residual polarization of the input
beam, the Stokes vectors always have a value smaller than
one. This residual polarization is transferred through the entire
beam propagation path and causes error propagation, which in
return results in the cloudlike appearance of the polarization
distributions.

In Fig. 6 both the annular ringlike distribution of the Stokes
vectors encompassing the Poincaré sphere and its orientation

FIG. 6. Prime meridian state distribution generated by
QWP1(α = 0◦): the Stokes parameter distributions of the first
column of Fig. 4 are mapped to the Poincaré sphere and indicated
by a red annular ring. The corresponding simulation is shown as a
solid blue circle.

FIG. 7. Meridian state distribution generated by QWP1(α =
−22.5◦): the Stokes parameter distributions of the second column
of Fig. 4 are mapped to the Poincaré sphere and indicated by a red
annular ring. The corresponding simulation is shown as a solid cyan
circle.
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FIG. 8. Meridian state distribution generated by QWP1(α =
−45◦): the Stokes parameter distributions of the third column of
Fig. 4 are mapped to the Poincaré sphere and indicated by a red
annular ring. The corresponding simulation is shown as a solid green
circle.

agree with the previous ring-shaped simulation of the prime
meridian in Eq. (5). In Fig. 7 the distribution for a QWP1
rotation angle of −22.5◦ is slightly skewed due to small
misalignment errors of the wave plates, but the rotation with
respect to the s3-axis is clearly evident.

Finally, we then investigated the invariance properties
of the meridian states, by starting with a prime meridian
[QWP1(α = 0◦)] and subsequently introduced a HWP be-
hind this QWP. We observed the polarization distributions for
various HWP rotation angles in the same manner as before.
Under the HWP’s influence, the s1(x, y) and s2(x, y) compo-
nents of the polarization distributions change in accordance
with the simulated distributions, indicating a rotation of the
polarization distribution about the s3-axis. This proves that
the meridian states are not invariant with respect to a phase
change by a HWP (as opposed to the equator states). This
invariance has to be explained by a novel state of unpolarized
light, namely, type III unpolarized light.

C. Generalized great-circle polarization states

After having achieved equator and meridian distributions,
we introduce the generalized great-circle states. For the gen-
eration of these, we placed a second QWP2(β ) behind the
first QWP1(α). Setting the first QWP1 to a fixed angle of
α = 0◦ and rotating the second QWP2(β ) to angles of β = 0◦,
β = −22.5◦, and β = −45◦, respectively, we observe polar-
ization distributions that are still essentially uniform rings
encompassing the sphere. For β = −22.5◦, the polarization
distribution is tilted about an axis which is located in the
equatorial plane spanned by s1 and s2. Similarly, spatial po-

FIG. 9. Great-circle distribution generated by QWP1(α = 0◦)
followed by QWP2(β = 67.5◦): the Stokes parameter distributions
of the corresponding CCD polarization distributions were mapped
to the Poincaré sphere and are indicated by a red annular ring. The
corresponding simulation is shown as a solid magenta circle.

larization distributions obtained from the spatially resolved
CCD images were mapped to the Poincaré sphere and a
distinguished great-circle distribution is shown in Fig. 9 for
a QWP2 rotation angle of β = 67.5◦. We chose this specific
angle to illustrate the visible tilt of the polarization distribu-
tion, since for angles of β = 0◦ and β = −45◦, an equator
distribution and a prime meridian distribution are obtained, re-
spectively. These two polarization distributions are also shown
in Fig. 3 as red circle (equator) and blue circle (meridian).

In Fig. 9 the distribution is tilted about roughly 45◦ with
respect to the (s1, s2)-plane, which is in agreement with the
distribution given in Eq. (11).

In conclusion, this proves that we have not only generated
type II unpolarized light, but were also able to control the
resulting polarization distribution’s position on the Poincaré
sphere by manipulating rotation angles of two quarter-wave
plates placed behind the CD.

VI. DISCUSSION

The simulations of the polarization distributions of unpo-
larized light are in excellent agreement with the experimental
spatially resolved polarization distributions obtained from
CCD images, which clearly demonstrate a systematic and
controlled generation of these distributions of type II and type
III unpolarized light.

In the first case, this is confirmed by the invariance of the
position of the equator states when a HWP is placed behind
the CD. In the second case, the meridian states generated
by a QWP1(α) are similar to uniform-banded distributions
of type III unpolarized light, which was first proposed by
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Ellis et al. [39] in theory as a subclass of type II unpolarized
light. Introducing a subsequent HWP rotates the position of
the meridian states about the s3-axis, which means that this
type of light is not invariant with respect to phase changes
of a HWP, which confirms that we have generated type III
unpolarized light. Finally, the CD in conjunction with two
subsequently following QWPs enables the full range of possi-
ble rotation transformations of the great circles of unpolarized
light on the Poincaré sphere. This shows that discernible in-
ternal polarization states of unpolarized light are accessible by
simply placing wave plates behind a CD. By doing this, we are
able to elegantly generate on-demand unpolarized states by
rotating phase plates to specific angles and are able to inspect
their invariance properties. This Poincaré sphere polariza-
tion engineering allows realizing on-demand depolarized and
delocalized polarization states distributed over the Poincaré
sphere in well-selected areas or regions and complement the
classical and quantum understanding of polarization with in-
teresting application aspects.

In combination with a variable iris aperture placed behind
the CD, a broad tuning region of partially polarized and fully
unpolarized type II light is accessible [43], depending on the
aperture diameter and the rotation angles of the wave plates
behind the depolarizer. This tuning range for type II unpolar-
ized light is of particular significance in the context of Floquet
engineering [23,24].

VII. CONCLUSION

We have demonstrated the experimental generation of
“equator states,” “meridian states,” and arbitrarily positioned
“great-circle states” of unpolarized light by exploiting the
spatial depolarization properties of a Cornu depolarizer in
combination with two subsequent quarter-wave plates. We
have presented a robust method of tailoring type II unpolar-
ized light on the Poincaré sphere, together with a high level

of control over these polarization distributions by varying the
rotation angles of both quarter-wave plates.

The experimental results are in excellent agreement with
a theoretical description of these polarization distributions
within the Stokes parameter formalism in combination with
Mueller matrix calculus. Furthermore, the polarization distri-
butions displayed certain invariance properties with respect
to the phase plates, which were explained in theory and are
supported by experimental data. These findings serve as a
vantage point for future research in the field of polarization
correlations of unpolarized light and metrology of hidden
polarization states. Notably, the polarization correlations of
type I temporally unpolarized light and type II spatially unpo-
larized light and cross-correlations between various types of
unpolarized light will reveal further characteristics of unpo-
larized light and possibly pave the way for precisely tailored
depolarized states of light with a subsequent exploitation in
metrology and imaging applications.

The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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