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We derive theoretically that hyper-bunched light with a central normalized second-order correlation coefficient
of six can be realized by a single Gaussian scattering process of parametric down conversion (PDC) light with a
central normalized second-order correlation coefficient of three. The Gaussian scattering process is realized by
a rotating ground-glass diffuser. We show that the photon counting probability distribution in this case obeys
a Tricomi confluent hypergeometric function U[1 + n, 3/2, 1/〈n〉] dependence. Furthermore, we also study
non-Gaussian light-scattering probabilities that together with the different impinging light statistics give rise to
new photon statistics accompanied by a variety of new values of the second-order correlation coefficient of the
scattered light. These theoretical calculations suggest experiments using twin photons from a PDC process and
characterizing their photon statistics properties before and after the scattering at the rotating diffuser. These inves-
tigations contribute to a more comprehensive understanding of the scattering process, the generated light, and new
applications. © 2024 Optica Publishing Group

https://doi.org/10.1364/JOSAB.510767

1. INTRODUCTION

Since the first realization of the laser, there has been a perpetual
interest in understanding the quantum fluctuations of light,
driven both by fundamental and by application interests [1].
The generation of squeezed states of light and single photon
states by means of nonlinear optics and more sophisticated
source approaches has been a revolutionary, challenging step
towards the generation of new tailored quantum states of light
[2]. Already immediately after the advent of the laser, in 1966
Martienssen and Spiller and Arecchi [3,4] realized the so-called
pseudo-thermal light source. There, scattering of laser light at a
rotating diffuser transformed the Poissonian laser photon statis-
tics into that of thermal light [5,6] exhibiting Bose–Einstein
statistics with a central normalized second-order correlation
coefficient [7] of two. In 1970, Bertolotti et al. [8,9] described
this manipulation of the statistics very simply and intuitively
based on the Mandel formula for the photon detection and
assuming a Gaussian scattering process [10,11]. Subsequently,
in 1980, a large amount of comprehensive and detailed both
theoretical and experimental work focused on the double
scattering of light by two subsequently following diffusers
leading to the realization of light with a central normalized
second-order correlation coefficient of four [12–14]. In the
following, this philosophy of exploiting Gaussian scattering
processes—but also considering non-Gaussian random walk

scattering processes in media—led to the achievement of well-
controlled states of light [8,12–16] in the framework of light
with super-Poissonian statistics, i.e., bunched or even super-
bunched photon counting statistics. Later on, microscopic
and mesoscopic scattering concepts for the manipulation of
the light statistics were comprehensively investigated and even
further extended to waveguides [17–20]. In 2017 Zhao et al.
[21] reinvestigated the double scattering process by two dif-
fusers in the framework of having a light source with improved
characteristics for ghost imaging applications, a classical pho-
ton correlation imaging technique. Unfortunately, they were
not aware of either this original theoretical work from 1970
[8,10,11] or the experiments from 1980 [12–14] and therefore
ignored them completely.

The concept of manipulating and tailoring of light states
and exploiting these novel properties beneficially in quantum
metrology applications has also been investigated by applying
nonlinear optical processes onto light [22,23]. Very recently,
it has been shown that disordered systems permit manipula-
tion and tuning of the output statistics via deterministic and
coherent control. Monochromatic coherent light traversing
a disordered photonic medium evolved into a random field
whose statistics has been dictated by the disorder level [19,24].
Deterministic control over the photon-number distribution
was demonstrated by interfering two coherent beams within
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a disordered photonic lattice, thus enabling the generation of
super-thermal and sub-thermal light [25].

In this contribution, we follow the strategy and the calcula-
tions of Bertolotti et al. [8] and demonstrate theoretically that by
a single scattering process, being Gaussian or non-Gaussian of
super-bunched twin photons [26] obtained from a parametric
down conversion (PDC) process, hyper-bunched light [27]
with a normalized central second-order correlation coefficient
g (2)(τ ) larger than four and going up to six can be achieved.
These investigations give new insight into the generation of
super-bunched light enabling new avenues for applications in
sensing.

2. PHOTOELECTRON STATISTICS OF
SCATTERED LIGHT

We start by recalling the fundamental work of Mandel and Wolf
1965 [28] expressing the probability density function (PDF)
p(n, T ) of counting n photons in a time interval (0, T ) as a
function of the probability distribution P (I ) of the intensity I
or the photons nphoton emitted by the source, respectively:

p(n, T )=
1

n!

∫
∞

0
Une−U p(U)dU , (1)

where U = α · I · T and I is the intensity of the light falling
on the photodetector of quantum efficiency α within a time
T. Here, the coherence time of the radiation is supposed to
be much smaller than T, and thus P (U) represents the light
intensity I. This relationship is also often called p(n, T ), being
the Poisson transform of P (U) [29,30].

In the following, we calculate directly measured photon prob-
ability distributions via their detected photoelectron probability
distributions [31–34] originating from photon probability dis-
tributions of scattered light [35]. The photoelectron probability
distribution is characterized by all moments of the distributions.
As a “condensed” measure of photoelectron or photon proba-
bility distributions, one can choose the Fano factor, the Mandel
parameter, or the central second-order correlation coefficient
g (2)(τ = 0) [28]. For our work we select g (2)(τ = 0), also called
the central intensity correlation coefficient and measurable in a
Hanbury Brown–Twiss intensity interference experiment [36],
even with ultrafast time resolution for spectrally broad-band
light [37]. The central second-order correlation coefficient
g (2)(τ = 0) [7,38] of the intensity is defined as

g (2)(τ = 0)=
〈I 2
〉

〈I 〉〈I 〉
(2)

and can be calculated from the factorial (F ) or the ordinary
moments (M) of the measured intensity I , i.e., from the
detected photoelectrons via

g (2) =
F (2)

Photoelectrons

(F (1)
Photoelectrons)

2 =
M(2)

Photoelectrons −M(1)
Photoelectrons

(M(1)
Photoelectrons)

2 , (3)

where F (1)
Photoelectrons and F (2)

Photoelectrons are now the first- and
second-order factorial moments of the photoelectron distribu-
tion p(n, T ) and M(1)

photoelectrons and M(2)
photoelectrons are its first-

and second-order ordinary moments, respectively.

Due to the fact that P (n) is the Poisson transform of p(U)
[Eq. (1)], the factorial moments F (k)

Photoelectrons of P (n) are equal

to the ordinary moments M(k)
lightintensity of same order k of p(U),

and vice versa. This facilitates the calculation of g (2) enormously
since the calculation of the factorial moments of P (n) is some-
times rather tedious or even impossible in most cases, whereas
the ordinary moments of the intensity probability distribution
P (I ) are given on a straightforward basis. In the following,
we omit (τ = 0) in the second-order correlation coefficient
expression, writing it simply reduced to g (2). Finally, this yields
from Eqs (4) and (5) for g (2)

g (2) = F (2)
Photoelectrons/(F

(1)
photoelectrons)

2

=M(2)
lightintensity/(M

(1)
lightintensity)

2. (4)

We now recall the work of Bertolotti for the calculation of the
probabilities of scattered light [8]. The probability distribution
of the intensity of quasi-monochromatic light P (Iscattered light)
scattered by a fluctuating medium can be described as the
product of two statistically independent probability distri-
butions of two statistical variables P0(I0)= Plight(I0) and
P1(J1)= Pscatterer(J1), the first representing the probability
distribution of the incident light field and the second that of
the scattering medium. The joint photon probability can be
expressed as [13]

P (I )scatteredlight =

∫
∞

0

∫
∞

0
P0(I0)P1(J1)δ(I − I0 ∗ J1)dI0dJ1.

(5)
This leads to the following expression for the Mandel for-

mula for the measured photoelectron probability distribution
P (n, T ) of the scattered light [8]:

p(n, T )=
1

n!

∫
∞

0
γ nTn I n

0 J n
1 e−γT I0 J1 P0(I0)P1(J1)dI0dJ1

(6)
with γ = α · β, where β is a characteristic for the Gaussian scat-
tering process.

For the calculation of g (2) of the photoelectron probability
distribution in the case of scattered light, we recall that the
probability distribution of the scattered light P (I )scatteredlight

is obtained as the product of two independent probability dis-
tributions of two statistical variables P0(I0)= Plight(I0) and
P1(J1)= Pscatterer(J 1). This means that the ordinary moments
M of P (I )scatteredlight are the products of the ordinary moments
M of P0(I0)= Plight(I0) and P1(J1)= Pscatterer(J1), respec-
tively. This results in g (2) of the scattered light according to
Eq. (5):

g (2)scattered light = (M
(2)
P 1 ∗M(2)

P 0)/(M
(1)
P 1 ∗M(1)

P 0)
2. (7)

The equivalence of this relation for calculating g (2) according
to Eq. (7) or by calculating g (2) according to the moments of
Eq. (6) will be exploited in the following if numerically possible.
In the subsequently following investigations, we use the nomen-
clature of X X Y Y for the scattered light with the impinging light
statistics X X and the scattering statistics Y Y .
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3. GAUSSIAN SCATTERING PROCESSES

At first, we assume now a Gaussian scattering process consider-
ing that the susceptibility fluctuations of the scattering medium
are produced by random motions of particles. Its probability dis-
tribution of P1(J1) is given by an exponential distribution (E )
[10]

Pscatterer = P1(J1)=
1

〈J1〉
e
−J
〈J1〉 (E ) (8)

with 〈J1〉 being the mean intensity of P1(J1). We note that in
fact there are also non-Gaussian scattering approaches [13,15]
being relevant in a lot of cases and which we shall investigate in
Section 4. However, here we start with Gaussian scattering proc-
esses, e.g., experimentally realized by a rotating ground-glass
diffuser representing the ideal Gaussian case, supported by the
clear Bose–Einstein distribution of the detected photoelectrons
when laser light is scattered (see, e.g., [6,39]). Two simple cases
for the detected photoelectron probability distribution result
immediately.

A. Dirac Delta

1. With the probability distribution of the light P0(I0)being a
Dirac delta (DD) function,

P0(I )= δ(I − 〈I0〉) (DD), (9)

which is equivalent to the case of laser light impinging on a
Gaussian medium with exponential distribution [Eq. (8)], one
obviously obtains through Eqs. (5), (8), and (9) the following
expression for the PDF of the scattered light:

P (I )scatteredlight =
1

〈n〉
e
−I
〈n〉 (DDE ), (10)

where 〈n〉 = γT I0 J1 represents the average number of counts
recorded in the time interval T.

The Poisson transform of Eq. (10) results in

p(n, T )=
1

〈n〉
1(

1+ 1
〈n〉

)n+1 (DDE ), (11)

which represents the usual Bose–Einstein distributions (also
called geometrical distribution) for P (n, T ).

B. Exponential Distribution

2. The case with P0(I0) being an exponential distribution (E )

P0(I )=
1

〈I0〉
e
−I
〈I0〉 (E ) (12)

is equivalent to the case of a Gaussian thermal light beam
impinging on a Gaussian medium and scattered by it.
Equations (5), (8), and (12) immediately deliver

P (I )scatteredlight =
2

〈n〉
K0

(
2
√

I
√
〈n〉

)
(E E ), (13)

where 〈n〉 = γT I0 J1 with K0 being the Bessel function of first
order [29].

The Poisson transform of Eq. (13) results in a photoelectron
distribution

P (n)=
0(1+ n)
〈n〉

U
(

1+ n, 1,
1

〈n〉

)
(E E ) (14)

with U(1+ n, 1, 1
〈n〉 ) being the Tricomi confluent

hypergeometric function of second kind.
The Tricomi hyperconfluent function of second kind can also

be expressed in terms of the Whittaker function [40] resulting in
the following equivalent expression for the PDF P (n) [8]:

P (n, T )=
n!

〈n〉
1
2

exp

(
1

2〈n〉

)
WhittakerW

−(n+ 1
2 ),0

(
1

2〈n〉

)
(E E )

(15)
with 〈n〉 = γ · T · I0 · J1, and Wk,m(x ) being the Whittaker
function [40].

These two derived fundamental and exemplaric pho-
toelectron distributions yield the following values for
g (2):

From Eq. (11) : g (2)scatteredlight = g (2)light · g
(2)
scatterer = g (2)DD · g

(2)
E = 2.0,

(16)

From Eq. (14) : g (2)scatteredlight = g (2)light · g
(2)
scatterer = g (2)E · g

(2)
E = 4.0.

(17)
This means that the effect of bunching and super-bunching by
scattering of light is realized. Scattering Dirac delta light (DD)
at a Gaussian scatterer (E ) transforms g (2) from one to two, and
scattering thermal Gaussian light (E ) transforms g (2) from two
to four.

C. DeGiorgio

With this basis, we extend now the formalism depicted above
towards scattering of super-bunched light [26]. Degiorgio
[9,41,42] has derived that the probability distribution for this
superbunched light, sometimes also called Gaussian square
light or chi21 light [29] or light having an exponential square law
probability distribution, can be described by

P (I )DeGiorgio =

√
1

π I0 I
Exp(−I/I0) (DG). (18)

The first- and second-ordinary moments of this super-
bunched twin photon light distribution P (I )light [Eq. (18)]

amount to 〈I 〉 = I0
2 and 〈I 2

〉 =
3(I0)

2

4 , respectively, and the
second-order correlation coefficient g (2) thus to three [41],
experimentally confirmed by [26] by exploiting two-photon
absorption in multiplicative semiconductor detectors [26],
which even enables measurements of photon statistics prop-
erties with ultrafast time resolution on a 10 fs time scale. The
corresponding photon statistics, i.e., the Poisson transform of
Eq. (18), is found to be [41,42]

P (n)DeGiorgio =
n!!
n!

I n
0

2n+1(1+ I0)
n+1/2 (DG) (19)

with a second-order correlation coefficient

g (2) = 3 (DG). (20)
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Now, we take this type of light and perform a single Gaussian
scattering process represented by an exponential probability
distribution [8]. The intensity distribution of the light to be
scattered is assumed to have an exponential square law prob-
ability distribution (DG) [Eq. (18)] [29,41]. Thus, the PDF
P (I ) of the scattered light is the product or the convolution
[according to Eq. (5) of an exponential (Eq. (8)] for the scatterer
and an exponential square law PDF [Eq. (18)] for the light,
respectively, resulting in

P (I )scatteredlight =
1
√

I 〈n〉
e−2

√
I
〈n〉 (DG E ) (21)

with 〈n〉 = I0 · I1 containing the characteristic parameters
of the light intensity [Eq. (18)] and the scatterer [Eq. (8)],
respectively. The ordinary moments of Eq. (21) amount to
〈I 〉 = 1/2 · I0 · I1 and 〈I 2

〉 = 3/2(I0 · I1)
2 with g (2) = 6.

Applying the Poisson transform onto the PDF of Eq. (21) yields
the photon electron distribution according to Eq. (1):

P (n)=
0[ 12 + n]

〈n〉
√
π

U
(

1+ n,
3

2
,

1

〈n〉

)
(DG E ) (22)

with U(1+ n, 3
2 ,

1
〈n〉 ) being the Tricomi confluent hyperge-

ometric function of second kind and 0[ ] being the Gamma
function [43]. The same results can also be achieved by Poisson
transforming Eqs. (8) and (18) according to Eq. (6).

For the calculation of the mean 〈n〉, the second moment
〈n2
〉, and the central second-order correlation coefficient g (2)

of the photoelectron distribution P (n) of this scattered light
[Eq. (22)], we rely on both Eqs. (3) and (7).

The first- and second-ordinary moments of the scattering
distribution P (I )scatterer [Eq. (8)] amount to I1 and 2(I1)

2,
respectively, with a g (2) value of two. This results in a normalized
second-order correlation coefficient g (2) of the scattered light
[Eq. (22)] according to Eq. (7):

g (2) = 6 (DG E ). (23)

Thus, we achieved the generation of hyper-bunched light
[27] with a Tricomi confluent hypergeometric function of
second kind for the photoelectrons and with a second-order
correlation coefficient g (2) of six by scattering superbunched
light with a g (2) of three at a Gaussian scatterer.

4. NON-GAUSSIAN SCATTERING PROCESSES

We now extend our calculations of the photoelectron and pho-
ton probability distribution to the case of a non-Gaussian scat-
terer represented by a Rayleigh scattering process.

Because the resulting Meijers G function and the generalized
hypergeometric function [43–46] have never been discussed
so far in the context of photoelectron statistics—as we shall see
in the following—we plot in Section 5 in Figs. 1 and 2 all the
photoelectron probability distributions for the different cases
for the same mean. This depiction should visualize for compari-
son the different g (2) behavior of the Meijers G function, the
Whittaker function, the geometric distribution, and the Poisson
distribution. The first represents the thermal light (the Rayleigh
scattering case), the second the thermal light (the Gaussian
scattering case), the third the thermal light reference, and the

fourth the laser light reference, the fourth being quasi the refer-
ence for the double scattering process of laser light and the last
two representing the reference of the distribution function for
Bose–Einstein statistics and laser light. Furthermore we also
summarize in Section 5 in Table 1 the g (2) values for the various
light and scatterer probability distributions and the resulting
g (2) for the scattered light.

We would like to complement our theoretical calculation
investigations now for the case in which the scattering media are
described by a non-Gaussian scattering function. An interesting
approach is assuming a Rayleigh-type function for the scattering
medium, which can be experimentally realized by a volume
scatterer element [47]. The intensity probability distribution
(PDF) with the characteristic parameterσ is written as

P (I )scatter = P (I )Rayleigh =
2I
σ 2

exp

(
−I 2

σ 2

)
(R), (24)

where for the Rayleigh distribution, values for 〈I 〉, 〈I 2
〉, and g (2)

are given by

〈I 〉 =
√
πσ

2
〈I 2
〉 = σ 2 g (2) =

4

π
(R). (25)

With the three selected representative light distributions,
Dirac delta-like laser [DD; Eq. (9)], exponential thermal-like
[E ; Eq. (12)], and χ2 [DG ; Eq. (18)], we calculate now the
following scattered light distributions P (I )scatteredlight and the
photoelectron distributions P (n) after Poisson transformation,
concluding in the calculation of g (2).

A. Dirac Delta–Rayleigh DDR

By assuming the Dirac-delta light intensity distribution (DD)
Eq. (9) we obtain the following distribution of the scattered
light:

P (I )scatteredlight = 2 · I · exp

(
−I 2

I0
2σ2

2

)
/I0

2σ2
2 (DDR),

(26)
yielding the following expression for the photoelectron PDF:

P (n)= 2(−1−n)(1+ n)I0σ
nU
(

1+
n
2
,

1

2
,

I 2
0 σ

2)

4

)
(DDR)

(27)
with the characteristic parameters of P (n) by using the formal-
ism of Eq. (7):

〈n〉 =
1

2
I0σ
√
π 〈n2

〉 = I0
2σ 2 g (2) = 4/π (DDR). (28)

B. Exponential–Rayleigh

By assuming the exponential light intensity distribution [(E ),
Eq. (12)] we obtain the following distribution of the scattered
light:

P (I )scatteredlight =

(
I ·MeijerG

[
(( ), ( )),

((
−

1

2
, 0, 0

)
, ( )

)
,

I 2

4I0
2σ 2

])
/
[
2I0

2σ 2√π
]

(E R), (29)
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P (n)=
1

3
√
π(I0σ)

5
2 n!

(
3I0

2σ 20

(
3

4

)
0

(
1

2
+ n

)

×HypergeometricPFQ

[(
1

4
+

n
2
,

3

4
+

n
2

)
,

(
1

4
,

1

2

)
,−

1

I0
2σ 2

]
− 12I0σ0

(
5

4

)
0

(
3

2
+ n

)
×HypergeometricPFQ

[(
3

4
+

n
2
,

5

4
+

n
2

)
,

(
3

4
,

3

2

)
,−

1

I0
2σ 2

]
+ 8(1+ n)

√
π I0σn!

×HypergeometricPFQ

[(
1+

n
2
,

3

2
+

n
2

)
,

(
5

4
,

7

4

)
,−

1

I0
2σ 2

])
(DG R), (33)

yielding the following expression for the photoelectron PDF
after Poisson transformation:

P (n)=
(

2n
·MeijerG

[((
1

2
(−n − 1),−

n
2

)
, ( )

)
,

((
−

1

2
, 0, 0

)
, ( )

)
,

1

I0
2σ 2

])
/(I0

2σ 2πn!) (E R).

(30)

For the mean 〈n〉, the second moment 〈n2
〉 of n, and g (2) we

obtain via the formalism of Eq. (7)

〈n〉 =meanE ·meanR =

√
π I0σ

2

〈n2
〉 = 2I0

2σ 2

g (2) = 8/π (E R). (31)

C. DeGiorgio–Rayleigh

Combining a Rayleigh scattering process [R , (Eq. (24)] and the
DeGiorgio light intensity PDF [DG , (Eq. (18)] according to
Eq. (5) we obtain the following intensity PDF of the scattered
light:

P (I )=
1

3I0
2σ 2

(
3

√
I0σ

Iπ

(
I0σ0

(
3

4

)

×HypergeometricPFQ

[
( ),

(
1

4
,

1

2

)
,−

I 2

4I0
2σ 2

]

− 4I0
(

5

4

)

×HypergeometricPFQ

[
( ),

(
3

4
,

3

2

)
,−

I 2

4I0
2σ 2

])
+ 8I

×HypergeometricPFQ

[
( ),

(
5

4
,

7

4

)
,−

I 2

4I0
2σ 2

])
(DG R)

(32)

which after Poisson transformation leads to the photoelectron
PDF of the scattered light according to

where HypergeometricPFQ[(,),(,),( )] denotes the generalized
hypergeometric function also written as p Fq [; ; ; ; ; ].

Here, for the calculation of the moments and of g (2) of
P (n)DeGiorgio−Rayleigh we again use the formalism as described
above by Eq. (7) resulting in

〈n〉DeGiorgio−Rayleigh = 〈n〉DeGiorgio · 〈n〉Rayleigh

=
1

4
I0σ
√
π,

〈n2
〉DeGiorgio−Rayleigh = 〈n2

〉DeGiorgio · 〈n2
〉Rayleigh

=
3

4
I0

2σ 2,

g (2)DeGiorgio−Rayleigh = 12/π (DG R). (34)

5. VISUALIZATION OF THE PROBABILITY
DENSITY FUNCTIONS AND THE
CORRESPONDING SECOND-ORDER
CORRELATION COEFFICIENT

In Figs. 1 and 2 we depict the PDF of the scattered light dis-
tribution for the six cases as calculated in Sections 3 and 4.
For the calculation we considered a value of γ = 1.0 and of
σ = 2.0. In addition as a reference we depict the Poissonian
and the geometrical (Bose–Einstein) distribution. The super-
and hyper-bunching is qualitatively visible from the steepening
of the PDF towards zero photon number developing from
the Poissonian distribution. This is in more detail and quan-
titatively illustrated in Table 1 where according to the chosen
nomenclature of the light and scattering statistics the achieved
g (2) is listed. We see that the highest hyper bunching value of
g (2) = 6.0 is realized for an EE process; however, still for an ER
process a hyper-bunching value with a g (2) = 12/π is achieved.

6. VIEW ON EXPERIMENTS

The necessary experimental setup is described straightforward
in the literature. We refer to the original Martienssen experi-
ment from 1966 [3,4], including the laser light source and the
rotating scatterer for the realization of the pseudothermal light
source, subsequently exploited, e.g., by Ferri et al. [6,48–50]
and Bondani et al. [22,23] and even discussed under didactical
student lab course aspects [51,52]. The aspects of the realization
and properties of a PDC source can be found in [53–55]. We
note here that an interesting approach would be exploiting
bunched light originating from amplified spontaneous emission



766 Vol. 41, No. 3 / March 2024 / Journal of the Optical Society of America B Research Article

Fig. 1. Depiction of photoelectron distributions P (n) as a function
of the photon number n calculated for laser light [Dirac-delta (DD)]
scattered at a Gaussian Medium (E ) DDE , for thermal light (expo-
nential) (E ) scattered at a Gaussian medium (E ) E E , for Chi squared
light with super-Poissonian statistics (DG) and for Chi squared light
with super-Poissonian statistics (DG) scattered at a Gaussian medium
(E ) DG E , all for the same mean 〈n〉 = 2.0. For comparison, a Poisson
photon distribution P and the geometrical (or Bose–Einstein or
exponential) disribution (E ) for the same mean are also shown.

Fig. 2. Depiction of photonelectron distributions P (n) as a func-
tion of the photon number n calculated for laser light [Dirac-delta
(DD)] scattered at a Raleigh medium (R) DDR , for thermal light
(exponential E ) scattered at a Rayleigh medium (R) E R , and for Chi
squared light (DG) with super-Poissonian statistics (DG) scattered
at a Raleigh medium (R) DG R , all for the same mean 〈n〉 = 2.0. For
comparison a simple Rayleigh distribution (R), a Poisson photon (P )
distribution, and a geometrical (or Bose–Einstein or exponential)
distribution (E ) are shown, all for the same mean.

(ASE) light generated by semiconductor-based super lumines-
cent diodes, which exhibit an ideal thermal emitter character
with a g (2) value equal to 2.0 thus being real thermal light [56],
instead of the pseudo-thermal light.

7. CONCLUSION

In conclusion, we have demonstrated that a single scattering
process of superbunched light with a second correlation coef-
ficient of three within a Gaussian scattering media leads to
light with a second correlation coefficient of six and within a
Rayleigh scattering process to light with a second correlation
coefficient of up to 12/π . These theoretical investigations

Table 1. Overview of the Statistics of the Impinging
Light and the Scatterer Statistics Underlying the
Scattering Process and the Resulting Second-Order
Correlation Coefficient g(2) of the Scattered Light

Light-Scatterer X XY Y g (2)

light g (2)
scatterer g (2)

scatteredlight

Poisson 1.0 – –
DDE 1.0 2.0 2.0
EE 2.0 2.0 4.0
DGE 3.0 2.0 6.0
DDR 1.0 4/Pi 4/Pi
ER 2.0 4/Pi 8/Pi
DGR 3.0 4/Pi 12/Pi

suggest directly straightforward experimental investigations
as proof for the generation of super-bunched light. Required
appropriate experimental concepts have been shortly outlined.
The quantum aspects of these comprehensively characterized
novel states of super- or even hyper-bunched light in respect of
spatial, spectral, and polarization correlations, tailored and opti-
mized with respect to real-world metrology applications, should
then be exploited in quantum metrology applications [57–60]
based on a correlated photon approach as ghost imaging [56],
ghost spectroscopy [61], and ghost polarimetry [62], thus
paving the avenue for demonstrating their superior metrology
performance.
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