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Abstract
Atomic wave packets in optical lattices which are both spatially finite and time dependent
exhibit many striking similarities with light pulses in photonic crystals. We analytically
characterize the transmission properties of such a potential geometry for an ideal gas in terms
of a position-dependent band structure. In particular, we find that at specific energies, wave
packets at the centre of the finite lattice may be enclosed by pairs of band gaps. These act as
mirrors between which the atomic wave packet is reflected, thereby effectively yielding a
matter wave cavity. We show that long trapping times may be obtained in such a resonator and
investigate the collapse and revival dynamics of the atomic wave packet by numerical
evaluation of the Schrödinger equation.

1. Introduction

Ultracold atoms confined in periodic optical potentials, so-
called optical lattices, are versatile systems which permit us to
address a large variety of open problems in condensed matter
physics [1–4]. In addition, optical lattices allow us to go
even one step beyond what can be realized in usual condensed
matter systems. For instance, the optical lattice depth can be
suddenly or adiabatically modified in time inducing a change
on the wave packet dynamics on time scales much shorter than
the typical atomic coherence times. Moreover, optical lattices
have become fundamental ingredients in the realization of
quantum devices as diverse as atomic clocks [5], gravitometers
[6] and interferometers [7].

Atomic quantum devices generally require an extremely
precise and coherent control of the atomic motion, the internal
states of the atoms and their interactions. The toolbox available
for the manipulation of ultracold gases is vast, and it is
nowadays routinely possible to change almost at will the spatial
dimensionality of the gas, the temperature, the number and
the statistics of the atomic species, and the strength of the

interparticle interactions. For controlling the external degrees
of freedom, there is a large freedom in the choice of externally
confining potentials. As an example, it is possible to guide
neutral atoms by means of atomic waveguides. These can be
created either optically, using tightly focused laser beams [8]
or micro-fabricated optical elements [9, 10], or magnetically,
by electric circuits imprinted on atom chips [11–15]. Both
schemes generate an effectively one-dimensional guide, which
strongly suppresses the motion of the atoms in the transversal
directions.

Some quantum devices may require specific shaping or
filtering of an atomic wave packet. A promising potential
structure to shape a wave packet is a 1D optical lattice with
spatially finite extent. The propagation of the wave packet
in such a structure mimics closely the behaviour of photons
in a (1D) photonic crystal [16, 17]. Previous studies of
atomic wave packets in finite lattices show that this potential
may be used as a momentum-selective filter [18, 19] or as
a matter wave cavity capable of producing multiple wave
packet reflections with pulsed emission [20]. All the above
phenomena appear for attractive as well as for repulsive
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Figure 1. Sketch of the proposed setup. Two laser beams with wave
vectors �k1 and �k2 are intersected at an angle θ to form a finite optical
lattice, while an extra beam propagating along the �z direction
creates a waveguide for the atoms. The lower part shows the
potential resulting from the finite lattice along the waveguide axis.

potentials, yielding both classical and quantum trapping [21,
22]. In the presence of atom–atom interactions, the finite
periodic structure gives rise to the occurrence of nonlinear
effects, such as the creation of solitons [23].

In this paper, we develop an analytical model for
predicting the main properties of an ideal gas propagating
in a finite optical lattice. Our results agree well with those
obtained by numerical integration of the Schrödinger equation.
After analysing the filtering and shaping capabilities of a
stationary potential, we extend our studies to time-varying
optical potentials, showing how the spatial variation of the
band gaps may be exploited to create a matter wave cavity,
in which the wave packet can be trapped and experiences
characteristic collapses and revivals.

2. Setup

A periodic potential with finite envelope can be realized
by intersecting two identical, not counter-propagating, laser
beams, as shown in figure 1. We consider two Gaussian laser
beams, which are intersecting at the angle θ , each with beam
waist wb, wave number kb, and individually giving a potential
with depth V0/4. The resulting lattice has an envelope given
by the transverse intensity distribution of each beam and the
angle θ .

We add a one-dimensional waveguide to transversely
confine the atomic wave packet. The waveguide may be
realized by a red-detuned focused laser beam with waist wg

and potential depth Vg , propagating along the z-axis. The laser
beam producing the waveguide has to be either far-detuned or
perpendicularly polarized with respect to the lattice beams to
prevent interference effects. We require that the atomic wave
packet is in the transversal ground state of the waveguide, i.e.
that the total energy E of the wave packet is small compared
to a single quantum of the transversal harmonic oscillator,

E < h̄ωho. Here ωho =
√

4Vg/mw2
g , with m being the

mass of the atom. This condition ensures that the dynamics
is effectively limited to the longitudinal direction only and
that the wave packet has a transverse width given by the size
of the harmonic oscillator ground state, aho = √

h̄/mωho.
The condition on the energy sets a tight bound on the initial
temperature of the sample, but for higher temperatures the
calculation can be extended in a straightforward fashion to
accommodate excited transverse eigenstates [24]. Although
the phenomena presented below are quite general, in this
paper we consider the experimentally appealing situation of
87Rb atoms guided in dipole potentials far red-detuned to the
5S1/2 → 5P3/2 transition.

Close to the axis of the waveguide
(
x2 + y2 < a2

ho

)
, the

potential created by the combination of the finite lattice and
the waveguide is

V3D(x, y, z) = −V0 exp

(
−2(x2 + y2)

w2
⊥

− 2z2

w2
z

)
cos2 (kLz)

− Vg exp

(
−2(x2 + y2)

w2
g

)
. (1)

Here, wz = wb/ cos (θ/2) and w⊥ = wb/ sin (θ/2) are the
waists of the finite lattice along the axis of the waveguide
and transversally to it, respectively. The wave number
kL = kb · sin (θ/2) of the lattice depends on the angle between
the beams, and on the wave number of laser beams creating
the lattice. In the following, all momenta and energies will be
expressed in terms of the lattice recoil units, pR = h̄kL and
ER = p2

R

/
2m.

Under the assumptions that atoms are trapped on the axis
of the waveguide, and wg � w⊥ and Vg � V0 the variation of
the lattice potential in the transverse direction can be neglected.
Therefore, one is left with a 1D optical lattice potential

V1D(z) = −V0 exp

(
−2z2

w2
z

)
cos2 (kLz) (2)

which has a Gaussian envelope with width wz.
We assume that the atomic wave packet is initially located

inside an additional tightly confining potential well Vin along
z at a large distance z0 from the finite lattice structure, e.g. at
z0 < −3wz. The wave packet is released from this well and
is accelerated at the beginning of each realization. This can
be done, for example, by applying a Bragg pulse [25], hence
adding an initial momentum pin to the wave packet. This sets
the expanding wave packet in motion towards the finite lattice,
in analogy with a light pulse impinging on a photonic crystal.

Interactions between dilute ultracold bosons may be
characterized in terms of a two-body contact potential whose
strength is proportional to the s-wave scattering length a. For
sufficiently large densities, interactions play an important role
in the dynamics of a trapped ultracold gas, and upon release
from a trapping potential, these cause a rapid expansion of the
gas. As a consequence, typically already a few milliseconds
after the release, the gas becomes so dilute that the condition
na3 � 1 is satisfied, and interactions may be safely neglected
in the dynamics which follow the rapid expansion. Interaction
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Figure 2. Position-dependent band structure of a finite optical lattice with wz = 50 μm. The upper and lower parts depict |Re[k(z, p)]|/kR

and Im[k(z, p]/kR , respectively, for two different values V0 of the maximum optical lattice depth. The roman numbers index the different
bands and the continuous lines mark the band edges.

effects in finite optical lattices, and in particular the formation
of band gap solitons, have been discussed previously in [23].
In the following, we consider the dynamics of a wave packet
in a waveguide after a sufficiently long time after the release
from Vin. Since we are interested in the dynamics over time
scales which are long compared to the early interaction-driven
expansion, we can, without loss of generality, assume that each
particle behaves independently.

The Hamiltonian describing the dynamics along the z-axis
therefore adopts the simple form

H = −h̄2∂2
z

2m
− V0 exp

(
−2z2

w2
z

)
cos2 (kLz) . (3)

3. Finite optical lattices as momentum filters

In this section, we consider the transmission properties of a
finite optical lattice, showing that a simple analytical model is
able to reproduce in detail the transmission and reflection for
different incoming momenta. In the limit of P � �x � wz

where the spatial extent of the wave packet �x is large
compared to the lattice period P = λL/2 = λb/(2 sin(�/2)),
but small compared to the waist of the lattice wz, one may
assume that at each point along the propagation axis, the wave
packet experiences a periodic potential with the local depth
but with infinite extension [18, 19]. This approximation, the
so-called ‘infinite lattice’ approximation, is equivalent to the

one commonly employed in geometrical optics to describe
propagation in non-uniform media. For electromagnetic
waves, the more complex non-adiabatic phenomena due to
linear coupling between the different polarization components
can lead to additional modifications [26]. Within the ‘infinite
lattice’ approximation, the Hamiltonian in equation (3) may
be directly diagonalized at each point, yielding the position-
dependent band structure shown in figure 2. When the energy
of the wave packet lies inside a band gap (coloured regions in
the lower panels of figure 2), the quasimomentum acquires an
imaginary part, which describes an exponential attenuation of a
travelling wave due to the presence of a band gap. At the same
time, the real part is fixed at the centre (e.g. Re(k) = 0) or the
edge (Re(k) = 1) of the Brillouin zone. The transmission
coefficient for a wave packet crossing the structure from
z = −∞ to z = +∞ may be calculated analytically by
integrating the imaginary part of the wave vector along the
propagation direction. If all components of a wave packet
belong to an allowed band, the transmittivity through the
structure approaches unity. If instead some components enter
a band gap along their propagation through the structure, part
of the wave packet will be reflected backwards. For a given
momentum, the wave packet may encounter one or multiple
gaps.

Since we consider an optical potential with a Gaussian
envelope which is symmetric around the point z = 0, the band
structure is also symmetric with respect to the same point. For
a monochromatic wave with momentum p, the transmission
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coefficient for the particle density is given by T (p) = T 2
+ (p),

where

T+(p) = exp

(
−2

∫ ∞

0
dz Im[k(z, p)]

)
(4)

is the transmission coefficient for the wave propagating from
the centre of the lattice (z = 0) to z = +∞. Whenever a
wave packet is surrounded by a pair of gaps, those behave as
mirrors between which the atoms may be multiply reflected.
For simplicity, we will consider here only the case of a wave
packet which experiences at most one pair of band gaps, but
the present argument may be straightforwardly generalized
to more complex situations. If the point z = 0 belongs to
an allowed band, to calculate the transmission coefficient one
has to take into account the possibility of multiple reflections
between two gaps. The total transmission coefficient for a
given momentum allowing for multiple reflections is given by

T (p) = T 2
+ (p) + T+(p)(1 − T+(p))2T+(p)

+ T+(p)(1 − T+(p))4T+(p) + · · ·

= T 2
+ (p) ·

∞∑
n=0

(1 − T+(p))2n = T+(p)

2 − T+(p)
. (5)

The various contributions on the right-hand side of
equation (5) describe respective trajectories through the
structure with 0, 2, 4, . . . reflections inside the cavity.

This result gives the transmission coefficient for a
monochromatic wave. If we consider a Gaussian wave
packet with a spread in momentum σp around the average
momentum pin, the latter expression has to be convoluted with
the momentum distribution yielding

Tave(pin) = 1√
πσp

∫ ∞

0
dp T (p) · exp

(
− (p − pin)

2

σ 2
p

)
. (6)

As shown in figure 3, the analytic result (solid) reproduces
the main features of the full simulation of the time evolution
of the wave packet obtained by integrating the Schrödinger
equation (dashed line). In the simulations, the lattice period is
chosen to be P = 390 nm and the Gaussian envelope waist is
wz = 50 μm. This can be achieved for example by crossing
two laser beams with wavelength λb = 1064 nm and waist
wb = 34 μm under an angle of � = 94◦.

Discrepancies due to finite-size effects appear at the
regions where the spatial extent of the band gaps gets
comparable to the size of the wave packet. There, the ‘infinite
lattice’ approximation is poorly verified.

4. Time-dependent potentials: trapping atoms in a
band gap cavity

The analytical band-structure calculation above gives us a
tool to design flexible potentials with specific characteristics.
These could be, for example, the analogue to a photonic crystal
with transmission windows at given energies [16, 17]. One
is also able to estimate at which repetition rate and intensity
several matter wave pulses are emitted from the cavity in the
case where multiple reflections occur.
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Figure 3. Transmission of a Gaussian wave packet through a finite
optical lattice. As a function of the average momentum pin of the
incoming wave packet, we plot the transmission coefficient as
obtained by equation (6) (solid, red line) and by direct integration of
the Schrödinger equation (dashed, green line). Here, V0 = 9ER ,
σp = 0.0325 pR and wz = 50 μm. The momentum axis is plotted
vertically for easier comparison with figure 2.

Even more possibilities are opened by changing the finite
potential with time. A possibility is the introduction of a time-
dependent phase shift between the two lattice beams, which
yields a moving lattice. This results in a shift in momentum
of the whole band structure. Also the angle between the laser
beams could be varied in time, with the effect of dynamically
changing the lattice constant [27, 28].

Alternatively, one may change the intensity of the lattice
beams to vary the depth V0 of the potential. This induces
a bending and shifting of the band gap regions as shown
in figure 2 (V0 = 9ER versus V0 = 15ER). If the lattice
depth is increased adiabatically, the quasimomentum of the
atoms inside the lattice is conserved, implying that the atoms
do not change band but simply follow the band and shift to
lower energies. Adiabaticity requires dω

dt
� ω2 [29] which

is, for the high trapping frequencies ω achieved in the axial
direction of a lattice, easily fulfilled. For parameters used in
the example of figure 4 one obtains tramp � 5 μs. On the
other hand, the atoms should not travel too far during tramp

so that one is able to change the potential during the time the
atoms spend between two gap locations. For the parameters
considered here, rubidium atoms with 2h̄kL momentum travel
at a velocity of approximately 10 μm per millisecond which
give a time tramp � 2 ms. Given these constraints, we usually
chose a time of 1 ms for the linear ramp of the potential depth
for our simulations.

An increase in lattice depth yields more reflective band
gaps, as seen by the increase of the corresponding imaginary
part of the wave vector in figure 2 (V0 = 9ER versus
V0 = 15ER). By changing the lattice depth when the wave
packet is at the centre of the lattice between two gaps, one is
able to trap the atoms in a configuration reminiscent of a cavity
closed by two Bragg-like mirrors. By choosing the parameters
carefully, reflectivities close to unity may be achieved. In
order to remain in the quantum trapping regime, the change
in potential energy has to be smaller than the kinetic energy,
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Figure 4. Revival dynamics of a wave packet with initial momentum pin = 2.4pR and momentum spread σp = 0.0325pR trapped in the
finite lattice. The peak lattice depth is ramped linearly from 9ER to 15ER in 1ms between the vertical lines around t = 0. This sequence
creates an almost perfect cavity, with very limited loss. The wave packet oscillates inside the cavity, spreads within the first 40 ms, but after
240 ms the dynamics show a clear revival.

so that the total energy is still positive and the atoms are not
trapped classically.

Exploiting time-dependent potentials, one can easily
realize long trapping times. As an example, we show in
figure 4 the result of a numerical integration of the Schrödinger
equation yielding a lifetime larger than 300 ms in the cavity.
Every time the wave packet hits a mirror (i.e a band gap) of the
cavity, most of the wave packet is reflected but a small fraction
is transmitted and escapes the finite lattice. In the initial part
of the dynamics (up to 40 ms), when the wave packet width
is small compared to the cavity length, one observes separate
transmitted wave packets and achieves the analogue to a pulsed
atom laser. Subsequently the wave packet spreads over the
whole cavity, but at specific times (e.g. t ≈ 240 ms) the pulsed
emission is recovered as the wave packet cyclically reacquires
its original shape.

5. Collapse and revival dynamics

The dynamics of a wave packet inside a finite optical lattice
exhibit interesting collapse and revival dynamics, as seen in
figure 4. Due to the finite momentum width σp, the trapped
wave packet rapidly dephases (collapse) and fills the cavity, but
at specific times we observe a clear compression of the atom
pulse back to its original shape (revival). We investigated
the time needed for such revivals to occur. In order to get a
detailed insight on the problem, we first analyse the dynamics
in a box potential, and then address the question of whether
the same argument may be extended to the band gap cavity
studied here.

5.1. Revivals in a box potential

In a square well with infinite walls, the revival dynamics
is exact and its periodicity may be calculated analytically
due to the simple scaling of the eigenvalues. Indeed, the
eigenfunctions of a 1D square well of length L are sine
functions with wavelengths λn = 2L/n (n = 1, 2, . . .). The
associated eigenfrequencies are given by ωn = h̄k2

n

/
2m =

h̄π2n2/2mL2. Therefore, each Fourier component is

characterized by a period Tn = 2π/ωn = 4mL2/πh̄n2. Since
Tn = T1/n2, a full rephasing of the wave packet is obtained
every

Trev = T1 = 4m

πh̄
L2. (7)

At half of this period, the even frequency components are
rephased, while all the odd frequency components are out-of
phase by π . At Tspec = T1/2 one therefore obtains a specular
revival, i.e. the wave packet is recomposed in two components
with opposite direction of motion. If, on the other hand, the
initial conditions are chosen to be symmetric with respect to
the centre of the well, the components with even values of n
have zero weight, and a full revival is obtained on the shorter
timescale Tsym = T1/8. In all cases, the revival time scales
quadratically with the length of the well L. For a detailed
investigation of related phenomena (the so-called quantum
carpets), see [30].

5.2. Revivals in a finite optical lattice

Inside a finite optical lattice cavity, the eigenenergies do not
follow the simple scaling found above, and the revivals we
observe are only approximate since they are only due to partial
constructive interference. Nonetheless, we observe also in this
case that the revival time scales quadratically with the waist
wz of the Gaussian envelope, as can be seen in figure 5. In
the inset of the same figure, we show that the cavity length
L, extracted from our simulations as the distance between the
two positions where the wave packet is reflected at a gap,
scales linearly with the waist wz. Therefore, we find that also
for a finite optical lattice Trev ∝ L2, indicating that a similar
description of the revival phenomena as in a box potential can
be applied.

In order to pursue the analogy further, we use the fact that
the presence of an infinite periodic potential affects the motion
of a particle in a simple manner: it renormalizes its mass. The
effective mass of a particle in the nth band is given by the
formula m∗

n = h̄2(∂2En/∂k2)−1, where En is the energy of the
band under consideration. The dynamics of a particle moving
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Figure 5. Revival time as a function of the waist of the Gaussian
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The inset shows the cavity length as a function of the envelope waist.
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in an infinite optical lattice may be effectively described in
terms of a free particle, once the bare mass of the particle is
replaced by the effective mass m∗ [31]. Under the ‘infinite
lattice’ approximation, a particle bouncing back and forth in
a lattice cavity may therefore be considered as a free particle
with mass m∗ bouncing in a box potential. Considering that
the lattice depth changes along the path of the wave packet, we
average the effective mass inside the cavity. Hereby, we use a
weighing factor given by the inverse of the group velocity in
order to take into account the different durations that the wave
packet spends at different positions inside the lattice.

Revival times and cavity lengths obtained by numerical
simulation are shown in figure 6 as a function of the maximum
depth of the potential V0. There one observes an increase
of the revival time, while the cavity length decreases with
larger values of V0 which contradicts equation (7) for constant
mass.

Following equation (7), the revival time Trev can also
be calculated using the analytic results: L and m∗ may be
computed straightforwardly from the band structure shown in
figure 2. Although the revival time calculated with the latter
method agrees in order of magnitude with the one extracted
from numerical integration, a thorough quantitative analysis
shows that the analogy with a simple square well cannot be

achieved quantitatively. This poor agreement between analytic
approximation and full numerical simulation may be caused
by finite size effects not included, by the rapid changes of the
finite lattice in position space or by the complicated spatial
dependence of the effective mass. A more detailed analysis
of the revival time remains an open and interesting problem,
which could be addressed in a future work.

6. Conclusions

We have studied the properties of an ideal atomic wave packet,
which may be generated by releasing a BEC and waiting for
the interactions to become negligible, in the presence of a finite
and time-dependent optical lattice. In analogy with a photonic
crystal, the structure behaves as a momentum-selective filter.
We have demonstrated how its transmission properties are well
captured by a theoretical model based on a spatially dependent
spectrum. By varying the intensity of the lattice beams and
thus the potential depth in time, we have shown how a finite
lattice can be used as a matter wave cavity (band gap cavity)
with long lifetime for atomic wave packets. We have also
investigated the collapse and revival dynamics of a trapped
wave packet by means of the Schrödinger equation, and we
have shown that the revival time scales quadratically with the
cavity length, similar to a square well potential.

Possible applications of the configuration described in
this paper include the realization of an atom laser with pulsed
emission into a waveguide, or the reversible storage and release
of a wave packet. The device could also be used as a wave
packet splitter, since at half of the revival time the cavity
contains two identical counter-propagating wave packets. If
the lattice is switched off adiabatically at this moment, two
wave packets with opposite momentum are generated.

The experimental techniques needed to realize such
potentials are readily available, and we expect that this
paper will stimulate further experiments heading towards
the implementation of photonic band gap configurations for
atomic wave packets.
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