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Three level atom optics in dipole traps and waveguides

K. Eckert a,d,*, J. Mompart a, R. Corbalán a, M. Lewenstein b,d,1, G. Birkl c
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Abstract

An analogy is explored between a setup of three atomic traps coupled via tunneling and an internal atomic three-level system inter-
acting with two laser fields. Within this scenario we describe a STIRAP like process which allows to move an atom between the ground
states of two trapping potentials and analyze its robustness. This analogy is extended to other robust and coherent transport schemes and
to systems of more than a single atom. Finally it is applied to manipulate external degrees of freedom of atomic wave packets propa-
gating in waveguides.
� 2006 Elsevier B.V. All rights reserved.
1. Introduction

Exploring the wave nature of massive particles has
become possible through the enormous experimental
advances in the cooling of neutral atoms, ions, and mole-
cules to temperatures where the de Broglie wavelength
becomes comparable to or larger than optical wavelengths.
These achievements have stimulated great interest into the
field of quantum atom optics as an analogue of quantum
optics with light [1,2]. A major objective within this field
is to develop elements for the manipulation of the spatial
wavefunction of atoms or atomic ensembles, as beam split-
ters, mirrors, lenses, etc. Applications are broad, ranging
from a fundamental interest in probing the wave nature
of particles to the manipulation of neutral atoms for imple-
menting quantum gates and to the construction of atom
interferometers for precision measurements of physical
constants or as inertial sensors. In all these cases, a crucial
0030-4018/$ - see front matter � 2006 Elsevier B.V. All rights reserved.
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requirement is – as in quantum optics – to preserve the
coherence of the matter wave.

Of special interest to atom interferometers as well as to
quantum information processing are concepts to trap,
manipulate, or guide atomic matter waves. For trapped
atoms, the interaction with external fields can be precisely
controlled, spreading of the wave packet can be inhibited
in some or all spatial dimensions, and the effect of gravity
can be compensated. Trapping and guiding of neutral
atoms is usually based either on the interaction of the
atom’s permanent magnetic dipole moment with magnetic
fields [3,4] or on the coupling of laser fields to the atom’s
induced dipole moment [5]. Arrangements of current-carry-
ing wires [3,4,6], standing light-waves [7,8], and optical lat-
tices and superlattices [9–11], microsized dipole traps [12],
time-dependent holograms [13], or appropriately shaped
microlenses [14,15] allow to design and control a variety
of potential shapes. Examples are Y-shaped guiding geom-
etries to split a wave packet [16–20], cold atoms storage
rings from guides forming a closed loop [21,22], or traps
whose separation can be controlled in time [15,23–25].
For a Bose–Einstein condensate trapped in a double-well
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Fig. 1. Illustration of the analogy between a system of three coupled
trapping potentials arranged linearly and an atomic three-level system in
K-configuration. The tunneling matrix elements J correspond to the
optical Rabi frequencies, the detunings are given by the difference between
on-site energies.
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potential, interactions play a crucial role leading to anhar-
monic oscillations and self-trapping, as demonstrated
experimentally [24]. On the other hand, a single atom ini-
tially located in one of two traps oscillates in a Rabi-type
fashion between the two potentials in the presence of tun-
neling. This is in close resemblance to a two-level atom
interacting with a laser field, but in contrast the ‘Rabi-
frequency’ is controlled via tuning the tunneling. Such a
process, if implemented correctly, is coherent as it does
not introduce uncontrollable phases, and it indeed allows
for a simple realization of quantum bits and quantum gates
[26]. This technique however is not robust under variations
of the system parameters and thus requires precise tempo-
ral control of the potentials. The same problem is of course
present in optical two-level system, where a variety of
robust techniques have been developed which are based
on controlling couplings in multi-level systems, and which
are nowadays standard techniques in experiments.

Here we will provide a theoretical analysis of atom opti-
cal analogues to three-level techniques, especially discussing
a process reminiscent of stimulated Raman adiabatic pas-
sage (STIRAP, [27]) to coherently move atoms between
traps. Other types of processes, as, e.g., coherent population
trapping (CPT, [28]) to create spatial superpositions of
atomic wavefunctions are discussed in [29]. We will further-
more provide simulations showing that this technique is
also applicable to wave packets propagating in guiding
structures.

2. Time-dependent trapping potentials

To obtain an analogy between external degrees of free-
dom of an atom in a system of traps coupled via tunneling
and an electronic three-level system coupled via the electric
dipole-interaction with two laser fields, consider a linear
arrangement of three atom traps. We assume strong confine-
ment in the orthogonal directions, such that the dynamics
can be restricted to the one-dimensional (1D) Hamiltonian

Ĥfree ¼
Z

dxŵyðxÞ p2
x

2m
þ V ðx; tÞ

� �
ŵðxÞ

�
Z

dxŵyðxÞH freeŵðxÞ; ð1Þ

where V(x, t) describes the potential consisting of three
traps with tunable distances. At each time t, Hfree can be
diagonalized to obtain the instantaneous eigenstates. For
large distance between the traps, these are localized at the
centers of the traps. In the general case, states /L(x, t),
/M(x, t), and /R(x, t), localized around the centers of the
left, middle, and right trap, respectively, can be constructed
from suitable combinations of the eigenstates with lowest
energy. Restricting to these states, we can expand
ŵðxÞ ¼

P
a¼L;M;Rb̂a/aðxÞ to obtain [30]

Ĥfree ¼ �J LMðtÞb̂yLb̂M � J MRðtÞb̂yMb̂R

� 1

2

X
a¼L;M;R

laðtÞb̂yab̂a þ c:c: ð2Þ
Here J abðtÞ¼�
R

dx/�aðx;tÞH freeðx;tÞ/bðx;tÞ describes nearest-
neighbor tunneling and laðtÞ¼�

R
dx/�aðx;tÞH freeðx;tÞ/aðx;tÞ

are the on-site energies. Interactions of next-nearest neigh-
bors have been neglected. Considering just a single atom
and shifting the ground state energy, we arrive at the
following Hamiltonian, isomorphic to the Hamiltonian of
a three-level system coupled by two laser fields in the rotat-
ing wave approximation [27,31]:

H ¼ �J LMðtÞðj/Lih/Mj þ j/Mih/LjÞ � J MRðtÞðj/Mih/Rj
þ j/Rih/MjÞ � ðlMðtÞ � lLðtÞÞj/Mih/Mj
� ðlRðtÞ � lLðtÞÞj/Rih/Rj: ð3Þ

The couplings �JLM and �JMR correspond to the Rabi
frequencies of the pump and the Stokes laser. lM � lL and
lR � lL correspond to the detuning from the single- and
two-photon transition, respectively (see Fig. 1).

Optical three-level systems have been extensively ana-
lyzed. Exploiting the different possible configurations of
detunings and variations of the Rabi frequencies gives rise
to a large number of coherent manipulation schemes of the
underlying three-level system, among them stimulated
Raman adiabatic passage (STIRAP, [27]), coherent popu-
lation trapping (CPT, [28]), and electromagnetically induced
transparency (EIT, [32,33]). The analogy to the system of
three coupled traps, as demonstrated by the Hamiltonian
equation (3), suggests to explore the application of these
effects to coherently manipulate external degrees of free-
dom of a trapped neutral atom, given the ability to control
the corresponding trap parameters. Such a control should
be possible in various trapping configurations such as
magnetic [3,4,6,25] and optical [12–15] microtraps as well
as in optical lattices by exploiting superlattice techniques
[10].

In the following we will especially refer to neutral atoms
trapped in arrays of optical microtraps created by illumi-
nating a set of microlenses with a red detuned laser beam
[15], such that in each of the foci neutral atoms can be
stored by the dipole force in a gaussian shaped trapping
potential. By illuminating the microlenses using indepen-
dent laser beams under different angles, it is possible to
generate various sets of traps whose distance can be tuned
by changing the angle between lasers [15]. As several
potentials are superimposed, potential depths and trap
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frequencies change. For this reason it is difficult to control
the coherent and adiabatic evolution of a trapped atom,
and it is usually necessary to vary the potential depth in
an appropriate way as the traps are approached, e.g.,
through controlling the laser intensity or by adding a blue
detuned laser to produce a compensating extra potential
[34]. Furthermore, optimal control techniques to suppress
non-adiabatic excitations could be employed [26,35]. To
keep the description general and more clear, here we will
however assume a simplified trapping potential V ðxÞ ¼
1
2
mx2

x �minf½xþ aLðtÞ�2; x2; ½x� aRðtÞ�2g, where aL(t) and
aR(t) fix the centers of the traps. Throughout the paper dis-
tances and times are measured in units of the harmonic
oscillator length a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�h=ðmxxÞ

p
and of the inverse trap fre-

quency x�1
x , respectively. We will later comment on a more

realistic type of potentials. Hamiltonian (3) neglects contri-
butions from non-adiabatic couplings to excited vibra-
tional states as well as direct couplings from the left to
the right trap. In what follows we will take into account
the full Hamiltonian (1) through a numerical integration
of the 1D Schrödinger equation to simulate the dynamics
of a neutral atom in the three-trap potential.

2.1. STIRAP – robust shifting of atoms between traps

For zero detunings, one of the eigenstates of Hamilto-
nian (3), the dark state, only involves the states localized in
the left and the right trap: jD(H)i = cosHjLi � sinHjRi.
Here H is the mixing angle which depends on the cou-
plings through cosH = JLM/JMR. To implement a robust
method to move an atom from the leftmost to the right-
most trap using tunneling, the counter-intuitive STIRAP
sequence can be applied: first the right and middle traps
are approached and separated, and, with an appropriate
delay time tDelay, the same sequence is used for the left
and middle trap [Fig. 2(a)]. This changes the mixing angle
from H = 0 to H = p/2 [Fig. 2(b)], and if the atom ini-
tially is located in the left trap and the process is adia-
batic, then the state is at all times identical to the dark
state. This moves the atom directly from jLi to jRi
[Fig. 2(c)].
(a) (b)

Fig. 2. (a) Approaching sequence for a STIRAP-like process, (b) the evolution
tunneling splitting energy of two traps, and the mixing angle H(t) = arctan(J
parameters are dLM

max ¼ dMR
max ¼ 9a (maximal distances), dLM

min ¼ dMR
min ¼ 1:5a (min

traps), tLM
i ¼ tMR

i ¼ 0 (time at which the traps are at the minimal distance), an
The advantage of such a STIRAP-like process, as com-
pared to a direct transport via Rabi-type oscillations, is
its robustness with respect to the variation of certain
experimental parameters. As shown in Fig. 3(a), the
scheme works for a large range of delay times tDelay

and minimum distances dmin. A similar robustness is
found for variations of, e.g., the duration tr of the
approaching/separation process and the time ti for which
the traps are kept at constant distance, the only require-
ments being the adiabaticity of the process and the order
of approaching and separating the traps. In an experi-
mental realization, certainly a shaking of the centers of
the trapping potentials provides an important source of
decoherence. It might be caused by a mechanical vibra-
tion of the microlenses, or by changes in the laser phases
for optical lattices. Here we anticipate a periodic varia-
tion of the distance of the traps with frequency well
below the trapping frequency, namely xShake = 10�2xx.
As Fig. 3(b) shows, the transport efficiency is not signif-
icantly degraded even for shaking amplitudes on the
order of a few percent of the minimal trap distance if
the delay time is appropriately chosen.

A parameter difficult to control experimentally is the
exact horizontal alignment of the traps. If the potential is
tilted, gravity changes the relative depth of the potential
minima. In this case, as has been reported in Bose–Einstein
condensation in a double-trap potential [36], after a suffi-
ciently adiabatic evolution, the atom(s) will eventually be
found in the trap with lower energy. To allow for a trans-
port to the desired state, the evolution should be explicitly
non-adiabatic [37]. The STIRAP-like transport is within a
large range not affected by gravity, i.e., by a potential
DVtilt(x) = c�hxxa

�1x. Here c determines the slope of the
ramp, and we will use c > 0, such that the right trap is
shifted up in energy with respect to the left one. For the
parameters of our simulations, a value of c = 10�2 corre-
sponds to a difference of the potential energies of
3 · 10�2�hxx between the outer traps at the minimal dis-
tance. For c� 1 such a tilt affects only the on-site energies
�lab in the Hamiltonian (3). In the picture of an optical
K-system this corresponds to a shift from the one- as well
(c)

of the tunneling matrix elements �JLM(t) and �JMR(t), calculated from the

LM(t)/JMR(t)); and (c) the corresponding ground state populations; The
imal distances), tLM

r ¼ tMR
r ¼ 300x�1

x (time used to approach/separate the
d tDelay ¼ 120x�1

x (delay between the approaching processes).



(a) (b)

Fig. 3. Robustness of the atom optics version of STIRAP, i.e., the transfer efficiency from jLi and jRi, measured by the population qR = jhRjw(tfinal)ij2.
All parameters not varied are as in Fig. 2. In (a) the delay time tDelay between the two approaches (horizontal axis) and the minimal distances between traps
(vertical axis) are modified. (b) shows the transfer efficiency as a function of tDelay (horizontal axis) and of the amplitude aShake of a shaking in the positions
of the outer traps (vertical axis) with xShake = 10�2xx. For aShake > 0 (<0) the shaking of the outer traps is in phase (out of phase by p).
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as from the two-photon resonance. In this case there exist
no adiabatic path from jLi to jRi [38]. This is exemplified
in Fig. 4(a), which shows the energies of the eigenstates
of the Hamiltonian (3) for a STIRAP sequence with c =
2 · 10�2. To obtain transport from the left to the right trap,
the process has to be designed as a combination of diabatic
(circles in the graph) and adiabatic (arrows) processes.
However, the conditions to obtain a diabatic crossing at
the points indicated by the circles are usually fulfilled, such
that the transfer efficiency is dominated by the adiabaticity
requirement. Thus for a given c the fidelity improves as the
traps are moved slower, see Fig. 2. As should be stressed
again, this is in contrast to the Rabi-type transport between
two traps, where a faster process has larger fidelity of the
atom ending up in the initially empty trap. In Fig. 4(c)
the two schemes are compared.

To demonstrate the applicability to experimentally
achievable setups of dipole traps generated from microlen-
ses or using holographic techniques, we assume gaussian
potentials whose distance and depth can be changed in time:
V(t) = VLexp{�[x + dL(t)]2/2w2} + VM(t)exp{�x2/2w2} +
VRexp{�[x � dR(t)]2/2w2}. As the traps are approached,
(a) (b)

Fig. 4. Transfer efficiency with an additional potential DVtilt(x) = c�hxxa
�1x. (a

of Eq. (3) for parameters of Fig. 2 and c = 0.02. Circles indicate diabatic crossin
(b) Transfer efficiency as a function of the time tr needed to approach/separate t
the potentials is compared for STIRAP for the parameters from (b) with tr ¼
time ti for which the traps are kept at the minimal distance is chosen such tha
(ti ¼ 25x�1

x ), i.e., for approaching the traps ten times faster (see text for detai
the depth VM(t) of the center trap is adapted to facilitate
an adiabatic process. Fig. 5(a) and (b) shows the time
dependence of the trap parameters, (c) shows that also in
this case the process is robust as long as adiabaticity is
maintained. In this case fidelities >0.99 can be obtained.
For a trap frequency of xx = 2p · 100 kHz, a correspond-
ing process takes around T = 5 ms. Applying optimal con-
trol techniques [39] to suppress non-adiabatic processes
should allow to reduce this duration.

From the isomorphism between the Hamiltonians, it is
obvious that also other processes from three-level optics
can be exploited in the context of atomic wavepackets.
As an example, consider a process reminiscent of coherent
population trapping (CPT, [28]), for which the parameters
are chosen such that after the process H = p/4, correspond-
ing to a symmetric, i.e., simultaneous, separation of the
traps. As jDðp=4Þi ¼ ðjLi � jRiÞ=

ffiffiffi
2
p

, this generates a spa-
tial superposition state with maximum atomic coherence,
which, e.g., could be useful for interferometry. Such a pro-
cess is discussed in more detail in [29]; we will come back to
a CPT-like process in Section 3 in the context of the manip-
ulation of matter waves in guiding structures.
(c)

) Temporal variation of the energy levels obtained from a diagonalization
gs, arrows show points with larger probability of non-adiabatic transitions.
he traps and of c; (c) The dependence of the transfer efficiency on the tilt of
300x�1

x and for Rabi-type transfer between two traps for tr ¼ 300x�1
x (the

t full population transfer occurs for c = 0: ti ¼ 12x�1
x ) and for tr ¼ 32x�1

x

ls).



(a) (c)

(b)

Fig. 5. STIRAP procedure for gaussian-shaped traps. Variation of the (a) trap distances and (b) the depth VM(t) of the center trap. (c) Fidelity, i.e., final
population of the right trap, as the approaching time tr and the delay time tDelay are varied. Here VL,R = 828.25�hxx, w = 32.75a, VM(t) and distances
dL,R(t) as in (a) and (b), respectively, with tr and tDelay changed accordingly. The time at which the traps are at the minimal distance is ti = 0.3tr. For 87Rb
atoms and a trap frequency of xx = 2p · 100 kHz, a = 24 nm, x�1

x ¼ 1:6 ls, and �hxx = 10 lK · kB.
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2.2. Effects of atom–atom interaction

In the Hamiltonian (3) the restriction to a single particle
can be released, and interaction can be explicitly added.
For sufficiently low temperatures, interaction between
bosonic atoms is dominated by s-wave scattering, and
restricting again to states /a(x), the Hamiltonian describing
the system is modified as follows [40,41]:

Ĥ ¼ Ĥfree þ
1

2

X
a¼L;M;R

U ab̂yab̂yab̂ab̂a: ð4Þ

Here U a ¼ 4p�h~asc

R
dxj/aðxÞj

4, where ~asc is the 1D scat-
tering length which can be changed via changing the
orthogonal confinement or exploiting a Feshbach reso-
nance. For small atom numbers, it could be possible to
have jUaj sufficiently large to separate sectors in energy
space with different particle number within one trap. Then,
if initially all atoms are confined in the left trap, several
atoms can be moved at once using a STIRAP sequence.
This scenario also would allow to generate an equal super-
position of all atoms being in the left or all atoms being in
the right trap, thus creating a ‘Schrödinger cat’-like state.
To this aim, the traps have to be separated symmetrically
as in the CPT sequence described at the end of Section
2.1. On the other hand, starting from a system of three
traps and two bosonic atoms initially in different traps
(a) (b) (c) (d)

Fig. 6. Robust and coherent transport of a hole from the left trap to the righ
scattering length at = 106a0. Shown are plots of the two particle probabilities jw
initial state is jw(tinit)i = j0Mij0Ri + j0Rij0Mi, the parameters are tLM

r ¼ tMR
r

dLM
min ¼ dMR

min ¼ 1:5a.
allows to coherently and robustly transport the ‘hole’,
i.e., the empty site. An optical analogue of such a system
has been studied in [42], where coherent population trap-
ping has been analyzed for two electrons with aligned spins
in a three-level system. Also in this case a dark state exists
which can be interpreted as the dark state of a ‘hole’.
A similar effect can be achieved in the atom optical system.
As an example, Fig. 6 demonstrates the corresponding STI-
RAP process which moves the hole between the outer
traps.
3. Manipulation of matter waves in guiding structures

In the previous part we have, in close analogy to the
three-level processes for internal atomic states, manipulated
the external wavefunction of a trapped atom by a temporal
variation of the coupling between traps. We will demon-
strate that similar methods allow to manipulate an atomic
wave packet propagating in an appropriately designed fixed

guiding structure. We will assume a system of three wave-
guides oriented in the y-direction, with y-dependent dis-
tances (see Fig. 7(a) for an example), and a corresponding
Hamiltonian H free ¼ ðp2

x þ p2
yÞ=2mþ V ðx; yÞ. Now, instead

of considering the eigenstates of the 1D potential for each
fixed time t, we compute eigenstates at each position y,
and as before combine the lowest energy states to localized
(a) (b) (c) (d)

t trap in a system of three traps filled with two bosonic 87Rb atoms with
(x1,x2)j2 at four different times (a–d) as indicated by the arrows in (e). The
¼ 350x�1

x , tLM
i ¼ tMR

i ¼ 100x�1
x , tDelay ¼ 180x�1

x , dLM
max ¼ dMR

max ¼ 9a, and
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wavefunctions /a(x,y), a 2 {L,M,R}. The full wavefunc-
tion can then be decomposed as wðx; y; tÞ ¼

P
acaðy; tÞ

/aðx; yÞ. Inserting this expression into the Schrödinger equa-
tion gives the following equation for the evolution of the
coefficients ca(y, t) [20]:

i�h
oca

ot
¼ � �h2

2m
o2ca

oy2
þ

X
b¼L;M;R

H ab þ
�h2

m
P ab

� �
cb

þ �h2

2m

X
b¼L;M;R

Kab
ocb

oy
: ð5Þ

Here H abðyÞ ¼
R

dx/�aðx; yÞðp2
x=2mþ V ðx; yÞÞ/bðx; yÞ are

the Hamiltonian matrix elements for fixed y. KabðyÞ ¼
�
R

dx/�aðx; yÞoy/bðx; yÞ and P abðyÞ ¼ �
R

dx/�aðx; yÞo
2
y

/bðx; yÞ are kinetic and potential couplings, respectively.
For trapped atoms, the STIRAP or CPT sequence was

induced by the counterintuitive temporal ordering of the
approaching and separation processes. In the case of wave-
guides, such sequences will be applied in space. To obtain a
STIRAP–like transport with the atom initially located in
the left arm, first the right guide is approached to the mid-
dle one, and, with an appropriate delay, the tunneling is
also switched on between the middle and the left guide.
Finally, tunneling is turned off in the same order: first
between the right and the middle and then between the
middle and the left guide. For a CPT-like process to split
the atomic wave packet coherently between two wave-
guides, the approaching sequence has the same order, but
the separation is symmetric, see Fig. 7(a). For guided
atoms the additional coupling terms in Eq. (5) make the
evolution more complex. Expanding ca into plane waves
with momentum �hk leads to a diagonal k2-proportional term
which accounts for broadening of the wave packet and
(a) (b) (c)

Fig. 7. (a) Plot of the waveguide potential constructed from concatenated harm
superposition of packets traveling in the left and the right arm using a CPT–lik
state widths away from the centers of the waveguides; (b)–(d) density plots of j
mean momentum hkyi = 3.5kr and initial width Dky = kr. The minimal distance
the setup through the upper and lower exits of the structure as the minimal di
mean velocity hkyi.
to a term proportional to kKab which induces velocity-
dependent couplings between the waveguides. Further-
more, a velocity-independent modification of the couplings
is introduced through the potential couplings Pab.

To take again into account further effects beyond this
approximation, we have numerically integrated the full
2D Schrödinger equation. We assume to initially have a
single atom wave packet located in the left arm, with a
gaussian profile in the direction of the waveguide corre-
sponding to mean momentum hkyi and momentum spread
Dky ¼ kr ðkr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mxr=�h

p
; for the simulations xr = xx/6).

In the transverse direction the wave packet corresponds
to the ground state of the potential. Fig. 7(b)–(d) shows
an example of the time evolution in structure (a), generat-
ing a splitting of the wave packet through a CPT–like
sequence. The wave packet strongly broadens in the direc-
tion of propagation, but is still nearly equally split
between the left and right outgoing arms with a negligible
amount of reflection. Small oscillations occurring in the
density of the outgoing dispersive wavepacket are due to
the velocity–dependent perturbation of the couplings
between the waveguides, i.e., due to the last term in Eq.
(5). This splitting is again relatively robust with respect
to the parameters describing the potential, provided the
symmetry is maintained. Fig. 7(e) shows the change of
the atomic fractions in the exit ports of the setup as the
minimal distance of the waveguides is varied. The process
is not as perfect as its counterpart in traps due to the
additional couplings present here. Especially the veloc-
ity-dependent couplings modifying the desired CPT–like
process play an important role: the larger the mean veloc-
ity, the stronger the deviation from the equal splitting, as
can be seen from Fig. 7(f).
(d)

(e)

(f)

onic waveguides used to split the wave packet incident in the left arm into a
e process. The contour line shown corresponds to a distance of 3/2 ground
w(x,y)j2 at times t ¼ 20x�1

x , t ¼ 60x�1
x , t ¼ 120x�1

x for a wave packet with
between waveguides is dmin = 1.5a. (e) The relative atomic fractions leaving
stance between waveguides is modified. (f) as (e), but as a function of the
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4. Conclusions

We have studied the manipulation of the external wave-
function of an atom in a potential consisting of three traps
whose coupling can be changed in time. As demonstrated,
such a system, if restricted to the lowest eigenstates, consti-
tutes an analogue to the extensively studied system of three
internal atomic states coupled via two external laser fields.
This allows to apply concepts as STIRAP, CPT, or EIT to
coherently and robustly manipulate the external atomic
wavefunction. Such processes are of potential interest,
e.g., to move around atomic quantum bits or to create
superposition states for interferometry. In particular, we
have analyzed the robustness of a STIRAP–like process
allowing transport of the atom between trapping poten-
tials, and we have also shown that coherent processes are
possible for several interacting atoms.

As a different setup, we have studied atomic wave pack-
ets propagating in waveguide potentials, where the time
dependence of the trap distances is replaced by a spatial
variation of the distance between waveguides. Due to addi-
tional velocity-dependent couplings, the evolution is more
involved and the transport or splitting processes are not
as clean as in the case of traps. Still, a stronger robustness
as for schemes relying only on Rabi-type tunneling between
traps can be achieved, as exemplified through demonstrat-
ing the coherent splitting of a wave packet between two
arms, a scheme interesting for, e.g., interferometry.

The present work only considers the manipulation of
single atom wavepackets or systems of a few atoms. In view
of the interesting theoretical and experimental work on
tunneling and self-trapping of Bose-Einstein condensates
in a double-well potential [24], for future investigations it
will be particularly interesting to study how interaction in
a many-particle state affects the processes discussed here.
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