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Quantum simulators by design: Many-body physics in reconfigurable arrays of
tunnel-coupled traps
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We present a platform for the bottom-up construction of itinerant many-body systems: ultracold atoms
transferred from a Bose-Einstein condensate into freely configurable arrays of microlens generated focused-beam
dipole traps. This complements traditional optical lattices and provides a different access to the field of
two-dimensional quantum simulators. The ultimate control of topology, well depth, atom number, and interaction
strength is matched by sufficient tunneling. We characterize the required light fields, derive the Bose-Hubbard
parameters for several alkali-metal species, and investigate the loading procedures and heating mechanisms. To
demonstrate the potential of this approach, we analyze coupled annular Josephson contacts exhibiting many-body
resonances.
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I. INTRODUCTION

With the realization of the superfluid–Mott-insulator tran-
sition in optical lattices [1], ultracold atoms in periodic optical
potentials have become a versatile toolbox for the study
of quantum many-body physics [2,3]. The recent invention
of quantum gas microscopes [4,5] extended this work to
the observation of local properties, such as spreading of
correlations [6], dynamics of spin impurities [7], quantum
walks [8], and entanglement entropy [9]. Although these setups
allow for local modifications of the potential surface and the
atom properties using holographic masks [4], spatial light
modulators [7,8], or tightly focused laser beams [10], the
underlying lattice structure remains periodic.

Complementing this approach, recent experiments with
tightly focused optical tweezers demonstrated efficient trap-
ping and cooling of single atoms to their vibrational ground
state [11,12]. In combination with acousto-optic deflectors
and spatial light modulators (SLM) this approach has been
extended to few-well configurations showing tunnel coupling
[13,14] on one side and the deterministic preparation of larger
defect-free one-dimensional (1D) and two-dimensional (2D)
arrays with spacing too large for tunneling on the other side
[15–17].

In this article we introduce an experimental platform for
quantum many-body physics by combining the advantages of
the above approaches: We create versatile patterns of optical
microtraps (see Fig. 1) with comprehensive single-site control
using microlens arrays (MLA) [18–21] in combination with
spatial light modulators. Achievable trap parameters ensure
the ability to enter the tunneling based many-body regime
for large-scale systems with full single-site control. Each site
corresponds to an individual cross-talk-free diffraction-limited
laser spot. Arbitrary periodic and nonperiodic 2D potential
surfaces on a micrometer scale with dynamic control of the trap
parameters can be implemented. For atoms transferred from
a Bose-Einstein condensate (BEC) into this optical potential
defect-free occupation of each site is automatic. In addition,
we can dial-up tunneling rates, on-site interactions, and trap
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frequencies for each site individually or in parallel in order to
cross from the superfluid to the strongly interacting many-body
regime. This provides a different access to the experimental
study of, e.g., transport phenomena, finite-size effects, crystal
defects, quasiperiodic structures, disorder, frustration, 2D
magnetism, and their dynamic control. Consequently, this
bottom-up approach significantly extends the successful top-

FIG. 1. Optical intensities for a set of trap configurations for a
novel type quantum simulator. Optical intensity I(x) of planar lattice-
type geometries of focused-beam dipole traps separated by 1.7 μm:
(a) Measured intensity in a square lattice with designed lattice
defect, (b) simulated intensity for an atomtronic diode, (c) simulated
graphenelike lattice with several point defects on the right, and
(d) simulated molecular structure of quinolones, a family of
antibiotics.

2469-9926/2017/95(6)/063625(7) 063625-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevA.95.063625


M. R. STURM, M. SCHLOSSER, R. WALSER, AND G. BIRKL PHYSICAL REVIEW A 95, 063625 (2017)

FIG. 2. Experimental setup for flexible creation of 2D potential
geometries (red from left) and site-selective control of the tunneling
rates (blue from right). Both light fields are generated by a combina-
tion of microlens arrays and a spatial light modulators controlling the
illumination of each lenslet. The resulting focal planes are re-imaged
into a vacuum chamber by two demagnifying relay lens systems. For
out-of-plane confinement of the atoms via V‖ an additional light sheet
is applied in the x-y plane.

down approach to quantum simulation using “traditional”
optical lattices.

In contrast to interfering laser waves, our architecture
provides direct single-site control while being phase insen-
sitive and structurally robust. Compared to state-of-the-art
holographic trap arrays generated by phase modulating spatial
light modulators [15,17], it accesses the tunneling regime
and omits pixelation constraints imposed to trap spacing,
homogeneity, and system size. With regard to potentials
generated by acousto-optics through multitone synthesis [16]
or time averaging [22], it is scalable and avoids additional
heating.

The paper is organized as follows: In Sec. II we give
a description of our setup and show measurements and
simulations of the light field for several geometries. In
Sec. III we analyze a prototypical application consisting of
two weakly coupled ring lattices. In Sec. IV we study the
experimental feasibility of our approach by characterizing the
light fields using measurements and simulations, computing
the Bose-Hubbard parameters, and analyzing the impact of
light scattering. Finally, in Sec. V we conclude and provide an
outlook to additional applications.

II. OPTICAL POTENTIAL AND EXPERIMENTAL SETUP

The intensity distributions of selected configurations is de-
picted in Fig. 1: (a) square lattice with a defect implemented by
site-selective control with the SLM, (b) atomtronic diode [23]
as a pinboard for various atomtronics devices [24], (c) hexag-
onal lattice as in graphene, including defects, and (d) complex
organic molecules [25] like quinolones, a family of antibiotics.
A schematic representation of the experimental setup is shown
in Fig. 2. Two subsystems consisting of a microlens array and a
spatial light modulator are each combined to create flexible 2D
potential geometries (red from left in Fig. 2) and site-selective
control of the tunneling rates (blue from right in Fig. 2). The
intensity distribution I(x) is proportional to the optical dipole
potential experienced by the atoms: V (x) = D2I(x)/h̄δ, with
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FIG. 3. Coupled Josephson rings. (a) Josephson point contact of
two ring lattices with M = 6 sites per ring. (b) Simulated optical
intensity I(x) using a hexagonal MLA. (c) and (d) Simulation of the
population inversion subject to the Bose-Hubbard Hamilton operator
with N = 4 particles for K = 0.1J : U = 0 [(c) dotted blue line],
U = 0.02J [(c) solid red line] compared to the perturbation theory
result of Eq. (2) [(c) dashed black line], U = J [(d) solid black line],
U = 3J [(d) dash-dotted red line], U = 5.07J [(d) dashed green
line], and U = 11.7J [(d) dotted blue line].

D being the effective atomic dipole and δ the detuning [26,27].
We compose the total potential V (x) = V⊥(x) + V‖(x), which
confines atoms in a planar latticelike geometry. Here V⊥ is
a microlens-generated 2D optical dipole trap array and the
light sheet potential V‖ provides out-of-plane confinement.
In this platform we can implement many-body states with
defined particle number in freely configurable geometries.
The intensity distribution shown in Fig. 1(a) is obtained by
a 65-fold demagnification of the focal plane of a fused-silica
MLA with a 110 μm period using relay optics with NA = 0.68
giving d = 1.7 μm and w0 = 0.71 μm. Linearly polarized
light with a wavelength of λ = 780 nm and a liquid-crystal-
based SLM for single-site control are used. Figures 1(b) to
1(d) and Fig. 3(b) depict simulated intensity distributions
for an equivalent diffraction-limited optical system and λ =
1064 nm using optical design software. This results in d =
1.7 μm and w0 = 0.74 μm. The value of the trap spacing
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is the result of an optimization of the trade-off between
maximum tunneling strength and cross-talk-free single-site
control.

III. COUPLED JOSEPHSON RINGS

An example for the potential of this approach is a
Josephson point contact between two one-dimensional ring
lattices (Fig. 3). This paves the road from the investigation
of double-well dynamics [13,14,28,29] to the study of many-
body physics of more complex systems, i. e., quantum dots
or superfluid nuclei [30], allowing for the investigation of
multiparticle resonances in a fully controlled fashion. In the
configuration of Fig. 3(a), ring A constitutes a 1D periodic,
M-site lattice with a Bose-Hubbard Hamilton operator

ĤA = −J
∑
〈ij〉

(â†
i âj + â

†
j âi ) + U

2

M−1∑
i=0

â
†
i â

†
i âi âi , (1)

where J is the tunneling energy, U is the on-site interaction
strength, âi is the bosonic particle annihilation operator for
site i, and 〈ij 〉 denotes the summation over nearest-neighbor
pairs. For ring B, ĤB is obtained analogously by substitution
âi → b̂i . At the site i = 0, we introduce a weak link of
strength K < J/M between the rings. Thus, the total energy is
Ĥ = ĤA + ĤB − K(â†

0b̂0 + b̂
†
0â0). Experimentally, the weak

link can be tuned by increasing the spacing between both
rings or by applying a tightly focused blue-detuned beam
increasing the potential barrier between the rings (cf. “blue
side” of Fig. 2). After loading N atoms into the interacting
ground state of the isolated ring A, we connect the junction
and observe oscillations in the population inversion ζ =
(NA − NB)/N between both rings, with NA = ∑

i〈â†
i âi 〉 and

NB = ∑
i〈b̂†i b̂i 〉.

We compute the dynamics for arbitrary interaction strength
by exact numerical diagonalization [31]. In Figs. 3(c) and
3(d) we show the population oscillations for M = 6 sites and
N = 4 particles for different on-site interaction strengths. For
NU � J , the noninteracting ground states of the isolated rings
mostly define the dynamics as shown in Fig. 3(c) for U = 0
(blue) and U = 0.02J (red), respectively. A two-site Bose-
Hubbard model with rescaled interaction energy u = U/M

and tunneling strength k = K/M effectively captures the
physics. Within first-order perturbation theory, the population
inversion reads (cf. Appendix A)

ζ (t) = cos (ωj t) cosN−1(πt/τr )
t<τc−→ cos (ωj t)e

− t2

τ2
c . (2)

For weak on-site interaction u � k, the Josephson oscillations
with period τj = 2π/ωj = h/2k collapse on the time scale
τc = τr

√
2/[π2(N − 1)] and revive subsequently at τr = h/u

[dashed black line in Fig. 3(c)]. In the limit u = 0, these
Josephson oscillations persist indefinitely. Both results agree
with exact diagonalization, as shown in Fig. 3(c).

For larger interaction strengths [Fig. 3(d)], the rich many-
body dynamics of the coupled rings moves into focus:
For U ≈ J , the system enters the self-trapping regime and
the population remains trapped in ring A (black) as in a
structureless double well potential [28].
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FIG. 4. Self-trapping and many-body resonances. (a) Minimal
value ζm(U ) of the population inversion between two coupled ring
lattices for M = 6 sites and N = 4 particles versus the interaction
strength U exhibiting many-body resonances. They correspond to the
population oscillations shown in Figs. 3(c) and 3(d). (b) Eigenenergies
of this system for different distributions of the particles between the
two rings. These energies correspond to states of the form |NA,j〉A ⊗
|N − NA,j ′〉B .

However, the salient features are pronounced many-body
resonances with significant population transfer for partic-
ular interaction strengths deep in the self-trapping regime
[Fig. 3(d), red, green, blue]. To quantify the magnitude of
the population transfer, we define ζm(U ) as the minimal value
of the population inversion in the interval 0 < t < 10 τj .
Figure 4(a) shows ζm(U ) as a function of U , revealing the
Josephson and the self-trapping regimes, as well as the three
pronounced many-body resonances of Fig. 3(d). These can
be explained from the energy spectrum Ej (N,U ) and the
eigenstates |N,j 〉 of isolated rings as a function of particle
number N and the interaction strength U [cf. Fig. 4(b)]. Here j

is an integer with −M/2 < j � M/2 corresponding to the
quasimomentum qj = 2πj/(Md) enumerating the degenerate
eigenvalues (Ej = E−j ) in ascending order with |j |. If for
a given interaction strength the energy of the initial state
|N,0〉A ⊗ |0,0〉B coincides with the energy E of another state
|NA,j 〉A ⊗ |NB = N − NA,j ′〉B , i. e.,

E ≡ Ej (NA,U ) + Ej ′ (NB,U ) = E0(NA = N,U ), (3)

we observe a resonance in the population transfer. In our sys-
tem this will be accessible to direct experimental observation.
A comparable effect has been predicted in the mean-field
limit of Josephson junctions where resonant coupling to
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higher modes facilitates population transfer at large interaction
strengths [32]. Furthermore, interaction-induced tunneling
resonances in tilted optical lattices have been observed [33].

IV. EXPERIMENTAL FEASIBILITY

Can this platform for many-body physics work? To give
evidence for this, we analyze the reciprocal relations between
large, optically accessible trap separations d allowing for
single-site addressability on one hand, and sufficiently high
tunneling rates on the other hand. These apparently conflicting
conditions depend themselves on the in-plane and out-of-plane
optical potentials V⊥ and V‖, respectively, which in addition
affect the on-site interaction energy U .

A. Light field

In order to characterize the optical potential we analyze
measurements and simulations of the light field. Figure 5(a)
shows the central part of measured intensity distribution using
the setup described in Sec. II. In Fig. 5(b) a cut of this
intensity distribution (black squares) is compared to the result
of a simulation of the full optical setup using commercial
optical design software (red line) and a fit using the sum of
seven Gaussian functions (dashed blue line). This analysis
reveals that the in-plane potential is well approximated by
a sum of Gaussian wavelets representing the trapping sites
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FIG. 5. Measured light field of a square lattice of optical micro-
traps: (a) Central part of the intensity distribution and (b) section of
the intensity distribution (black squares) along the horizontal line (a).
The dashed blue line is a Gaussian fit to the experimental intensity
distribution and the red line is the result of a simulation of the optical
system.
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FIG. 6. Bose-Hubbard parameters. Ratio of the Bose-Hubbard
interaction energy U and tunneling energy J versus the optical
potential depth V0⊥ (thick black line) for 87Rb in a lattice with
d = 1.7 μm and further parameters given in Table I. The horizontal
lines mark the predicted superfluid–Mott-insulator phase transition
for 1D and 2D geometries at unit filling [3,37].

Ri = (Xi,Yi),

V⊥(x,y) = −
∑
Ri

V
(i)

0⊥ e
−2 (x−Xi )2+(y−Yi )2

w2
0⊥ , (4)

with local potential depths V
(i)

0⊥ controlled by the SLM. For a
wavelength of λ = 1064 nm and a diffraction limited objective
our simulations yield d = 1.7 μm and w0⊥ = 0.74 μm.
Furthermore, the light sheet potential in the relevant region is
given by V‖(z) = −V0‖ exp(−2z2/w2

0‖), assuming an elliptical
Gaussian beam with an out-of-plane width set to w0‖ =
2.5 μm.

B. Bose-Hubbard parameters

Using the parameters discussed in the preceding para-
graph, we compute the interaction and tunneling strengths
from the eigenfunctions of the single particle Hamiltonian
operator Ĥsp = p̂2/(2m) + V (x̂). Since the potential V (x) ≈
V⊥(x,y) + V‖(z) is approximately separable, the problem
factorizes into an in-plane and an out-of-plane part. For the
out-of-plane part φ(z), we choose the ground state of the
corresponding 1D Schrödinger equation. For the in-plane part,
we assume periodic boundary conditions and perform a band
structure calculation [34] to obtain the Wannier functions
ϕi(x,y) at lattice site i. We proceed by calculating the Bose-
Hubbard parameters

U = 4πash̄
2

m

∫
ϕ4

i (x,y)φ4(z) d3r, (5)

J = 〈ϕiφ|Ĥsp|ϕjφ〉, (6)

ε = 〈ϕiφ|Ĥsp|ϕiφ〉. (7)

Here U is the on-site interaction strength, J is the tunneling
parameter between adjacent sites i and j , and ε is the local
single-particle energy. Figure 6 depicts the results for 87Rb
atoms in the state |52S1/2,F = 1,mF = −1〉 with scattering
length as = 100.4 a0 in 1D, 2D square, and 2D honeycomb
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TABLE I. Parameters for different atomic species. Experimental
parameters of a square lattice for various bosonic alkalies at U/J =
10 (typical for the superfluid–Mott-insulator transition): tunneling
energy J , on-site interaction energy U , in-plane and out-of-plane
potential depths V0⊥ and V0‖, adiabatic ramp time τramp, scattering rate
per atom �sc, and total number of scattering events Nsc for a lattice of
N = 100 atoms during the loading process. For the computation of
U it is assumed that the atoms are prepared in the state |F = 1,mF =
−1〉. For the case of 7Li that the scattering length is tuned to 5.3 nm
via a Feshbach resonance.

Parameter 7Li 23Na 41K 87Rb

J/h Hz 18.6 3.5 2.3 1.5
U/h Hz 186 35 23 15
V0⊥/kB nK 2253 786 425 181
V0‖/kB nK 4971 1736 939 400
τramp ms 62 330 502 770
�sc s−1 0.01 0.003 0.004 0.002
Nsc 0.05 0.09 0.18 0.14

lattices. In Table I the relevant parameters for various bosonic
alkali-metal species are given at U/J = 10. With reported
lifetimes in BECs in optical potentials well above 10 s,
these results confirm that the superfluid–Mott transition can
indeed be reached for various lattice geometries at realistic
experimental parameters. The accessible range of U and J is
determined by limitations on the potential depth. We expect
the lower limit at V0⊥ = h2/(2md2) as it was shown that
the single-band Bose-Hubbard model ceases to be valid for
traps shallower than that [35,36]. At this point J is about
20 times larger and U about 3 times smaller compared to
the values given in Table I. The opposite limit of deep
traps allows to effectively implement U/J → ∞ due to the
exponential suppression of J .

C. Fluctuations of potential depth

Experimental parameters, like the optical potential depth,
are afflicted by spatiotemporal fluctuations. Thus, the param-
eters U , J , and ε acquire the uncertainties �U , �J , and �ε,
respectively. Fortunately, our MLA is inherently robust against
temporal changes in spacing or shape of the traps. Therefore,
we expect the temporal fluctuations of these quantities to be
negligible. However, the depth of each trap is determined by
the laser power that illuminates the respective microlens giving
rise to temporal fluctuations of this quantity. Furthermore,
production tolerances of the MLA and aberrations of the
demagnification optics may result in spatial fluctuation of
the optical potential parameters. In the following, we will
quantify the variations of the Bose-Hubbard parameters due to
fluctuations of the trap depths.

In order to compute the influence of the aforementioned
fluctuations, we solve the 2D Schrödinger equation for a
stochastic potential V⊥(x,y) of Eq. (4). We draw the local
trap depths as identically distributed normal variables V

(i)
0⊥

with mean V0⊥ and standard deviation �V0⊥. The resulting
potential is no longer periodic so instead of using band
structure calculation we apply the Lanczos method to compute
the lowest energetic eigenstates of the single-particle Hamilton
operator Ĥsp. We calculate maximally localized superpositions

TABLE II. Linear susceptibilities of Bose-Hubbard parameters
versus mean potential depth V0⊥ for 87Rb. The uncertainties are 95%
confidence intervals of the linear fit.

V0⊥/kB (nK) U/J CJ CU Cε

89.5 1 1.32 ± 0.07 0.87 ± 0.04 1.49 ± 0.06
150.5 5 2.09 ± 0.04 0.72 ± 0.03 1.36 ± 0.05
181.1 10 2.43 ± 0.10 0.67 ± 0.02 1.29 ± 0.04
200.3 15 2.58 ± 0.09 0.68 ± 0.03 1.32 ± 0.05
225.7 25 2.78 ± 0.11 0.66 ± 0.02 1.29 ± 0.04

of the lowest energy eigenstates that correspond to the Wannier
functions in the periodic case. In the absence of fluctuations,
i. e., �V0⊥ = 0, the systematic relative error of both methods
is on the 10−3 level for all Bose-Hubbard parameters. For
�V0⊥ > 0, we used 100 samples to estimate the variance of
the Bose-Hubbard parameters. For small fluctuations of the
trap depth �V0⊥/V0⊥ � 1, we find linear relations

�J

J
≈ CJ

�V0⊥
V0⊥

,
�U

U
≈ CU

�V0⊥
V0⊥

,
�ε

ε
≈ Cε

�V0⊥
V0⊥

,

(8)

with the susceptibilities CJ , CU , and Cε of the respective
Bose-Hubbard parameter. They depend on the working point
V0⊥ and are given in Table II for 87Rb.

We estimate the experimental fluctuations of the trap depths
by assuming that the total power of the laser illuminating
the SLM can be stabilized to a relative uncertainty of 0.1%.
Furthermore, we presume that the illumination of the MLA
is controlled by a liquid crystal based SLM with 768 pixel
per dimension combined with a polarizing beam splitter. The
transmission of each pixel can be controlled in 256 steps [19].
For a square MLA consisting of 25 × 25 lenses with circular
aperture, 741 pixels per lens are available. This can be used
to compensate static imperfections arising from production
tolerances, aberrations, or an inhomogeneous beam profile on
the �V0⊥/V0⊥ = (741 · 256)−1 = 5.3 × 10−6 level.

In order to allow for tunneling between adjacent traps, the
difference between the single particle energies �ε must be
smaller than the tunneling parameter J . Due to the small ratio
of ε/J this was found to be challenging in experiments with
optical tweezers [13,14]. Our estimate for the spatial fluctu-
ations of the trap depth results in �ε/J = 1% at U/J = 10.
Comparing this value to the parameters of experiments with
double-well configurations [13,14] shows that unobstructed
tunneling is feasible in our setup. Temporal fluctuations in the
laser power result in global changes in the potential depth and
are therefore not relevant for this aspect.

Measurements rely on averages over repeated experimental
runs. Therefore, in order to resolve structures like the many-
body resonances shown in Fig. 4(a) spatial and temporal fluc-
tuations need to be small compared to the respective structure’s
width. For the sharp resonance at U/J = 5.07, we find a
theoretical full width at half maximum of 0.06 U/J . Using
�V0⊥/V0⊥ = 0.1% for the expected experimental fluctuations
and the linear susceptibilities from Table II, we obtain an
expected uncertainty of �(U/J ) = 0.015. Therefore, even the
sharpest resonance in Fig. 4(a) can be resolved.
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D. Light scattering

The heating induced by the loading procedure [38] is a
serious concern. Typically, low-entropy states are produced
by preparing a BEC in a large scale harmonic trap and
subsequently ramping up the lattice potential. Sufficiently long
ramp times τramp will lead to an adiabatic loading process
conserving the entropy of the initial state. To estimate the
required τramp, we scale the experimental result of Ref. [5]
according to the lattice spacing d = 1.7 μm. The results
are given in Table I and range between τramp = 62 ms for
7Li and τramp = 770 ms for 87Rb. However, considerably
faster ramps might be possible in our platform since it
facilitates homogeneous lattice potentials omitting transport
through Mott phases which limits ramp speeds in conventional
experiments [39].

Finally, the scattering rate of photons �sc from the light
field generating the optical potential has to be considered. This
is the major source of heating in optical lattice experiments
[38]. To estimate this effect, we consider the impact of a single
scattering event and their total number during the adiabatic
loading process lasting τramp. The total number of scattering
events Nsc = N

∫ τramp

0 �sc(t)dt , scales with the number of
atoms N . We consider a 10 × 10 lattice filled with one atom
per site, giving N = 100. Table I confirms that for a linear
ramp with length τramp and final lattice parameters V0⊥ and
V0‖ hardly any scattering event occurs. The impact of a single
scattering event can be estimated to be ten times more severe
in comparison to traditional optical lattices, however the low
overall number of events renders the adverse effect negligible,
nevertheless.

V. CONCLUSIONS AND OUTLOOK

In conclusion, we have introduced and analyzed an exper-
imental platform for a freely configurable quantum simulator
for many-body physics using ultracold atoms in lattice-type
geometries of focused beam dipole traps. With a large lattice
spacing (d = 1.7 μm) this setup enables dynamic individual-
site control of each potential well, every trapped atom, and
individual interaction strength without impact on neighboring
sites. Simulations based on measured optical intensities prove
the feasibility of the crossover to the strongly interacting
many-body regime. As a first application, we have designed
a weak Josephson link of two ring lattices. The analysis
of a Bose-Hubbard model exhibits interesting many-body
resonances for the enhancement of population transfer in the
strongly interacting regime.

In the future, even more advanced options of our scheme
can be foreseen: (1) The setup’s dynamic single-site control
can be exploited to lower the entropy of the final many-body
state by generating an inhomogeneous envelope for the lattice
potential resulting in the coexistence of spatially separated
Mott-insulator and superfluid phases. The superfluid part
carries most of the systems entropy and can be removed
by emptying the respective traps [38,40]. The resulting low
entropy state opens a route to cold-atom analogs of high-Tc

superconductors [38]. (2) The dynamic control over local
potential depths can be utilized for Floquet engineering [33,41]
with modulation frequencies of up to 10 kHz, fully adjustable

modulation amplitudes, and single-site addressability. (3) A
promising alternative to the loading schemes starting with
BECs arises from the implementation of Raman side-band
cooling in individual traps [11,12] with the targeted many-
body state assembled atom by atom [15–17] out of the low
entropy Mott-insulator phase. This facilitates studies of the
many-body physics of atomic species, which are not accessible
to BEC, or arbitrary mixtures of species.
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APPENDIX: WEAK INTERACTION LIMIT

Here we discuss the regime of weak interactions for the
system discussed in Sec. III. For the noninteracting system
(U = K = 0), the ground state manifold G0 is N + 1-fold
degenerate since the distribution of the particles between the
rings has no effect on the energy. The eigenstates

|n〉 = α̂
†n
0 β̂

†N−n

0√
n!(N − n)!

|0〉, α̂l =
M−1∑
m=0

e−2πj lm
M√

M
âm (A1)

are labeled by 0 � n � N and are defined by the Fourier
operators α̂l for ring A and β̂l for ring B with 0 � l < M . For
NU,K � J , only states within G0 contribute to the system’s
dynamics. By restricting the dynamics to the two lowest
Fourier amplitudes, the Hamilton operator reads

Ĥ0 = −k(α̂†
0β̂0 + β̂

†
0α̂0) + u

2
(α̂†

0α̂
†
0α̂0α̂0 + β̂

†
0β̂

†
0β̂0β̂0) (A2)

up to an additive constant. This is an effective two-site
Bose-Hubbard model with tunneling strength k = K/M and
interaction strength u = U/M . For u = 0, the canonical
transformation ĉ± = (α̂0 ± β̂0)/

√
2 diagonalizes (A2) and the

eigenstates read

|n) = ĉ
†n
− ĉ

†N−n
+√

n!(N − n)!
|0〉. (A3)

To first order in u, the energy En = (n|Ĥ0|n) reads

En = k(2n − N ) + u

4
[N (N − 1) + 2n(n − N )]. (A4)

If all N atoms are initially in ring A, i. e., |ψ(0)〉 = |N〉, it
evolves approximately as

|ψ(t)〉 = 1

2N/2

N∑
n=0

(
N

n

)1/2

e−jEnt/h̄|n) (A5)

introducing the binomial coefficient. Hence, the population
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inversion

ζ (t) = 1

2N−1

N∑
n=0

(
N − 1

n

)
cos

(
En+1 − En

h̄
t

)

= cos(ωj t) cos(πt/τr )N−1 (A6)

follows [cf. Eq. (3) in the main text]. A similar analysis has
been performed for the two-site Bose-Hubbard model in the
limit of large N where the collapse is predicted to have a
Gaussian shape [42].
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