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Dichroic mirror pulses for optimized higher-order atomic Bragg diffraction
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Increasing the sensitivity of light-pulse atom interferometers progressively relies on large-momentum transfer
techniques. Precise control of such methods is imperative to exploit the full capabilities of these quantum sensors.
One key element is the mitigation of deleterious effects such as parasitic paths deteriorating the interferometric
signal. In this Letter, we present the experimental realization of dichroic mirror pulses for atom interferometry, its
scalability to higher-order Bragg diffraction, and its robustness against initial momentum spread. Our approach
selectively reflects resonant atom paths into the detected interferometer output, ensuring that these contribute to
the signal with intent. Simultaneously, parasitic paths are efficiently transmitted by the mirror and not directed to
the relevant interferometer outputs. This method effectively isolates the desired interferometric signal from noise
induced by unwanted paths. It can be readily applied to existing setups capable of higher-order Bragg diffraction.

DOI: 10.1103/PhysRevResearch.7.L012028

Large momentum transfer (LMT) [1,2] is one promis-
ing approach for scaling the sensitivity of light-pulse atom
interferometers. By complementing architectures based on
extending free-fall times in microgravity [3–6], large-scale
fountain setups [7–10], and relaunch geometries [11–15],
LMT promotes atom interferometers to high-precision quan-
tum sensors. Among other achievements, it has facilitated
the most precise determination of the fine-structure constant
[16,17], the generation of record-scale spatial superpositions
[10], and competitive tests of relativity [18]. While today’s
technology enables momentum transfer of hundreds of pho-
ton recoils [16,17,19–21], proposals for atom-interferometric
gravitational-wave or dark-matter detection [8,22,23] rely on a
transfer exceeding 102 to 104 photon recoils and thus on opti-
mizing LMT. Among the most prominent LMT techniques are
(i) Bloch oscillations [24–28], (ii) sequential pulses [29–31],
(iii) double diffraction [32–34], and (iv) higher-order diffrac-
tion [23,35–37] with many experiments combining several
techniques [14,16,17,37–39].

Although each method has its own characteristics, all are
susceptible to imperfect momentum transfer and pulse infi-
delity [40], so parasitic momenta are populated inherently.
These imply overall loss, diffraction phases [41,42], and in-
troduce unintended paths to the interferometer. These paths
are redirected into the detected output ports of the interferom-
eter, causing multipath interference [43–46] deteriorating the
sensitivity. Current mitigation techniques include (i) tailored
design of pulse shapes to suppress the population of parasitic
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momenta [47,48], sometimes leveraged by optimal control
[40,49–53] and applied to the full pulse sequence [54], (ii)
optimal-control techniques to enhance the signal of multipath
interference [55], or (iii) exploitation of destructive interfer-
ence of parasitic paths [56].

We present a demonstration of a complementing tech-
nique optimizing the mirror pulses of the interferometer.
Our approach has been inspired by a proposal [57,58] of
momentum-selective, i.e., dichroic mirror pulses (DMPs)
based on Bragg diffraction [59,60] that only redirect the two
intentionally populated, i.e., resonant paths (distinguishable
through their momenta), while being made transparent for
the dominant parasitic paths, which are not redirected to the
detected output of the interferometer. Such an evolution is
induced by applying a pulse area of π to the resonant paths,
while parasitic orders experience pulse areas of multiples of
2π . We establish the scalability of this technique through
an examination of resonant third- and fifth-order diffraction.
Accompanying simulations prove that the method exhibits
robust performance across a wide range of momentum spreads
instead of being velocity selective. As a consequence, this
technique can be readily applied to existing setups capable of
higher-order Bragg diffraction.

To induce Bragg diffraction, two counterpropagating laser
beams with frequency difference �ω = ω1 − ω2 couple two
momenta via a virtual state, see Fig. 1. Subsequently absorb-
ing a photon from one laser field and reemitting it into the
counterpropagating field transfers momentum h̄keff = h̄(k1 +
k2) to the atom as a consequence of momentum conserva-
tion, where k j is the modulus of the wave vector of field j.
For frequencies ω1,2 far detuned from the one-photon tran-
sition, Rabi oscillations between the two resonant momenta
are induced at a two-photon Rabi frequency �R. Coupling the
initial momentum p0 to higher momentum states is possible
by transferring nh̄keff momenta through a 2n-photon process
[61], resonantly populating the momentum pn = p0 + nh̄keff.
For an atom of mass m, the resonance condition is given
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FIG. 1. Experimental setup and energy band structure of higher-
order Bragg diffraction. (a) An atom ensemble with narrow
momentum distribution is prepared via Bose-Einstein condensation
in a crossed dipole trap (transparent red). Two counterpropagating
laser beams (blue and red) induce Bragg diffraction and transfer
momenta nh̄keff as beam splitters and mirrors. (b) Energy-momentum
conservation in a third-order Bragg process. Blue and red arrows
denote the induced absorption and emission of photons of the cor-
responding Bragg beams. The light is strongly detuned with respect
to one-photon transitions.

by �ω = nh̄k2
eff/(2m) + p0keff/m [see Fig. 1(b)], where the

effective 2n-photon Rabi frequency scales with the nth power
of �R. In this Letter, we focus on third- and fifth-order Bragg
diffraction n = 3 and n = 5, which demonstrate all relevant
mechanisms, especially since the dominating parasitic mo-
menta pi are inherently given by i = 1 and i = n − 1 [57,58].

For the preparation of ultracold ensembles of 87Rb, we
produce in a far-detuned crossed optical dipole trap a Bose-
Einstein condensate of typically 20 000 atoms (temperature:
25(5) nK, condensate fraction � 80 %) by forced evapo-
rative cooling [62]. The ensemble in the atomic ground
state |g〉 = |52S1/2, F = 1〉 is released with momentum
p0 = 0 along the direction of the Bragg beams. An expan-
sion time of 3 ms converts the ensemble’s mean field energy
to kinetic energy, after which the momentum spread of the
ensemble (fitted to a Gaussian) is �p = 0.13(3)h̄keff. To
induce the desired order of diffraction, the frequency dif-
ference of a pair of counterpropagating horizontally aligned
laser beams is adjusted to the respective resonance condi-
tion �ω = n × 2π × 15.1 kHz. The detuning 2π × 3.2 GHz
to the state manifold |e〉 = |52P3/2, F = 2〉 is sufficiently large
to suppress its population by one-photon absorption. The
waist w0 = 1170(50) µm of the Bragg beams significantly
exceeds the size of the expanded atom cloud (�100 µm) and
the distance traveled by the atoms (�250 µm). We apply
a pulse with a Blackman window function f (t ) = 0.42 −
0.5 cos(2πt/τ ) + 0.08 cos(4πt/τ ) defined for a duration
0 � t � τ with FWHM � 0.405τ and f (τ/2) = 1 as smooth
pulse envelope. After a Bragg-pulse sequence, a time of
flight of typically 15 ms projects the final atomic momentum
distribution to the far-field and spatially separates differ-
ent momenta. Detection is performed by resonant-absorption
imaging.

Higher-order diffraction requires longer pulses or in-
creased laser power, implying an increased �R. The two
parameters are balanced to minimize velocity selectivity
while still observing a two-level behavior between resonant
momenta. However, this quasi-Bragg regime [43,59,63,64]

leads to inevitable population of parasitic orders pi. By using
smooth pulse envelopes (like Blackman pulses) this issue can
be mitigated, but not eliminated.

Fixing τ = 90 µs and scanning �R by varying the optical
power of the pulse [65] when tuned to third-order resonance
n = 3, we determine the probability of populating momenta
pi by extracting the atom numbers in the relevant orders i =
0, 1, 2, 3 and normalizing to their sum. In Fig. 2(a), we show
the probabilities of p0 (red diamonds) and p3 = p0 + 3h̄keff

(blue dots) as a function of �R. From this scan, we extract �R

for beam splitter (π/2) and mirror (π ) pulses for third-order
diffraction. The transfer to momentum p3 is limited to 65 %,
which we attribute to velocity selectivity [66].

Our experimental observations are supported by simula-
tions implementing the effective Hamiltonian [63],

Ĥ = p̂2

2m
+ 2h̄�R f (t ) cos2

(
keffx̂ − �ωt + φ

2

)
, (1)

with the phase of the Bragg beams φ and [x̂, p̂] = ih̄, since
atomic interactions can be neglected due to the low atom
density after expansion. For these simulations, we use a
split-step-Fourier method implementing the palindromic PP
3/4 A scheme [67]. Since our figure of merit, the diffracted
population, is not expected to depend on the laser phase in
Bragg diffraction, we choose φ = 0 for our simulations. We
fit our numerical model to the data using the experimental
values of �R and τ and only leaving the initial spread �p
as a free parameter. The results are shown as solid lines in
Fig. 2(a) and agree well with our experiments. Applying the
same routine to a larger data set varying 50 µs � τ � 150 µs,
we infer �p = 0.13(1)h̄keff, matching the experimental
value.

Using the parameters obtained from this fit, we extend our
simulations to a full Mach-Zehnder (π/2 - π - π/2) interfer-
ometer (MZI). Besides the resonant paths p0 and p3, parasitic
paths emerge after the first beam splitter. To demonstrate
their impact, we show in Fig. 2(b) a path-resolved version
of the MZI simulation. The atom density is displayed on a
logarithmic scale with the input to every path normalized to
unity. Dashed colored lines indicate the paths of nondisplayed
orders and dashed black lines the output ports of the MZI asso-
ciated with p0 and p3. The final section of the time evolution
hides the atoms not detected in these ports to augment the
contribution of each path to the signal. The resonant paths
0 and 3 suffer loss from velocity selectivity, but the bulk
of the population couples into the output ports as intended.
Because the mirror pulse also redirects the parasitic paths 1
and 2, they are coupled into the relevant output ports, inter-
fering with resonant paths and corrupting the signal. While
the effect is small for adiabatic pulses that suppress the initial
population of parasitic paths, it can limit the sensitivity of
the interferometer [57]. To verify the numerical observation
that the mirror pulse redirects both resonant and parasitic
paths, we selectively prepare atoms in four input states pin ∈
{p0, p1, p2, p3} by applying Bragg pulses at the respective res-
onance, as shown in the left column of Fig. 2(c) by absorption
images in the far field. After 4 ms of propagation, we apply the
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FIG. 2. Experiment and simulation of third-order Bragg diffraction. (a) Resonant Rabi scan for a fixed duration τ = 90 µs of a Blackman
pulse. Scanning �R induces Rabi oscillations between momentum states p0 and p3 (measured probabilities as red diamonds and blue dots).
Solid lines show a corresponding simulation with a fitted width �p = 0.13(1)h̄keff of a Gaussian momentum distribution. False-color insets
depict momentum distributions after a beam splitter (left) and mirror pulse (right) with population in p0 at the bottom and in p3 on top. The
undeflected density lobes of p0 are caused by momentum selectivity. (b) The simulated time evolution separated into two resonant (0,3) and
two parasitic (1,2) paths on a logarithmic color map, with the deleted paths sketched by colored dashed lines. The dashed black lines after
the second beam splitter indicate the relevant output ports. In the final section, all population that is not detected in these ports is blanked.
The simulation demonstrates that also parasitic orders are reflected and coupled into the output ports. (c) Confirming these numerical findings,
we present experimental absorption images of momentum distributions before (left) and after (right) the mirror pulse. The resonant orders
(purple and blue) are efficiently reflected, but so are the parasitic orders (red and green), which are redirected to the exit ports with high
efficiency.

third-order mirror pulse (τ = 90 µs, �R = 2π × 23(2) kHz).
The right column of Fig. 2(c) presents the resulting mo-
mentum distributions. The resonant orders (purple and blue)
are efficiently reflected, but so are the parasitic orders (red
and green), which are redirected to the exit ports with high
efficiency.

To overcome this problem, we implement a DMP that
is reflective only for the resonant paths 0 and 3 while not
redirecting the parasitic paths 1 and 2. Similar to the exper-
iment presented in Fig. 2(c), we prepare ensembles in all
four relevant pin and apply a mirror pulse resonant to third-
order diffraction, varying τ and �R. To obtain the reflectivity
Rin,out for each path, we measure the final probability of all
four output momenta pout by integrating over the respective
momentum distribution in the far field and normalizing it.
In Fig. 3(a) (left column), we show the measured values
for R0,3 and R1,2. Corresponding simulations are depicted in
the right column, showing excellent agreement. The white
dashed line indicates the Rabi-frequency scan of Fig. 2(a).
Since resonant paths are redirected by six-photon processes
but parasitic paths by two-photon transitions, their multipho-
ton Rabi frequencies differ, as can be seen from different
oscillation periods in the top and bottom panels. This behavior
suggests a parameter set where resonant orders experience
a pulse area π , while parasitic orders experience pulse ar-
eas of multiples of 2π . In fact, for τ = 120 µs and �R =
2π × 21(2) kHz, we observe a DMP with R0,3 = 0.62(1) and
R1,2 = 0.08(1) (white diamonds). In comparison to the pa-
rameters of Fig. 2(a) with R0,3 = 0.65(2) and R1,2 = 0.72(1)
(black crosses), the reflectivity of parasitic paths drops sig-
nificantly while the one of resonant paths remains almost
unaltered. The pronounced reflectivity of resonant paths

combined with the low reflectivity of parasitic paths imple-
ments the intended DMP.

As in Fig. 2(b), we display a path-resolved MZI simulation
in Fig. 3(b). Since the DMP does not redirect parasitic paths,
they do not overlap with resonant arms at the second beam
splitter and are not coupled into the two relevant output ports.
We verify this dichroic behavior experimentally. Figure 3(c)
displays the momentum distributions before (left) and after
(right) the DMP. Indeed, the DMP is reflective for resonant
paths and redirects them to the exit ports while maintaining
near-perfect transparency for both parasitic paths where the
output momentum distribution resembles the input.

While the concept of DMPs has been theoretically studied
for momentum eigenstates [57], our experiments demonstrate
its applicability to realistic momentum distributions. To ana-
lyze its robustness, we numerically determine R0,3 and R1,2 as
a function of the initial momentum spread �p in Fig. 4(a). For
increasing �p, we observe that R0,3 deteriorates for both pulse
settings and approaches unity for small �p, as expected from
velocity selectivity. However, the DMP exhibits markedly re-
duced reflectivity R1,2 over the full range in �p. Hence, our
simulations highlight that DMPs are operational for a broad
range of momentum distributions.

Our results can be transferred to any odd diffraction or-
der, in particular to fifth order, which is a good compromise
[66] between available laser power, velocity selectivity, and
loss from spontaneous emission. We experimentally demon-
strate this scalabiltiy by implementing a fifth-order DMP
and measuring R0,5, R1,4, and R2,3 [Fig. 5(b)]. The latter
two reflectivities are associated with parasitic paths as shown
in Fig. 5(a). The different scaling of the multiphoton Rabi
frequencies [63] allows to identify parameters [τ = 100 µs,
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FIG. 3. Experiment and simulation of third-order Bragg diffraction with DMPs. (a) Comparison of experimental (left) and numerical (right)
reflectivities R0,3 (top) for resonant six-photon and R1,2 (bottom) for parasitic two-photon diffraction. Scanning τ and �R reveals different
effective Rabi frequencies for both cases. The white diamonds indicate the DMP [τ = 120 µs, �R = 2π × 21(2) kHz] with significantly
improved performance over the mirror pulse (black cross) obtained in Fig. 2(a). The labels indicate pulse areas of multiples of π . Panels
(b) and (c) modify their counterparts of Fig. 2 using the optimum DMP. In (b), resonant paths are reflected efficiently but parasitic paths are
fully transmitted by the mirror pulse and thus not coupled into the relevant output ports, as highlighted by the lack of relevant population
in the final section of the plot. (c) We confirm this dichroic behavior experimentally by absorption images of the momentum distribution
before (left) and after (right) the DMP, where parasitic paths are not reflected by the DMP and almost fully remain in their input momentum
class.

�R = 2π × 52(5) kHz] where the pulse area is close to π for
the resonant path, but 4π and 6π for the parasitic ones, giving
reflectivities R0,5 = 0.57(1), R1,4 = 0.16(1), R2,3 = 0.10(1).
In Fig. 4(b) we simulate the influence of �p on the reflec-
tivities, using �R = 2π × 52.9 kHz which has been obtained
from a fit to the Rabi scan of R1,4 for τ = 100 µs and lies
within the error margin of the experimental value reported
above. We again observe drastically reduced parasitic reflec-
tivities for the DMP for all �p.

Additional simulations for n = 7 and n = 9 (with
�p = 0.05h̄keff) demonstrate that high reflectivity of the res-
onant and simultaneous suppression of the reflectivities for all
parasitic orders is achievable, indicating that this technique

FIG. 4. Simulated reflectivities (lines) as a function of mo-
mentum spread �p complemented by experimental values for
�p = 0.13h̄keff (crosses and diamonds). (a) Third-order diffrac-
tion: Comparing a pulse with the parameters of maximal R0,3 from
Fig. 2(a) (dotted lines and black crosses) to the DMP (solid lines
and white diamonds), we observe a drastic drop in the reflectivity
of parasitic paths for the DMP for all �p. (b) A DMP of fifth order
shows analog behavior.

scales to even higher diffraction orders. Note that extending
the scheme to even diffraction orders has the disadvantage
that the central parasitic path will always couple into the
output ports, similar to double diffraction [46]. While we have
focused on the reflectivity of resonant and parasitic paths
in this Letter, it is possible to use different optimization
strategies and more refined parameters that, e.g., include the
population of parasitic orders after the initial beam splitter or
to customize the method to geometries beyond MZIs [68].
After all, the ultimate figure of merit is the sensitivity of
a closed interferometer, which intrinsically depends on the

FIG. 5. Fifth-order MZI (a) highlighting the paths associated
with the reflectivities R0,5, R1,4, and R2,3 as measured in (b) for differ-
ent pulse lengths τ and two-photon Rabi frequencies �R. The DMP
is marked by a white diamond [τ = 100 µs, �R = 2π × 52(5) kHz],
where the resonant path experiences a pulse area close to π , while
the parasitic paths undergo 4π and 6π pulses, respectively.
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contrast. Using optimal control or reinforcement machine
learning techniques might improve the performance of DMPs
even further [50,51,69].

Although we studied DMPs for higher-order Bragg diffrac-
tion, the concept may be transferred to other approaches of
LMT like sequential pulses [29–31], which can be also ap-
plied to other diffraction, e.g., clock transitions [29,70]. Since
composite pulses often resort to a combination of several
LMT techniques, each with its own mitigation scheme for
parasitic orders, the interplay of these strategies will eventu-
ally be of relevance for advanced experiments [14,16,17,37–
39]. Adding DMPs to the toolbox of LMT will foster the

implementation of ambitious proposals for high-precision
atom interferometry.
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