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Acceleration-driven dynamics of Josephson vortices in coplanar superfluid rings
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Precise control of topologically protected excitations, such as quantum vortices in atomtronic circuits, opens
new possibilities for future quantum technologies. We theoretically investigate the dynamics of Josephson
vortices (rotational fluxons) induced by coupled persistent currents in a system of coplanar double-ring atomic
Bose-Einstein condensates. We study the Josephson effect in an atomic Josephson junction formed by coaxial
ring-shaped condensates. Tunneling superflows, initiated by an imbalance in atomic populations between the
rings, are significantly influenced by the persistent currents in the inner and outer rings. This results in pro-
nounced Josephson oscillations in the population imbalance for both corotating and nonrotating states. If a linear
acceleration is applied to the system, our analysis reveals peculiar azimuthal tunneling patterns and dynamics
of Josephson vortices which leads to nonzero net tunneling current and shows sensitivity to the acceleration
magnitude. When multiple Josephson vortices are present, asymmetric vortex displacements that correlate with
both the magnitude and direction of acceleration can be measured, offering the potential for quantum sensing
applications.
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I. INTRODUCTION

The Josephson effect, first predicted in superconductors
[1,2], has been observed in a wide range of systems, with
ring-shaped geometries attracting particular attention due to
their ability to support persistent supercurrents. Over several
decades, long Josephson junctions in superconducting rings
and the dynamics of Josephson vortices (rotational fluxons)
have been extensively studied, revealing fundamental aspects
of phase-coherent transport and nonlinear excitations [3–15].
The realization of ac and dc Josephson effects in Bose-
Einstein condensates (BECs) [16], along with subsequent
advances in bosonic Josephson junctions [17], has expanded
the study of quantum coherent phenomena beyond super-
conducting systems. In particular, atomic BECs confined in
ring-shaped traps offer a highly controllable platform for the
investigation of superfluid transport and topological excita-
tions. As a consequence, persistent currents in toroidal atomic
BECs have become a hallmark of macroscopic superfluid-
ity, which have been extensively explored both theoretically
and experimentally [18–30]. The toroidal geometry, with its
central void, confines vortex cores and stabilizes even multi-
charged vortices. This robustness extends naturally to coupled
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superfluid rings, enabling the exploration of quantized an-
gular momentum and Josephson vortices [31–48]. In these
geometries, Josephson vortices emerge from phase differences
across BEC junctions and manifest themselves as localized
phase singularities within the tunneling region. The resulting
robust, topologically protected excitations serve as build-
ing blocks for quantum sensing and atomtronic applications
[49–52].

In this work, we investigate the dynamics of Josephson
vortices in a dual coplanar ring configuration of atomic BECs
(Fig. 1). We first examine the ac Josephson effect in coaxial
toroidal condensates separated by a potential barrier, demon-
strating that tunneling superflows, initiated by population
imbalances, are strongly influenced by the persistent currents
in both rings. When the rings share the same angular mo-
mentum state, pronounced Josephson oscillations emerge in
the population imbalance, whereas differing angular momenta
suppress the net current across the junction. We analyze the
azimuthal pattern of the tunneling flow and the Josephson
vortices within the circular junction. Finally, we show that
linear acceleration induces asymmetric vortex displacement,
providing a measurable signature for both the magnitude and
direction of the acceleration.

The paper is organized as follows. Section II explores
Josephson oscillations and vortex dynamics in a double-
ring system. Section III examines vortex relaxation under
acceleration, showing how stabilized Josephson vortices re-
veal its direction and magnitude. Section IV summarizes our
findings.
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FIG. 1. (a) Schematic of the coplanar double-ring BEC with
counterpropagating superflows (green arrows) and Josephson vor-
tices (black dotted lines). (b) Potential profile Vdr (r) (red) along the
x axis, forming the double-ring trap and condensate density |ψ |2
(blue). (c) Initial state at t = 0 showing the creation of chemical
potential difference �μ via initial bias potential Vq(r) (magenta),
quenched to the symmetric state for t > 0. (d) Uniform linear accel-
eration along the x axis (green arrow), with effective potential Va(x)
(green dash-dotted line) inducing a density gradient.

II. JOSEPHSON OSCILLATIONS
IN DOUBLE-RING SYSTEM

A. Model

The dynamical properties of a BEC within the mean-field
theory at the zero-temperature limit is governed by the Gross-
Pitaevskii equation (GPE)

ih̄
∂�(r, t )

∂t
=

[
− h̄2

2M
∇2 + Vext(r) + g|�(r, t )|2

]
�(r, t ),

(1)

where g = 4πash̄
2/M, M = 1.44 × 10−25 kg, and as = 5.3 ×

10−9 m are the interaction strength, mass, and the s-wave scat-
tering length of 87Rb atoms. The wave function is normalized
to the total number of atoms in the system∫

|�(r, t )|2dr = N. (2)

The external trap potential Vext forms the double-ring geome-
try of the system (see Fig. 1)

Vext(r) = 1

2
Mω2

z z2 + Vdr (r), (3)

where ωz = 2π × 245 Hz is the trapping frequency in a light
sheet confining the atoms along the z direction. The radial
trapping potential is given by

Vdr (r) = Vring(r) + Vb(r), (4)

where r =
√

x2 + y2. The term Vring(r) defines a ring-shaped
potential with a flattened bottom

Vring(r) = V1(r)�(R1 − r) + V2(r)�(r − R2), (5)

where the Heaviside step functions �(r) ensure that Vring(r) =
0 for R1 < r < R2, while Vring(r) = V1(r) for 0 � r � R1 and

Vring(r) = V2(r) for r � R2. The potentials defining the inner
and outer wells, Vj (r) for j = 1, 2, take the form

Vj (r) = 1

2
Mω2

r (r − Rj )
2, (6)

with identical trapping frequencies ωr = 2π × 110 Hz and
distinct ring radii R1 = 14 µm, R2 = 24 µm.

The term Vb(r) represents the barrier separating the rings

Vb(r) = Ub exp

[
− (r − Rb)2

2l2
b

]
, (7)

centered at Rb = (R1 + R2)/2. The barrier height Ub and
width lb are specified below.

The proposed radial double-ring potential (4) with a flat-
tened bottom enables refined control of the interring barrier.
Notably, such a trapping geometry can be readily imple-
mented using existing experimental techniques, e.g., freely
configurable dipole potentials generated by a digital mi-
cromirror device (DMD).

We analyze tunneling flows based on the direct numerical
simulations of the two-dimensional (2D) GPE for a setup of
coplanar rings, assuming tight confinement along the z-axis,
so that bending and tilting of vortices are suppressed, allowing
for a 2D approximation

�(r, t ) = e−iμt/h̄ψ (x, y, t )ζ (z, t ), (8)

with

ζ (z, t ) =
(

1√
π lz

)1/2

exp

(
− z2

2l2
z

− i
ωzt

2

)
, (9)

where l j = √
h̄/(Mω j ), j = z, r, and where μ is the total

chemical potential of the 2D stationary state of the double-ring
system. Integrating (1) with this ansatz over z and apply-
ing the following transformations t → ωrt , (x, y) → (x, y)/lr ,
V → V/(h̄ωr ), μ → μ/(h̄ωr ), ψ → lrψ , the dimensionless
2D GPE can be written as

i
∂ψ

∂t
=

(
−1

2
∇2 + Vext + g2D|ψ |2 − μ

)
ψ, (10)

where g2D = √
8πas/lz is the dimensionless coupling and μ

is the chemical potential of the steady state ψ̃ , which satisfies
the stationary GPE: Ĥψ̃ = μψ̃ with

Ĥ = − 1
2∇2 + Vext + g2D|ψ̃ |2. (11)

The wave function ψ̃ (x, y) of the stationary state of the
condensate in the double-ring potential Vdr (r) is obtained by
the imaginary time propagation method. The total number of
atoms N = N (0)

1 + N (0)
2 is distributed between inner and outer

rings

N (0)
j =

∫∫
S j

|ψ̃ |2dxdy, (12)

with integration boundaries for the inner ring, S1: 0 � r < Rb

and for the outer ring, S2: r � Rb. The radial double-well
potential Vdr (r) traps an azimuthally symmetric double-ring
condensate and splits it into two parts.

We define the population imbalance between these parts as
the deviation in the number of particles from their equilibrium

043308-2



ACCELERATION-DRIVEN DYNAMICS OF JOSEPHSON … PHYSICAL REVIEW A 111, 043308 (2025)

values, N (0)
j , as

�N (t ) = [
N2(t ) − N (0)

2

] − [
N1(t ) − N (0)

1

]
, (13)

and introduce the chemical potentials of each ring as

μ j = 1

Nj

∫∫
S j

ψ∗Ĥψ, (14)

where Ĥ is the system’s Hamiltonian (11).

B. Initial bias potential

The initial population imbalance and chemical potential
difference �μ = μ1 − μ2 between the rings is generated by
applying an additional initial bias potential, following meth-
ods similar to those used in double-well experiments [16]. The
total external potential consists of both the trapping potential
and the initial bias potential, as illustrated in Fig. 1(c). The
latter is given by

Vq(r) =
⎧⎨
⎩

b1, 0 � r < R1,

(b2 − b1) r−R1
R2−R1

+ b1, R1 � r < R2,

b2, R2 � r,
(15)

where b1,2 are the potential offsets applied to the two rings to
induce a chemical potential difference �μ.

In our simulations, the initial state is prepared as a station-
ary solution with b1 = 0 and b2 �= 0, effectively shifting the
outer ring and controlling �μ via b2. To initiate the dynamics,
we rapidly switch off the initial bias potential and observe
the subsequent evolution of the condensate in the double-ring
system using the conservative GPE (10).

C. Josephson oscillations at zero acceleration

First, we investigate the ac Josephson effect in a double-
ring system, characterized by a constant chemical potential
difference that drives oscillatory tunneling of atoms between
the rings. A distinctive feature of it is that the frequency of
the population imbalance is directly proportional to the ap-
plied chemical potential difference, while the phase difference
increases linearly over time: 
(t ) = 
0 + ω�Nt . In our sim-
ulations the population imbalance oscillates with a frequency
ω�N = �μ/h̄ for high-enough initial chemical potential dif-
ference (see Fig. 3). These properties of the ac Josephson
effect are observed in both nonrotating states and states with
persistent currents, provided the rings have the same angular
momentum state (m1 = m2).

We conducted an extensive series of numerical simulations
of Josephson oscillations, varying the number of particles in
the rings and the initial chemical potential difference. Figure 2
showcases the pronounced oscillations and the radial flow
structure for N = 5 × 105. Figure 2(b) specifically illustrates
the �N (t ) oscillations observed in the time-dependent GPE
simulations for nonrotating rings (m1 = m2 = 0).

Remarkably, persistent currents with m1 �= m2 result in a
nearly constant �N (t ) with no visible oscillations, as depicted
in Fig. 2(b).

(µ
m

)

(µm) (µm) (µm)

FIG. 2. (a) Flow density snapshots for different angular mo-
mentum states: m1 = m2 = 0 shows purely radial tunneling; m1 =
0, m2 = 1 forms one vortex, highlighted by a red circle; m1 =
−1, m2 = 1 results in two vortices. (b) Particle number imbalance
for m1 = 0, m2 = 0 (solid blue, pronounced tunneling), m1 =
0, m2 = 1 and m1 = −1, m2 = 1 (dashed and dash-dotted blue,
suppressed tunneling). (c) Linear acceleration induces imbalance
oscillations for m1 = 0, m2 = 1 (dashed red) but not for counter-
propagating flows (dash-dotted red). Tunneling for m1 = 0, m2 = 0
is preserved (solid red). Ub = 49 h̄ωr = 4.25 μ0, lb = 0.33 µm, N =
5 × 105.

Numerical solutions of the GPE were used to calculate the
superfluid-flow density as

j = ih̄

2M
[�∇�∗ − �∗∇�]. (16)

Figure 2(a) illustrates the radial flow distribution jr in the
(x, y) plane for different angular momentum states. The sup-
pression of the total tunneling flow is accompanied by the
emergence of NJV = |m1 − m2| Josephson vortices, marked
by red circles in Fig. 2(a). This effect arises from the
azimuthal symmetry of the tunneling flow, as previously
analyzed in Refs. [42,44,53] for vertically stacked ring con-
densates. Figure 2(a) shows the color-coded radial flow
component jr in the planar double-ring system. Note that for
m1 = 0 and m2 = 1, a single Josephson vortex resides in the
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FIG. 3. Oscillation frequency ω of the population imbalance ver-
sus chemical potential difference �μ for (m1 = 0, m2 = 1) with
a = 10 mm/s2 (blue dots) and (m1 = m2 = 0) without acceleration
(black circles), fitted linearly. Vortex rotation frequencies for m1 = 0,
m2 = 1 state are marked by red crosses. Ub = 7 h̄ωr , lb = 1 µm,
N = 5 × 104.

barrier, even though two diametrically opposed points exhibit
zero radial flow. The vortex is identified by its circulating con-
densate flow, forming a closed loop around its core, whereas
the other zero-flow point does not support such circulation.

D. Josephson oscillations under linear acceleration

Next, let us consider the effect of acceleration which breaks
the azimuthal symmetry and causes a redistribution of density
and radial flows. Acceleration introduces an inertial force that
affects the condensate, similar to how a classical fluid or
gas in a container shifts when the container is accelerated.
This force is defined by the gradient of an effective potential
that pulls atoms in the opposite direction of acceleration. As
shown in Fig. 1(d), this leads to a density gradient, with atoms
accumulating slightly more on one side. As we demonstrate
in this section, such density redistribution influences the tun-
neling between the rings and affects the motion of Josephson
vortices.

To analyze the effects of external acceleration, we trans-
form to an accelerating reference frame comoving with the
system. Following the approach in Ref. [54], where a similar
transformation was applied to a dissipative system, we intro-
duce the change of variables r′ = r − r0(t ) in (1), where r0(t )
represents the origin of the new frame moving with constant
linear acceleration a = d2r0/dt2. Applying the gauge trans-
formation

� ′(r′, t ) = ei
/h̄�(r′, t ), (17)

with


 = p0(t ) · r′ + 1

2M

∫ t

0
p2

0(τ )dτ, (18)

where p0(t ) = Mdr0(t )/dt , we obtain the additional effective
potential in GPE (1) as

Va = M(a · r′), (19)

which accounts for the inertial force. For clarity, we omit the
primes in � ′ and r′ hereafter.

In our simulations, acceleration is incorporated by adding
the effective potential Va = Max/(h̄ωr ) to dimensionless 2D
GPE (10), corresponding to a uniform horizontal accelera-
tion a = (a, 0). This potential naturally emerges from the
transformation to an accelerating reference frame, ensuring a
consistent description of the dynamics in a noninertial refer-
ence frame.

We prepare the initial state with the applied effective po-
tential (19) and introduce the chemical potential difference
using the initial bias potential procedure described above.
The results of the numerical simulations for nonzero accel-
eration are shown in Figs. 2(c) and 3. The frequency of the
oscillations for nonrotating rings is shifted by acceleration,
consistent with the recent study of a one-dimensional (1D)
system of N bosons in an accelerated double-well potential
[55]. However, the most pronounced effect of acceleration
is observed in the tunneling dynamics between rings with
different angular momenta. As discussed below, these effects
can be explained by the azimuthal symmetry breaking induced
by constant linear acceleration.

E. Two-mode model

To gain deeper insight into the tunneling flow mechanism
between the condensate rings, we adopt a simplified two-
mode approximation model. In this approach, we substitute
the following ansatz for the 2D wave function into (16):

� = ψ1(r)eiμ1t+im1ϕ + ψ2(r)eiμ2t+im2ϕ, (20)

where ψ1,2 are the wave functions of the condensate in the
rings, μ1,2 are their chemical potentials, and m1,2 represent
the vorticities of the rings. Through straightforward algebra,
we obtain very simple relation for the radial flow density

jr (r, ϕ, t ) = j0 sin(�μt − �mϕ), (21)

where �m = m1 − m2, and j0 = j0(r) is a function of the
radial coordinate only, assuming an azimuthally symmetric
density distribution (a = 0). The effect of acceleration-
induced density variations can be taken into account by
modifying the amplitude factor as j0(r)(1 − δa cos ϕ), where
δa � 1 is a dimensionless parameter that accounts for the
small density bias introduced by linear acceleration.

It is evident that the total flow through the junction J (t ) =∫
jr d2r vanishes if the number of vortices is not zero or one.

Specifically, J (t ) = J0 sin(�μt ) for �m = 0, corresponding
to ac Josephson oscillations, which are present for both zero
and nonzero accelerations, with the frequency defined by the
chemical potential difference. Remarkably, for �m = ±1 and
under external acceleration, the total tunneling flow is also
nonzero: J = 1

2δaJ0 sin(�μt ), although the amplitude of the
flow is reduced to the small factor δa. Therefore, we can con-
clude, that for �m = 0 (no vortices), population imbalance
oscillations occur for both zero and nonzero acceleration a.
For �m = ±1 (one vortex), these oscillations are suppressed
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at a = 0 but persist for a �= 0. For �m � 2 (two or more
vortices), the oscillations remain suppressed in both cases.

The numerical simulations presented in Figs. 2(b) and 2(c)
confirm these predictions. Specifically, in the m1 = 0, m2 = 1
state, population imbalance oscillations, which are suppressed
at zero acceleration [dashed blue in Fig. 2(b)], reappear for
a �= 0 due to �m = 1 [dashed red in Fig. 2(c)]. In contrast,
in the m1 = −1, m2 = 1 state, oscillations remain suppressed
[dash-dotted lines in Figs. 2(b) and 2(c)], in full agreement
with the theoretical predictions.

The dependence of the Josephson effect oscillation fre-
quency ω�N on the initial chemical potential difference �μ

is depicted in Fig. 3. Here and further, we use a barrier width
of lb = 1 µm and the total particle number of N = 5 × 104.
Figure 3 shows the frequency of population imbalance os-
cillations, ω�N for two cases: (i) open circles depict a = 0,
�m = 0, and (ii) blue dots correspond to a = 10 mm/s2,
�m = 1. The red crosses indicate the angular frequency ωJV

of the vortex circulation in the barrier. Note that all three data
sets fit the same linear behavior ω�N ∼ �μ inherent to the ac
Josephson effect for �μ > μcr.

Figure 3 also reveals the two relevant regimes of vor-
tex motion depending on the additional energy provided by
the initial chemical potential difference �μ, separating at
�μ = μcr. The frequency of Josephson oscillations is a linear
function of the chemical potential difference if the initial
imbalance is above a certain critical value μcr. This regime
corresponds to the circular motion of the vortex within the
barrier. The frequency ωJV of its circular motion in the barrier
matches the frequency of the population imbalance ω�N . Be-
low the critical value μcr of the chemical potential difference,
the frequency remains constant, corresponding to periodic
oscillations of the Josephson vortex around the equilibrium
position.

F. Energetic analysis

We used the energetic analysis for the vortex position along
the annulus (Fig. 4) and found two distinct regimes of its dy-
namics: (i) circular motion in the barrier and (ii) oscillations in
the vicinity of the position with minimum energy. Let us show
the connection between these characteristics and an external
linear acceleration. To this end, we use the dependence of the
BEC energy on the azimuthal position of the vortex in the ring.

Within the approximation of the constant local density of
the unperturbed condensate (state m1 = m2 = 0, ψ0) in the
vicinity of the vortex position, we can write the wave func-
tion of the state with imprinted vortex (m1 = 0, m2 = 1, ψv)
through the wave function of the vortex in the homogeneous
condensate and the unperturbed state ψ0 as

ψv(r) = Aψ0(r) tanh

(
�

ξ

)
eiθ , (22)

where � = |r − rJV| is the distance from the vortex core lo-
cated in rJV, θ = arg (r − rJV) is the angle relative to the core,
A is the normalization constant, and ξ is the healing length.
Since the vortex is localized radially at the center of the barrier
rJV = Rb, thus its position and energy are uniquely determined
by the angular position ϕJV.

FIG. 4. Nucleation energy per particle EJV/N for the single vor-
tex between rings as a function of its angular position ϕ. The
acceleration-induced density gradient generates a nucleation energy
minimum for the vortex, in the direction of the acceleration, i.e.,
ϕa = 0. Ub/μ = 1.5, lb = 1.43 µm, N = 5 × 104.

The total energy of the BEC in the state ψ is given as
follows:

E (ψ ) =
∫ (

1

2
|∇ψ |2 + Vext|ψ |2 + g

2
|ψ |4

)
d2r. (23)

The external potential Vext consists of both the trapping po-
tential and the effective potential associated with the applied
acceleration (19).

Let us introduce a nucleation energy of the vortex, defined
as the difference of the energy of the state with imprinted
Josephson vortex line ψv and the ground-state energy

EJV = E (ψv) − E (ψ0). (24)

Figure 4 illustrates the nucleation energy per particle EJV/N
as the function of the angular coordinate of the vortex core.
In this scenario, the characteristics of the vortex energy are
strongly influenced by the applied acceleration. The energy
minimum occurs in the direction of the applied acceleration,
with its depth being proportional to the magnitude of the
acceleration |a|.

The characteristics of the acceleration-induced EJV mini-
mum are reflected in the dynamics of the BEC, particularly in
the azimuthal motion of the vortex along the barrier between
rings, ϕJV(t ), as illustrated in Fig. 5. The vortex and antivortex
circulate in opposite directions at zero acceleration. However,
as shown in the next section and illustrated in Fig. 5(b), for
the system with dissipation, the angular positions of both the
vortex (solid red line) and the antivortex (dashed red line)
ultimately align with the direction of the applied acceleration.
By examining the features of this motion, one can extract both
the direction and magnitude of the applied acceleration, thus
offering a mechanism for acceleration sensing based on the
Josephson vortex dynamics.
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FIG. 5. (a) Dynamics of a single vortex (red circle indicates posi-
tion of its core) under constant horizontal acceleration a = 2 mm/s2

(ϕa = 0), lb = 1.43 µm, and N = 5 × 104, showing density (upper
row) and phase (lower row) evolution. The vortex aligns with the
acceleration, stabilizing at ϕ = ϕa = 0 due to nonzero dissipation
γ = 0.015. (b) Barrier amplitude Ub(t ) and vortex angular coordi-
nate ϕ(t ) versus time. Starting at t = 0, the barrier amplitude Ub is
ramped down over 0.05 s from 1.5 µ0 to 0.75 µ0, where μ0 = μ(0),
and then remains unchanged (blue solid line). The red lines show the
angular coordinate over time for vortex (red solid line) and antivortex
(red dash-dotted line). The black dashed line denotes the barrier
amplitude at the chemical potential level Ub = μ(t ).

III. DISSIPATIVE DYNAMICS OF JOSEPHSON VORTICES

Dissipative effects are crucial in modeling nonequilibrium
behavior, such as vortex nucleation, as they drive relaxation
to equilibrium. Dissipation causes the vortex line to drift
to the condensate edge (where vortices decay) or to pin it
in the central hole of a ring-shaped condensate. Relaxation
of the vortex core to the local energy minimum forms a
metastable persistent current. In a trapped condensate, these
effects arise from interaction with a thermal cloud and are phe-
nomenologically described by the dissipative Gross-Pitaevskii
equation (DGPE) [56,57]. For weakly interacting degenerate
atoms near the thermodynamic equilibrium and under weak
dissipation, the DGPE for the macroscopic wave function is

given by

(i − γ )
∂�

∂t
= [Ĥ − μ]�, (25)

where γ � 1 is the dissipation rate. The dissipation rate γ

determines the relaxation time of the system to a (meta)stable
state: the larger γ , the shorter the relaxation time, but the final
state does not depend on the specific value of γ . Thus, our
main results are qualitatively independent of the chosen value
of γ . Furthermore, we analyze a wide range of its values cov-
ering different types of dynamics from conservative case (γ =
0) to rather strong dissipation related to estimates obtained
in Ref. [56]. Notably, the introduction of phenomenological
dissipation in this manner accounts for dissipation within
an accelerating frame, where the thermal cloud is assumed
to comove with the condensate. A detailed discussion of
physically relevant approaches to incorporating dissipation
under acceleration is provided in Ref. [54]. Importantly, the
phenomenological dissipation rate γ remains independent of
acceleration in a noninertial accelerated frame. While an addi-
tional effective potential arises in this setting, the dissipation
parameter γ remains unchanged by acceleration or rotation, as
demonstrated in Ref. [58]. In our dynamical simulations, the
chemical potential μ(t ) of the equilibrium state is adjusted at
each time step to conserve the number of particles N .

One of the key features of quantum vortices, as topo-
logically protected states, is their inherent stability. Both
theoretical [43,59] and experimental [47,48] studies demon-
strated that a merging double-ring system exhibits the
formation of spiral interference patterns associated with vor-
tex flows. These patterns provide a robust and accessible
method for measuring the angular momentum state of toroidal
condensates.

Very recently, a side-by-side configuration of two rings
connected by a tunable weak link was proposed as a physi-
cal platform for creating acceleration [54] and rotation [60]
sensors, based on a threshold-driven vortex transfer approach
previously introduced in Ref. [61]. In this setup, the barrier
amplitude directly modulates vortex transitions, enabling dis-
crete, measurable shifts that can be finely controlled, or even
halted, by tuning the barrier strength.

In this work, we investigate the behavior of a double-
ring system subjected to constant linear acceleration, which
breaks the symmetry of the system and consequently leads
to an asymmetric arrangements of the tunneling currents. It
is therefore expected that locations of vortex cores inside
the circular barrier can be explicitly related to the direction
and magnitude of the acceleration. In our simulations we use
unbiased (�μ = 0) double-ring system with barrier amplitude
Ub > μ as the initial condition. To detect the vortex positions
in both the density and phase distributions, we reduce the
barrier amplitude to a constant value just below the chemical
potential, as shown in Fig. 5, with a time constant long enough
to suppress the formation of spiral structures. As a result of the
relaxation process, we observe stationary vortex positions that
exhibit sensitivity to the applied acceleration.

Linear acceleration induces an azimuthal asymmetry in the
density distribution, making the angular position aligned with
the acceleration direction energetically favorable for the vor-
tex, as illustrated in Fig. 4. Notably, the local energy minima
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FIG. 6. Angular dynamics of a single vortex under constant ac-
celeration a = 2 mm/s2 for different dissipation rates γ , with ϕa =
0. Higher γ reduces the relaxation time of the vortex at ϕ = ϕa,
aligned with the acceleration for lb = 1.43 µm, N = 5 × 104.

deepen with increasing acceleration. Consequently, in a con-
servative system, the Josephson vortex either circulates within
the lower-density region between the rings at low acceleration
rates or undergoes periodic oscillations along the direction of
acceleration when the acceleration is sufficiently high for a
given chemical potential difference.

In realistic experiments at finite temperature, interactions
between the condensate and the thermal cloud introduce dis-
sipative effects, which cause the vortex angular position to
eventually align with the direction of acceleration after a
relaxation period. An additional mechanism contributing to
the decay of its oscillations, even for γ = 0, is the emission
of acoustic waves during vortex drift in an inhomogeneous
condensate [62]. Figure 6 illustrates the evolution of the vortex
angular position in both conservative and dissipative regimes.
As expected, increasing the dissipation rate γ accelerates the
relaxation process.

The motion of Josephson vortices in an accelerating frame
is governed by the interplay between their effective mass and
the energy landscape, as previously analyzed in the context
of superfluid junctions and fluxon dynamics [38,63]. In our
system, acceleration shifts the nucleation energy minimum,
leading to the preferential alignment of vortices in the direc-
tion of the applied acceleration (see Figs. 4–7).

We quantify the asymmetry of the vortex lattice by the
relative deviation of its centroid d = |d|, which describes the
collective displacement of all vortices

d = 1

NJV

NJV∑
n=1

rn

Rb
, (26)

where rn is the radius vector of the nth vortex, NJV is the total
number of vortices, and Rb is the radius of the circular barrier,
where they are located.

In the absence of acceleration, all vortices are symmetri-
cally positioned at the vertices of a regular n-gon, resulting
in zero relative deviation (|d| = d = 0). When acceleration
is applied, they shift in the direction of the acceleration,

FIG. 7. Density (upper row) and phase (lower row) snapshots of
two coaxial rings with six vortices under a constant horizontal ac-
celeration of a = 2 mm/s2 and dissipation rate γ = 0.015 at various
times after lowering the barrier height. Their cores are marked by red
circles. Initially symmetric, the vortex lattice is deformed by accel-
eration, stabilizing into an asymmetrical configuration. During the
first t = 0.05 s, the interring barrier is linearly lowered to facilitate
imaging of vortices and pinning them in the radial direction.

d‖a, d > 0, finding a new equilibrium position influenced
by mutual repulsion (as all vortices have the same sign). After
equilibration, the system exhibits an intermediate asymmetry
0 � d < 1, pointing towards the direction of acceleration. A
typical example of the evolution of a lattice formed by six
vortices is shown in Fig. 7.

The equilibration of the system with a nonzero dissipa-
tion rate γ enables us to determine the actual value of the
asymmetry parameter d in the equilibrium state of the vortex
chain. It is essential to ensure that the equilibrium value of d
is independent of the specific dissipation rate used. To verify

FIG. 8. Evolution of the asymmetry parameter d for six vortices
under constant acceleration a = 2 mm/s2, lb = 1.43 µm, N = 5 ×
104 for various dissipation rates γ . While γ affects the equilibration
dynamics of d (exhibiting decaying oscillations for γ � 0.025 and
becoming aperiodic for γ > 0.025) the equilibrium asymmetry value
remains independent of the dissipation rate.

043308-7



YURII BORYSENKO et al. PHYSICAL REVIEW A 111, 043308 (2025)

FIG. 9. Equilibrium asymmetry parameter d as a function of
linear acceleration a, illustrating a linear dependence at low acceler-
ations for lb = 1.43 µm, N = 5 × 104. (Inset) Time evolution of the
asymmetry parameters for varying accelerations a (solid lines) with
their respective equilibrium values for γ = 0.015 (dashed lines).

this, we compared the evolution of six vortices with different
dissipation rates from γ = 0 to γ = 3 × 10−2 and confirmed
that the final equilibrium value of d does not depend on γ (see
Fig. 8). For our simulations, we use an intermediate value of
γ = 1.5 × 10−2 for dissipation.

The equilibrium asymmetry parameter d shows a linear de-
pendence on the applied acceleration a, following the relation
d = 3.52 × 10−2 s2/mm × a (see Fig. 9) for small acceler-
ations. However, for a � 4.5 mm/s2, a deviation from this
linear behavior is observed, likely due to the significant asym-
metric density bias in the barrier region. As typically intended
of quantum sensing devices, low acceleration rates are ac-
cessible to measurements, with the sensitivity of this method
being limited at very low accelerations as the variation in
the asymmetry parameter approaches the detection resolution
limits of the vortex core positions. Conversely, measuring
higher acceleration rates necessitates longer relaxation times,
which prolongs the measurement process. Additionally, at
very high acceleration rates, density biases may cause the

ring-shaped condensate to break apart, further restricting the
maximum accessible acceleration rate.

IV. CONCLUSION

In the present work we considered the ac Josephson effect
in coaxial two-dimensional ring-shaped condensates sepa-
rated by a potential barrier and investigated the dynamics of
Josephson vortices within such a double-ring BEC. Through
direct simulations of the Gross-Pitaevskii equation, we ana-
lyzed tunneling superflows driven by an initial imbalance in
atomic populations of the rings. The superflows through the
Bose-Josephson junction were strongly influenced by persis-
tent currents in the concentric rings, leading to pronounced
Josephson oscillations in population imbalances for corotating
and nonrotating states. The azimuthal configuration of the
tunneling flow required the formation of Josephson vortices,
resulting in zero net current through the junction for rings
with different angular momentum states. However, if a linear
acceleration was applied to the system and there was only one
vortex in the junction, the population imbalance oscillations
can be restored.

A key aspect of this study was exploring how linear ac-
celeration affects the dynamics of Josephson vortices. We
found that acceleration leads to an asymmetric displacement
of vortices, an effect that can be utilized to determine both the
magnitude and direction of the acceleration. By introducing an
asymmetry parameter for the vortex lattice after equilibration,
we demonstrated that this parameter was linearly proportional
to the absolute value of the applied acceleration. We prove
that the equilibrium angular position of a single vortex was
sensitive to the direction of acceleration.

These findings provide additional insights into the Joseph-
son effect in a bosonic junction modified by linear accel-
eration and introduce prospective methods for quantifying
acceleration effects via analysis of interference patterns ex-
perimentally observed in atomtronic systems [47,64,65].
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