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Trapping of Bose-Einstein condensates in a three-dimensional dark
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We present an efficient three-dimensional dark-focus optical trapping potential for neutral atoms and Bose-
Einstein condensates. This “optical bottle” is created by a single blue-detuned light field exploiting the
phenomenon of conical refraction occurring in biaxial crystals. The conversion of a Gaussian input beam to
the bottle beam has an efficiency of close to 100% and the optical setup requires the addition of the biaxial
crystal and a circular polarizer only. Based on the conical-refraction theory, we derive the general form of the
potential, the trapping frequencies, and the potential barrier heights. We present experiments on confining a 87Rb
Bose-Einstein condensate in three dimensions. We determine the trap shape, the vibrational frequencies along
the weak axis, as well as the lifetime of ultracold atoms in this type of potential.
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I. INTRODUCTION

The position-dependent energy shift in an inhomogeneous
light field can be used to efficiently trap ultracold atoms and
Bose-Einstein condensates (BECs) in an optical dipole trap
[1–3]. Atoms are attracted to regions of high intensity when
using light whose frequency ωL is lower than the relevant
atomic transition frequency ω0 (red-detuned case with detun-
ing � := ωL − ω0 < 0). These attractive optical potentials are
the most widely used conservative optical traps due to their
simplicity since only a single tightly focused laser beam is
needed, producing a strong intensity variation as depicted in
Fig. 1(a). On the other hand, red-detuned dipole potentials
introduce enhanced light scattering onto the trapped atoms
which are localized at the intensity maximum. This causes
heating of the atoms and loss of particles from the BEC
quantum state, and reduces the fidelity of quantum operations
and high-precision measurements due to loss of coherence.

In contrast, blue-detuned optical traps (� > 0), allowing
for a confinement of atoms at a local intensity minimum,
have substantively decreased scattering rates and decoherence
for atoms cooled close to the minimum of the trap potential.
Therefore, they are ideal traps for high-precision experiments,
but in most realizations demand more complex light-field ge-
ometries. Blue-detuned optical potentials have been used, e.g.,
for atomic clocks [4], quantum information processing with
neutral atoms in Rydberg states [5–7], and the investigation of
Bose-Einstein condensates [8,9]. Ideally, the local minimum
where atoms are trapped has null intensity and is surrounded
by steep intensity gradients which create the confining
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potential. Such light beams are referred to as “optical bottle
beams” [10]. Different methods have been reported for gen-
erating optical bottle beams, such as scanning blue-detuned
laser beams for time-averaged potentials [11], conical lenses
[12], interfering Laguerre-Gaussian beams [13,14], phase
holograms generated by phase plates [15] or spatial light
modulators (SLMs) [16], crossing two or more vortex beams
[17], or using optical c-cut uniaxial and biaxial crystals [18].
However, most of these methods have associated limitations
such as the requirement of an extremely precise control of
the optical elements needed to generate and align the complex
beam geometry, limited conversion efficiency, or the fact that
the intensity minimum is not exactly equal to zero [19].

In previous work, some of us have reported on the genera-
tion of a bottle beam with a point of exact null intensity, i.e.,
with a three-dimensional (3D) dark focus by using a biaxial
crystal (BC) exploiting the phenomenon of conical refraction
(CR) [20]. This configuration, shown in Fig. 1(b), is almost
as simple as a focused red-detuned Gaussian beam since it
only requires the addition of a BC and potentially of a linear
polarizer (polarizing beam splitter, PBS) and a quarter-wave
plate (λ/4) for creating circularly polarized light. Focusing
this beam through the biaxial crystal transforms a single focal
spot into a ring-shaped intensity distribution in the focal plane.
The ring radius R0 is given by the properties of the crystal
and the radial extent of the intensity distribution is related
to the focal spot size w0. By choosing the appropriate ratio
between R0 and w0, the emerging light field can be adjusted
to the bottle beam configuration. First results on trapping of
ultracold atoms [21] and confinement of absorbing droplets
based on such a dark focus have been shown by Esseling
et al. [22]. In the present article, we report the trapping of
ultracold atoms and BECs in such a 3D dark-focus beam and
analyze the implementation in detail both experimentally and
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FIG. 1. (a) Schematic setup for a red-detuned attractive potential
for neutral atoms provided by a focused Gaussian beam and density
plots of relative intensity for the focal plane (x, y, z = 0) and along
the propagation of the beam (x = 0, y, z). (b) Schematic setup for a
blue-detuned repulsive potential provided by the conical-refraction
bottle beam and the respective density plots of relative intensity.

theoretically. In Sec. II, we present the main characteristics of
the CR phenomenon, its theoretical basis, and the properties
of the 3D dark-focus beam. In Sec. III, we apply the harmonic
approximation around the dark focus and derive expressions
for trapping frequencies and heights of the potential barriers
as a function of the parameters of the trap configuration.
We characterize the experimental intensity distribution of the
bottle beam and determine the properties of the trapping po-
tential in Sec. IV. In Sec. V, we demonstrate the trapping of a
BEC of 87Rb, and discuss different configurations for further
applications in Sec. VI. We sum up the main conclusions of
this work in Sec. VII.

II. CONICAL REFRACTION

The CR phenomenon (for a review see Ref. [23]) trans-
forms an unpolarized or circularly polarized input light beam
focused to a waist w0 into a bright ring of radius R0 at the
focal plane when the input light beam passes along one of
the optical axes of a biaxial crystal [24–27], as can be seen
in Fig. 1(b). The CR ring radius R0 = l tan α � lα is the
product of the crystal length l and the CR semiangle α [27].
The CR semiangle α depends on the three principal refractive
indices of the crystal as α � √

(n2 − n1)(n3 − n2)/n2, where
it is assumed that n1 < n2 < n3. At any point of the CR ring,
the electric field is linearly polarized with the polarization
axis rotating so that every pair of diagonally opposite points
has orthogonal polarization. The absolute orientation of the

TABLE I. Normalized coordinates of the theoretical model de-
scribing conical refraction. Here, zR denotes the Rayleigh range
of the incoming Gaussian beam propagating along the positive z
axis. The control parameter ρ0 serves as a characteristic number for
describing the structure of the appearing intensity distribution.

ρ = r
w0

X = x
w0

ρ0 = R0
w0

Y = y
w0

zR = πw2
0

λ
Z = z

zR

polarization distribution depends on the orientation of the
plane of the optical axes of the crystal [27,28].

The theoretical model describing the beam propagation
in CR is based on the Belsky-Khapalyuk-Berry (BKB)
integrals [24,26]. For an input light beam with electric
field Ein, wave number κ = 2π

λ
, and using the cylindrically

symmetric two-dimensional (2D) Fourier transform a(κ ) =
2π

∫ ∞
0 rEin(r)J0(κr)dr, the normalized BKB integrals in

cylindrical coordinates can be written as [9]

BC(ρ, Z ) = 1

2π

∫ ∞

0
ηa(η)e−i Z

4 η2
cos (ηρ0)J0(ηρ)dη (1)

BS(ρ, Z ) = 1

2π

∫ ∞

0
ηa(η)e−i Z

4 η2
sin (ηρ0)J1(ηρ)dη (2)

using the normalized coordinates given in Table I. Here, η =
κw0 and Jα is the αth-order Bessel function of the first type.
The CR intensity distribution for a circularly polarized input
beam is given by

I (ρ, Z ) = |BC(ρ, Z )|2 + |BS(ρ, Z )|2. (3)

This can be derived from a Gaussian input beam with power
P and normalized transverse profile of the electric field am-

plitude E (ρ) =
√

2P/πw2
0 exp(−ρ2) using the 2D Fourier

transform a(η) =
√

2Pπ/w2
0 exp(−η2/4). Depending on the

parameter ρ0, the shape of the annular CR intensity pattern
can vary drastically. Therefore, ρ0 will be used as a control pa-
rameter. For ρ0 � 1, the light field results in a single focused
spot. For ρ0 � 1, the intensity pattern at the focal plane will
form two bright rings separated by a dark (Poggendorff) ring
[29–34]. This pattern of concentric rings, while illuminated
with blue-detuned light, can be used to create a repulsive
ring-shaped guiding potential for cold atoms and BECs [9].
Finally, for intermediate values of ρ0 ≈ 1, the structure of the
CR beam changes substantially, giving rise to different optical
ring potentials including a dark focus [20,35,36].

Generation of a 3D dark focus using CR

For the value ρ0 = ρDF
0 = 0.924, it has been shown that

the CR beam possesses a 3D dark focus of vanishing intensity
at the focal plane and increasing intensity in all directions
[10,20]. Thus, it is a perfect bottle beam as shown in Fig. 1(b).
In this case, the transverse profile in the focal plane is formed
by a doughnut-like intensity distribution [Fig. 1(b), lower
left]. Along the axis of propagation, the on-axis intensity at
first increases with distance from the focal plane and drops
again for larger distances, as shown in Fig. 1(b), lower right.
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TABLE II. Specific intensity values and corresponding positions
characterizing the dark-focus beam for ρ0 = ρDF

0 in reference to the
maximum intensity I0 of a focused Gaussian beam.

Intensity Position

Ir,max = 0.199 I0 ρ = 1.096 Z = 0
Iz,max = 0.138 I0 ρ = 0 Z = ±1.388
Itrap = 0.133 I0 ρ = 0.619 Z = ±1.11
Ifork = 0.134 I0 ρ = 0 Z = ±1.174
I50%,z = 0.069 I0 ρ = 0 Z = ±0.598

At the focal plane, the positions of maximum intensity form
a ring with radius ρmax = 1.096 and peak intensity I (ρ =
1.096, Z = 0) = 0.199 × I0, with I0 = 2P

πw2
0

being the peak
intensity of the Gaussian input beam in the focal plane without
the CR crystal. Along the axial direction, there are two points
of maximum intensity at Zmax = ±1.388 with intensity I (ρ =
0, Z = ±1.388) = 0.138 × I0. The intensity reaches 50% of
the maximum value at position Z = ±0.598 along the axis,
and the minimum in the radial direction vanishes at Z =
±1.174. The weakest point of the bottle, thus defining the
trap depth, is located at position ρ = 0.619, Z = ±1.11 with
a value of I (ρ = 0.619, Z = ±1.11) = 0.133 × I0. Therefore,
under the condition ρ0 = ρDF

0 = 0.924, a circularly polarized
input beam is transformed into a perfect optical bottle beam
with a point of exact null intensity at ρ, Z = 0 equal to x =
y = z = 0. This feature makes this CR beam an ideal candi-
date for atom trapping experiments with blue-detuned light, in
simplicity corresponding to a red-detuned trap generated by a
focused Gaussian beam. The values for the intensity levels at
specific positions are summarized in Table II.

III. THEORETICAL FORMULATION OF THE
PROPERTIES OF THE 3D DARK FOCUS

In this section, we study the behavior of the CR beam close
to the trap center, i.e., for ρ ≈ 0, Z ≈ 0, and for the value
ρ0 = ρDF

0 = 0.924. We deduce the height of the potential
barriers and, using a harmonic approximation, the vibrational
frequencies for trapping of ultracold atoms for the example of
the alkali atom 87Rb. The strength of the dipole potential [2,3]
will be considered for typical experimental conditions as

U (r) = I (r)Ũ0 (4)

Ũ0 = πc2

2

[

D2

ω3
D2

(
2

ωL − ωD2

)
+ 
D1

ω3
D1

(
1

ωL − ωD1

)]
. (5)

In Ũ0 we have applied the rotating-wave approximation. Here,
c is the speed of light in vacuum, 
Di and ωDi (i ∈ {1, 2})
are the natural line width and frequency of the Di line of the
atomic species, and ωL is the frequency of the input light. The
spatial intensity distribution I (r) is given by Eq. (3).

A. Radial direction

The Taylor series of the Bessel functions of order α,
Jα (ηρ), around ηρ = 0 can be written as

Jα (ηρ) =
∞∑

k=0

(−1)k

k!
(k + α + 1)

(ηρ

2

)2k+α

, (6)

where 
(t ) = ∫ ∞
0 xt−1e−xdx is the Gamma function. Under

this expansion and for an input beam with Gaussian profile,
Eq. (1) with α = 0 and Eq. (2) with α = 1 can be rewritten as

BC(ρ, Z ) =
√

P

2πw(Z )2

∫ ∞

0
ηe

−η2 (1+iZ )
4 cos (ηρ0)

×
∞∑

k=0

(−1)k

k!
(k + 1)

(ηρ

2

)2k
dη, (7)

BS(ρ, Z ) =
√

P

2πw(Z )2

∫ ∞

0
ηe

−η2 (1+iZ )
4 sin (ηρ0)

×
∞∑

k=0

(−1)k

k!
(k + 2)

(ηρ

2

)2k+1
dη. (8)

Equations (7) and (8) can be analytically solved, obtaining the
following expressions:

BC(ρ, Z ) =
√

2P

πw(Z )2

∞∑
k=0

(−1)kρ2k

k!(1 + iZ )1+m

× 1F1

(
k + 1;

1

2
;

−ρ2
0

1 + iZ

)
, (9)

BS(ρ, Z ) =
√

8Pρ2
0

πw(Z )2

∞∑
k=0

(−1)kρ2k+1

k!(1 + iZ )m+1

× 1F1

(
k + 2;

3

2
;

−ρ2
0

1 + iZ

)
, (10)

where 1F1(a; b; z) is the Kummer confluent hypergeometric
function [37]. This formulation is valid for all values of ρ0

for which the point of minimum intensity remains at ρ = 0.
For the 3D dark-focus beam (ρ0 = 0.924), the minimum in-
tensity in the focal plane is zero. We find that for ρ � 1, the
expression for k = 0 is a good approximation to the full CR
intensity profile. Therefore, it is sufficient to keep the k = 0
terms of the series in Eqs. (9) and (10) only. In this case, the
intensity of the CR beam reads

I (ρ � 1, Z ) = 2P

πw(Z )2

⎛
⎜⎝

∣∣∣∣∣∣
1F1

(
1; 1

2 ; −ρ2
0

1+iZ

)
1 + iZ

∣∣∣∣∣∣
2

+ 4ρ2
0

∣∣∣∣∣∣ρ2 1F1
(
2; 3

2 ; −ρ2
0

1+iZ

)
(1 + iZ )2

∣∣∣∣∣∣
2
⎞
⎟⎠ (11)

with w(Z ) = w0

√
1 + Z2. The first term in Eq. (11) is an

offset to the potential that appears for Z 	= 0, as shown in
Fig. 1(b), lower right. As a consequence, trapping atoms out-
side of the focal plane increases spontaneous scattering. To
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obtain the trapping frequencies of the potential in the radial
direction, one applies the harmonic approximation to the sec-
ond term of Eq. (11), which yields

ωr (Z ) =
√

16ρ2
0Ũ0P

πmw4
0 (1 + Z2)

∣∣∣∣∣∣
1F1

(
2; 3

2 ; −ρ2
0

1+iZ

)
(1 + iZ )2

∣∣∣∣∣∣, (12)

where m is the atom mass. Note that this approximation is
valid only in the region where the optical bottle is formed,
i.e., for Z ∈ [−1.174, 1.174]. In Eq. (12), we have undone the
normalization of the radial coordinate, i.e., we have replaced
ρ by r/w0. For the 3D dark focus, at the focal plane (Z = 0)
the radial trapping frequency reads

ωr (ρ0 = 0.924, Z = 0) = 0.383 ×
√

8Ũ0P

πmw4
0

. (13)

The potential barrier along the radial direction, i.e., at the
position r = (ρ = 1.096, Z = 0), is not well described by
the harmonic approximation. To give a full description of
the radial maximum, expressions up to at least k = 4 must
be considered in Eqs. (9) and (10). The value of the radial
barrier is

Ur,max = U (ρ = 1.096, Z = 0) = 0.199 × Ũ0
2P

πw2
0

= 0.199 × Ũ0I0. (14)

B. Axial direction

In the axial direction, a compact expression for any value
of ρ0 cannot be obtained. For the case of ρ0 = ρDF

0 , the point
of minimum intensity is at ρ = 0. Here, the approximation
from Eq. (6) used before is not needed since J1(0) = 0 and
J0(0) = 1 and, as a consequence, BS(ρ = 0, Z ) = 0. There-
fore, the intensity is solely given by BC as follows:

I (ρ = 0, Z ) = |BC(ρ = 0, Z )|2

= P

2πw2
0

∣∣∣∣
∫ ∞

0
ηe− η2 (1+iZ )

4 cos (ηρ0)dη

∣∣∣∣
2

= 2P

πw2
0|1 + iZ|2

∣∣∣∣∣1 −
2ρ0D

(
ρ0√
1+iZ

)
√

(1 + iZ )

∣∣∣∣∣
2

,

(15)

where D(x) is the Dawson function [38]. The second order
of the Taylor series of this analytical solution leads to the
following expression for the trapping frequency ωz along the
axial direction:

ωz(ρ0 = 0.924, ρ = 0) =
√

Ũ0P

πmw2
0z2

R

=
√

Ũ0Pλ2

π3mw6
0

. (16)

The height of the potential barriers along the axial direction,
i.e., at r = (ρ = 0, Z = ±1.388), can be directly obtained
from Eq. (15) as

Uz,max = U (ρ = 0, Z = ±1.388) = 0.138 × Ũ0
2P

πw2
0

= 0.138 × Ũ0I0. (17)

FIG. 2. Intensity distribution of the dark-focus bottle beam:
(a) Two-dimensional density plot of the experimental intensity dis-
tribution in the xz plane. (b) Corresponding calculated intensity
distribution.

IV. EXPERIMENTAL REALIZATION
OF THE DARK FOCUS

In order to generate the experimental intensity distribu-
tion for a dark-focus bottle beam, in our setup a collimated
Gaussian beam with a waist of win = 1150(50) µm is used as
input. The beam is focused with an achromatic lens of focal
length fL1 = 200 mm. A series of beam profiles at different
positions along the beam axis are taken to determine spot size
and Rayleigh range of the focused beam. The beam waist in
the focal plane and the Rayleigh range are measured to w0 =
43.6(30) µm and zR = 6.85(60) mm, respectively. When a
quarter-wave plate and a potassium gadolinium tungstate
[KGd(WO4)2] crystal are placed in the beam path, the ex-
pected dark focus emerges [see Fig. 2(a)]. Given the length
l = 2.2(1) mm and semiangle α = 19.07 mrad of the crys-
tal, R0 = 42.0(1.9) µm and the CR parameter ρ0 = 0.96(8),
which is close to the targeted ρDF

0 = 0.924. For characteriza-
tion of the intensity distribution of the dark focus, a series of
63 images of the xy plane are taken along the beam propaga-
tion axis with a mutual separation of 250(10) µm. In Fig. 2(a),
cuts through the center of the images along the x axis are
stacked along the image position z, displaying the intensity
distribution in the xz plane. The density plot shows the dark
focus generated by CR. For comparison, we calculate the
corresponding intensity distribution based on Eqs. (1)–(3) for
the measured beam parameters. The resulting density plot is
shown in Fig. 2(b). The spatial distribution and the intensity
values show good agreement. In the experimental plot, some
deformations are visible which are due to imperfections in the
incident beam and in the crystal and its alignment.

The minimal and maximal intensity as a function of z
are extracted from Fig. 2(a) and compared to the calculated
values. We give the intensity along the z axis for the center
(x = y = 0) of the trap in blue in Fig. 3(a). For the intensity
maxima of each plane along z, we determine the mean value
of the maximal intensity along the x and y axis,

Imax(z) = max [I (x, y = 0, z)] + max [I (x = 0, y, z)]

2
. (18)

The resulting values are shown in red in Fig. 3(a). Dashed
lines represent the corresponding values calculated with
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FIG. 3. (a) Maximum (red) and minimum (blue) values of the
relative intensity of the CR pattern at different planes along the beam
propagation axis z. Calculated values are shown as dashed lines.
(b) Relative intensity along the x and y axis in the focal plane at
z = 0. The dashed line shows the calculated values.

Eqs. (1)–(3). The experimental values show only small de-
viations from the calculated values, proving good agreement
between theory and experiment. From the intensity profiles in
Fig. 3(a) we extract the maximum length of the “bottle” lBB

where atoms can be confined. We define this as the separation
of the two positions along z where the potential minimum in
the radial direction vanishes, allowing for a 5% uncertainty
in recognizing the disappearance of trapped atoms, i.e., I (x =
0, y = 0, z) � 0.95 × Imax(z) for |z| � 1

2 lBB. From Fig. 3(a)
we determine the length of the bottle as lBB = 14.2(5) mm.

We evaluate the radial confinement by comparing the ex-
perimental values of the intensities in the focal plane z = 0
along the x and y axis to calculations. In Fig. 3(b), the in-
tensity values extracted from the experimental image along
the x (blue) and y axis (red) are shown together with the
calculated values (dashed). The measured 2D intensity dis-
tribution can be seen in the inset of Fig. 4. From the position
of the radial intensity maxima Ir,max, in principle, the nom-
inal value of the ring radius R0 can be determined. Since
the underlying numerical relation is a function of ρ0, prior
knowledge of ρ0 is required, which adds significant uncer-
tainties and turns into circular reasoning. For ρ0 = 0.96(8)
we extract a value of R0 = 41.2(28) µm from the experimen-
tal data of Fig. 3(b). Due to the stated issues, we use the
calculated value R0 = 42.0(19) µm for the remainder of this
paper.

For evaluating the feasibility of trapping atoms in a bottle
beam based on the given intensity distribution, we calcu-
late the trapping frequencies in the focal plane after the

FIG. 4. Experimental setup for the creation of a dark-focus po-
tential based on conical refraction. The axis of the bottle beam is
oriented along the direction of gravity. The inset shows the transverse
intensity distributions in the focal plane. Two detection paths can
be used to image the atom distribution via absorption imaging. The
primary path is aligned with gravity. The secondary path is in the
plane of the crossed dipole trap oriented perpendicular to gravity.
(BS: beam splitter; PBS: polarizing beam splitter; PD: photodiode;
CCD: detection camera; BC: biaxial crystal; L1–L5: achromatic
lenses).

crystal. It is important to notice that the CR dark focus can be
reimaged to additional focal planes with preserved structure
and scaled parameters. We give the scaling at the end of
this section. Experimentally, an optical power of 52(5) mW
at 793.96 nm wavelength was available to generate the bottle
beam. Taking the measured beam parameters (ω0, zR), the
calculated ring radius R0, and Eqs. (13) and (16), we get
ωth

r = 2π × 295(65) Hz and ωth
z = 2π × 1.87(23) Hz in the

focal plane of the CR for 87Rb atoms. By performing har-
monic fits to the axial intensity values in Fig. 3(a) and to the
radial values in the focal plane in Fig. 3(b), we determine
the mean curvature of the intensity distributions along both
axes. Expressed as trapping frequencies for 87Rb atoms, we
get ωr = 2π × 298(10) Hz and ωz = 2π × 1.89(11) Hz, in
excellent agreement with the calculated values.

Since the focal plane after the CR crystal is outside the vac-
uum chamber (see Fig. 4), the dark-focus intensity distribution
is relayed into the chamber with magnification |MI| < 1. This
reimaging preserves the structure of the light field while scal-
ing the dimensions according to the magnification |MI|. The
beam waist and the ring radius scale with |MI|, the Rayleigh
range and lBB with |MI|2, the radial trapping frequency ωr with
1/|MI|2, and the axial trapping frequency ωz with 1/|MI|3.

V. 3D CONFINEMENT OF A RUBIDIUM
BEC IN THE DARK FOCUS

A. Loading the dark-focus trap with atoms

In order to demonstrate the experimental ability of the CR
dark focus to confine atoms in three dimensions, we transfer a
BEC of 87Rb into the rescaled bottle-beam potential and mea-
sure the axial trapping frequency, the axial and radial extent
of the potential minimum, and the lifetime of the cold atoms
in the trap. A schematic of the experimental setup is shown
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in Fig. 4 together with the transverse intensity distribution
in the focal plane. Two pairs of achromatic lenses reimage
and rescale the intensity distribution emerging in the focal
plane into the vacuum chamber. The 87Rb BEC of typically
25 000 atoms with a temperature of 25 nK is produced in a
crossed dipole trap (CDT) given by two intersecting focused
laser beams of a 1070-nm fiber laser [39]. The plane generated
by the two beams of the CDT is normal to gravity and the
propagation axis of the bottle beam. A light sheet potential
can be used in the plane of the CDT to provide an additional
potential against gravity or to select a specific z plane for
analysis. For the bottle-beam potential the light of a tita-
nium:sapphire (TiSa) laser at a wavelength of λ = 793.96 nm
is used. The beam is intensity stabilized and a maximal op-
tical power of P = 52(5) mW in the vacuum chamber can be
reached assuming no losses at the AR-coated vacuum window.
The light of the TiSa laser is delivered to the experiment
by an optical fiber providing a collimated beam of waist
win. To ensure a circular polarization of the incident beam, a
combination of a polarizing beam splitter and a quarter-wave
plate are used. The emerging intensity distribution in the focal
plane (inset in Fig. 4) is reimaged with a first telescope with
fL2 = 400 mm and fL3 = 200 mm and finally mapped into the
vacuum chamber with a second telescope with fL4 = 400 mm
and fL5 = 300 mm. With the given geometry of the setup, the
expected magnifications of the telescopes are |M th

2,3| = 0.5(1)
and |M th

4,5| = 0.60(3), resulting in a total magnification of
|M th

tot| = 0.3(2).
To demonstrate the 3D trapping of atoms in the bottle

beam, the dark focus is overlapped with the CDT. After the
BEC is created in the CDT, the optical power of the bottle
beam is increased linearly in three distinct temporal segments.
The power in the CDT is elevated during this time to ensure a
sufficient potential against gravity. Initially, the power of the
bottle beam is increased linearly up to 2.4 mW in 20 ms to
adiabatically change the radial trapping potential. Only low
optical power is needed to confine the atoms radially since
the trap curvature of the bottle beam in this dimension is
significantly larger than along the z axis. After this initial
segment, the power of the bottle beam is linearly increased
to 19 mW and further to 52 mW in two separate segments of
2 ms duration. After the final power is reached, the CDT is
switched off and the atoms are trapped by the bottle beam
alone. To maximize the transfer efficiency from the CDT to
the dark-focus trap, it is necessary to align the minima of
the potentials in the x and y direction. This prevents losses
induced by scattering of photons resulting from the high radial
intensity and small detuning from the D1 transition of the
bottle beam.

B. Characterization of the parameters
of the dark-focus potential

For characterization of the effective potential along z given
by the bottle beam and the gravitational potential, a series
of measurements are performed. The total magnification by
which the bottle beam is reimaged into the vacuum chamber
is needed for the calculation of the trapping frequencies and
other trap parameters. Due to gravity, the axial equilibrium
position of the atoms is dependent on the strength of the

FIG. 5. Axial oscillations of the center of the atom distribution
in the bottle-beam potential modified by gravity. Oscillations are
recorded for varying initial displacements of the atoms in the CDT
relative to the equilibrium position in the modified potential. Every
data set (colored dots) is fitted with a damped sinusoidal function
(colored lines) to extract the oscillation frequency.

bottle-beam potential. Varying the optical power of the bottle
beam shifts the equilibrium position in a known fashion, there-
fore leaving the magnification as a free parameter. To extract
this information, a BEC is loaded into the bottle beam at max-
imal power. After an initial holding time, the optical power is
lowered to the targeted value and an additional holding time
is added to ensure equilibration. From the axial position of the
atom cloud as a function of the optical power, the magnifica-
tion is determined to |Mtot| = 0.32(2), in agreement with the
value of |M th

tot| = 0.30(2) calculated from the parameters of
the optical reimaging system.

A good parameter to characterize the resulting potential is
the axial trapping frequency in the harmonic approximation
given by Eq. (16). The oscillation frequency for seven differ-
ent starting positions is measured, allowing for an additional
quantification of the anharmonicity of the potential caused
by gravity (see Fig. 5). Starting with a BEC in the CDT,
the power of the bottle beam is increased to the maximum
value of 52 mW as described above, and the BEC is released
into the bottle beam by suddenly switching off the CDT. By
varying the displacement of the bottle beam relative to the
CDT along the z axis, the separation between the point of
release and the equilibrium position can be modified. For
shifting the bottle beam, the lens L3 in Fig. 4 is moved
along the beam axis, therefore shifting the image of the bottle
beam. After release of the BEC into the bottle beam and a
varying holding time, the atom distribution is detected by
absorption imaging along the secondary detection path. A
2D-Gaussian fit is used to extract the position of the center
of the atom cloud. In Fig. 5 the center positions along the
z axis for different times and initial axial displacements are
shown. The data are fitted by a damped sinusoidal function
to identify the frequency of the oscillation. We record oscilla-
tion frequencies of ωz,max = 2π × 55.7(8) Hz for the smallest
and ωz,min = 2π × 51.7(2) Hz for the largest oscillation
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amplitude. The oscillation frequencies show a shift towards
lower values for larger amplitudes. This can be explained
by the increased anharmonicity of the potential for a larger
deviation from the equilibrium position. Using Eq. (16), we
find ωth

z = 2π × 57(13) Hz. For the calculation, the measured
values of the beam waist, Rayleigh range, and magnification
are used for imaging from the focal plane to the plane of the
atoms. With Eq. (12) we calculate a radial trapping frequency
of ωth

r = 2π × 2881(730) Hz for the trap parameters used.
Since the starting point of the oscillation is fixed in the abso-
lute reference system by the position of the CDT and the bottle
beam is shifted relative to it for the different measurements in
Fig. 5, all oscillations start at the same point. The position
of the equilibrium point of the potential can be extracted
from the offset of the sinusoidal fits. This can be used to
validate the magnification of the telescope consisting of L4

and L5. We find a magnification of |M4,5| = 0.59(3), which
confirms the theoretical value |M th

4,5| = 0.60(3).
In order to characterize the spatial structure of the bottle

beam in the vacuum chamber, we tomographically record the
atom distribution as a function of z. Planes of finite thickness
are selected utilizing a light sheet (LS) potential in the plane
of the CDT. The radial structure of the dark-focus potential is
mapped by imaging the atom distribution in the plane selected
by the LS. The LS potential is created by a Gaussian beam
which is elongated in one dimension. Using the red-detuned
light of a tapered amplifier laser system at λLS = 783.5 nm,
the LS provides an attractive potential with a vertical trap-
ping frequency of ωLS

z = 2π × 169.0(15) Hz. Calculating the
Thomas-Fermi radius as well as the width of a thermal cloud
in this potential leads to a thickness of less than d = 10 µm
in the LS potential. The planes are scanned by varying the
axial position of lens L3, therefore shifting the image of the
bottle beam relative to the LS. Moving the lens by steps of
500(10) µm results in a displacement of the bottle beam with
step size �z = 174(18) µm in the vacuum chamber. Com-
pared to this step size, the atomic layer in the LS is thin, thus
sampling only a small axial part of the potential. Loading the
BEC from the CDT into the LS and adding enough time for
expansion results in an oblate atom distribution larger than
the bottle beam. After expansion, the bottle beam is turned
on instantaneously with low optical power since the support
against gravity is achieved by the LS. The blue-detuned bottle
beam pushes the atoms into regions of low intensity, resulting
in a distribution that shows the imprint of the bottle-beam
potential. In Fig. 6(a), six examples of such distributions,
recorded along the primary detection path, are shown for
varying axial displacements of the bottle-beam focal plane
relative to the LS. The annular atom distributions that can
be seen in Fig. 6(a) far away from the axis result from atoms
not being trapped radially inside the bottle beam but pushed
outside by the blue-detuned light. These atoms are ignored
in further analysis. For small displacements [images (2)–(4)]
the bottle beam exhibits the characteristic central dark region
allowing for a significant central atom distribution to exist.
The atom number is extracted from the 2D density plot of
each plane in Fig. 6(a) and plotted over the corresponding
position in Fig. 6(c). In Fig. 6(b), a density plot is shown
for the one-dimensional (1D) line density along the x axis of
the central part of the atom distribution. From this, the radius

FIG. 6. (a) Density plots for six different planes along z. The
white scale bar at left has a length of 250 µm for reference. The
selected planes correspond to the positions −1218 µm, −696 µm,
−174 µm, 348 µm, 870 µm, and 1392 µm. Atoms that are not cap-
tured in the bottle beam are pushed outside by the blue-detuned
light and can be seen as an annular distribution. (b) Summed line
density of the atoms trapped radially by the bottle beam. The step
size of 174 µm along z between recorded planes is indicated as the
horizontal scale bar at the lower right. The white vertical scale bar at
left has a length of 50 µm. (c) Number of radially trapped atoms in the
bottle beam as a function of axial position. From this we estimate the
length of the bottle as lBB = 1570(174) µm, taking the background
of 500 atoms into account.

of the bottle beam can be determined to R0 = 13.2(26) µm.
Even for large displacements along z [images (1), (5), and
(6)], a nonvanishing central atom distribution can be found.
This is due to atoms being pushed out of the LS along z, still
remaining inside the radial bottle-beam potential, and thus
being recorded in the absorption image which integrates over
all atoms along the z axis. This results in an offset of about
500 atoms outside the trapping region in Fig. 6(c). From the
points where the atom number rises above this background
level, the length of the bottle-beam potential at the atom plane
is estimated to lBB = 1.570(174) mm, which is in good agree-
ment with the value of l th

BB = 1.60(21) mm derived from the
calculated value in the focal plane. In Table III, we summarize
measured and calculated values of the bottle-beam parame-
ters. All experimental parameters show good agreement with
the calculated values for the intensity distribution in the focal
plane as well as the bottle-beam potential in the atom plane.
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TABLE III. Comparison of measured and calculated parameters
of the bottle beam: Experimental values are determined from the
intensity distribution in the focal plane and the atom distribution in
the atom plane. Calculated values in the focal plane: lFP

BB, ωFP
r , and

ωFP
z are determined for ρ0 = 0.96(8) using Eqs. (12) and (16) and

the experimental values for w0 and zR as input; we do not apply the
experimental value of R0 for calculations since for its determination
an assumption for the value of ρ0 has to be made, leading to large
uncertainties. Calculated values in the atom plane: w0, R0, lBB, Utrap,
Utrap,g, ωr , and ωz are based on the calculated values in the focal plane
and the magnification |Mtot| = 0.32(2). The potential depth Utrap,g

includes the effect of gravity.

Calculation Light field

Focal plane w0 = 44.0(1.9) µm w0 = 43.6(30) µm
R0 = 42.0(1.9) µm R0 = 41.2(28) µm
lFP
BB = 15.6(7) mm lFP

BB = 14.2(5) mm
ωFP

r = 2π × 295(65) Hz ωFP
r = 2π × 298(10) Hz

ωFP
z = 2π × 1.87(23) Hz ωFP

z = 2π × 1.89(11) Hz

Calculation Experiment

Atom plane w0 = 14.0(21) µm –
R0 = 13.4(10) µm R0 = 13.2(13) µm
lBB = 1.60(21) mm lBB = 1.57(174) mm

Utrap = kB × 166.5 µK –
Utrap,g = kB × 87.0 µK –

ωr = 2π × 2881(730) Hz –
ωz = 2π × 57(13) Hz ωz = 2π × 55.7(5) Hz

C. Lifetime of atoms in dark-focus trap

We measured the lifetime of the atoms in the dark-focus
potential through absorption imaging for varying holding
times up to 500 ms. To distinguish between atoms within and
outside of the bottle beam, we utilize the secondary detection
direction. A time of flight of tTOF = 2 ms prior to imaging
decreases the optical density of the atom cloud and there-
fore reduces unwanted full absorption of the imaging light.
Through a 2D Gaussian fit to the density distributions, the
number of atoms remaining in the potential is determined.
The resulting atom numbers are shown in Fig. 7 for different
holding times. An exponential function N (t ) = N0 exp(−t/τ )
(solid red line) is fitted to the data. For times smaller than
100 ms the data deviate from a pure exponential behavior
and therefore are not included in the fitting procedure. A
possible reason for this deviation is the high density of the
atom ensemble for short times in the bottle beam. For den-
sities high enough to result in almost full absorption of the
detection light, additional atoms cause subproportional extra
absorption, therefor leading to an underestimation of the total
atom number. From the exponential fit, we extract a lifetime
of τ = 205(3) ms, which is primarily limited by gravitational
loss and photon scattering. The equilibrium point of the po-
tential is shifted away from the focal plane due to gravity.
This leads to a higher intensity seen by the atoms and an
increased scattering rate. Since the bottle beam is directed
downwards parallel to gravity, the momentum transferred to
the atoms propagates them further downwards along the direc-
tion of gravity out of the potential minimum and increases the
scattering rate even more. This continues until the atoms are

FIG. 7. Atom number as a function of holding time in the
bottle-beam potential showing an exponential decay for trapping
times larger than 100 ms. For trapping times smaller than 100 ms,
a deviation from the exponential behavior is visible. Therefore, the
exponential fit is carried out for t � 100 ms. From the fit (solid red
line), a lifetime of τ = 205(3) ms is extracted. The inset shows the
density plot of the atom distribution for t = 100 ms after tTOF = 2 ms.

lost completely from the potential. Orienting the bottle beam
antiparallel to gravity would reduce this problem. Ultimately
one would orient the bottle beam perpendicular to gravity.

VI. EVALUATING DIFFERENT TRAP CONFIGURATIONS

The trap geometry realized and characterized in the exper-
imental part of the previous sections is presenting the worst
possible mode of implementation: The weak axial direction
of the potential is oriented along the direction of gravity, the
gravitational sag pulls the atoms out of the intensity minimum,
and radiation pressure from spontaneous scattering from the
downwards directed bottle beam accelerates the atoms along
the direction of gravity in addition. Nevertheless, trapping of
a BEC in this configuration has been achieved as presented in
Sec. V.

In the current section, we discuss a series of standard
configurations used in cold-atoms experiments and perform a
comparison between the dark-focus trap and a corresponding
focused Gaussian beam trap. We assume that the beam axis
is oriented perpendicular to gravity and gravitational sag does
not need to be considered. This requirement also holds for
the Gaussian beam trap in which the axial curvature is even
weaker, as shown below. For any given Gaussian input beam
of waist w0, wavelength λ, and power P, the potential depth
and the radial and axial trapping frequencies are given by

UG = Ũ0
2P

πw2
0

= Ũ0I0 (19)

ωr,G =
√

8Ũ0P

πmw4
0

(20)

ωz,G =
√

4Ũ0Pλ2

π3mw6
0

. (21)

053320-8



TRAPPING OF BOSE-EINSTEIN CONDENSATES IN A … PHYSICAL REVIEW A 108, 053320 (2023)

TABLE IV. Comparison of Gaussian and bottle-beam based traps
for BECs (a and b) and single atoms (c). In all configurations, the
dark-focus trap exhibits reduced rates for spontaneous scattering at
comparable trapping properties. (See text for details.)

Application Light-field parameters and calculated
case values for configuration based on:

Gaussian beam Bottle beam

(a) BEC in PG = 1 mW PBB = 9.00 mW
single-beam trap λG = 795.98 nm λBB = 793.98 nm

ωr 2π × 176.3 Hz 2π × 176.3 Hz
ωz 2π × 0.831 Hz 2π × 1.083 Hz
ω̄ho 2π × 29.6 Hz 2π × 32.3 Hz
Utrap kB × −4.63 µK kB × 4.20 µK

̄TF 6.55 1

s 9.19 × 10−3 1
s

(b) BEC in PG = 35 mW PBB = 35 mW
crossed-beam trap λG = 1070 nm λBB = 758.5 nm

ωr (one beam) 2π × 124.8 Hz 2π × 124.9 Hz
ωz (one beam) 2π × 0.791 Hz 2π × 0.733 Hz
ω̄ho 2π × 140.0 Hz 2π × 140.2 Hz
Utrap kB × −2.32 µK kB × 3.16 µK

̄TF 16.1 × 10−3 1

s 3.05 × 10−3 1
s

(c) Single-atom PG = 10 mW PBB = 10 mW
tweezers λG = 1051 nm λBB = 759 nm

ωr 2π × 98479 Hz 2π × 98477 Hz
ωz 2π × 23285 Hz 2π × 21976 Hz
ω̄ho 2π × 60896 Hz 2π × 59732 Hz
Utrap kB × −1001 µK kB × 907 µK

̄GS 3.87 1

s 11.7 × 10−6 1
s

In Table IV we compare the Gaussian and the dark-focus
(ρDF

0 = 0.924) potentials. We have chosen experimentally
accessible values for wavelength and optical power. Three
different configurations are presented: (a) traps for a BEC with
a detuning of 1 nm and a laser power of 1 mW, (b) traps for a
BEC in crossed-beam configurations with parameters as in the
CDT used in our experiment for BEC production, and (c) opti-
cal tweezer traps as used to store individual atoms for quantum
information processing. To characterize both potentials in all
three configurations, we calculate radial and axial trapping
frequencies ωr and ωz, the 3D geometric mean ω̄ho, and the
potential depth Utrap. For comparability, we force that identical
radial trapping frequencies are achieved in the Gaussian and
in the bottle beam. With respect to a given input power PG of
the Gaussian beam at wavelength λG, one can calculate the
necessary power in the bottle beam via

PBB = 1

0.3832

∣∣∣∣ Ũ0,G

Ũ0,BB

∣∣∣∣PG = 6.82

∣∣∣∣ Ũ0,G

Ũ0,BB

∣∣∣∣PG. (22)

As can be seen in Table IV, this also leads to comparable trap
depths. To demonstrate the advantage of the dark-focus trap,
we evaluate the mean photon scattering rate 
̄ for the resulting
spatial atom distribution.

The two BEC configurations (a) and (b) are based on
a BEC of 87Rb atoms in the Thomas-Fermi regime. For
this approximation, an atom number of N = 20000 in the

F = 1 hyperfine state and the scattering length a11 = 100.4 a0

[40] with the Bohr radius a0 are used. The beam waist is
w0 = 38.0 µm. In configuration (a), we choose a detuning
|�λBB| = |�λG| = 1 nm from the D1 line of rubidium at
λD1 = 794.98 nm and a power PG = 1 mW. For identical ωr ,
a power PBB = 9.00 mW is required according to Eq. (22).
The trap depths in both beams are very similar, but the bottle
beam provides a larger axial trapping frequency ωz and a mean
photon scattering rate 
̄TF reduced by about a factor of 700
when averaged over the 3D Thomas-Fermi distribution.

In configuration (b), we take the parameters of the final
stage of evaporative cooling in our CDT for BEC production
with a fiber laser at 1070 nm [39] and keep the power fixed
at PG = PBB = 37 mW. For the bottle beam, we determine
the wavelength at which the radial vibrational frequencies
match to 758.5 nm. This wavelength is easily accessible with
a TiSa laser and allows to transfer the BEC adiabatically into
a nearer-resonant blue-detuned light field for further appli-
cations such as dipole-potential-guided atom experiments in
ring traps [9] or atomtronics [41,42] configurations. Again,
the mean photon scattering rate is reduced, in this case by a
factor of 5. This factor can easily be increased by allowing an
increased power PBB and accordingly increased detuning λBB.
Confining atoms in such a dark-focus CDT could allow for a
higher efficiency in evaporative cooling and increased lifetime
of the BEC.

In configuration (c), we compare optical tweezers for sin-
gle atoms as used in experiments for quantum simulation,
computation, and metrology. Again, we apply typical experi-
mental parameters, i.e., beam waist w0 = 1 µm and trap depth
|Utrap| = kB × 1 mK (see, e.g., Refs. [43,44]). We assume that
an array of 100 traps shall be created out of an available laser
power of 1 W, giving PG = PBB = 10 mW. The atoms shall
be cooled to the 3D vibrational ground state, which allows
to calculate the mean scattering rate 
̄GS using the ground
state wave function as atom distribution. Since the single atom
is localized at the potential minimum to a very high degree,
spontaneous scattering in the blue-detuned trap is reduced by a
factor of 3 × 105. This presents a tremendous advantage con-
cerning the required coherence times for quantum technology
applications. In addition, it has been shown that atoms in a
highly excited Rydberg state such as those used for quantum
gate operations can be trapped in blue-detuned bottle-beam
traps [7]. This makes the CR-based dark focus an advanta-
geous configuration of individual-atom tweezer experiments.

VII. CONCLUSIONS

We have demonstrated the experimental implementation
of a blue-detuned 3D atom trap obtained from a single fo-
cused Gaussian beam through the CR phenomenon in biaxial
crystals. We have deduced simple formulas for the trapping
frequencies and potential barriers in three dimensions as a
function of typical experimental parameters. One of the ad-
vantages of this configuration is that CR provides the full
conversion of the input power into the 3D dark-focus beam
and avoids conversion losses, in contrast to other methods,
e.g., based on SLMs, which introduce losses due to diffraction
in the generation of the underlying Laguerre-Gaussian beams.
Moreover, biaxial crystals can be transparent in an extremely
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wide spectral range [45] [e.g., wavelengths of 350 nm–5.5 µm
in KGd(WO4)2], in contrast to SLMs, which only work in a
narrow spectral range, usually a few hundreds of nm. These
features make the 3D dark-focus beam, produced by CR, a
very useful tool for particle manipulation [34,46] and atom
trapping [9].

Further applications can be expected: If instead of a Gaus-
sian symmetric input beam, an elliptical beam is used, the 3D
dark focus will lead to a pair of elliptical beams divided by a
thin dark region. This configuration could be used as a dark
light sheet potential, where cold atoms are trapped between
the bright regions. The combination of the 3D dark focus with
an array of microlenses [43,47] would lead to the generation
of a 2D array of 3D dark-focus traps being of significant
interest for atom trapping in quantum computing and sim-

ulation experiments. Finally, changing the control parameter
to ρ0 � 1, the dark focus evolves into a dark ring [9], which
might be even interfered with a plane wave to give a 1D stack
of doughnut-like dark-minimum potentials, ideal for quantum
many-body experiments [48–50].
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