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Filtering of matter-wave vibrational states via spatial adiabatic passage
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We discuss the filtering of the vibrational states of a cold atom in an optical trap by chaining this trap with
two empty ones and adiabatically controlling the tunneling. Matter-wave filtering is performed by selectively
transferring the population of the highest populated vibrational state to the most distant trap while the population
of the rest of the states remains in the initial trap. Analytical conditions for two-state filtering are derived and
then applied to an arbitrary number of populated bound states. Realistic numerical simulations close to state-of-
the-art experimental arrangements are performed by modeling the triple well with time-dependent Pöschl-Teller
potentials. In addition to filtering of vibrational states, we discuss applications for quantum tomography of
the initial population distribution and engineering of atomic Fock states that, eventually, could be used for
tunneling-assisted evaporative cooling.
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I. INTRODUCTION

Ultracold atoms trapped in optical potentials [1–3], for
example, microtrap arrays or optical lattices, have attracted
considerable attention since they fulfill all the basic require-
ments for quantum information processing [4]. In fact, neutral
atoms in dipole trap arrays with short-range interactions,
such as s-wave scattering of bosons [5], or state-selective
long-range interactions, such as dipole-dipole interactions [6],
do not experience intrinsic limitations in their scalability.
Thus a quantum register of about a hundred qubits has
been reported recently in a two-dimensional (2-D) optical
microtrap array [3]. Two-dimensional optical microtrap arrays
present two characteristic features: (1) the simplicity to achieve
single-site addressing since the trap separation distances can
range from single microns up to ∼100 µm, in any case
being larger than the resolution limit, and (2) the freedom
to move independently sets of traps or even individual traps
to control the tunneling. However, cooling a single atom
down to the lowest vibrational state of an optical microtrap
array is still a challenging issue and, for some physical
realizations, represents one of main experimental limitations
to perform quantum computations with optical microtraps.
Thus developing techniques to determine and, eventually, to
engineer the population distribution in optical microtraps is a
focus of present research [3]. In this context, we here propose
to make use of the spatial adiabatic passage technique [7] to
achieve this goal.

Spatial adiabatic passage consists in adiabatically fol-
lowing a spatial dark state whose spatial profile is deter-
mined by the tunneling interaction between neighboring traps
[7] and, in fact, is the matter-wave analog of the well-
known quantum optical stimulated Raman adiabatic passage
(STIRAP) technique [8]. Here we will take profit of the fact
that tunneling rates between traps strongly depend on the
vibrational state under consideration to perform state-selective
adiabatic passage leading to (1) filtering of vibration states,
(2) quantum tomography of the initial population distribution,
and (3) engineering of atomic Fock states that, eventually,
could be used for tunneling-assisted evaporative cooling.

The article is organized as follows. In Sec. II we introduce
the physical model consisting of a single atom in three iden-
tical Pöschl-Teller (PT)-type potentials [9] with time-varying
position of the trap centers. The filtering protocol is presented
in Sec. III, and analytical conditions for two-state filtering are
derived and compared to numerical simulations. Section IV
focuses on the application of the filtering protocol to multiple
states for quantum tomography and quantum engineering of
Fock states. Finally, the conclusions are summarized in Sec. V.

II. MODEL

We study the dynamics of a single cold neutral atom of
mass m in a 1-D triple well potential [see Figs. 1(a) and 1(b)]
described by the Schrödinger equation:

ih̄
∂

∂t
ψ(x,t) =

[
− h̄2

2m

∂2

∂x2
+ V (x,t)

]
ψ(x,t), (1)

where the wells are modeled by three identical PT-type
potentials [9]:

V (x,t) =
∑

i=L,M,R

V0isech2{
√

2[x − xi(t)]/α}. (2)

V0i is the potential depth for the ith trap, and xi (t) defines
the position of its center at time t ; 2α is the width of the
PT potential, and ωx = h̄/mα2 is the trapping frequency.
Note that we assume here PT potentials since they can
be used to model very accurately Gaussian potentials (see
Appendix A), obtained with dipole traps built up by focusing
a laser beam. In this case the parameter α corresponds to the
waist w0 of the Gaussian light beam. In addition, PT potentials
provide analytical expressions for their energy eigenvalues and
eigenstates (see Sec. III B). Throughout the article, we will use
dimensionless units for time, tωx , space, x/α, and potential
amplitude, V0/h̄ωx . Initially, at tini, we will assume that the
neutral atom is distributed among the vibrational states of the
left trap, while the other two traps are empty.
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FIG. 1. (Color online) (a) Temporal variation of the positions
of the PT trap centers, where d0 is the minimum trap separation
and T is the time delay between the two approaching sequences.
(b) Illustration of the spatial profile of the PT potentials at the
three different times corresponding to the vertical lines in (a). Each
isolated PT trap has depth V0 = −20h̄ωx and supports only four
vibrational states. (c) Temporal variation of the tunneling rate �LM

n

(�MR
n ) between left and middle (middle and right) traps for the ground

(n = 0) and first (n = 1) excited states; θ1 is the mixing angle for the
first excited state. Temporal variation of the population of the ground
and first excited states of the (d) left and (e) right traps assuming the
following initial distribution P L

0 (tini) = P L
1 (tini) = 1/2, respectively.

III. TWO-STATE FILTERING

A. Basic idea

Our proposal for the filtering of vibrational states is based
on an adiabatic transport process [7] between the two extreme
traps that resembles the well-known quantum optical STIRAP
technique [8]. Although we will accurately investigate the
filtering of vibrational states by numerically solving the
Schrödinger equation [Eq. (1)], for simplicity, in the following
lines, we will illustrate the basics of our proposal by restricting
the dynamics into the Hilbert space spanned by the ground
and the first excited vibrational states of each trap. In this
finite basis, the Hamiltonian of the system can be roughly
approximated to H = H0 ⊕ H1 with

Hn = h̄

⎛
⎜⎝

0 �LM
n (t) 0

�LM
n (t) 0 �MR

n (t)

0 �MR
n (t) 0

⎞
⎟⎠ , (3)

where �
ij
n is the tunneling rate between two adjacent traps

i and j with i,j = L,M,R denoting left, middle, and right,
respectively, and where n = 0,1 refers to the ground or the first
excited vibrational state, respectively. Note that we have split
Hamiltonian H into the direct sum of H0 and H1 and, therefore,
we have assumed that the energy separation between the
ground and first vibrational state of each trap is large enough
to avoid crossed tunneling between ground and excited states
of different traps. This approximation could fail for vibrational
states close to the continuum, such as the vibrational analogs
of Rydberg states, where the energy spacing between different
levels becomes relatively small. The latter scenario is out of
the scope of this article.

After diagonalization of the two Hamiltonians given in
Eq. (3), one ends up, in particular, with two energy eigenstates
that only involve vibrational states of the two extreme traps:

|Dn(θn)〉 = cos θn|n〉L − sin θn|n〉R, with n = 0,1, (4)

where the mixing angle, θn, is defined as tan θn ≡ �LM
n /�MR

n .
States |Dn(θn)〉 are known as spatial dark states [7]. State-
selective adiabatic passage of matter waves between the two
extreme traps will consist in adiabatically following one of the
two energy eigenstates [Eq. (4)], typically the one with highest
energy, by the smooth variation of the tunneling rates, while
for the other one, the transport process is inhibited.

B. Pöschl-Teller tunneling rates

For a single PT potential (2) of depth V0 = −s (s + 1) (s >

0), there is an analytical solution for their energy eigenstates
in terms of the associated Legendre P (n−s)

s polynomials, as
follows:

φn,s(x) = Nn,sP
(n−s)
s {tanh[

√
2(x − xi)/α]}, (5)

with normalization constant

Nn,s = 21/4

α1/2

√
(s − n)

�(2s − n + 1)

�(n + 1)
, (6)

where s = √|V0| + 1/4 − 1/2, n = 0,1, . . . ,Nmax numerates
the bound states, with Nmax being the integer part of s, and
En,s/h̄ωx = − (s − n)2 gives the energy of the nth state. � is
the � function.

The tunneling rates �n,s between two identical PT poten-
tials can be found by determining the energy difference be-
tween the symmetric φ+

n,s and antisymmetric φ−
n,s eigenstates,

namely, �n,s = 〈φ+
n,s |H |φ+

n,s〉 − 〈φ−
n,s |H |φ−

n,s〉 = E+
n,s − E−

n,s .

We take φ±
n,s = (φi

n,s ± φ
j
n,s)/

√
2, where φ

i,j
n,s corresponds

[see Eq. (5)] to the localized state φn,s of either the trap
i or its neighbor j . For n = 0, the Gram-Schmidt (GS)
orthonormalization procedure (see Appendix B) provides very
accurate analytical expressions for the ground-state tunneling
rate, �0,s . For the exited states, only approximate analytical
solutions are possible. The Holstein-Herring method (see
[10,11]) yields, for two identical traps,

�n,s(d) = E+
n,s − E−

n,s = −∇[
φi

n,s(x)
]2

1 − 2
∫ ∞
x

[
φi

n,s(x ′)
]2

dx ′

∣∣∣∣∣
x=d/2

,

(7)

where d is the distance between the trap centers.
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At large distances between the traps, the denominator in
Eq. (7) rapidly approaches unity, and the main behavior of
the tunneling rate �n,s (d) is given predominantly by the
numerator, for which, by applying the recurrence relations
for associated Legendre functions, one could write

�n,s(d) 
 −∇[
φi

n(x)
]2∣∣

x=d/2

= −2φi
n(x)Nn,s

[√
(1 − x2)P (n−s)+1

s

+ (n − s)xP (n−s)
s

]∣∣
x=tanh d/2. (8)

For tanh d/2 → 1, the above expression could be further
simplified:

�n,s(d) ∼ 2
[
φi

n,s(d/2)
]2

(s − n) = Bn,se
−(s−n)d , (9)

where

Bn,s = �(2s − n + 1)

�(n + 1)

(
2s(s + 1)

�(s − n)

)2

. (10)

Therefore
�n,s (d)

�n−1,s (d)
∼ An,se

d, (11)

with

An,s = (s − n)2

(2s − n + 1)n
. (12)

From Eq. (9), it is clearly shown that for a fixed potential
depth (fixed s), the tunneling rate �n,s (d) increases with the
energy level n and decreases with the distance d. In contrast,
the tunneling rate ratio for two consecutive levels [Eq. (11)]
exhibits inverse dependence, that is, it decreases with the
energy level n and increases exponentially with the distance d.

C. Conditions for two-state filtering

For the transfer process, we will assume that the position
of the trap center for each of the traps can be varied at
will to temporally control the tunneling interaction [2,3]. In
this case, the adiabatic transport will consist in approaching
and separating the traps in a counterintuitive sequence [see
Fig. 1(a)] with typical spatial profiles given in Fig. 1(b). The
two empty traps, right and middle ones, are approached and
separated first and, with an appropriate time delay T , left
and middle traps are approached and separated. The motional
sequence of the traps [see Fig. 1(a)] is engineered in such a
way that the time variation of the tunneling rates between two
adjacent traps resembles a Gaussian profile [see Fig. 1(c)].
With this aim, and taking into account the explicit dependence
of the tunneling rates with the distances [see Eq. (9)], we
fix xM = 0 and take the following temporal variation for the
outermost trap positions:

(xL − xM )

α
= −

√
ω2

x

(
t − T

2

)2(
v0

αωx

)2

+
(

d0

α

)2

,

(13)
(xR − xM )

α
=

√
ω2

x

(
t + T

2

)2(
v0

αωx

)2

+
(

d0

α

)2

,

with d0 being the minimum separation distance between the
outermost (either left or right) and the middle trap achieved

at time t = ±T/2, respectively; v0 gives the modulus of the
velocity of the outermost traps at large separation distances.

Since we are considering identical traps, the tunneling
couplings between right and middle and between left and
middle traps will follow the same dependence with the trap
distance, �LM

n (d) = �MR
n (d) = �n(d). In this case, the global

adiabaticity condition [7,8] for spatial adiabatic passage reads√[
�LM

n (d0)
]2 + [

�MR
n (d0)

]2
T = �n(d0)T > 10, (14)

where T is the characteristic time for the adiabatic passage
process.

Since we are interested in state-selective atom transfer, the
goal of the filtering protocol will be that the atomic population
initially in the highest vibrational state of the left trap follow
adiabatically the spatial dark state, |D1(θ1)〉, ending in the right
trap, while the population initially distributed in the lower
levels of the left trap remains there during the whole process.
Therefore, for the two-state filtering case, the counterintuitive
motional sequence of the traps should be performed fulfilling
�1(d0)T > 10 and �0(d0)T � 10. Moreover, the filtering
protocol requires also to inhibit the direct transfer between
neighboring traps of the population initially in the ground state
of the left trap, that is, �0(d0)T � 1. Therefore the necessary
condition for two-state filtering reads

�1(d0)

�0(d0)
 10 . (15)

Note also that in order to avoid the direct coupling between the
outermost traps, it is also required that �n(2d0)T � 1, which
implies that

�1(d0)

�1(2d0)
 10 . (16)

For the filtering sequence shown in Fig. 1(c), with θ1

varying from 0 to π/2, we have choosen parameters such that
both conditions (15) and (16) are fulfilled and, therefore, one
expects that the filtering protocol succeeds. Figures 1(d) and
1(e) plot the temporal variation of the population distribution
of the left and the right traps, respectively, by integrating the
corresponding Schrödinger equation [Eq. (1)] with the initial
population distribution P L

0 (tini) = P L
1 (tini) = 1/2. At the end

of the process, P L
0 = P R

1 = 1/2, which confirms the validity
of the filtering protocol.

In the following, we will investigate the robustness of
the filtering protocol under variations of the parameters.
With this aim, we plot in Figs. 2(a)–2(c) curves �1(d0)T =
10 (solid blue) and �0(d0)T = 1 (dashed red) in the parameter
plane (d0/α, ωxT ) for three different values of the potential
depth s = 2, 3, and 4. The dotted green curve corresponds to
�1(2d0)T = 1. The gray region defines the parameter domain
for which both conditions (15) and (16) are fulfilled. Note from
Figs. 2(a)–2(c) that even for small values of s, the parameter
domain where the filtering protocol should succeed is limited
by condition (15). To confirm the previous predictions, we
have performed numerical simulations of the filtering protocol
integrating the Schrödinger equation for s = 4. Figure 2(d)
shows the contour plot of the fidelity at the end of the filtering
process, defined as F = P L

0 + P R
1 for an initial population

distribution of P L
0 = P L

1 = 1/2. For this case, the previously
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FIG. 2. (Color online) Curves �1(d0)T = 10 (solid blue) and
�0(d0)T = 1 (dashed red) in the parameter plane (d0/α, ωxT )
for three different values of the potential depth (a) s = 2,
(b) s = 3, and (c) s = 4. In all three cases, the dotted green curve
corresponds to �1(2d0)T = 1. The gray region defines the parameter
domain for which the filtering conditions (15) and (16) are fulfilled.
(d) Contour plot of the fidelity (see text) of the filtering process
for s = 4 obtained numerically by integration of the Schrödinger
equation with the temporal variation of the trap centers given by
Eq. (13). The cross in (d) marks the parameter setting used in Fig. 1.

derived filtering conditions (15) and (16) assure that the fidelity
of the process is above 0.99. We have numerically checked the
validity of the derived filtering conditions for a wide set of
parameters.

D. Extension to two excited states

The generalization of the filtering protocol to two higher
excited levels, n and n − 1, is straightforward. In this case,
the counterintuitive motional sequence of the three PT traps
should be performed fulfilling conditions �n,s(d0)T > 10 and
�n−1,s(d0)T � 1, which generalizes expression (15).

In Fig. 3, we plot curves �n,s(d0)T = 10 (solid blue) and
�n−1,s(d0)T = 1 (dashed red) in the parameter plane (d0/α,
ωxT ) for the potential depth s = 6. Perfect filtering could
be performed for each n in the corresponding gray region,
transferring the population of state n to the right trap without
modifying the population of state n − 1. From Fig. 3 it is
clearly shown that the optimal minimum distance for the
filtering protocol decreases with n. This minimum distance,

1 2 3 4 5 6 7
d /

0

100

200 n = 0 1 2 3 4 5

α0

s = 6

ω
T

X

FIG. 3. (Color online) Curves �n,s (d0) T = 10 (solid blue) and
�n−1,s (d0) T = 1 (dashed red) in the parameter plane (d0/α, ωxT )
for PT potentials with depth s = 6. Filtering for the vibrational level
n can be achieved in the corresponding gray region.

dmin
n , for the filtering protocol involving states n and n − 1 can

be estimated as follows. From Eq. (11) and extending Eq. (15)
to excited states, one obtains

�n,s

(
dmin

n

)
�n−1,s

(
dmin

n

) ∼ An,se
dmin

n  10, (17)

and taking the lower limit of Eq. (17),

dmin
n = ln

(
10

An,s

)
; (18)

dmin
n almost perfectly matches the minimum distance d0 of the

lower corner of the nth gray region in Fig. 3.

IV. MULTIPLE-STATE FILTERING

In this section, we will extend the previously discussed
adiabatic passage technique to the situation where the atomic
population is initially distributed among N + 1 vibrational
states of the left PT trap. We will discuss first a detailed
protocol to perform quantum tomography of the atomic
population distribution at the left trap, and later, we will briefly
outline a similar approach for quantum engineering of Fock
states.

A. Quantum tomography

To perform quantum tomography, we will apply the filtering
protocol sequentially in N steps, that is, state by state, from
the most excited (n = N ) down to the first excited (n = 1)
state. At each step k = {1, . . . ,N}, we will transfer to the
right trap the population of the corresponding excited state
n = N + 1 − k and keep the rest (from n − 1 to 0) in the
left trap. After each step k, the total population in the right
trap, P T [k] = ∑

n P R
n [k], with P R

n [k] being the population of
state n in the right trap, will be computed, that is, measured
from the experimental point of view. After the measurement,
the right trap will be emptied and the protocol will be
resumed. After step k = N, the population of the left trap
is expected to be in its ground vibrational state. Therefore the
last step k = N + 1 will consist in directly measuring the total
population at the left trap, that is, P T [N + 1] = ∑

n P L
n [N ].

At the end, the set {k,P T [k]} will be the result of the
tomography of the initial population distribution at the left
trap. To evaluate the efficiency of the quantum tomography
protocol, we define the following fidelity:

FQT = 1 −
0∑

n=N

∣∣P L
n [k = 0] − P T [k = N + 1 − n]

∣∣, (19)

where P L
n [k = 0] is the initial population of state n in the left

trap, while P T [k = N + 1 − n] is the total population measure
at the end of each step k.

Filtering conditions for the step k of the protocol in-
volving states n and n − 1 read �n,s(d0[k])T > 10 and
�n−1,s(d0[k])T � 1, implying, as shown in Fig. 3, that the
minimum distance d0[k] at each step k should be decreased.
Approximated values for d0[k] at each step of the protocol
could be estimated by using expression (18). However, we will
use, in what follows, accurate values of d0[k] by numerically
integrating Eq. (7).
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To illustrate the technique outlined above, let us con-
sider three coupled identical PT potentials (2) with depth
V0 = −156h̄ωx [s = 12] supporting 12 bound energy levels.
Initially, only the left trap is populated, with a truncated thermal
distribution among the lowest eight states given by

P L
n [k = 0] = Ze

− En,s−E0,s
βE0,s , with n = 0, . . . ,7, (20)

where Z is the normalization constant and β is proportional to
the temperature.

Figure 4 shows the distribution of population in the left
[Fig. 4(a)] and the right [Fig. 4(b)] traps at each step k of the
quantum tomography protocol performed with the sequence
of distances d0[k] plotted in Fig. 4(c). The initial distribution
is depicted in step k = 0 of the corresponding figure, being the
truncated thermal distribution given by Eq. (20) with β = 1 in
the left trap [Fig. 4(a)], while the right is empty [Fig. 4(b)]. It
is clearly seen that at each step k, the population of state n =
N + 1 − k is transferred to the right trap while the population
of states from n − 1 to 0 remains in the left trap. The mean and
the variance of the population distribution of the vibrational
states of the left and right traps at each step of the protocol
are shown in Figs. 4(d) and 4(e), respectively. Note that the

FIG. 4. (Color online) Quantum tomography protocol via a
sequence of adiabatic passage processes in three PT potentials.
Population distribution for the lowest eight energy levels in the
(a) left and (b) right traps after each step k of the protocol. The
minimum distance between the traps at each step, d0 [k], is shown in
(c). Mean 〈ni〉 (closed squares) and variance 〈�n2

i 〉 (closed circles)
of the population of each state for the (d) left (i = L) and the (e) right
(i = R) traps along the protocol. The trap-approaching sequence at
each step of the protocol is given by Eq. (13), with ωxT /2 = 40 and
v0/αωx = 3 × 10−3 and the corresponding d0[k].

process leads to a sequence of Fock states from N to 1 at
the right trap, since we assume that after each step, the right
trap is emptied. For the left trap, both the mean value of the
population distribution and its variance decrease at each step,
giving the ground Fock state after the tomography process. The
fidelity achieved in the case shown in Fig. 4 is of FQT = 0.97.

B. Quantum engineering of Fock states

The robustness and selectivity of the filtering protocol
proposed here allows us to use it for engineering particular
Fock states. We have already seen in the previous subsection
that it is possible to generate Fock states at specific excited
vibrational levels in the right trap after each step of the tomog-
raphy protocol. Moreover, applying the quantum tomography
protocol from k = 1 up to k = N , corresponding to filtering
of states from n = N to n = 1, one ends up with the Fock
state at the ground vibrational level n = 0 in the left trap. We
have to mention that the Fock ground state in the left trap
could be also reached just by one spatial adiabatic passage
process with minimum distance d0 chosen to perform filtering
between the ground and first excited states, as described in
Sec. III C. Under such conditions, all excited states will be
transferred from the left to the right trap simultaneously, since
the adiabaticity conditions being fulfilled for the first excited
vibrational state are fulfilled also for all excited states above it.
We have checked numerically such transfer obtaining fidelities
of the process above 99% (see Fig. 5).

Alternatively, by combining each of the adiabatic passage
steps with a thermalization process, it could be possible to
implement a tunneling-assisted evaporative-cooling protocol.
In this case, the protocol would consist of a sequence of
periodically performed adiabatic spatial passage processes but
without the need to control precisely the minimum distance
d0. In contrast to the standard forced evaporative cooling
technique [12] developed for magnetic traps, and not easily
applicable to dipole traps, such tunneling-assisted (forced)
evaporative cooling could be performed quasicontinuously in
dipole traps without the need to open the trapping potential,
which could be an advantage in coherent control and coherent
manipulation of trapped cold atoms and molecules.

FIG. 5. (Color online) Ground-state filtering by applying a single
adiabatic transport process. Population distribution for the lowest
eight energy levels in the (a) left and (b) right traps before and after
the single step-filtering protocol. The minimum distance d0 is chosen
to fulfill the filtering conditions for the first excited vibrational state
and coincides with the value used in the last step shown in Fig. 4. The
fidelity of the process is above 99%. Other parameters are the same
as in Fig. 4.
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V. CONCLUSION

In this article, we have addressed the filtering of the popula-
tion of specific vibrational states of a PT-type potential. For this
purpose, we have chained the initially populated left trap with
two empty identical ones, and we have performed a vibrational
state-selective spatial adiabatic passage process from the left
trap to the outermost right trap. We have derived analytically
the filtering conditions for the two-state case either involving
the ground and first excited states or two higher excited states,
and we have applied them to the filtering of an arbitrary
number of vibrational states. By numerical integration of the
Schrödinger equation, we have demonstrated that efficiencies
of the protocol above 99% can be achieved for a wide set of
parameter values, leading to the transfer of the population of
all vibrational states above a certain one from the left PT trap to
the outermost right trap, while the states below it remain at the
initial left trap. We have also shown that spatial adiabatic pas-
sage can be used to perform quantum tomography of the initial
population distribution of the left trap with fidelities above 97%
by applying the filtering protocol starting from the most excited
state to the lowest one and sequentially decreasing the mini-
mum distance between the traps at each step. Finally, we have
also briefly discussed the possibility of quantum engineering
Fock states and of tunneling-assisted evaporative cooling.
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APPENDIX A: APPROXIMATIONS FOR
GAUSSIAN POTENTIALS

Optical dipole force potentials created by focused light
beams exhibit a Gaussian spatial profile. These type of
potentials, due to the lack of analytical expressions for their
eigenenergies and eigenstates, are very often approximated by
other types of potentials, typically harmonic ones. In this ap-
pendix, we will discuss the convenience of using PT potentials
instead of harmonic ones to approximate Gaussian potentials.

A single Gaussian potential in one dimension (black solid
line in Fig. 6) can be written as

VG(x) = −V0 exp(−2x2/α2), (A1)

where V0 denotes the potential depth and α = w0 the waist of
the focused light beam. The harmonic approximation of this
Gaussian potential [Eq. (A1)] reads

VH (x) = −V0(1 − 2x2/α2) (A2)

and is depicted in Fig. 6 (red dotted curve). Although the
eigenenergies and eigenstates of the harmonic potential can
be obtained analytically, it is obvious from Fig. 6 that the
harmonic approximation is only accurate for a few of the
lowest vibrational states. Moreover, the harmonic potential
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FIG. 6. (Color online) Gaussian potential (black solid curve)
approximated with harmonic (red dotted curve) and Pöschl-Teller
(blue dashed curve) potentials. The corresponding eigenenergies
are represented by horizontal black solid (Gaussian potential), red
dotted (harmonic potential), and blue dashed (PT potential) lines.
NG, NH , and NPT give the number of vibrational states for the
given potential depth for the Gaussian, harmonic, and Pöschl-Teller
potentials, respectively.

has to be cut at some energy value in order to give a finite
number of energy eigenstates.

To account for the finite number of bound states of the
Gaussian potentials, it is more convenient to use potentials
with known analytical solutions that support a finite number of
bound states. One such potential is the PT (square hyperbolic
secant) potential [9]. The approximation for the Gaussian
potential (A1) with a PT potential is given by

VPT (x) = −V0sech−2(
√

2x/α), (A3)

corresponding to the blue dashed curve in Fig. 6. By comparing
the three potentials in Fig. 6, it is clear that the spectrum of
the harmonic potential approximation (red dotted curve) gives
seven equidistant vibrational states and that its profile fits only
close to the bottom of the Gaussian potential. In contrast,
the PT potential spectrum (blue dashed curve) consists of 12
nonequidistant bound vibrational levels, and the approxima-
tion to the Gaussian potential shape is much more accurate.

APPENDIX B: TUNNELING RATE BETWEEN TWO
PÖSCHL-TELLER POTENTIAL TRAPS

The GS orthonormalization procedure [13] applied to PT
gives accurate analytical expressions for the tunneling rate of
the ground state, �0,s .

Considering the single trap eigenstates given by Eq. (5), the
symmetric φ+

0,s and antisymmetric φ−
0,s orthogonal states for

the ground, n = 0, vibrational state of two coupled identical
PT traps of depth V0 = −s (s + 1) are given by

φ±
0,s = 1√

2
[±φ0,s(x) + φ0,s(x − d)]

=
[ ± cosh−s

(√
2 x

α

) + cosh−s
(√

2 x−d
α

)]
√

2
NJ,0,s . (B1)

One could find the energies E±
0,s = 〈φ±

0,s |H |φ±
0,s〉 for the

eigenstates (B1) and finally the tunneling rate �0,s(d) =
|E+

0,s(d) − E−
0,s(d)| for the ground vibrational level of two PT
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traps separated by a distance d:

�0,s(d) = 2s2W

A

{
[e2aD + e−2aE]

1 − W 2

− [e2a(s−1)B + e−2a(s−1)C]W

1 − W 2

}
, (B2)

with

〈φ±
0,s |φ±

0,s〉 = 1 ± W,

〈φ0,s(x)|φ0,s(x − d)〉 = W = N2
J,0,s

4s

s
A,

N2
J,0,s =

√
2

α

s�(s + 1/2)√
π�(s + 1)

,

A = A(s,a) = F1(s; s,s; s + 1; −e−2a, − e2a),

B = B(s,a) = F1(s + 1; 2,2s; s + 2; −e−2a, − e2a),

D = D(s,a) = F1(s + 1; s,s + 2; s + 2; −e−2a, − e2a),

where F1(α; β,β ′; γ ; z1,z2) is the Appell hypergeometric func-
tion, which is a generalization for the hypergeometric functions
2F1(α,β; γ ; z) to two variables z1 and z2; C(s,a) = B(s, − a)
and E(s,a) = D(s, − a); a = d/

√
2.
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