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Half-open Penning trap with efficient light collection
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Abstract We have conceived, built and operated a ’half-open’ cylindrical Penning trap for
the confinement and laser spectroscopy of highly charged ions. This trap allows fluores-
cence detection employing a solid angle which is about one order of magnitude larger than
in conventional cylindrical Penning traps. At the same time, the desired electrostatic and
magnetostatic properties of a closed-endcap cylindrical Penning trap are preserved in this
configuration. We give a detailed account on the design and confinement properties, a char-
acterization of the trap and show first results of light collection with in-trap produced highly
charged ions.

Keywords Penning trap · Precision spectroscopy · Highly charged ions

1 Introduction

Optical spectroscopy of ions in Penning traps [1, 2] is naturally hampered by the electrode
configuration surrounding the confinement region from which the desired light is emitted.
This is particularly true for hyperbolic Penning traps which have good confinement proper-
ties by design, but are nearly completely intransparent [3]. A common solution is to make
use of artificial openings which however affect the confining potential and hence need to
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be kept small. The cylindrical Penning trap with open endcaps as presented by Gabrielse et
al. [4] solves this problem to some extent while maintaining well-defined confinement con-
ditions close to the trap centre. In this design, the light collection efficiency is limited by
the required ratio of diameter to length of the arrangement. Radial trap openings as used in
experiments like [5–7] circumvent this limitation, but are likely to be unsuited when high
precision of the confining fields comparable to experiments like [8–11] is required. Also,
they necessitate either complicated light collection schemes [5] or radial access to the trap
[6, 7]. Open access to confined particles has been a good part of the motivation when design-
ing planar Penning traps [12–16] as well as numerous other types of traps such as wire
Penning traps [17], stylus traps [18] and others [19–21]. In such a configuration light collec-
tion can be immensely effective and closely approach a 4π open detection angle. However,
such traps unfortunately are unsuited for precision spectroscopy of large ensembles of ions
as presently discussed [22]. Hence, we have devised a specific modification to a cylindrical
closed-endcap Penning trap which in the following will be presented in detail. The exper-
iment featuring this trap (ARTEMIS) aims at high precision measurements of electronic
and nuclear magnetic moments by laser-microwave double-resonance spectroscopy [22] of
confined highly-charged ions. A scientific motivation and further details have been given in
[22–25].

2 Trap design considerations

We will briefly discuss the electromagnetic (confinement) properties of cylindrical Penning
traps with different choice of geometry to motivate the actual trap design.

2.1 Open-endcap cylindrical Penning trap

The concept of approximating the harmonic potential of a hyperbolic Penning trap with
an arrangement of three or five cylindrical electrodes with axially open endcaps has been
described in detail by Gabrielse et al. (see for example [4, 26]). Without loss of general-
ity, a central ring electrode is kept on a constant voltage U0 while the two endcaps are
grounded. Radial confinement is provided by the homogeneous magnetic field in which the
trap is immersed. If three electrodes are used, the axial and radial dimensions of the elec-
trodes have to fulfill certain criteria (‘mechanical compensation’) in order for the confining
potential to be harmonic around the trap centre [26]. As this imposes close bounds to the
operation parameters, a common choice is the use of two additional electrodes (‘compen-
sation electrodes’) placed on either side between the ring and the endcaps, and to apply a
certain compensation voltage Uc to those. For most applications, it is desired to confine
the particles in a harmonic potential such that their oscillation frequencies are well-defined
(predictable) and independent of the motional energy, which is presently of importance for
non-destructive ion detection and resistive cooling of the ion motion.

Figure 1 schematically shows different kinds of cylindrical Penning traps and illustrates
the working principle: radial ion confinement is achieved by a constant and homogeneous
magnetic field B0 and a superimposed harmonic electric potential created by voltages
applied to trap electrodes. The left hand trap is an electrically compensated (5-pole) trap
with closed endcaps, as e.g. used in the free electron g-2-experiments by Gabrielse et al.
[27]. The middle trap is an electrically compensated (5-pole) trap with open endcaps as used
for example in the bound electron magnetic moment measurements [8–11]. The inner diam-
eter of the cylinders is 2ρ0, the axial trap size is characterized by the distance z0 from the
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Fig. 1 Schematic of different types of cylindrical Penning traps and illustration of ion confinement prin-
ciples. The dashed horizontal line indicates z = 0 on which the trap centres are located. For details see
text

trap centre at z = 0 to one endcap (which for the 5-pole trap is given by z0 = zr/2+2zg+zc ,
i.e. half of the ring length zr plus two gap sizes zg between electrodes plus the length zc of
the compensation electrode, see also Fig. 1). The solid angle of light collection from the trap
centre is indicated by dashed lines. The trap on the right-hand side is a modification (‘half-
open’ trap) which allows more efficient light collection from above and open access for ion
injection from below. We will now discuss the requirements for harmonic confinement in
such a trap.

Generally, we can write the electrostatic potential near the trap centre by the expansion

� = U0

∞∑

k=0

ck

( r

d

)k
Pk(cos θ) with d2 = 1

4
ρ2

0 + 1

2
z2

0 (1)

where r is the radial distance to the trap centre and Pk(cos θ) are Legendre polynomials of
the k-th order with the argument cos(θ) = z/r , z being the axial distance to the trap centre.
Ideally, only the coefficients c0 and c2 have non-zero values. c0 is an overall potential offset
and hence irrelevant for the ion motion. c2 is the quadrupole term creating a harmonic
potential well from the applied voltage U0. Using the definition (1), a hyperbolic Penning
trap has c2 = 2 by design. Closed-endcap cylindrical Penning traps have c2 ≈ 2, while
open-endcap configurations have c2 ≈ 1. In cylindrical Penning traps like the present ones,
the dominant electric imperfection is characterized by the term c4. In a cylindrical trap
with compensation electrodes, c2 and c4 (and higher-order terms) depend also on applied
compensation voltage Uc and can be written as [4]

c2 = e2 + d2
Uc

U0
and c4 = e4 + d4

Uc

U0
(2)
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where ek and dk are given by the trap geometry [4]. It is thereby possible to minimize the
effect of certain imperfections by appropriate choice of Uc/U0, the so-called tuning ratio
(‘compensated trap’). The trap is additionally ‘orthogonal’ if the oscillation frequencies
are independent of the applied tuning ratio. The requirements and possibilities for this are
discussed in detail in [4].

Only in a harmonic potential, the oscillation frequencies are independent of the kinetic
energies of the ion. For instance, in a potential with a fourth-order perturbation (c4 �= 0),

�(z) = U0

[
c2

( z

d

)2 + c4

( z

d

)4
]
, (3)

the finite axial energy Ez causes a relative frequency shift [4, 28] by

�ωz
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A sixth-order perturbation c6(z/d)
6 can be calculated from equation (4) when an effective

fourth-order term

c̃4 = c4 + 5

4
c6
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2
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is used instead of c4 [4]. Such energy-dependent frequency shifts need to be minimized
when resistive cooling of the ion motion and non-destructive detection are desired to be
effective. Also, since the motional frequencies are used to determine the magnetic field
strength (which is an essential requirement for the present application), a high degree of
harmonicity of the trapping potential is required. Hence, the coefficients c4 and c6 need
to be minimized, which requires correct choice of voltages and trap geometry, as will be
discussed below for the present trap.

A drawback of an open-endcap cylindrical design is related to the light collection
properties. The fluorescence light of interest emitted from the trap centre has an angular
distribution given by

I (θ)dθ ∝ (1 + cos2 θ)dθ, (6)

where θ is the spherical polar angle. This directional characteristic prefers emission along
the axis of the magnetic field, which is helpful. However, as the endcap electrodes of open-
endcap cylindrical traps need to be very long (ze at least about 4z0 while z0 ≈ ρ0 [4]), this
leaves only a small solid angle corresponding to about 1/50 of 4π .

Before we discuss our solution of choice, it is necessary to briefly discuss the prop-
erties of a cylindrical Penning trap with closed endcaps, as we will exploit several of its
characteristics and formalisms for potential calculations.

2.2 Closed-endcap cylindrical Penning trap

The closed-endcap cylindrical Penning trap (Fig. 1, left) consists of a ring electrode and
two end caps, similar to the hyperbolic trap (a detailed discussion of this can be found
in [26]). Again, a voltage U0 is applied between the ring and the endcaps. Different from
the hyperbolic geometry, the ring is a hollow cylinder with a radius of ρ0 and length zr ,
and the end caps are flat, having a distance of z0 from the trap centre. Two correction
electrodes (or compensators, used synonymously) next to the ring have a length zc and are
set to the voltage Uc with respect to the endcaps. The axial spacing between electrodes used
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as insulation has the amount zg . The electrostatic potential in the trap volume is a linear
superposition of the potentials which are created by the single electrodes:

�(ρ, z) =
∑

i

Uiφ
(i)(ρ, z). (7)

The functions φ(i) are solutions of the Laplace equation with the boundary conditionsφ(i) =
1 at the active electrode i and φ(i) = 0 at all other electrodes. To complete the conditions,
we assume a linear slope in the gaps between active electrode and its neighbours, thus
forming a trapezoid function. A solution to the Laplace equation can be written as a linear
combination of the basis functions

bn(ρ, z) =
J0

(
nπρ
zt

)

J0

(
nπρ0
zt

) sin

(
nπz

zt

)
, (8)

if it is rotation-invariant and zero at the end points z = 0 and z = zt [26]. We normalize
the Bessel function J0 to one at the lateral area of the hollow cylinder (ρ = ρ0). On this
surface, the linear combination φ(i) = ∑

n a
(i)
n bn can be evaluated,
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∑
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)
, (9)

keeping in mind that these values are specified by the boundary conditions. At the same
time, expression (9) has the form of a Fourier sum. For an electrode between z = a and
z = b at unit voltage, we obtain the Fourier coefficients by an integration:
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Now we specialize these results to the closed trap with three active electrodes. The trap
length is zt = 2z0, the coordinates of the ring and compensators are applied accordingly.
The contributions of the correction electrodes are summarized to one function φ(c). In order
to analyse the anharmonicity, we expand the potential in a power series around the trap
centre

�(0, z) =
∑

j even

Cj

(
z− z0

d

)j

. (11)

There are only even terms, because z = z0 defines a symmetry plane of the trap. Following
the idea of equation (7), we decompose the Cj coefficients into the contributions of the ring
electrode and the compensators, Cj = U0ej +Ucdj . Defining the tuning ratio T = Uc/U0,
we can write Cj = U0(ej + T dj ) = U0cj . Here, ej and dj are the Taylor coefficients
of the sine function times the respective Fourier coefficients of the particular electrodes,
calculated in equation (10). They only depend on the trap dimensions. We search for a
geometry where all orders higher than the second in the expansion (11) vanish. This results
in an over-determined non-linear system of equations for the variables T , z0, zr , zg, ρ0.
The compensator length follows from the other dimensions. The gap width is constrained
by electrical requirements and apart from that, the electrostatic problem is invariant with
respect to rescaling the entire trap. For this reason we leave the gap width and at this point
also the trap length untouched and restrict ourselves to three free parameters: The tuning
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ratio, the ring length, and the radius. The optimal tuning ratio is determined by the require-
ment of a vanishing lowest-order anharmonicity, T = −e4/d4. In the experiment, when the
geometry is fixed, the electrical tuning is the only way to compensate for the anharmonicity.
Therefore, the trap should be orthogonal, which means that the ion oscillation frequency is
independent of the tuning, or equivalently d2 = 0.

This condition and the condition for vanishing sixth order of the Taylor expansion are
used to find the ring length and radius with a variational method: we plot d2 and c6 as
functions of zr and ρ0, where c6 is evaluated with the optimal tuning ratio, see Fig. 2.
Both functions have null lines in the three-dimensional plot. The lines intersect in the point
(zr , ρ0)d2=c6=0. This defines the optimal geometry, where the 2 lowest-order perturbations
can be compensated (brought to zero) simultaneously without affecting the axial frequency
(orthogonal trap). The results are summarized in Table 1.

3 The half-open trap

For the present investigations, the cylindrical trap needs to allow efficient light collection on
one side, while the other side needs to be open for injection of externally produced ions. At
the same time, the trap should maintain the good confinement properties of the closed trap.
The first requirement is met by a meshed endcap which will be discussed below. For the trap
opening on the opposite side, we use a geometry that approximates the potential calculated
for the closed case. This is done by removing one endcap of the closed trap and replacing
it by ring electrodes which mimic the effect of this missing endcap. The idea behind this is
to build a mirror image of the closed trap, biased with the opposite voltages – named the
‘antitrap’. Then, for symmetry reasons the potential will be zero in the plane of the virtual
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Table 1 Results of the semi-analytical calculations for the closed trap and of the fit method for the half-open
trap

z0 zr ρ0 zc T zg zac zar T1 T2

9.000 5.392 8.713 5.904 0.799404 0.200 6.200 5.740 −1.02071 −0.402493

Lengths and radius in mm, tunings are dimensionless

MESHED ENDCAP

COMPENSATOR

RING

COMPENSATOR

ANTI-COMPENSATOR

ANTI-RING

TRAP
CENTRE

REST

Fig. 3 Electrode arrangement of our half-open trap (to scale) and the resulting trapping potential. The trap
centre (potential minimum) is indicated

end cap situated between compensator and anti-compensator. The strict application of this
idea would duplicate the electrodes and again lead to a closed trap. However, beyond a
specific distance, further modifications are tolerable, because their effect on the trap center
is shielded by the electrodes in between.

3.1 Trap design

Figure 3 shows a detailed example of the resulting electrode configuration. In order to
find the proper geometry and voltage parameters of the half-open trap, we start with the
geometry and voltages of the closed trap and remove the lower end cap to install an anti-
compensator, anti-ring and some more electrodes, referred to as ‘rest’. This rest is assumed
to have a uniform voltage in order to keep the number of degrees of freedom reasonable.
For other purposes, such as ion transport, these electrodes may be set on different potentials
temporarily. The whole assembly is modelled with the length zt = 8z0, an arbitrary choice.
The anti-compensator is set to the negative voltage of the compensator, whereas the volt-
ages Uar = T1U0 of the anti-ring and Urest = T2U0 of the rest are still to be determined
by a model fit. Another two free parameters are found in the anti-compensator and anti-ring
length, zac and zar , respectively. Between the electrodes, we keep the same gap width as in
the closed trap, with one exception: The gap between the lower compensator electrode and
the anti-compensator is doubled, in order to keep the virtual end cap at the original position
of the removed real endcap. As we did for the closed trap, we determine the contribution
φ(i)(ρ, z) of each electrode in the new arrangement. According to formula (7), the trapping
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Table 2 Coefficients for the Taylor expansion (11) of the potential in the half-open trap

c1 c2 c3 c4 c5 c6

−1.6 · 10−5 −0.522644 −1.8 · 10−5 −1.4 · 10−5 −1.1 · 10−5 −1.8 · 10−5

potential �(ρ, z) is again given as a linear combination of these functions, multiplied by the
respective voltages Ui , which are defined in the previous paragraph. The resulting function
is evaluated in the plane of the virtual end cap, z = z0. This is a function of one variable,
the radius, with four fit parameters. Then, ten equidistant points (ρ/ρ0 = 0, 1, 2, ..., 9) in
the plane are chosen for an artificial data set to have the value zero. A fit routine finds the
best values for the model parameters to describe the artificial data. This brings the potential
in the relevant plane as close to zero as possible.

The real trap however will be subject to machining inaccuracies on the level of μm. This
may introduce non-zero odd terms in the Taylor expansion (11), which shift the trap centre.
To account for this, we round the calculated dimensions on that level and fix them to values
listed in Table 1. With these definitions we can find an estimation for realistic expansion
coefficients (see Table 2). Now we can evaluate the perturbative expressions for the shift of
the axial frequency due to non-zero 4th and 6th order contributions by use of equations (4)
and (5), which yields �ωz/ωz ≈ 8.0 · 10−10 for Ar13+ ions with an energy corresponding
to 60 K in the axial oscillation, if the trap voltage is -10 V.

The real trap as characterized by the rounded coefficients is also no longer orthogonal,
which is quantified by d2 = 4.5 ·10−5. This has the effect that the axial frequency is shifted
with the correction voltage according to ∂ωz/∂Uc ≈ 2π · 1.6 Hz/V. Keeping in mind that
the frequency itself is around 2π · 0.37 MHz and that the correction voltage is stable in the
sub-mV range, this translates to a ppb effect.

In our specific realization, the mesh in the upper endcap (spectroscopy mesh) is made of
a copper foil with 5.08 μm thickness. It has a density of 2.07 wires per mm with 96.5 μm
width. In contrast to the solid electrodes, the mesh has been plated with a silver layer of
only 5 μm and again less than a micrometer of gold. These characteristics correspond to
60% light transmission and an areal mass density of 60 g/m2.

Since the mesh serves as upper end cap of the spectroscopy trap, small deformations of
this very fine piece of metal would lead to electrostatic potential distortions and corrupt
precision. We estimate the gravitational and electrical stress acting on the mesh to be 0.6 Pa
and below 7 mPa, respectively. The latter is calculated with the maximum electrical field
E = 40 kV/m and the analogy of a capacitor: The two plates experience an areal force
density of pE = ε0/2 |E |2, if there is the electrical field E between them. However, this
contribution is negligible compared to the gravitational effect, which in itself has not been
observed in the experiment.

3.2 Light collection efficiency

With the half-open design in which the upper endcap of a closed trap is replaced by a
transparent mesh we obtain a solid angle of 1.77 sr, which is 14 % of the full sphere, for
light collection, as compared to about 2 % of the full sphere in the case of the open-endcap
trap, see above. The fraction of the light power arriving at each end face is close to 20 %
of the total emitted power due to the angular intensity distribution (6). To illustrate light
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Fig. 4 CCD image of fluorescing ions taken from above through the optical mesh. For details see text

collection, Fig. 4 shows a false-colour CCD image of a fluorescing ion cloud confined in the
trap as seen from above through the mesh. To that end, the light is transferred into a 4 mm
by 4 mm (176 by 176 pixel) image guide which relays light from trap centre to a sensitive
CCD camera (ANDOR IKON-N) with 1024 by 1024 pixel resolution. The fluorescence in
this case is due to collisions of residual gas and argon with an electron beam of several nA
current and keV energy reflected back and forth through the charge breeding section of the
trap, in close similarity to the mini-EBIS described in [29].

In the next step of the experiment, Ar13+ ions will specifically be charge-bred from
argon gas using a 1855 eV electron beam and confined in the trap. With these ions, laser-
microwave double resonance spectroscopy will be performed as described in detail in [22,
24]. This is also an excellent test case for further studies with heavier ions of higher charge



206 D. von Lindenfels et al.

states as available from the HITRAP [30, 31] facility in its present configuration and future
configurations in the framework of the FLAIR project.

4 Conclusion

In a half-open cylindrical Penning trap as described above, light collection is about one order
of magnitude more efficient than in the ‘classical’ open-endcap design. We have demon-
strated fluorescence light detection from such a trap within the ARTEMIS experiment using
unspecific fluorescence emission from confined ions produced by and collided with an
electron beam traversing the trap. This is a necessary prerequisite for the production and
confinement of Ar13+ which are next to be examined by high-precision laser-microwave
double-resonance spectroscopy. Following this, externally produced heavier ions from the
HITRAP facility will be captured, confined and studied by the same methods. This is a
unique method for high-precision determinations of the magnetic moments of both the ionic
nucleus and the bound electron(s) and stringent tests of corresponding models within QED
of bound states and diamagnetic shielding.
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