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We investigate collisions of solitons of the gap type, supported by a lattice potential in repulsive Bose-
Einstein condensates, with an effective double-barrier potential that resembles a Fabry-Perot cavity. We iden-
tify conditions under which the trapping of the entire incident soliton in the cavity is possible. Collisions of the
incident soliton with an earlier trapped one are considered too. In the latter case, many outcomes of the
collisions are identified, including merging, release of the trapped soliton with or without being replaced by the
incoming one, and trapping of both solitons.

DOI: 10.1103/PhysRevA.78.013608 PACS number�s�: 03.75.Lm, 03.75.Kk, 03.65.�w

I. INTRODUCTION

Bright matter-wave solitons �1,2� provide an exceptional
test bed for studying quantum mechanics above the single-
atom level. For the observation of quantum phenomena, co-
herence is a crucial requirement, and matter-wave solitons,
which propagate without dispersion, may render this obser-
vation more feasible.

The generation of solitary waves in quasi-one-
dimensional �Q1D� attractive Bose-Einstein condensates
�BECs� �1� may be regarded as a tuned equilibrium between
the dispersive effects that tend to spread the atomic wave
function, and the nonlinear attractive interactions which op-
pose the spreading by providing an effective self-focusing of
the matter waves. The consequence of such an equilibrium is
a stable mesoscopic atomic wave packet propagating without
dispersion.

Repulsive condensates in Q1D geometries can support
matter-wave solitons of the gap type �2� if they are loaded in
an optical lattice �OL�, which gives rise to the band gap
structure, and are placed at the edge of the first Brillouin
zone, where there is a gap between the first and second bands
�3�. Under these conditions, the soliton exhibits an effective
negative mass, which permits the dispersion and the nonlin-
ear interactions, even if they are repulsive to be balanced.
Various effects generated by the negative effective mass
were considered in Refs. �2,4–6�.

Stability conditions for gap solitons �GSs� impose severe
restrictions on their interactions with a potential well or bar-
rier corresponding to a local modification of the periodic
structure. Specifically, the requirement of stability allows
only for perfect transmission or perfect reflection, but not the
partial transmission and reflection that plane waves display
�7�. In other words, GSs cannot split through the interaction
with linear defects, and behave like particles exhibiting me-
soscopic quantum features �5�, including the quantum reflec-
tion of the entire soliton—an effect that has also been re-
ported recently for matter-wave solitons in the self-attractive
BEC case �8�. Although quantum reflection of ultracold at-
oms from a solid surface has been reported too �9�, the limit

of complete reflection, predicted for solitons, is not achiev-
able in that case. Interactions of matter-wave solitons with
nonlinear traps and barriers produced by spatial variations of
the scattering length have also been recently addressed �10�.

In this work we aim to explore such quantum features in
the case of the interaction of a matter-wave soliton of the gap
type with a double-barrier potential resembling a Fabry-Perot
cavity. In particular, we demonstrate that it is possible to trap
a soliton in the cavity formed by the two potential barriers �a
similar effect for optical solitons in fiber Bragg gratings was
predicted in Ref. �11��. In the context of BEC, the propaga-
tion through a double-barrier potential acting as a Fabry-
Perot interferometer for matter waves leads to bistability of
the transmitted flux and resonant transport �12�.

The paper is organized as follows. In Sec. II, we formu-
late the physical model which includes the effective cavity
for the GS. Section III is devoted to the study of the condi-
tions for the trapping of the entire soliton in the cavity. In
Sec. IV, the collision of a second GS with one trapped in the
cavity is studied �this interaction also bears some similarity
to collisions between free and defect-trapped optical solitons
in fiber gratings �13��. The paper is concluded in Sec. V.

II. THE PHYSICAL MODEL

The dynamics of bright GSs created in a Q1D geometry at
zero temperature may be accurately described by the one-
dimensional �1D� Gross-Pitaevskii equation �GPE�

i�
d�

dt
= �−

�2

2m
� + V�x� + g���2�� , �1�

where the effective nonlinearity is g�2�as�t, with as the
s-wave scattering length and �t the transverse trapping fre-
quency. The effective axial potential

V�x� = �1/2�m�x
2x2 + V0 sin2��x/d� �2�

includes the parabolic trap with corresponding frequency �x
and the OL with spatial period d and depth V0.

First, we briefly summarize the numerical procedure used
to generate GSs, as per Ref. �4�. The ground state is found
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for a 87Rb condensate �as=5.8 nm� formed by N=500 atoms
trapped magnetically with transverse and axial frequencies
�t=715�2� Hz and �x=14�2� Hz, respectively, in the
presence of an OL, with potential depth equal to the OL
recoil energy, V0=Er��2k2 /2m, where k=� /d is the recoil
momentum and d=397.5 nm the period. Then, the axial
magnetic trap is suddenly turned off and an appropriate
phase imprinting leads to the inversion of the sign of the
wave function at each second site. As a result, the system
evolves toward a self-sustained staggered soliton with a
negative effective mass. The soliton, which contains approxi-
mately 35% of the initial number of atoms and extends over
	11 sites of the OL potential, is generated at rest with the
center at x=0. In order to set it into motion, we instanta-
neously impart an appropriate momentum to the soliton, to
which it responds by self-adaptation to the new conditions,
i.e., by expunging atoms until a new equilibrium state is
reached. With momentum p=0.1k� lent to the GS, it settles
down into a state with 27% of the initial number of atoms
�Nfinal=135�, total energy 0.92Er, and the kinetic energy of
its motion Ek=0.01Er �5�.

Our aim is to study the interaction of the moving matter-
wave soliton so generated with a Fabry-Perot type potential,
formed by two potential barriers creating a cavity for the
soliton; cf. the similar configuration proposed for optical
solitons in fiber gratings �11�. After turning off the magnetic
trap, V�x� in Eq. �1� accounts only for the OL, which is
locally modified around two sites xm1 and xm2 to generate the
double-barrier structure as follows:

V�x� = V0 sin2��x/d� + Vmod�x� , �3�

where Vmod�x� reads

Vm1�1 −
�x − xm1�2

2�2 � if xm1 − l/2 	 x 	 xm1 + l/2,

Vm2�1 −
�x − xm2�2

2�2 � if xm2 − l/2 	 x 	 xm2 + l/2,

0 otherwise,

�4�

with �=6d. Below, we consider the symmetric cavity created
by two identical barriers, with Vm1=Vm2=Vm
0. Note that,
due to the negative effective mass of the GS, the barriers
actually correspond to a local decrease of the periodic poten-
tial. Points xm1,2 are fixed at local minima of the OL poten-
tial, and the distance between the barrier centers, A�xm2
−xm1, is assumed large enough to have the actual size of the
cavity, B=A− l, much larger than the axial size of the soliton.
The results presented below have been obtained with the
potential given by Eq. �4�, which actually represents a set of
two nearly rectangular barriers. Such a potential can be cre-
ated by means of a pair of sharply focused optical beams,
and it permits control of the number of sites where the lattice
is modified. We have checked that the soliton dynamics re-
main nearly the same when the cavity is formed, instead, by
a pair of smooth Gaussian potentials.

III. THE CAVITY

The interaction of a moving matter-wave GS with a single
barrier in an OL was addressed recently in Ref. �5�, where it
was shown that the soliton does not split. For a fixed kinetic
energy, there exists an abrupt transition from complete trans-
mission to complete reflection, as the height of the barrier
increases, for all considered values of the barrier widths. The
border between these two outcomes of the collision of the
soliton with the barrier is shown, in the plane of the barrier’s
parameters, height Vm and width l, by filled circles in Fig. 1.
Complete reflection and transmission occur, respectively,
above and below this border �i.e., the white area in the figure
corresponds to the bounce of the entire soliton from the bar-
rier�. In the process of the collision, the soliton naturally
decreases its velocity �even if does not bounce�. This slowing
down of the soliton in the region of the defect is more pro-
nounced as we approach the border between the two behav-
iors.

Addressing the configuration with the second barrier
placed at a certain distance from the first one, we notice that
the behavior of the incident soliton that hits the first barrier
remains as described before, i.e., a sudden transition from
perfect transmission to perfect reflection occurs. Neverthe-
less, when the height of the barriers is close to the transition
point, and the length of the cavity �B� is larger than the size
of the soliton, the soliton that has passed the first barrier gets
trapped in the cavity, in a state of oscillatory motion. Thus,
three scenarios are identified in the interaction of the incident
soliton with the double-barrier structure: complete reflection,
complete transmission, and trapping into the oscillatory state.
As said above, the reflection occurs in the same area of the
parameter space �white region in Fig. 1� as for the single
barrier. Complete transmission takes place for values of the
barrier’s height and width well inside the transmission region
for the single barrier �the light gray area in Fig. 1�, while
trapping is observed close to the transmission-reflection bor-
der for the single barrier �the dark gray region in Fig. 1�. The
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FIG. 1. Diagram of outcomes of the collisions of a moving
lattice soliton with a cavity formed by two identical barriers: reflec-
tion, transmission, and trapping, in the white, light gray, and dark
gray areas, respectively. The effective size of the cavity is B=20d.
Parameters l �measured in units of the lattice period d� and Vm

�measured in units of the recoil energy Er� are the width and height
of the two barriers, respectively. The horizontal dotted line denotes
the kinetic energy of the moving soliton.
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results shown in Fig. 1 correspond to a fixed cavity size of
B=20d, and we have checked that the parameter space for
trapping slightly increases with the size of the cavity. For a
fixed width of the barriers, and a large enough distance be-
tween them, the three scenarios follow each other with in-
crease of the barriers’ height. These scenarios are illustrated
in Fig. 2 by spatiotemporal trajectories of the soliton hitting
the cavity formed by two identical barriers of width l=2d,
which are separated by distance A=20d, giving the cavity
enough room to trap the soliton, B=18d. Complete transmis-
sion is displayed in Fig. 2�a� for �Vm�=0.008Er, Fig. 2�b�
with �Vm�=0.011Er shows an example of trapping, and the

FIG. 2. Contour plots of the spatiotemporal evolution of the lattice soliton colliding with a set of two identical barriers centered at
xm1=25d and xm2=45d, each with width l=2d and the following height: �Vm�= �a� 0.008Er; �b� 0.011Er; �c� 0.014Er. Here as well as in the
following figures the horizontal dotted lines show the positions of the centers of both barriers.

FIG. 3. Examples of the trapping of the lattice soliton by a pair
of barriers of width l=2d and height �Vm�=0.011Er. The first barrier
is centered at xm1=25d, and the second at �a� xm2=45d, �b� 55d, and
�c� 90d.

FIG. 4. Different outcomes of the collision between an incident
GS with an identical one previously trapped. The barriers of width
l=2d and height �Vm�=0.011Er are separated by a distance A=20d
in �a�–�c�, or A=30d in �d� and �e�. The second soliton is sent after
the first one with time delay �a� �t=20, �b� 30, �c� 35, �d� 25, and
�e� 30 ms.
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bounce �complete reflection� is observed in Fig. 2�c�, for
�Vm�=0.014Er.

Figure 2�b� clearly demonstrates that the trapped soliton
performs periodic oscillations in the cavity without any vis-
ible loss of atoms. The period of the oscillations, for given
parameters of the barriers, can be modified by changing the
size of the cavity, as shown in Fig. 3. Note that the smallest
period, limited by the condition that the size of the cavity
must be larger than the soliton’s axial size, is 	30 ms, in
physical units. Faster oscillations were predicted for a lattice
soliton trapped in a potential well �5�. It is relevant to note
that, in the above-mentioned case of the trapping of optical
solitons by a cavity in the model of a fiber grating �11�, the
maximum capture efficiency �in terms of the soliton’s en-
ergy� is no more than 60%, contrary to what happens with
the matter-wave GSs, which may be trapped entirely, without
losses.

IV. COLLISIONS BETWEEN FREE AND TRAPPED
SOLITONS

The next natural step in the analysis is to consider a col-
lision between an incident soliton with the cavity already
occupied by an �identical� earlier trapped GS. Different out-
comes of the collisions are observed, depending on the time
delay �t between the two solitons. Figure 4 displays three
cases for the cavity formed by two barriers of width l=2d
and height �Vm�=0.011Er, separated by a distance of A
=20d, and �t= �a� 20, �b� 30, and �c� 35 ms. In Fig. 4�a�,
the incident soliton bounces back, while the trapped one per-
forms oscillations in the cavity; in Fig. 4�b�, the two solitons
merge into a single one, and in Fig. 4�c�, the incident soliton
bounces back, kicking out the trapped one in the forward
direction. Two more cases are shown in Fig. 4 for the same
parameters of the barriers, but for a different separation be-
tween them, A=30d, and time delays �t=25 ms in Fig. 4�d�,
and �t=30 ms in Fig. 4�e�. In this case, the cavity has
enough room to trap the two solitons, which gives rise to
new collision scenarios: in Fig. 4�d� the incoming soliton
gets trapped by kicking out the previously trapped one �“re-
charge”�, while in Fig. 4�e� both solitons get trapped in the

cavity, oscillating in counterphase. These sundry dynamical
behaviors suggest new experimental possibilities for the con-
trol and manipulation of matter-wave GSs.

V. CONCLUSION

In this work, we have studied the interactions of bright
matter-wave solitons of the gap type, with negative effective
mass, which are supported by the interplay of the OL and
repulsive nonlinearity in a BEC, with a cavity formed by two
far separated identical local potential barriers. We have
shown that there exists a parameter region in which the in-
cident soliton is trapped by the cavity into a shuttle state.
This region can be found for all values of the barriers’ width,
provided that their height corresponds to the transmission of
the soliton by a single barrier, but close to the reflection-
transmission border.

The interaction of a second soliton which hits the cavity
already occupied by a trapped oscillating soliton has been
considered too. In that case, a number of different collision
scenarios can be identified, depending on the time delay be-
tween the launch of the two solitons. Particularly interesting
outcomes are the merging of the two solitons at the position
of the first barrier, bounce of the second soliton kicking out
the trapped one, the recharge, i.e., release of the originally
trapped soliton which is replaced by the incident one, and
trapping of both solitons into the state of shuttle oscillations
in the cavity, with a phase shift of � between them.
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