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Compression and Parametric Driving of Atoms in Optical Lattices
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Using Bragg scattering we study classical squeezing and wave packet oscillations of the atomic
center-of-mass motion of cesium atoms trapped in 1D and 3D optical lattices. A sudden increase of the
potential depth leads to wave packets substantially more localized than in steady state, and subsequent
breathing-mode oscillations with a decay rate that under some conditions is remarkably slow. We also
study the response of the atoms to parametric driving of the center-of-mass motion. Our results are in
agreement with Monte Carlo simulations. [S0031-9007(97)02911-6]

PACS numbers: 32.80.Lg, 32.80.Pj, 42.50.Vk

Optical lattices are periodic light-shift potentials for which K = 47/A and K = 22w /A, respectively [7].
atoms, created by the interference of multiple laser beamgt long timesA ¢Z approaches the known steady state val-
The steady state properties of atoms trapped in latticeses,A&%() = (A/7.3)% in 3D andA&%(<) = (A/18)% in
have recently been extensively investigated [1-3]. SucD, as measured in [9], nearly independent of intensity
lattices offer an interesting model system for solid stateand detuning.
physics, with completely characterized potentials, and the The experimental setup has been described previously
ability to manipulate the potentials. Recent observation§6]. Cesium atoms are collected, cooled, and trapped
of Bloch oscillations [4] and the Wannier-Stark ladder [5] on the 6S,/,, F =4— 6P3,, F =5 transition /27 =
for atoms trapped in optical lattices are examples. In thi$.2 MHz; A =27 /k =852 nm; 2 Eg/kp = h*k*/mkg =
work we create breathing-mode atomic wave packets b200 nK). We investigate the 1D linlin lattice configu-
modulating the potentials, either by sudden changes in theation [1] as well as its 3D generalization, consisting of
potential depth or by parametric driving. We measure thigwo pairs of laser beams linearly polarized alongndy,
wave packet motion using Bragg scattering, a sensitivas used in Ref. [6]. In 1D the light-shift potential wells are
probe for the atomic localization [6—8]. Study of the wavespaced byr/4; in 3D they are spaced by/(2v/2) along
packet dynamics not only yields information about thez, andA/+/2 alongx andy. Atoms are trapped, cooled,
coherent and incoherent components of the atomic motiorand allowed to reach the steady state localizatia ()
but also allows exploration of the quantum phenomenon o#vhile the lattice light intensity is held constant at an ini-
revivals, due to the anharmonic character of the potentialgial value. We then compress or parametrically drive the
and the creation of superlocalized wave packets, whosecalized atoms by suddenly increasing the lattice inten-
rms spread is substantially below the steady state value. sity or sinusoidally modulating it about its initial value.

By changing the intensity of the light forming the After a variable time interval, the light is turned off and
lattice, we manipulate the potential. A sudden increasavith a delay of=0.2 us a weak probe pulse measuring
of intensity deepens the light-shift potential wells, causinghe Bragg reflectivity of the sample is introduced [6]. We
a compression of the atomic spatial distribution, followedobtainA £2(¢) from the measured Bragg reflectivity, using
by a damped, oscillatory, wave packet motion. ThisEq. (1).
method of wave packet excitation has the advantage of When the potential depth is changed rat= 0 from
producing transient compression of the atomic probabilityU;,iia1 t0 Usina Within a time interval short compared to
distribution to as small as a few tens of nanometershe vibrational period of the atoms [10], we observe wave
for a duration of a few microseconds. Using periodicpacket compression and breathing-mode oscillations with
modulation of the potential depth to parametrically drivehalf the vibrational period of the atoms in the potential
the system, we can also generate periodic wave packetells. Quantum mechanically, the symmetric excitation
oscillations. creates coherences between vibrational levels with quan-

As in [7] we measure the mean-square displacementum numbers differing by two. Figure 1 shows a typical
A£? of the atoms from the lattice sites in the direction3D result. In the harmonic approximation the compres-
of the momentum transfefK associated with the Bragg sionC(r) = \/A£2(0)/A&2(r) reaches its maximum value,
reflection. Since the Bragg reflectivity is proportional to\/Usina1/Uinitial, at about a quarter of the vibrational pe-

the Debye-Waller factor exp-K2 A£2), riod after the switching [10] [since we start in steady state,
In[I5 () I (9)] AE%(0) = A€%(*)]. A maximum compressiod =~ 2 is
AEX() = — B X2 B + A& (), (1) observed, corresponding to the minimum in Fig. 1, as ex-

pected for the parameters used.
where I is the measured Bragg reflectivity. We per- For a harmonic well and no damping&2(r) would
formed experiments with a 1D and a 3D optical lattice, foroscillate betweem ¢%(0) and its minimum value given
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cooling times is much more dramatic, with heating a
factor of 7 slower than cooling for the parameters of
Fig. 2. The reasons for this difference between heating
and cooling rates are still under investigation. It may
be in part due to the Lamb-Dicke effect, which reduces
inelastic photon scattering of well localized atoms by a
factor of k2 A &2.

In 1D the wave packet oscillations persist for more
cycles, presumably due to smaller anharmonicity in our
1D potential wells compared to the 3D wells. In the
typical 1D example shown in Fig. 2, we identify five
oscillations, compared to three in the typical 3D case
displayed in Fig. 1. In 1D we had less available laser

FIG. 1. Wave packet oscillation of the mean square positiorfPower, limiting the maximum value df. Thus, in order
spread in a 3D optical latticeS(= —51I') induced by a sudden to obtain high transient compression= \/Usina1/Uinitial

increase of the potential depth fro880ER to 3170ER att = 0.
The vibrational period of the atoms in the lattice for> 0 is

~10 us. The long-term exponential approach to steady stat

(heating) is best fitted with a time-constant £f us (dashed
line).

by A€2%(0) Uinitia1/Usinai-  Since there is damping of the

coherences and, more importantly, anharmonicity-induce
n

dephasing in the system, the wave packet oscillatio
decay within a few cycles. The total energy of the trappe
atoms, i.e., kinetic and potential energy, is closely relate
to the localization averaged over a perigbé?(r). On
a longer time scaleA £%(r) exponentially approaches a
steady state value which is close to the initis§?(0).
This long-time increase of A£2(r), indicating heating
is clearly observed in Fig. 1: after compressiag2(z)
approaches steady state with a time constantéoft

we had to choose rather low values@f,;:;.1, for which

%he steady state localization was slightly larger than usual.
t may be that this accounts for the measured compression

of only =1.5, nevertheless producing a localization close

to A/30 (=30nm). In many 1D results, as in the

one shown in Fig. 2, there also appear to be additional
scillations after the initial oscillations have decayed
way; these may be quantum revivals [13]. We do
Xpect revivals in this system; in an anharmonic potential

fhe dephasing of wave packet oscillations may be faster

han the decay of individual vibrational coherences, and
rephasing can produce revivals, which are observed in
our 1D QMCWEF calculations. Laser fluctuations tend
to wash out the revivals, but we hope that experimental
improvements will allow more detailed studies. We do
not see revivals in 3D, presumably due to the more
complicated vibrational spectrum in our anisotropic 3D

5 ws [11]. Under the same conditions the time constanfattice.

of localization €ooling) of initially disordered atoms [7]
was found to b&80 = 5 us. In 1D experiments (Fig. 2)

We extracted the frequency and the decay time of
breathing-mode, wave packet oscillations by fitting data

and 1D quantum Monte Carlo wave function S|mu|at|0ns||ke those shown in F|gs 1 and 2 with funct|oﬁg2(t) =
(QMCWF) [12], the difference between heating andgyexp(—¢/7)coswt + ¢) + Bexp(—1/Tiong) + 7y, for
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FIG. 2. Wave packet oscillations in a 1D litin lattice
induced by a sudden increase of the potential depth fitlra=

400ER to Uy = 1850ER atr = 0. The lattice detuningg =
—5I". The long-term heating is best fitted with a time constan

0 <t < Tmax, all parameters being fitted Ty« is the
time when the oscillations almost disappear. Since the fit
results forw and7 are mostly determined by a few initial
oscillations, the value chosen f@t,,, influences the fit
results only at the few percent level [14]. Fit values for
the oscillation frequenciew /27 are plotted in Fig. 3
versus the diabatic potential depily after the switching;

Uog = (K81/2)[In(1 + s5) — In(1 + (1/45)s)]. Here,
the saturation parameter= 2Q02/(I'> + 482), with the
Rabi frequency() being for the strongest transition, at
the lattice sites, and is the detuning. The uncertainties
in Uy shown in Fig. 3 (and Fig. 4) are due to intensity
fluctuations; uncertainties im and = are statistical fit
estimates. In agreement with a harmonic model of the
potential wells in both the 1D and the 3D experiments, the
frequency is proportional tg'U,. However, the measured
frequencies are onl§6% =+ 5% in 1D and68% =* 5%

#n 3D of the values obtained using a harmonic well having

of 45 us (dashed line), much longer than the localization timethe same curvature as our actual wells at the bottom. We

constant of6 us estimated fol/y, = 1850Ey [7].

observed a similar deviation when analyzing the sidebands
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FIG. 3. Oscillation frequencies of the observed breathing-:i’ 8'; \‘%
mode wave packet motion in 1D and 3D as a function of the 6] "}% “‘?_é:_%
final potential depthU, for detunings betweew = —2TI to ] A —
—15T. The dashed fit functions are62 kHz (Uo/Eg)** in 4 i
1D, and3.32 kHz (U,/Eg)%*® in 3D. $ 1000 2000 3000 4000

. - G. 4. Lifetimes = of the breathing-mode wave packet
in the spontaneous emission spectrum of atoms trapped otion in 1D and 3D as a function of the potential depthfor

a lattice [9]. Our calculations of the 1D band structurethe indicated values of the detunidg The 3D panel contains
show that the frequency reduction is due to the anhara fit consistent with anharmonicity-induced decay only.

monicity of the lattice potential. Since the energy of the
atoms scales with the potential depth, and the shape of the
potential is invariant, the anharmonicity-shifted frequencyconjugate variable at the expense of the other is similar
varies, like the harmonic frequency, §d/,. In 3D the to the case of squeezed states of light [15]. However,
anharmonicity-induced frequency shift is approximatelygiven the large spread of the initial wave packet and
twice as large as in 1D. The frequency shifts observedur limited compression, the spreads of momentum and
in the present work are larger than those observed in [9bosition do not drop below those of the ground vibrational
by amounts of2% and 8% of the respective harmonic state, the standard quantum limit (SQL). In order to
frequencies. This difference is not significant consideringeach the SQL, one might consider switching to much
our experimental uncertainty df%, both here and in deeper potentials with sufficiently large detuning to avoid
[9], which is primarily due to uncertainty in the lattice saturation.
intensity. As an alternative way to obtain spatial localization
Figure 4 shows fit values for the oscillation decay timesbhelow that in steady state, we studied parametrically
7. If the anharmonicity was the predominant cause of thelriven atoms in our 3D lattice. After cooling the atoms in
decay of the wave packet oscillations, we would expecsteady state, the lattice intensity is sinusoidally modulated
7~! to be proportional to/U, (for the same reason the with a frequencyr and peak-to-peak modulation depth
anharmonicity-shifted frequency scalesA%,). Thefitin M. After about thirty modulation periods, we measure
Fig. 4 shows that the 3D results beldw = 3000Ex are the Bragg reflectivity as a function of the modulation
consistent with such an anharmonicity-dominated decayphase® (measured with respect to an intensity maximum)
Above U, = 3000Ef the lifetimer is actually longer than at which the lattice is turned off. From the data we
expected from the inverse square-root dependence. In 1Dptain A&%(®) with parametersy and M, as shown in
we do not find a clear dependence ofon U, at all.  Fig. 5(@). In generalA&?(®) can be well fitted by a
For 6 = —5I" 7 does not decrease for lard®), as also sinusoid, yielding a phase la@, and an amplituded.
observed in 3D. We have no simple physical explanatiorin Fig. 5(b) we show®(v) and A(v) for a fixed M and
for the unexpectedly long lifetimes at lardé,, but we  specific lattice parameters. Maximum amplitude of
also see them in 1D QMCWF simulations. If we vaty the wave packet oscillation is observed at a frequency
while keepingU, constant, we expect the anharmonicity equal to the breathing-mode frequency in the unmodulated
to be unchanged, while the damping changes due to thattice. The phase la§) = —/2 for maximumA, as
changing photon scattering rate. Figure 4 suggests expected for on-resonance drive. The large width @f)
detuning dependence efin 1D (similar to 1D QMCWF  corresponds to a time constant even shorter than those
simulations), although not in 3D, presumably due to theseen in Figs. 1, 3, and 4 in 3D.
larger 3D anharmonicity. Figure 5(a) shows that while there is some compression
The Monte Carlo simulations show that the uncertaintybelow the steady state, parametric driving increases the
product \/A£2Ap? is approximately conserved during time averaged value af£? by an amount of about/3 of
the oscillations. The reduction of the spread in onethe modulation amplitudd. This leads to compression
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(a) distribution after the switching event. Using the higher
0026 _ transient Bragg reflectivity, it might be easier to observe
1 photonic bandgaps in optical lattices [16]. The technique
can also be implemented in an environment where an
atomic beam traverses a 1D or 2D optical lattice (lattice
beams orthogonal to the atomic beam) with a tailored
intensity profile. In the frame of reference of the atoms,
the lattice intensity gradient in the atomic beam direction
causes a temporal intensity change which can be designed
such that sudden compression is obtained. A possible
[ application of such a technique is the deposition of
00167 T R B e spatially compressed structures onto a substrate [17].
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