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Compression and Parametric Driving of Atoms in Optical Lattices
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Using Bragg scattering we study classical squeezing and wave packet oscillations of the atomi
center-of-mass motion of cesium atoms trapped in 1D and 3D optical lattices. A sudden increase of th
potential depth leads to wave packets substantially more localized than in steady state, and subsequ
breathing-mode oscillations with a decay rate that under some conditions is remarkably slow. We als
study the response of the atoms to parametric driving of the center-of-mass motion. Our results are
agreement with Monte Carlo simulations. [S0031-9007(97)02911-6]

PACS numbers: 32.80.Lg, 32.80.Pj, 42.50.Vk
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Optical lattices are periodic light-shift potentials for
atoms, created by the interference of multiple laser beam
The steady state properties of atoms trapped in lattic
have recently been extensively investigated [1–3]. Su
lattices offer an interesting model system for solid sta
physics, with completely characterized potentials, and t
ability to manipulate the potentials. Recent observation
of Bloch oscillations [4] and the Wannier-Stark ladder [5
for atoms trapped in optical lattices are examples. In th
work we create breathing-mode atomic wave packets
modulating the potentials, either by sudden changes in t
potential depth or by parametric driving. We measure th
wave packet motion using Bragg scattering, a sensiti
probe for the atomic localization [6–8]. Study of the wav
packet dynamics not only yields information about th
coherent and incoherent components of the atomic motio
but also allows exploration of the quantum phenomenon
revivals, due to the anharmonic character of the potentia
and the creation of superlocalized wave packets, who
rms spread is substantially below the steady state value

By changing the intensity of the light forming the
lattice, we manipulate the potential. A sudden increa
of intensity deepens the light-shift potential wells, causin
a compression of the atomic spatial distribution, followe
by a damped, oscillatory, wave packet motion. Thi
method of wave packet excitation has the advantage
producing transient compression of the atomic probabili
distribution to as small as a few tens of nanomete
for a duration of a few microseconds. Using periodi
modulation of the potential depth to parametrically driv
the system, we can also generate periodic wave pac
oscillations.

As in [7] we measure the mean-square displaceme
Dj2 of the atoms from the lattice sites in the direction
of the momentum transfer̄hK associated with the Bragg
reflection. Since the Bragg reflectivity is proportional to
the Debye-Waller factor exps2K2 Dj2d,

Dj2std ­ 2
lnfIBstdyIBs`dg

K2 1 Dj2s`d , (1)

where IB is the measured Bragg reflectivity. We per
formed experiments with a 1D and a 3D optical lattice, fo
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which K ­ 4pyl and K ­ 2
p

2pyl, respectively [7].
At long timesDj2 approaches the known steady state val
ues,Dj2s`d ­ sly7.3d2 in 3D andDj2s`d ­ sly18d2 in
1D, as measured in [9], nearly independent of intensit
and detuning.

The experimental setup has been described previous
[6]. Cesium atoms are collected, cooled, and trappe
on the 6S1y2, F ­ 4 ! 6P3y2, F ­ 5 transition (Gy2p ­
5.2 MHz; l ­ 2pyk ­ 852 nm; 2 ERykB ­ h̄2k2ymkB ­
200 nK). We investigate the 1D lin'lin lattice configu-
ration [1] as well as its 3D generalization, consisting o
two pairs of laser beams linearly polarized alongx andy,
as used in Ref. [6]. In 1D the light-shift potential wells are
spaced byly4; in 3D they are spaced bylys2

p
2 d along

z, andly
p

2 alongx andy. Atoms are trapped, cooled,
and allowed to reach the steady state localizationDj2s`d
while the lattice light intensity is held constant at an ini-
tial value. We then compress or parametrically drive th
localized atoms by suddenly increasing the lattice inten
sity or sinusoidally modulating it about its initial value.
After a variable time interval, the light is turned off and
with a delay ofø0.2 ms a weak probe pulse measuring
the Bragg reflectivity of the sample is introduced [6]. We
obtainDj2std from the measured Bragg reflectivity, using
Eq. (1).

When the potential depth is changed att ­ 0 from
Uinitial to Ufinal within a time interval short compared to
the vibrational period of the atoms [10], we observe wav
packet compression and breathing-mode oscillations wi
half the vibrational period of the atoms in the potentia
wells. Quantum mechanically, the symmetric excitation
creates coherences between vibrational levels with qua
tum numbers differing by two. Figure 1 shows a typica
3D result. In the harmonic approximation the compres
sionCstd ­

p
Dj2s0dyDj2std reaches its maximum value,p

UfinalyUinitial, at about a quarter of the vibrational pe-
riod after the switching [10] [since we start in steady state
Dj2s0d ­ Dj2s`d]. A maximum compressionC ø 2 is
observed, corresponding to the minimum in Fig. 1, as ex
pected for the parameters used.

For a harmonic well and no damping,Dj2std would
oscillate betweenDj2s0d and its minimum value given
© 1997 The American Physical Society
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FIG. 1. Wave packet oscillation of the mean square positi
spread in a 3D optical lattice (d ­ 25G) induced by a sudden
increase of the potential depth from850ER to 3170ER at t ­ 0.
The vibrational period of the atoms in the lattice fort . 0 is
ø10 ms. The long-term exponential approach to steady sta
(heating) is best fitted with a time-constant of44 ms (dashed
line).

by Dj2s0d UinitialyUfinal. Since there is damping of the
coherences and, more importantly, anharmonicity-induc
dephasing in the system, the wave packet oscillatio
decay within a few cycles. The total energy of the trapp
atoms, i.e., kinetic and potential energy, is closely relat
to the localization averaged over a period,Dj2std. On
a longer time scale,Dj2std exponentially approaches a
steady state value which is close to the initialDj2s0d.
This long-time increase of Dj2std, indicating heating,
is clearly observed in Fig. 1: after compressionDj2std
approaches steady state with a time constant of44 6

5 ms [11]. Under the same conditions the time consta
of localization (cooling) of initially disordered atoms [7]
was found to be30 6 5 ms. In 1D experiments (Fig. 2)
and 1D quantum Monte Carlo wave function simulation
(QMCWF) [12], the difference between heating an

FIG. 2. Wave packet oscillations in a 1D lin'lin lattice
induced by a sudden increase of the potential depth fromU0 ­
400ER to U0 ­ 1850ER at t ­ 0. The lattice detuningd ­
25G. The long-term heating is best fitted with a time consta
of 45 ms (dashed line), much longer than the localization tim
constant of6 ms estimated forU0 ­ 1850ER [7].
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cooling times is much more dramatic, with heating a
factor of 7 slower than cooling for the parameters o
Fig. 2. The reasons for this difference between heatin
and cooling rates are still under investigation. It may
be in part due to the Lamb-Dicke effect, which reduce
inelastic photon scattering of well localized atoms by a
factor ofk2Dj2.

In 1D the wave packet oscillations persist for more
cycles, presumably due to smaller anharmonicity in ou
1D potential wells compared to the 3D wells. In the
typical 1D example shown in Fig. 2, we identify five
oscillations, compared to three in the typical 3D cas
displayed in Fig. 1. In 1D we had less available lase
power, limiting the maximum value ofU. Thus, in order
to obtain high transient compressionC ­

p
UfinalyUinitial

we had to choose rather low values ofUinitial, for which
the steady state localization was slightly larger than usua
It may be that this accounts for the measured compressi
of only ø1.5, nevertheless producing a localization close
to ly30 (ø30 nm). In many 1D results, as in the
one shown in Fig. 2, there also appear to be addition
oscillations after the initial oscillations have decayed
away; these may be quantum revivals [13]. We d
expect revivals in this system; in an anharmonic potentia
the dephasing of wave packet oscillations may be fast
than the decay of individual vibrational coherences, an
rephasing can produce revivals, which are observed
our 1D QMCWF calculations. Laser fluctuations tend
to wash out the revivals, but we hope that experiment
improvements will allow more detailed studies. We do
not see revivals in 3D, presumably due to the mor
complicated vibrational spectrum in our anisotropic 3D
lattice.

We extracted the frequency and the decay time o
breathing-mode, wave packet oscillations by fitting dat
like those shown in Figs. 1 and 2 with functionsDj2std ­
aexps2tytdcossvt 1 fd 1 bexps2tytlongd 1 g, for
0 , t , Tmax, all parameters being fitted.Tmax is the
time when the oscillations almost disappear. Since the
results forv andt are mostly determined by a few initial
oscillations, the value chosen forTmax influences the fit
results only at the few percent level [14]. Fit values fo
the oscillation frequenciesvy2p are plotted in Fig. 3
versus the diabatic potential depthU0 after the switching;
U0 ­ sh̄jdjy2d flns1 1 sd 2 lns1 1 s1y45dsdg. Here,
the saturation parameters ­ 2V2ysG2 1 4d2d, with the
Rabi frequencyV being for the strongest transition, at
the lattice sites, andd is the detuning. The uncertainties
in U0 shown in Fig. 3 (and Fig. 4) are due to intensity
fluctuations; uncertainties inv and t are statistical fit
estimates. In agreement with a harmonic model of th
potential wells in both the 1D and the 3D experiments, th
frequency is proportional to

p
U0. However, the measured

frequencies are only86% 6 5% in 1D and68% 6 5%
in 3D of the values obtained using a harmonic well havin
the same curvature as our actual wells at the bottom. W
observed a similar deviation when analyzing the sideban
2929
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FIG. 3. Oscillation frequencies of the observed breathin
mode wave packet motion in 1D and 3D as a function of th
final potential depthU0 for detunings betweend ­ 22G to
215G. The dashed fit functions are7.62 kHz sU0yERd0.49 in
1D, and3.32 kHz sU0yERd0.48 in 3D.

in the spontaneous emission spectrum of atoms trapped
a lattice [9]. Our calculations of the 1D band structur
show that the frequency reduction is due to the anha
monicity of the lattice potential. Since the energy of th
atoms scales with the potential depth, and the shape of
potential is invariant, the anharmonicity-shifted frequenc
varies, like the harmonic frequency, as

p
U0. In 3D the

anharmonicity-induced frequency shift is approximate
twice as large as in 1D. The frequency shifts observ
in the present work are larger than those observed in
by amounts of2% and 8% of the respective harmonic
frequencies. This difference is not significant considerin
our experimental uncertainty of5%, both here and in
[9], which is primarily due to uncertainty in the lattice
intensity.

Figure 4 shows fit values for the oscillation decay time
t. If the anharmonicity was the predominant cause of th
decay of the wave packet oscillations, we would expe
t21 to be proportional to

p
U0 (for the same reason the

anharmonicity-shifted frequency scales as
p

U0 ). The fit in
Fig. 4 shows that the 3D results belowU0 ­ 3000ER are
consistent with such an anharmonicity-dominated deca
AboveU0 ­ 3000ER the lifetimet is actually longer than
expected from the inverse square-root dependence. In 1
we do not find a clear dependence oft on U0 at all.
For d ­ 25G t does not decrease for largeU0, as also
observed in 3D. We have no simple physical explanatio
for the unexpectedly long lifetimes at largeU0, but we
also see them in 1D QMCWF simulations. If we varyd

while keepingU0 constant, we expect the anharmonicit
to be unchanged, while the damping changes due to
changing photon scattering rate. Figure 4 suggests
detuning dependence oft in 1D (similar to 1D QMCWF
simulations), although not in 3D, presumably due to th
larger 3D anharmonicity.

The Monte Carlo simulations show that the uncertain
product

p
Dj2Dp2 is approximately conserved during

the oscillations. The reduction of the spread in on
2930
g-
e

in
e
r-

e
the
y

ly
ed
[9]

g

s
e
ct

y.

D,

n

y
the

a

e

ty

e

FIG. 4. Lifetimes t of the breathing-mode wave packe
motion in 1D and 3D as a function of the potential depthU0 for
the indicated values of the detuningd. The 3D panel contains
a fit consistent with anharmonicity-induced decay only.

conjugate variable at the expense of the other is simi
to the case of squeezed states of light [15]. Howev
given the large spread of the initial wave packet an
our limited compression, the spreads of momentum a
position do not drop below those of the ground vibration
state, the standard quantum limit (SQL). In order
reach the SQL, one might consider switching to muc
deeper potentials with sufficiently large detuning to avo
saturation.

As an alternative way to obtain spatial localizatio
below that in steady state, we studied parametrica
driven atoms in our 3D lattice. After cooling the atoms i
steady state, the lattice intensity is sinusoidally modulat
with a frequencyn and peak-to-peak modulation dept
M. After about thirty modulation periods, we measur
the Bragg reflectivity as a function of the modulatio
phaseF (measured with respect to an intensity maximum
at which the lattice is turned off. From the data w
obtain Dj2sFd with parametersn and M, as shown in
Fig. 5(a). In general,Dj2sFd can be well fitted by a
sinusoid, yielding a phase lagQ, and an amplitudeA.
In Fig. 5(b) we showQsnd and Asnd for a fixed M and
specific lattice parameters. Maximum amplitudeA of
the wave packet oscillation is observed at a frequencyn

equal to the breathing-mode frequency in the unmodula
lattice. The phase lagQ ø 2py2 for maximumA, as
expected for on-resonance drive. The large width ofAsnd
corresponds to a time constant even shorter than th
seen in Figs. 1, 3, and 4 in 3D.

Figure 5(a) shows that while there is some compress
below the steady state, parametric driving increases
time averaged value ofDj2 by an amount of about 2y3 of
the modulation amplitudeA. This leads to compression
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FIG. 5. (a) Phase-dependent localizationDj2sFd and sinu-
soidal fit for a 3D optical lattice parametrically driven by an
intensity modulation with frequencyn ­ 100 kHz and peak-to-
peak modulation depthM ­ 25%. For the employed mean po-
tential depth,U0 ­ 1430ER, and detuningd ­ 25G this case
is close to resonance. The dashed horizontal line shows
steady state value ofDj2. (b) Amplitude A and phase lagQ
of oscillations in the localizationDj2, deduced from fits to data
analogous to (a) taken for different frequenciesn.

that is small when compared with the result obtained wi
the sudden-compression technique.

In this work breathing-mode wave packet motion o
atoms localized in optical lattices has been studied usi
sudden-switching and parametric-drive techniques. T
observed oscillation frequencies of the wave packets a
in agreement with previous results and with Monte Car
calculations. The heating rates after compression (Figs
and 2), the lifetimes of the oscillations (Fig. 4), an
the width of the observed resonance curves [Fig. 5(b
still await a full understanding. The sudden-switchin
technique could be useful for studies requiring atoms wi
sub-steady-state localization. Using sudden switchin
we obtained spatial compression factors of up toø2.
Higher compression factors should be readily achievab
with more laser power. It should even be possible
reach position spreads below the width of the groun
state wave function, thus entering the regime of quantu
squeezed states. Applications may be designed such
they take advantage of the first collapse of the atom
the
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distribution after the switching event. Using the higher
transient Bragg reflectivity, it might be easier to observe
photonic bandgaps in optical lattices [16]. The technique
can also be implemented in an environment where an
atomic beam traverses a 1D or 2D optical lattice (lattice
beams orthogonal to the atomic beam) with a tailored
intensity profile. In the frame of reference of the atoms,
the lattice intensity gradient in the atomic beam direction
causes a temporal intensity change which can be designe
such that sudden compression is obtained. A possibl
application of such a technique is the deposition of
spatially compressed structures onto a substrate [17].
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