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“Remember kids, the only
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Abstract

Matter-wave interferometry has emerged as a vital addition to high-precision measurements
of fundamental constants like the gravitational constant G and the fine-structure constant
a, while enabling stringent tests of foundational principles, such as the Einstein equivalence
principle. Current efforts aim to extend these techniques toward inertial sensing, magnetometry
and gradiometry, gravitational-wave detection and dark-matter searches through enhanced
sensitivity.

This work advances these goals by experimentally implementing Bragg diffraction-based matter-
wave interferometers and introducing novel precision-enhancing methods, including correlated
interferometer analysis techniques. The results are achieved at the ATOMICS experiment,
which produces Bose-Einstein condensates (BEC) of 25000 8’Rb atoms in an all-optical crossed
dipole trap. With a 20s experimental cycle and exceptional laboratory stability, the setup
enables systematic exploration of various interferometric protocols and novel trapping geome-
tries.

A key achievement is the first experimental realisation of a blue-detuned bottle-beamn poten-
tial via conical refraction in biaxial crystals for ultracold atoms. This unique optical dipole
trap confines ultracold ensembles in a three-dimensional dark focus surrounded by intensity
maxima, minimising photon scattering. Numerical studies project this approach to scalable
bottle-beam arrays using microlens technology, opening avenues for single-atom quantum
computing architectures with extended coherence.

Central to this work is the implementation of free-space Mach-Zehnder interferometers using
higher-order Bragg diffraction n < 5, combined with a novel analysis method for evaluating
correlated interferometers from magnetic sublevel populations. The technique extracts dif-
ferential phases induced by external magnetic field gradients through interferometric beat
notes, validated against state-selective detection and ellipse-fitting methods. Complementing
this, dichroic mirror pulses, a technique proposed to suppress parasitic momentum states, are
experimentally demonstrated for n = 3 and n = 5 Bragg transitions, showcasing scalability for
large momentum transfer interferometry.

Finally, a dual digital-micromirror-device system is integrated into the experiment, enabling
fully configurable optical potentials. This system adiabatically generates up to four ultracold
ensembles from a single thermal reservoir via dynamic dimple traps, exhibiting non-thermal
expansion dynamics suggestive of incipient condensation. Future applications include high-
repetition-rate BEC production for sequential interferometric measurements, bypassing the
need for full experimental cycle repetition.

Collectively, these advancements expand the toolkit for quantum sensing, simulation, and
metrology with ultracold atoms, while laying the groundwork for next-generation experiments
in guided interferometry and atomtronic circuitry.
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Zusammenfassung

Materiewelleninterferometrie hat sich als wichtige Technik fiir Hochprézisionsmessungen fun-
damentaler Konstanten wie der Gravitationskonstante G und der Feinstrukturkonstante «
etabliert, wahrend sie gleichzeitig rigorose Tests grundlegender Prinzipien wie des Einstein-
Aquivalenzprinzips ermdglicht. Aktuelle Bestrebungen zielen darauf ab, diese Techniken auf
Inertialsensoren, Magnetometrie und Gradiometrie, die Detektion von Gravitationswellen sowie
die Suche nach Dunkler Materie durch gesteigerte Empfindlichkeit auszuweiten.

Diese Arbeit triagt zu diesen Zielen bei, indem sie experimentell Mach-Zehnder-Materiewel-
leninterferometer basierend auf Bragg-Beugung realisiert und neuartige Prazisionstechniken
einfiihrt, einschliel3lich korrelierter Interferometeranalysemethoden. Die Ergebnisse wurden
mit dem ATOMICS-Experiment erzielt, das Bose-Einstein-Kondensate (BEC) aus 25000 87Rb-
Atomen in einer rein optischen gekreuzten Dipolfalle erzeugt. Mit einem experimentellen
Zyklus von 20 s und aullergewohnlicher Laborstabilitdt ermoglicht der Aufbau systematische
Untersuchungen interferometrischer Protokolle und Fallengeometrien.

Ein zentrales Ergebnis ist die erstmalige experimentelle Realisierung eines blauverstimmten
Bottle-Beam-Potentials mittels konischer Refraktion in biaxialen Kristallen. Diese einzigartige
optische Dipolfalle begrenzt ultrakalte Ensembles in einem dreidimensionalen Dunkelfokus, um-
geben von Intensitdtsmaxima, und minimiert dabei die Photonenstreuung. Numerische Studien
erweitern diesen Ansatz auf skalierbare Bottle-Beam-Arrays mittels Mikrolinsentechnologie,
was Perspektiven fiir Einzelatom-Quantencomputing-Architekturen bei geringen Streuraten
eroffnet.

Ein weiterer Kern dieser Arbeit ist die Implementierung freier Mach-Zehnder-Interferometer
mit Bragg-Beugung hoherer Ordnung (n < 5), kombiniert mit einer neuartigen Analysemetho-
de zur Entkopplung korrelierter Interferometer aus magnetischen Unterzustdnden. Die Technik
extrahiert durch interferometrische Schwebungen Differenzphasen, die durch externe Ma-
gnetfeldgradienten induziert werden, und validiert diese mittels zustandsselektiver Detektion
und Ellipsenanpassungsmethoden. Ergédnzend werden theoretisch vorgeschlagene dichroitische
Spiegelpulse zur Unterdriickung parasitarer Impulszustdnde experimentell firn =3 und n =5
Bragg-Uberginge demonstriert, was die Skalierbarkeit fiir Interferometrie mit groem Impuls-
transfer belegt.

Abschliel3end wird ein zweikanaliges digitales Mikrospiegelsystem in den Aufbau integriert, das
vollstédndig konfigurierbare optische Potentiale ermdglicht. Dieses System erzeugt adiabatisch
bis zu vier ultrakalte Ensembles aus einem thermischen Reservoir via dynamischer Dimple-
Fallen, wobei nicht thermische Ausdehnungsdynamiken auf beginnende Kondensation hindeu-
ten. Zukiinftige Anwendungen umfassen die Erzeugung von BECs mit hoher Wiederholrate fiir
sequenzielle interferometrische Messungen, ohne jeweils den vollstdndigen experimentellen
Zyklus wiederholen zu miissen.

Zusammengenommen erweitern diese Fortschritte den Werkzeugkasten fiir Quantensensorik,
-simulation und -metrologie mit ultrakalten Atomen und legen die Grundlage fiir zukiinftige
Experimente in gefiihrter Interferometrie und atomtronischer Schaltkreistechnologie.







Contents

1. Introduction

2. The ATOMICS experiment

2.1.

2.2,

2.3.

2.4.

Basics . ... ..

2.1.1. Gaussianlaserbeams. . . ... ... .. ... ... .. ... ...,
2.1.2. Optical dipole potentials . . . . . ... ... ... ... .......
Bose-Einstein condensation . . . . . .. ... ... ... ...
2.2.1. Non-interacting Bose gas in harmonic traps . . . ... ... .. ..
2.2.2. Interacting Bose gas in harmonictraps . . ... ... .. ... ...
Experimental realisation at the ATOMICS experiment . . . . ... ... ..
2.3.1. Experimental control software . . . . .. ... ... .........
2.3.2. Evaporative cooling in all-optical crossed-dipole trap . . . ... ..

Laser systems . .

2.4.1. Spectroscopylaser . . . . . . . ... ...

2.4.2. MOT laser

2.4.3. Dipole-trap lasersystems. . . . . . . . . . . . vt
2.4.4. Bragg-diffraction laser system . . . . ... ... ... .. ......

3. Dipole potentials based on conical refraction

3.1. Fundamentals of conical refraction (CR) . . . .. . . . . ... ... ....

3.2. The CR dark focus as bottle-beamtrap . . ... ... ... ... ......
3.2.1. Properties of thedarkfocus . . ... ... ... ... .........
3.2.2. Conical-refraction dark focus . . ... ... ... ... .......
3.2.3. 3D trapping of ultracold 8"Rb atoms in the CR dark focus . . . . . .
3.2.4. Improving the bottle-beamtrap . . . . ... .. ... ... .....
Conical refraction with microlens arrays . . . . .. ... ... ... ....
3.3.1. Theoretical investigations . . . . . . . ... ... ... .......
3.3.2. Experimental realisation of a dark-focusarray . . . ... ... ...

3.3.

3.4.

Summary . . ..

4. Atom Interferometry with Bragg diffraction

4.1.

4.2.

4.3.

Bragg diffraction

4.1.1. Fundamentals. . . . . . . . . . . .. . . e
4.1.2. Experimental realisation . . . . . ... ... ... ... ... ...
Mach-Zehnder interferometry with Bragg diffraction . . ... ... .. ..
4.2.1. Fundamentals of Mach-Zehnder atom interferometers . . ... ..
4.2.2. Statistical analysis . . . . ... ... ... .. oL
Phase-stable summation of interferometers . . . . . ... ... ... ....
4.3.1. First-order Mach-Zehnder interferometer . . . . ... ... .. ..
4.3.2. Third-order Mach—Zehnder interferometer . . . . . .. .. ... ..

4.3.3. Summary

27
28
31
31
33
37
46
49
49
54
56

57
58
58
61
66
67
68
70
73
83
88

Xi



4.4. Dichroicmirrorpulses . . . . . . . . . . . . .. e
4.5, SUMMAIY . . . . . vttt e e e e e e e e e

5. Digital-micromirror-device potentials for ultracold ensembles
5.1. Characterisation of the DMD system . . . . . . . ... ... ... .....
5.2. Bose-FEinstein condensation in DMD potentials . . . . ... ... ... ...
5.2.1. Adiabatic generation of Bose-Einstein condensates . . ... .. ..
53. Summary . . ... . e e e e e e e e e e e e e

o

Discussion and future perspectives

>

ATOMICS setup supplementary material
Conical refraction supplementary material

Bragg diffraction supplementary material

S 0 ®

DMD potentials supplementary material
E. Python environment

F. List of publications

G. Supervised theses

References

99
100
103
104
115

117
121
123
127
131
133
135
137

139

Xii



Acronyms

AOM acousto-optical modulator
ATOMICS Atom Optics with Micro Structures
AWG arbitrary waveform generator
BC biaxial crystal

BEC Bose-Einstein condensate
BKB Belskii-Khapalyuk-Berry
CCD charge-coupled device

CDT crossed dipole trap

COM centre of mass

CR conical refraction

DDS direct digital synthesis

DMD digital micromirror device
DMP dichroic mirror pulse

ECDL external-cavity diode laser
FWHM full width at half maximum
GPE Gross-Piteavskii equation
GPIB general purpose interface bus

LMT large-momentum-transfer

LWG linear waveguide

MLA microlens array

MOPA master oscillator power amplifier
MOT magneto-optical trap

MTS modulation-transfer spectroscopy
MZI Mach-Zehnder interferometer
NA numerical aperture

PBS polarising beam splitter

PDF probability density function

RF radio frequency

RPI red-pitaya intensity stabilisation
SLM spatial light modulator

TA tapered amplifier

TBP time-bandwidth product

Ti:Sa titanium:sapphire

TOF time of flight

TTL transistor-transistor logic

xiii






1. Introduction

Interferometric measurement methods, exploiting the wave nature and coherence of light, are
a cornerstone of fundamental physics and metrology. From the failed attempt to prove the
existence of an ether, a medium in which electromagnetic waves were believed to propagate,
by A. Michelson and E. Morley [1], to modern implementations such as gravitational wave
detectors like Advanced LIGO and Virgo [2, 3], interferometry has continually pushed the
boundaries of precision measurements. Moreover, optical-fibre Sagnac interferometers have
become essential tools for inertial sensing and other phenomena such as electric currents [4].
The prediction from L. de Broglie that every massive particle can be associated with a wave-like
behaviour, and its experimental confirmation by C. Davisson and L. Germer through the scat-
tering of electrons off a nickel crystal, introduced a new research field studying matter-wave
interference [5, 6]. The typically much shorter wavelengths associated with massive particles
promise orders of magnitude improvements in precision compared to interferometric measure-
ments conducted with light. Technical advances have enabled matter-wave interferometry with
electrons, neutrons, atoms, and even large, complex molecules [7-9].

A key requirement for the successful and reliable realisation of matter-wave interferometers is
a source of coherent matter waves, analogous to a laser for light-based interferometers. Bose—
Einstein condensates, a state of matter predicted by S. Bose and A. Einstein, are dominated by
the wave nature of particles and offer an excellent medium for matter-wave interferometers
due to their predicted large coherence length despite the inter-particle interactions [10]. To
achieve this exotic quantum state, atoms must be cooled close to absolute zero, such that the
de Broglie wavelength of an individual particle, inversely proportional to the temperature,
becomes much larger than the interatomic distance.

The development of laser-cooling techniques, pioneered by W. D. Phillips, S. Chu, and C. Cohen-
Tannoudji, work recognised with the 1997 Nobel Prize, overcame the challenge of providing
ultracold atomic ensembles [11-15]. Despite this tremendous improvement, an additional
cooling method had to be implemented to cool atoms below the critical temperature for conden-
sation. Two research groups, one led by E. Cornell and C. Wieman at the University of Colorado
Boulder and the other one led by W. Ketterle at MIT, successfully used forced evaporative
cooling in magnetic traps to achieve Bose-Einstein condensation of rubidium (Cornell and
Wieman) and sodium (Ketterle) [16, 17]. This achievement earned them the 2001 Nobel Prize
in Physics [18].

Further advances in laser technology made Bose-Einstein condensation in all-optical dipole
traps possible, reducing the complexity of experimental setups associated with magnetic traps
[19]. The dipole interaction between neutral atoms and laser light remains a vital tool for the
manipulation of ultracold atomic ensembles such as Bose-Einstein condensates [20].

These advances in the preparation of ultracold atomic clouds consequently led to improvements
in the field of matter-wave interferometry. The realisation of Raman or Bragg diffraction of
atomic ensembles with gratings generated by interfering laser beams enables precise control
over internal and external degrees of freedom, such as the population of hyperfine-structure
and momentum states [21]. This can be used to implement interferometer schemes such as
Mach-Zehnder or Sagnac interferometers, similar to their optical counterparts [22-24].




Atomic interferometers based on these techniques have been used to measure, for example,
the fine-structure constant « [25, 26], the gravitational acceleration g [23], and the Einstein
equivalence principle [27] with unprecedented precision. Current efforts include the investi-
gation of atom interferometers in microgravity [28, 29] and in space [30-32], as well as the
implementation of very-long-baseline atom interferometers for gravitational wave detection
[33, 34]. Moreover, efforts to increase the sensitivity of atom interferometers include the
development of large-momentum-transfer techniques [26, 35-37].

Increasing the interrogation time and by that sensitivity of the interferometer can be realised in
microgravity environments, for example in free-falling experimental setups, atomic fountains,
or by use of external guiding potentials [22, 23, 29, 38-40].

Guided interferometers can be realised by utilising external potentials generated by e. g. conical
refraction or digital micromirror devices. Conical refraction, initially described by W. Hamilton,
generating circular light fields with low-intensity regions produces potentials with reduced spon-
taneous scattering, making them ideal for high-precision measurements [41-46]. To realise
arbitrary external guiding potentials, a multitude of techniques has been developed, including
the use of digital micromirror devices, which offer immense control over the shape, depth, and
dynamics of two-dimensional potentials [47, 48]. Other approaches include the use of spatial
light modulators, painted potentials [49, 50]. Additionally, the reconfigurability of potentials
generated by digital micromirror devices in combination with Bose-Einstein condensates as
coherent matter-wave sources can be used to realise complex circuit-like structures, resembling
electronic circuits, giving the field its name Atomtronics [40, 51, 52]. The idea behind such
atomtronic circuits is, similar to atom interferometers, to use coherent matter-waves to realise
measurements of rotation or acceleration [53-55].

The main focus of this work is the investigation and implementation of techniques aimed
towards the improvement of large-momentum transfer atom interferometry. In the future, ex-
ternal guiding potentials can be used to extend interrogation times, overcoming the limitations
imposed by the free fall of atoms in space.

This work has been carried out at the Atom Optics with Micro Structures (ATOMICS) experi-
ment of the Atoms—Photons—Quanta (APQ) group at the Institute for Applied Physics (IAP),
Technische Universitdt Darmstadt. A long-term goal of the ATOMICS project is the imple-
mentation of a continuously operating mode, generating multiple Bose-Einstein condensates
in a pulsed fashion as a supply for, e. g. guided atom interferometers. The versatility of the
ATOMICS experiment makes it an ideal setup for the combination of multiple techniques, show-
casing proof-of-principle measurements, and the realisation of new methods, more specialised
machines are unable to do.

In addition to this introduction, this work is organised as follows:

Chapter 2 introduces the ATOMICS experiment and presents the necessary fundamental back-
ground to navigate the experiments discussed in the following chapters. A brief introduction
to Bose—Einstein condensation and optical dipole potentials is given. In addition, the basic
operation of the all-optical process for the generation of BECs at the ATOMICS experiment is
described.

Chapter 3 discusses optical potentials generated by a special case of birefringence in biaxial
crystals, called conical refraction (CR). A general introduction to CR is given, with particular
attention to the dark-focus regime. This regime is discussed in detail and is experimentally
used as a bottle-beam potential to trap an ultracold ensemble of rubidium atoms. Finally, the
combination of the dark-focus regime in CR with microlens arrays is numerically investigated,
aimed towards large arrays of bottle beams for, e. g. quantum information processing with




single neutral atoms.

Chapter 4 is dedicated to atomic Bragg diffraction, a technique commonly used to implement
atomic interferometers. A brief introduction to the theoretical concepts of atomic Bragg diffrac-
tion is given, combined with its experimental implementation at the ATOMICS experiment.
Higher-order Bragg diffraction is experimentally realised and used to investigate Mach-Zehnder
type atom interferometers (MZI). Various evaluation methods are presented and discussed for
first- and third-order MZIs. State-selective measurements of the magnetic sub-states reveal
the existence of a magnetic field gradient, which is discussed in detail using the presented
evaluation methods. Finally, a new method for the generation of dichroic mirror pulses for MZIs
is experimentally implemented, reducing the impact of parasitic paths in large-momentum-
transfer (LMT) interferometers.

Chapter 5 introduces a new optical setup centred around two digital micromirror devices
(DMD) used to generate arbitrary two-dimensional dipole potentials. This setup is built to
provide external guiding potentials in combination with an additional light sheet potential,
currently limited by corrugations of said light sheet. To progress towards a semi-continuous
generation of BECs at the ATOMICS experiment, potentials supplied by the DMD setup are
combined with a linear waveguide to implement the adiabatic generation of BECs from a
thermal reservoir in dimple potentials. Single, double, and quadruple dimple setups are re-
alised, and the free-space expansion of the produced ensembles is investigated. In addition
to stationary potentials, dynamical potentials are implemented via the DMDs to generate
successive ensembles from the same reservoir.

Chapter 6 summarises the experimental results of this work and discusses future perspectives
for the experiments towards the realisation of guided-atom interferometers.







2. The ATOMICS experiment

The ATOMICS experiment provides a versatile platform for the experimental exploration of
ultracold quantum gases, with a particular focus on Bose-Einstein condensates (BECs) con-
fined in optical potentials [45, 46, 56, 57]. Advanced light-shaping techniques such as conical
refraction (CR) and digital micromirror devices (DMDs) can be used and combined with atom
interferometric methods. In this chapter, an overview of the essential experimental and theoret-
ical concepts underpinning the manipulation of ultracold atoms at the ATOMICS experiment
is provided.

The chapter starts by outlining the fundamental principles of laser cooling and optical trapping
with a particular emphasis on the properties of Gaussian laser beams and the formation of
optical dipole potentials. Furthermore, the theoretical framework for Bose-Einstein condensa-
tion in harmonic potentials is introduced for both the non-interacting and interacting regime,
highlighting characteristic signatures of condensation such as critical transition temperatures
and expansion properties of BECs. Finally, the experimental implementation at ATOMICS in its
current form is presented, including the experiment infrastructure, evaporative cooling proto-
cols and detection methods, providing a foundation for the detailed discussion of experimental
results in the following chapters.

2.1. Basics

2.1.1. Gaussian laser beams

Gaussian laser beams emerge as the fundamental solution of the paraxial Helmholtz equation
leading to the TEMy, mode of optical resonators. Hence, the electric field of an axially-
symmetric beam with 72 = 22 + 42, emitted from a laser resonator or an optical fibre can be
described by

2
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where Ej denotes the electric field amplitude with e the unit polarisation vector, wy the minimal
waist of the beam and 2z = mw?/\ the Rayleigh length. For linear polarised light along the
x-direction, the polarisation vector in Jones formalism is given by e = e, = (1,0) [58]. The
wavelength A determines the wave vector k£ = 27/ of the beam. In addition to contributions
that modify the electric field strength, there are also contributions that describe the local phase
of the field. The curvature of the wavefronts is given by R(z) = z[1 + (zr/2)?] and @ gives the
Gouy phase [59].

In most cases it is sufficient to discard the phase contributions and deal with the amplitude part
of the electric field only. An exception arises in cases where this specific phase contribution is
essential for accurately describing the interference effects of multiple beams, such as in the

2R(z)




Talbot effect discussed later in Section 3.3.1 or Bragg diffraction discussed in Chapter 4 [60].
For the application in cold-atom trapping and manipulation with large detuning on the other
hand, typically it is sufficient to describe the intensity distribution of Gaussian beams given by
the square of the absolute value of the electric field

2P exp | - 2r?
Tw3 [1 + (ZZR)Q} wi [1 + (ZZR)z]

where P o |Ep|? is the total optical power carried by the beam. In this description it is
convenient to see that only A, wy, and zg are sufficient to characterise the beam completely
with zg denoting the length over which the beam waist w(z) = wo\/1 + (z/2r)? expands by
v/2 hence the peak intensity Iy = 2P /7wy is halved.

Finally, a remarkable property of Gaussian beams is that they can be propagated and manip-
ulated by optical elements while maintaining their fundamental characteristics. A Gaussian
beam of initial waist wq can be focussed by a lens of focal length f producing again a Gaussian
beam of waist w’. Assuming the system can be described in the paraxial approximation, the
waist of the focused Gaussian beam is located in the focal plane of the lens and given by
w' = \f/mw? when the waist of the initial Gaussian beam is located at the aperture of the lens
[61, Chap. 8].

Focused Gaussian beams play a major role in cold-atom trapping and manipulation ranging
from large optical dipole traps in single-beam or crossed-beam setups to microlens arrays
producing arrays of focused beams for single neutral atom trapping [62-65].

I(r,z)= (2.2)

2.1.2. Optical dipole potentials

The ability to manipulate atoms through their interaction with light represents one of the
major advances in the field of ultracold atoms and Bose-Einstein condensation. Light provided
by lasers can be used to reduce their momentum by scattering photons hence reducing the
kinetic energy and effectively cooling the atoms [12, 20, 21, 66]. Radiation pressure arising
from the stimulated absorption of photons in a light beam tuned near the atomic transition
frequency wy forms the fundamental principle of laser cooling, which is universally employed
as the initial magneto-optical trap (MOT) stage in every cold-atom laboratory.

Besides the reduction of kinetic energy by the absorption and emission of photons, far-detuned
light can be used to trap atoms in potentials generated by the dipole interaction of atoms
with light itself. In the following discussion, the central equations are presented to offer
a general understanding of optical dipole potentials. Consider a two-level atomic system
comprising ground state |g) and excited state |e), separated by an energy gap fuvg, coupled
to a monochromatic field of frequency wy. The electric field induces a dipole moment in the
atom, oscillating at the driving frequency of the laser leading to an interaction potential U
that is proportional to the intensity of the light field |U| o I. Hence, Gaussian beams as
detailed in Section 2.1.1 with intensity gradients in both radial and axial directions create a
position-dependent potential, leading to a conservative force F' = —VU.

Expanding this description to multi-level systems such as neutral alkali atoms, the following
expression can be derived for the optical dipole potential

U(r) = Uy I(r) (2.3a)
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where I'p; denotes the natural linewidth of the respective D-line with transition frequencies

wp; [20, 67]. Here, fast rotating terms wp; + wi, can been discarded under the assumption that
the detuning

A= wr, — Wo (24)

is small compared to the atomic transition frequencies |A| < wp;, applying the rotating
wave approximation. The 2 : 1 weighting ratio between the D2 and D1 lines in dipole
potential calculations arises from differences in their oscillator strengths for the relevant atomic
transitions [20]. Alongside the optical dipole potential, spontaneous photon scattering may
also take place, a process that is crucial for optical cooling of atoms, but is undesirable in optical
traps designed for storing ultracold atoms without optical heating or decoherence. Again for
neutral alkali atoms, the spontaneous scattering rate can be described by

Tse(r) = T I(r) (2.5a)
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From these equations, the general scaling of the dipole potential U and scattering rate I's. can
be deduced / s
U x N I'ge x Az
These scaling relations reveal that increasing the intensity to offset a larger detuning A while
maintaining a constant dipole potential results in reduced scattering rates, a desirable outcome
for ultracold atom systems.
Generally, optical dipole potentials can be discriminated by the sign of the detuning A. For
the remainder of this work, the convention red-detuned A < 0 and blue-detuned A > 0
optical dipole potentials is used. Blue-detuned optical potentials trap atoms in regions of low
intensity while red-detuned potentials trap atoms in regions of high intensity. In Fig. 2.1, both
scenarios are visualised using an intensity distribution of a red-detuned Gaussian beam [see
Eq. (2.2)] and a blue-detuned potential based on the conical refraction [see Chapter 3]. For
both potentials, a thermal atomic density distribution is visualised as purple dots.
Harmonic approximations provide a convenient framework for describing external potentials
used to guide and manipulate atoms, and Gaussian beams remain the most widely employed
optical potentials in this context. Here, the trapping frequencies for a standard Gaussian beam
configuration and an atom of mass m are given:

| 8U,P _ [4UgPX2 | 40P 5
WG = mmwi’ W26 = mmws  \| mmw?z2’ 2.7)
0 0 0

Similar expressions can be derived for a large class of potential forms, allowing for a convenient
way to compare potentials to each other. At the ATOMICS experiment, the main optical dipole

(2.6)
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Fig. 2.1.: (top) Blue-detuned dipole potential based on a intensity distribution generated by the CR [see Chapter 3]
with a thermal distribution depicted as dotted area trapped in the potential minimum (intensity minimum).
(bottom) Red-detuned counterpart as generated by a focused Gaussian beam with the atomic distribution
being trapped in the potential minimum (intensity maximum).

potential used to produce the BEC consists of two Gaussian beams, intersecting perpendicular.
For a convenient description of potential depths, the recoil energy E\.. and recoil frequency
wrec are introduced as

2
My _ % 362nK = 2.5 x 10739 (2.8)

Erec = hwrec = h2
mer

with the Boltzmann constant kg, the wave number of the D2-line of 8’Rb kpy = 27/Apz at
Ap2 = 780.2nm and the mass of 8"Rb mg; [67].

2.2. Bose-Einstein condensation

Bose-Einstein condensation, first predicted by Satyendra Nath Bose and Albert Einstein in
1924-1925, represents a quantum phase transition where a macroscopic population of bosons
occupies the same ground state of an external potential at ultralow temperatures. This
phenomenon arises from the interplay between statistical mechanics and wave function sym-
metry: bosons, unlike fermions, are not restricted by the Pauli exclusion principle, enabling
collective occupation of the lowest energy state when the thermal de Broglie wavelength
AdB.h = /2mh?/(mkgT) exceeds interparticle distances with kg the Boltzman constant, 7" the
temperature and 4 the reduced Planck constant. The critical temperature for condensation
scales as Ter; o< n?/3/m, where n is the density and m the mass [68, Chap. 3]. The experimen-
tal realisation of BECs in dilute atomic gases represented a major breakthrough, allowing for




precise control of interactions through Feshbach resonances and optical trapping techniques
[18]. The condensate dynamics are governed by the Gross-Pitaevskii equation, a non-linear
Schrédinger equation incorporating external potentials and self-interactions.

Key hallmarks include superfluidity, quantised vortices, and matter-wave interference-phenomena
bridging quantum mechanics and many-body physics [69-71].

In this section, a fundamental framework for BECs is presented, highlighting key aspects of
the condensation such as the critical temperature and the inversion of the aspect ratio, both
clear indicators of Bose-Einstein condensation. Furthermore, the experimental realisation at
the ATOMICS experiment is discussed.

2.2.1. Non-interacting Bose gas in harmonic traps

In terms of the grand-canonical ensemble, the average occupation of the single particle state 4
with energy ¢; can be described by

1
n; = 2.
"= e (Bla =) =1 (29)

where 5 = 1/kgT with temperature of the ensemble 7" and p < 0 is the chemical potential, fixed
by the normalisation to the total particle number N = >, n; [68, Chap. 10]. Assuming a three-
dimensional harmonic potential, e. g. given by a Gaussian beam in harmonic approximation as
discussed in Section 2.1.1, of the form

m
Ur) =~ (w2a? + wiy® + w22?) (2.10)
with w; being the trapping frequencies. For this case, the single-particle ground-state wave
function of the Hamiltonian H = p?/2m + U(r) is given by

3/4
Uy(r) = (%) exp (—% [wzmQ + wyy? + wzzﬂ) (2.11)

where wp, = (wywyw,)'/? is the geometric average of the trapping frequencies [68, Chap. 10].
At finite temperatures, most particles occupy excited states, with only a small fraction in the
ground state V. Bose-Einstein condensation occurs, when the chemical potential approaches
the ground-state energy i €y, leading to a macroscopic occupation of the ground state. By
calculating the thermal population N7, the critical temperature is derived as

N 1/3
kBTcrit = hwho <<(3)> (2-12)

where ((x) is the Riemann zeta function and T is the critical temperature, defined by

Nr(Twi) = N [68, Chap. 11]. Normalising the total atom number N = Np + N, the
condensate fraction follows

N, T\*

SR - < ) (2.13)

Tcrit

describing the growth of Ny as T" drops below the critical temperature 7.




2.2.2. Interacting Bose gas in harmonic traps

The previous section discussed Bose—Einstein condensation for non-interacting particles in har-
monic traps, yielding the critical temperature 7. as a benchmark for condensation. However,
experimental systems invariably involve interactions, necessitating a treatment of interatomic
forces. These interactions are well captured by s-wave scattering, leading to the Gross—Piteavskii
equation (GPE)

ihg\Ilo(r t) = <— pv? + U(x,t) + g|¥o(r t)P) o (r, 1) (2.14)
ot ’ 2m ’ ’ ’ '
where g = 4wh?as./m quantifies the interaction strength via the s-wave scattering length as.
[68, Chap. 11]. For repulsive interactions g > 0, a stable BEC can be produced leading to an
expansion and preventing the collapse of the cloud. The non-linear term g|¥(r, )| in the GPE
represents the mean field energy, which arises from averaging over all pairwise interactions
and is commonly referred to as the mean field. Even for weakly interacting bosons, this energy
dominates the kinetic energy in dense regions of the BEC. The balance between mean field
energy, external potential U(r) and kinetic energy can be used to define distinct regimes.
When interactions dominate, quantified by Nasc/ap, > 1, the kinetic energy term —h%V2/2m
in the GPE becomes negligible. This defines the Thomas-Fermi (TF) regime, where the
condensate density adopts the inverted potential profile

Ao <15Nasc>2/ 5

2.15
2 ho ( )

1 .
nTF = E(MTF —U(r)) with prr =

valid for urp > U(r) and ntp = 0 otherwise. Here, ay, = +/h/(mwy,) is the harmonic oscillator
length. For harmonic potentials, ntp(r) forms a parabolic density distribution bound by the

Thomas—Fermi radii )
2 15Nag \ V/°
Ri= | P — ape ( “S") “ho, (2.16)
mwy Qho Ww;

h2

2mgn’

The healing length

= 2.17)

defines the shortest scale over which density variations equilibrate. In the Thomas—Fermi regime
(¢ < Rrtr) the condensate behaves hydrodynamically, suppressing density fluctuations. For
the validity of the GPE, a dilute gas is assumed n|as.|* < 1, where binary collisions dominate
and the thermal component is negligible. This framework can be used to accurately predict
static properties e. g. density profiles and dynamics like collective excitations in harmonically
trapped BECs. In strongly interacting or low-dimensional systems, deviations arise necessitating
beyond-mean field corrections.

Under adiabatic changes (w/w? < 1 with & = dw/dt) of the external potential U(r), the
condensate retains its shape as predicted by the Thomas—Fermi regime Eq. (2.15) without
additional excitations. If the trapping potential is removed suddenly, the condensate will start
to expand, converting the mean field into kinetic energy while maintaining its general shape.
Hence, the Thomas—Fermi radii become time-dependent and can be described by a scaling
approach using the scaling factors b(t) resulting in the time evolution

R;i(t) = Ri(0)b;(t) (2.18)
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with the initial values R;(0) given by Eq. (2.16) [72]. The scaling factors b;(¢) obey

2
. Bk
by = —— 2.1
bibybyb. (2.19)

with initial conditions b;(0) = 1 and b(0) = 0 [68, Chap. 12]. Rescaling time as 7 = tw,,
Eg. (2.19) becomes
d? A2
32" = bbb

where \; = w;/w,;. Numerical solutions reveal a hallmark of BECs, the inversion of an initial
aspect ratio R;/R; for anisotropic traps R; # R; during free expansion. In contrast, a thermal
cloud will isotropise R;/R; — 1.

For the case of an axially symmetric external potential w, = w, = w, # w, using the dimen-
sionless time 7 = w,t, Eq. (2.19) take the form

(2.20)

d? 1 dz A2

L= and Ly, = 2 2.21
a2 T, N a2 T e (221)
with aspect ratio A\ = w, /w,. For small initial aspect ratios A < 1 thus w, < w,, these can be
solved analytically

bo(r) = 1+ 72 (2.22)
bo(T) =14 \? [7’ arctan(r) — ln(\/l—i—iﬂ)} (2.23)

describing the expansion in radial and axial direction. Clearly, the BEC will expand much faster
along the radial direction of stronger confinement and for long expansion times the initial
aspect ratio R, /R, = X\ will be inverted to R,/R, = 2/(w\) for t — oco. This can be used as
proof for Bose-Einstein condensation since a thermal cloud will always approach R, /R, =1
independently of the initial condition [16, 73].
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2.3. Experimental realisation at the ATOMICS experiment

The ATOMICS experiment provides an ideal platform for experimental investigations of ultra-
cold atomic ensembles, including BECs [45, 46, 56, 57, 74]. In contrast to other experimental
setups, Bose-Einstein condensation is realised in an all-optical way, only utilising optical dipole
potentials for the evaporation and manipulation of BECs [62]. Recently, all-optical BECs with
a repetition rate of 2Hz have been reported by Hetzel et al., showing the potential of this
technique for rapid BEC production [75]. In the following section, a brief overview of the
current experimental implementation is given. Fig. 2.2 shows a schematic overview of the
main vacuum chamber and visualises important laser beams.

The ATOMICS experiment is capable of producing a BEC of 8’Rb atoms within 20's including
detection. Temperatures of typically 25nK and an atom number of 25000 can be produced
with a BEC fraction Ny/N > 0.8 [62].
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Fig. 2.2.: (left) Schematic view of the ATOMICS main vacuum chamber from the top with the main laser beams.
Copper-coloured ellipses indicate the MOT coils located inside the vacuum chamber, as well as the coils
that define the quantization axis for optical pumping. Blue and red arrows show the counterpropagating
Bragg beams superimposed with one crossed dipole trap beam (magenta). (right) Side view of the
chamber in the direction of one beam of the crossed dipole trap [see 'eye’ on the left side]. Additional
dipole potentials generated by e.g. the conical refraction [see Chapter 3] or the digital micromirror
devices [see Chapter 5] light fields are reimaged into the vacuum chamber by achromatic lenses (top of
the chamber). These are also used for the vertical detection path, reimaging the atomic plane onto the
top detection camera (not shown).The oven where hot 37Rb is produced is located to the right of the
chambers connected via a differential pumping stage [74].
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2.3.1. Experimental control software

In contrast to previous work at the ATOMICS experiment, a new control software has been
implemented based on the labscript suite [76-78]. This Python-based software package is also
employed in other experiments within the APQ group [79]. The implementation for ATOMICS
was carried out as part of the master thesis of D. Derr, where a detailed description can be
found [80].

Briefly summarised, the labscript suite is a powerful and extensible open-source framework de-
signed for the composition, control, execution, and analysis of complex experimental sequences,
with a primary focus on quantum science and ultracold atom research. The suite consists of
three main programs, which work together to prepare, execute, and analyse experiments, as
visualised in Fig. 2.3 [78]. Experimental sequences are defined in human-readable Python
scripts, enabling modular design, version control (e. g. via GitHub), and straightforward reuse
of experimental logic. Common elements of experimental sequences such as the MOT phase
and evaporation steps at ATOMICS can be encapsulated in abstract layers, making it easy to
update essential parts of the experiment without modifying each individual script.

To execute an experimental realisation (shot), the runmanager program compiles the experi-
ment script, together with all chosen parameter values, into an .hdf5 file. A key advantage of
this approach is the ability to investigate arbitrary combinations of experimental parameters,
with runmanager generating a shot for each parameter set. This enables efficient exploration of
n-dimensional parameter spaces; at ATOMICS, typically n = 1 to 4 parameters are investigated
in one measurement campaign.

Compiled shots are then queued in the BLACS program, which interfaces directly with the
experimental hardware, such as the NI 6713 analogue and NI 6534 digital cards, as well
as the SpinCore SP2-PB24-100-4k clock device. BLACS reads the instructions from each
shot and executes them, controlling the hardware accordingly. Shots can be executed once or
repeated multiple times to improve statistics, with execution continuing until manually stopped.
If data acquisition devices (such as cameras) are integrated in BLACS, measurement data can
be saved directly into the shots .hdf5 file. This enables the use of Lyse for automated analysis
of single or multiple shots, with analysis routines again defined in Python scripts. Currently,
at ATOMICS, this workflow is not fully realised due to the absence of camera integration, so
acquired data is saved separately. The evaluation of experimental data is carried out using
Python scripts written for each individual experiment [81-84]. The implementation of the
labscript suite at ATOMICS has significantly enhanced the experiments capabilities. Automated
measurement campaigns involving more than 1000 realisations and the ability to efficiently
scan large, multi-dimensional parameter spaces have enabled many of the results presented
in this thesis. Combined with substantial improvements in experimental hardware-including
electronics, optics, and laboratory stability, measurement campaigns exceeding 12h have
become routine.
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Fig. 2.3.: Schematic representation of the labscript suite software package and its workflow. An experiment is
defined as a Python script containing all instructions for the experimental hardware. The runmanager
compiles the script into an .hdf5 experiment file. BLACS reads and executes the instructions, running
one instance of the experiment (a shot). If experimental data is saved in the .hdf5 file, lyse can be used
for single- or multi-shot analysis. At ATOMICS, lyse is not used as data cannot currently be saved in the
.hdf5 files. (Image style inspired by [78], icons taken from [85, 86])

2.3.2. Evaporative cooling in all-optical crossed-dipole trap

In this section, the general experimental scheme to create a BEC at the ATOMICS experiment
is described.

ATOMICS uses 8"Rb as the atomic species to produce BECs, which in contrast to ®>Rb has a
positive s-wave scattering length of a;; = 100.4 ag for atoms in the |525, /2, F' = 1) hyperfine
ground states where ay denotes the Bohr radius [87]. Hence, with 87Rb a stable BEC can be
produced [57, 62, 74]. In Fig. Al, the hyperfine-structure of the D2-line of 8"Rb is shown with
the cooling, repump and optical pumping transitions visualised. Furthermore, the stabilised
operating frequencies of the MOT laser systems are included.

The 87Rb is supplied to the experiment from an oven chamber, connected to the main vac-
uum chamber via a differential pumping stage, maintaining the ultra-high vacuum of 2 x
10~ mbar to 5 x 10~!! mbar needed for Bose-Einstein condensation. In the oven chamber a
constant pressure of 2 x 1073 mbar is maintained using a turbo molecular pump Pfeiffer
Vacuum TPU 240 (recently switched for a Pfeiffer Vacuum TPU 260). Glass ampoules
containing 5 g to 20 g of rubidium are used to refill the oven with a typical consumption of
below 5g/a.

Resistive elements embedded within and surrounding the oven chamber are used to heat the
oven to around 400 K. This increases the vapour pressure within the oven and allows 8"Rb to
transfer into the main vacuum chamber, located approximately 1.5 m from the oven. Atoms
diffuse through a differential pumping stage (diameter 3 mm and length 15cm), forming a
narrow atomic beam with a high mean velocity (~ 300 m/s). This velocity must be reduced to
< 50m/s for efficient capture in the MOT [88, 89].

For this purpose, different methods can be utilised, such as Zeeman slowers based on mag-
netic field gradients, 2D-MOT setups or chirped laser cooling. At the ATOMICS experi-
ment, the need for additional magnetic fields for Zeeman slowing is circumvented by us-
ing two frequency-chirped external-cavity diode laser (ECDL) systems. The two laser sys-
tems are frequency chirped around the [5%5; 2, F=2) — 152 Py /2, I = 3) (cooling) and
1525, 2, F=1) — 152 Py /2, F' = 2) (repump) transitions and propagate in opposite direction of
the atom beam [12]. Two lasers are needed because atoms pumped into the |52 P; /2, F' = 2)
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state by the cooling light can decay into the |525; /2, F'' = 1) ground state, which is inacces-
sible by the cooling light. The repump laser transfers atoms from this state back to the
|52 Py /2, ' = 2) state via the repump transition. Since the atoms start with an initially large
velocity, the lasers need to be strongly red-detuned with the respect to transition to compensate
the Doppler shift Agop, = |k - v| with k the wave vector of the laser and v the velocity of
the atoms. In order to keep the laser in resonance with the atoms slowing down after each
scattering process, the laser detuning A is chirped towards smaller detuning giving this method
its name, chirp cooling [see Fig. A1].
Atoms sufficiently slowed by the chirp cooling can be captured by the MOT built with three
retro-reflective beams, with the cooling light intensity stabilised to 17.5mW in each of the
three beams for the MOT phase. Additionally, similar to the chirp cooling a repump laser has
to be used to prevent atoms from accumulating in the |52, /2, ' = 1) ground state. Typically,
an optical power of less than 1 mW in two of the three beams is sufficient to prevent this
accumulation. In the MOT, a minimum temperature of Ty,, = 146 pK can be reached, called
the Doppler temperature limit [67]. To further decrease the temperature, a short compressed
MOT stage is included with an higher magnetic field increasing the density, followed by a
sub-Doppler cooling phase with larger detuning for the cooler laser and a drastically reduced
intensity [90]. After the sub-Doppler cooling, typical temperatures of 20(5) uK can be reached
at the ATOMICS experiment.
The crossed dipole trap (CDT), used for the forced evaporative cooling to produce the BEC
gets overlapped with the MOT starting with the compressed MOT stage, maintaining an ini-
tially high optical power of 6.5 W per beam to maximise the capture rate. At the end of the
sub-Doppler phase, the repump laser is shut off 2 ms prior to the cooler, allowing the atoms to
accumulate in the [525; o, F' = 1) states with the atoms distributing in the magnetic sub-states
mg = 0, +1.
Initially at a high optical power, the CDT is ramped down to 2.5 W per beam over 125 ms in
three linear sections, to prevent stimulated Raman transitions to the |525; /2, F' = 2) states
[62]. This process can occur since the used IPG Laser YLR-56-LP has a spectral width of
2.5 nm full width at half maximum (FWHM) producing pairs of photons with the appropriate
detuning to drive stimulated Raman transitions [91]. The experimental MOT cycle is visualised
in Fig. 2.4, including the proper values for all laser parameters involved.
After the initial linear ramp of the CDT optical power to 2.5 W per beam, for the remainder
of the evaporative cooling cycle, a scaling law approach is chosen [92]. In previous works,
the actual time dependency of the potential depth was approximated by a combination of
linear ramps due to technical limitations [45, 46, 62]. The introduction of the labscript suite
as the experimental control software allows for a direct implementation of the time-dependent
optical potential given by

Ut) = —20 s Pep(t) = —20 . (2.24)

(1-7) (1-2)

Here § and 7 describe the precise shape of the evaporation ramp with currently 7 = 3 s and
B = 3 used at ATOMICS with the initial optical power Py = 2.5 W per beam. To reach quantum
degeneracy and produce a BEC, the optical power is lowered according to Eq. (2.24) to a
final power of typically Pe,q = 30 mW where a BEC at a respective temperature of 25(5) nK is
produced consisting of approximately 25000 8"Rb atoms in a mixture of the mg sub-states in
the [525) 2, F = 1) ground state.
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Schematic visualisation of the initial MOT phase at the ATOMICS experiment. The MOT is typically
loaded for t10,a = 8 s after which the magnetic field is increased to compress the MOT for tcomp = 100 ms,
increasing the density. A duration of 35 ms is employed to transition from the compressed MOT to the
optical molasses, during which the optical power of both the cooling and repump lasers is reduced.
Typically, an optical molasses of 50 ms to 100 ms is used to reduce the temperature of the atomic cloud
t0 20(5) uK. The CDT is turned on at the end of the compressed MOT and its optical power is increased
to a maximum of 6.5 W per beam in the optical molasses to maximise the loading efficiency.




Optical pumping

As mentioned in the previous section, if no further action is taken, the BEC produced in the CDT
will be a mixture of all three mr magnetic sub-states of the |525; /2, F' = 1) manifold in 87Rb.
This tripartite distribution splits the total atom population across three condensates, effectively
reducing each condensate’s atom number by a factor of three when equally distributed among
the sub-states. In atom interferometry, where each mg sub-state acts as a separate coherent
matter-wave, this introduces complex interference patterns that must be accounted for [see
Chapter 4]. This can be prevented by a method called optical pumping, which has been
investigated in previous works [46, 57]. Since optical pumping was found not to have an effect
on neither interferometric measurements nor any other experiments conducted, it was not
finally included into the standard experimental scheme.

Recently, this method has been investigated again in the master thesis of S. ReiRig [93]. To
optically pump atoms into a dedicated my sub-state, first the energetic degeneracy needs to be
lifted. This is achieved by using two additional coils in a Helmholtz-like configuration with
winding number N = 30, radius R = 0.12m and distance to the centre of the vacuum chamber
d = 0.25m. Passing a current I through both coils in series generates a homogenous magnetic
field, uniform on the spatial scale of the BEC, with a magnitude of 254(3) mG/A.Typically, a
current of I = 2 A and respective field magnitude of 510(6) mG is used. This field provides
a sufficient quantisation axis and lifts the degeneracy of the mp sub-states with AE, /i =
—mp x 27 x 0.178(20) MHz/A. Light close to the |55 5, F = 1) — |5? P55, F’ = 1) transition,
propagating along the horizontal detection beam path but oppositely aligned to the quantisation
field, enables optical pumping of atoms into a specific magnetic sublevel mg. The mg state into
which atoms are pumped is determined by the combination of the quantisation axis orientation
and the polarisation of the optical pumping light. In the typical orientation of the quantisation
axis, as described above, using o~ light induces transitions with Amg = —1 hence the mg = —1
state becomes a dark-state accumulating atoms. The light for the optical pumping is generated
by shifting a part of the light of the repump laser via an acousto-optical modulator (AOM) in
double-pass configuration to the dedicated detuning Apymp and combining it with the beam
path of the horizontal detection.

The precise detuning Apump of the pumping light relative to the mentioned transition, optical
power Ppump and pumping time 7pump can be controlled via the experimental control software
[see Section 2.3.1]. To decrease the effect of heating through photon scattering in the pumping
process, the pumping is performed directly at the beginning of the evaporation ramp described
in Section 2.3.2. Fortunately, a large number of combinations of Apymp and 7pump result
in similar pumping efficiencies, making the implementation robust against small drifts in
frequency or optical power [93].

In order to quantify the results of the optical pumping, a state selective measurement method
needs to be implemented. Here it is advantageous, that the states of interest are sensitive to
magnetic fields and magnetic field gradients. This allows for a straight-forward implementation
of the Stern-Gerlach method [94, 95]. At the ATOMICS experiment, one of the MOT coils can
be used to generate a strong magnetic field gradient, resulting in a state-dependent force

F= —VmFgF,uBB (225)

that separates the atoms spatially over a time of flight (TOF). The coil used for this gradient
is the upper one in Fig. 2.2 (left), located on the left side of the MOT, when viewed from
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the entrance window of the chirp beams in the direction of the oven!. Therefore, the atoms
are separated under a 45° angle relative to both CDT arms and the coordinate system of the
vertical detection camera.

In Fig. 2.5, three averaged optical density distributions for different combinations of Apymp and
Tpump are shown, with the parameters based on [93, p.48, Tab.4.4]. The respective values are
given in Tab. 2.1 including the average measured probability of an atom being in one of the mg
sub-state. Decreasing Apump While keeping 7pump and Ppump constant results in an increased
pumping efficiency at the expense of reduced total atom number N.

Normalised density
0.2 0.4 0.6 0.8 1.0

0 200 400 600 0 200 400 600 0 200 400 600
z (nm) z (nm) z (pm)

Fig. 2.5.: Averaged column densities for the reference without optical pumping (left), Apump = —27 x 20.5(10) MHz
with 7pump = 500 ps (centre), and Apump = —2m x 10.5(10) MHz With Tpump = 500 ps. Resulting proba-
bilities for an atom being in one of the mr sub-states given in Tab. 2.1. The pumping power was kept
constant at Ppump = 25(5) pW corresponding to an intensity Ipump = 2.0(4) W/m?.

Tab. 2.1.: Corresponding values of Apymp and mump to the measured densities in Fig. 2.5 with resulting probabilities
of an atom being in one of the mr sub-states.

Spmp Reference  —20.5(10)MHz —10.5(10) MHz

Tp?;np unpumped 500 s 500 s
mp=—1 0.323(17) 0.569(11) 0.661(15)
mp=0  0.381(24) 0.270(9) 0.185(11)
mp=+1 0.296(15) 0.161(8) 0.151(11)

Neot 8790(690) 6610(580) 3990(400)

Detection and analysis of ultracold atomic clouds

To detect ultracold atomic clouds, several techniques can be deployed with absorption imag-
ing being the most straightforward [73]. A laser beam, resonant to the cooling transition
52512, F =2) — [5%P35, F' = 3) is used to illuminate the atomic cloud. Depending on
the optical density, parts of the beam is absorbed, effectively casting a shadow in the beam.
By taking a reference image without the atomic shadow as well as a dark image to remove

'Which coil is used for the Stern-Gerlach field has been verified by tracing the cables from the power supply to
the vacuum feed-through. At the feed-through, the coil used is label R.

18



external noise, the atomic density can be determined by the Lambert-Beer law, resulting
in two-dimensional distributions of column density [73]. At the ATOMICS experiment, this
technique is used with two distinct detection axis implemented [see Fig. 2.2]. The vertical axis
is used as main detection with two achromatic lenses with focal lengths 300 mm and 400 mm
projecting the shadow cast by the atoms onto the sensor of a PCO pco.panda 4.2 USB camera?.
Given the size of the achromatic lenses and the large distance to the plane of the atoms, the
theoretical optical resolution of the detection system is given by Ad = 1.22\f/D = 3.8 um
with A = 780 nm and D = 75 mm. The horizontal detection system offers an optical resolution
of Ad = 4.8 um and is primarily employed for additional diagnostic purposes.

Fringes on the images, generated by the coherence of the laser beam used to perform the
detection can pose a serious issue for the evaluation of the atomic images. An algorithm
implemented in Python is used to correct the background of the images to remove interference
fringes that are similar on each image of a measurement series. Typically, up to 200 images are
combined in one set to correct the background of this set. For larger measurement campaigns
containing more than 200 images, multiple sets of 200 images are used to endure proper
correction, for details see [57].

Generally, two-dimensional Gaussian distributions

2 y?
n(x,y) =noexp | ———= — = | +n 2.26

( 7y) 0 €Xp < 20_% 20_5) off ( )

are used to approximate most distributions to evaluate atom numbers and temperatures. The

maximum column density is given by 7, o; denotes the Gaussian width and 7.¢ accounts for

any offset. Here a shift of the density along x or y is neglected assuming the density is centred

around zero along both axes. Generally, an offset xy and y, along the x- and y-axis can be

included if necessary. In special cases, other distributions are used to approximate the atomic

density distributions which will be described when needed or atom numbers are determined

by simple summation. The latter is typically employed when the atom number is anticipated

to approach zero.

To estimate temperatures of atomic ensembles, Eq. (2.26) is fitted to a series of densities with

varying TOFs. Assuming a Gaussian initial momentum distribution the expression

kgT
o2(t) = ——t* + o2, (2.27)
m I

can be used to extract the temperature 7" of the ensemble [73, Sec. 4]. Here i = z,y and o,

denotes the initial width of the cloud at ¢ = 0. For thermal clouds this is a good approximation

while for partially condensate ensembles, a bimodal distribution needs to be used given by

ﬁ/tot(t7 IL’, y) = ﬁtherm (ta x? y) + ﬁBEC (t7 IL’, y) (228)

~ >4 M x2 y2
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22 2 3/2
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with the thermal and condensate densities 7erm and Mipec, the poly-logarithmic function g;

and the Thomas—Fermi radii R; [73]. Here it is important to note that one dimension from

2For Chapter 3 a Photometrics SenSys camera was used with a KAF-0401E sensor chip.
For Section 4.4, the same camera model with a KAF-1400 sensor chip was used.
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the three-dimensional density has been integrated as consequence of the absorption imaging.
For this reason the recorded images display column densities. By integrating over one of the
remaining axis, the one-dimensional line densities can be computed, that often perform better
in experimental fitting routines. Nevertheless, the typically low atom numbers and high BEC
fractions at the ATOMICS experiment prevents reliable evaluations based on Eq. (2.28).

2.4. Laser systems

This section provides a brief summary of the laser systems used at the ATOMICS experiments
and their key properties. In the APQ research group most laser systems are based around
in-house developed and build components, such as the current drivers and ECDL [96-98].

2.4.1. Spectroscopy laser

The spectroscopy master laser serves as an absolute frequency reference for stabilising down-
stream laser systems at the ATOMICS experiment. An ECDL is the core of the system, incorpo-
rating a ThorLabs L785H1 laser diode. The master laser is frequency stabilised via modulation-
transfer spectroscopy (MTS) at Aw = +27 x 200 MHz relative to the |55, /2 F=2) —
|52 Py /25 F'" = 3) transition in 8"Rb [96, 99, 100] [see Appendix A]. For an enhanced mechanical
stability of the laser system and an easier serviceability, the laser is placed on a daughter board
and coupled via a fibre to the main board. Part of the light is used for the MTS stabilisation
and guided to this section via \/2 plates and polarising beam splitters (PBSs). The remainder
of the light is further distributed by additional combinations of A/2 plate and PBS towards the
detection system and the fibre distribution of the master laser light for frequency stabilisation
of other lasers.

For the absorption detection of ultracold 87Rb atoms, the light has to be brought back to
resonance with the |5%5) 5, F = 2) — [52Pyo, I’ = 3) transition. Therefore, a part of the
light is guided to an AOM in double-pass configuration so the light is shifted by twice the
AOM frequency. The detection AOM is driven by a combination of a direct digital synthesis
(DDS) and a series of radio frequency (RF) power amplifiers at a frequency of approximately
27 x 100 MHz. To determine the precise resonance, the AOM frequency has to be scanned and
the atom number determined. The distribution of the master laser light to further laser systems
at the ATOMICS experiment has been transitioned to a fully fibre coupled system based on
ThorLabs TN785R5A2 50/50 fibre couplers. This allows for a nearly lossless distribution and
combination of the master laser light with the light from other laser systems to produce the
frequency-beat signals for stabilisation.

2.4.2. MOT laser

In the following subsections, a brief overview of additional laser systems needed for the MOT
at the ATOMICS experiment is given. This includes the chirp laser system as well as the MOT
cooler and repump laser system. The experimental scheme of the ATOMICS MOT phase is
visualised in Fig. 2.4.
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Chirp laser system

As described above, at the ATOMICS experiment the chirp cooling method is used to slow the
atoms emitted from the oven chamber with two frequency-chirped ECDLs deployed. These
lasers are dynamically offset-locked to the master laser (chirp cooler) and MOT repumper (chirp
repumper) and swept across ~ 400 MHz at repetition rate of 200 Hz to 300 Hz, synchronising
with changing velocity of the atoms. The chirp compensates for the Doppler shift as atoms
slow down, maintaining resonance with the 525, 5, F = 2) — |5 P35, F’ = 3) cooling and
1525, 2, F=1) — |52 Py /2, F' = 2) repump transitions. This enables sufficient momentum
transfer to reduce the beam velocity prior to MOT capture, achieving a sufficient loading of
the MOT in typically 4s.

To optimise the loading rate of the MOT, the frequency chirping profile was optimised, adding
a flat top part at far-detuned section of the chirping profile [101].

MOT cooling laser

The MOT cooling laser system is build around a master oscillator power amplifier (MOPA)
setup using an ECDL stabilised Aw = —27 x 105 MHz relative to the master laser to seed a
tapered amplifier (TA) module, amplifying the available optical power to 600 mW [102]. In
the MOT stage, a power of typically 17.5(25) mW is used per MOT beam at a detuning of
A = =271 x 15MHz ~ —2.5 I'py relative to the cooling transition with I'p, the natural line
width of the D2-line of 8’Rb [67] [see Appendix A]. For the sub-Doppler cooling, the detuning
is increased to A = —27 x 140 MHz =~ —23 I'p, and the optical power lowered to 7.5 mW per
MOT beam.

MOT repump laser

To prevent 8"Rb atoms from accumulating in the |525; /2, ' = 1) ground state, where they
cannot be excited with the MOT cooling laser, a repump laser is needed, similar to the chirp
repumper. At ATOMICS a dedicated laser system is used for this purpose built around an ECDL
similar to the other laser systems. Since only a low optical power is needed to prevent the
accumulation in the |525; /2, ' = 1) state, the direct output power of the ECDL is sufficient and
no further amplification is needed compared to the cooling laser. The repumper is frequency
stabilised to an offset of Aw = 27 x 6568 MHz relative to the master laser, resulting in a
detuning of A = 427 x 200 MHz relative to the repump transition in 3’Rb [see Appendix A].
An AOM is used to compensate for this detuning, shifting the light back to the resonance
of the repump transition. The detuning of the repump laser remains unchanged during the
experimental cycles and typically less than 1 mW in two of the three MOT arms is sufficient.
Part of the optical power is additionally used to stabilise the chirp repump laser as well as
the Bragg seed laser, described in Section 2.4.4. Additionally, a part can be used to drive
optical transitions used for optically pumping atoms into one dedicated myp sub-state of the
1525, /2, F'' = 1) ground state manifold in combination with a magnetic quantisation field. The
optical pumping scheme is described in Section 2.3.2.

2.4.3. Dipole-trap laser systems

In the MOT, atoms can only be cooled to temperatures of approximately 20(5) pK using sub-
Doppler polarisation gradient cooling [12]. To achieve the nanokelvin-scale temperatures
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required for quantum degeneracy, optical dipole traps are employed to further cool thermal
ensembles to reach Bose—Einstein condensation via forced evaporative cooling and manipu-
late BECs. The following subsections outline the dipole-trap laser systems at the ATOMICS
experiment, highlighting their distinct configurations and applications in ultracold atomic
physics.

Crossed Dipole Trap

As discussed in Section 2.3.2, Bose-Einstein condensation at the ATOMICS experiment is
achieved exclusively in all-optical dipole potentials. To minimise spontaneous photon scattering
and thus heating the primary dipole potential for evaporative cooling is operated at a large
detuning A from both D-lines of 8’Rb. However, increasing the detuning reduces the trap depth
for a given intensity, so a correspondingly higher optical power P is required [see Eq. (2.6)].
Recent advances in laser technology have made compact, commercial systems with continuous-
wave optical powers in the kilowatt range readily available.

At the ATOMICS experiment, an off-the-shelf multimode IPG Laser YLR-50-LP fibre laser
provides up to 50 W of optical power at a central wavelength of A\cpr = 1070 nm with a
FWHM of 2.5 nm. Typically, 20 W of this power is used, split into two beams with orthogonal
polarisations to prevent interference within the vacuum chamber. The optical power in each
beam is intensity-stabilised using a red-pitaya intensity stabilisation (RPI) feedback loop,
which employs Koheron PDX10R-D-SI logarithmic photodiodes (positioned after the chamber
viewport) and Crystal Technology 3110-125 & 3110-197 AOMs. Logarithmic amplifiers
in the photodiodes are essential for stabilising the optical power over the full evaporative
cooling range, from 6.5 W down to 30 mW.

Both beams are focused into the vacuum chamber using f = 500 mm achromatic lenses,
producing waists of wy = 38(2) nm [102]. The beams are aligned perpendicular to gravity and
to each other, spanning a plane parallel to the optical table and intersecting at the position of
the MOT [see Fig. 2.2 (left), magenta beams].

At the end of the evaporation sequence, with an optical power of 30 mW per beam, the measured
trapping frequencies are w, = 27 x 100(5) Hz and w, = 27 x 140(10) Hz in the crossed-beam
configuration with the z-axis aligned with gravity. The typical trap depth along the z-axis at
the end of evaporation is 3.8 x 1072°J = kg x 277nK = 1.53 Ee. including the gravitational
potential that significantly lowers the actual depth.

Light sheet laser system

The CDT setup described above provides an optimal potential for evaporative cooling in optical
traps, enabling the production of a BEC. Furthermore, if the BEC is transferred into a single
CDT beam, this beam acts as a linear optical waveguide, suitable for applications such as
atom-interferometric measurements [57].

For more complex trapping geometries beyond linear guiding, an additional setup is required.
This involves creating a potential that confines atoms in a plane perpendicular to gravity,
combined with a system that generates tailored potential structures within this plane. The
latter system is introduced in Chapter 5.

To realise a quasi-one-dimensional potential perpendicular to gravity, a MOPA configuration is
employed. The seed laser is an ECDL operating at A\; s = 797.8 nm. Due to the large detuning
from the nearest D1-line of 8’Rb at A\p; = 794.98nm, no active frequency stabilisation is
implemented, instead, the setup relies on the passive stability of the external resonator [67].
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The seed laser output power is insufficient for trapping at this detuning, so a TA (Toptica
A-795-02000) is used to amplify the optical power to approximately 600 mW.

The output of the TA is intensity-stabilised by a feedback loop using a RPI and an AA MT
110/B50/A 1.5-IR/S AOM, and delivered to the experiment via an optical fibre. At the
experiment, the beam is out-coupled and expanded to a waist of 6.6(10) mm. A cylindrical
achromatic lens with a focal length of 400 mm focuses the beam vertically, producing a waist of
15.4(20) pm inside the vacuum chamber.

The light sheet is spatially overlapped with one of the CDT beams at the chamber exit using a
dichroic mirror, such that it propagates in the opposite direction to the CDT beam. The focal
planes of the CDT and the light sheet are carefully aligned to coincide within the chamber [see
Fig. 2.2 (left)].

Typically, an optical power of 230(5) mW is sufficient to support the atoms against gravity,
resulting in trapping frequencies of w, = 27 x 365Hz (vertical), w, = 27 x 0.8Hz, and
wy = 21 x 4.3 Hz, where gravity defines the z-axis and the beam propagates along the y-axis.
Throughout this work, multiple iterations of light sheet systems have been used with the above
described being the most current one. Experiments based on earlier versions are distinguished
by the different wavelength being used.

Titanium:Sapphire laser systems

The light sheet laser system described in the previous section provides only a quasi-one-
dimensional potential with a tight confinement in the vertical (aligned with gravity) direction
while in the remaining two dimensions the atoms are effectively untrapped. Two additional
laser systems constructed around Coherent 899-01 titanium:sapphire (Ti:Sa) ring lasers,
which are pumped by Coherent Verdi V10 and V18 solid-state laser systems, provide power
for additional optical dipole potentials. The main advantage of using a Ti:Sa laser for additional
optical dipole potentials lies mainly in the available optical power provided over a large range of
wavelengths. Both Ti:Sa lasers can be tuned in a range of 770 nm to 810 nm while maintaining
a nearly unchanged output power. At the time of this work, the first Ti:Sa laser pumped
typically at around 7W provides 270(10) mW of output power, measured at the output of the
Ti:Sa, at 800.3(1) nm, that can be used for red-detuned optical dipole potentials. This laser
has been used for the experiments discussed in Chapter 3 at a wavelength of 793.96 nm but
has been repurposed for later in this work.

The second Ti:Sa is generally used with a pumping power of 11 W, providing 1.0(1) W at
776.4(1) nm for blue-detuned potentials, measured at the output of the Ti:Sa.

In Chapter 5, a new optical setup based on two TI DLP® 3000 LightCrafter DMD modules
is introduced. Each Ti:Sa is used on one of the individual DMDs to produce arbitrary two-
dimensional optical potentials.

2.4.4. Bragg-diffraction laser system

In addition to the laser systems used for preparing ultracold atoms described above, the Bragg
laser system is employed to coherently couple specific momentum states of the ultracold
ensembles. The detailed scheme of Bragg diffraction for BECs is presented in Section 4.1.

A schematic of the complete Bragg laser system is shown in Fig. 2.6. Similar to the MOT laser
systems, the seed laser is an ECDL [APQ-1069, see Fig. 2.6, top left], frequency-offset stabilised
at A = 27 x 3.0 GHz relative to the MOT repump laser described in Section 2.4.2. This results
in a total detuning of A = 27 x 3.2 GHz from the excited state manifold |52 P; /2, F' = 2) of
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Since the ECDL output power is limited to approximately 30 mW, amplification is necessary to
reach sufficient power for addressing higher-order momentum states and to compensate for
optical losses [103]. Amplification is achieved via a MOPA setup incorporating a TA laser [see
Fig. 2.6, top right] based on a Coherent Dilas ITN-TA-08780-2000-CM diode, delivering up
to ~ 1 W immediately after the amplifier module.

An AOM [Crystal Technology 3080-120], driven at 80 MHz, is used in combination with
a photodiode on the laser table [see Fig. 2.6, bottom] and an RPI feedback loop to stabilise the
intensity and enable fast switching of the Bragg light. For improved mechanical stability, the
TA and switching AOM are mounted on a single optical board and fibre-coupled both to the
seed ECDL and to the main optical setup on the laser table.

On the laser table, the light is coupled out from the optical fibre, and a small portion is directed
onto a photodiode using a beam splitter to stabilise the intensity. The beam diameter is then
reduced by a factor of two via a telescope, with an Uniblitz LS2T2 shutter placed at the
telescope focal plane for fast beam switching. A \/2 plate and a PBS split the beam into
two equal-power paths, each guided to a Isomet 1205B-1 AOM. These AOMs shape the
Bragg pulses and generate the required frequency difference Aw [see Eq. (4.2)] to drive Bragg
diffraction.

After blocking the zero-order beams behind the AOMs, the first-order diffracted beams are
coupled into separate fibres that guide the light to the main experiment table. There, the
beams are collimated to waists of wgragg = 1070(50) pm. Two additional photodiodes monitor
the beam powers for calibration and provide feedback on pulse shapes and timing. The beams
are overlapped with the second CDT beam using two dichroic mirrors in a counter-propagating
geometry, forming the moving standing wave lattice essential for Bragg diffraction. This setup
differs from the typical retro-reflective setup.

On the laser table, the maximum optical power used is Pragg = 68(1) mW measured behind
the shutter, calibrated at 6.8(1) mW/V. Prior to each Bragg experiment, a power calibration
is performed, and the effective pulse area is measured to account for losses due to vacuum
chamber window transmission and beam alignment. A detailed description of the experimental
procedure is provided in Section 4.1.

The AOMs on the laser table are driven by an AD9959 DDS, providing up to four frequency
outputs with an RF amplitude of 0 dBm. An Arduino Nano and a Raspberry Pi control the
DDS, allowing precise setting of frequencies and phases; further details are given in [46, 104].
Currently, three DDS outputs are used: one provides a fixed base frequency of 80 MHz to the
first Bragg beam AOM, while the other two are offset to different values of Aw relative to the
base frequency, enabling addressing of two distinct momentum states.

Fast RF switches (Mini-Circuits ZYSWA-2-50DR+), controlled by transistor-transistor logic
(TTL) signals from the main experiment computer, gate the RF power to the AOMs, ensuring
that RF power is supplied only during pulse sequences. Another identical switch is used to
select between the two secondary DDS frequency outputs, allowing rapid switching between
preset frequencies. This frequency switching is controlled by a TTL signal from the experiment
control system. A further fast switch is placed in series after the frequency selector to gate the
RF power similarly to the first arm.

Since these switches operate in a binary on/off manner, time-dependent amplitude envelopes
for the Bragg pulses are implemented using a Mini-Circuits ZAD-3+ mixer. This mixer
attenuates the RF power transmitted to the amplifiers and AOMs via a control voltage, enabling
smooth variation of pulse intensity.

A total of four HP 33120A arbitrary waveform generators (AWGs) generate the time-dependent
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envelopes for the Bragg pulses. Outputs from pairs of AWGs are combined using voltage adders
to produce pulses of varying lengths without reprogramming the AWGs via the general purpose
interface bus (GPIB) interface. The envelope waveforms, consisting of up to 16000 points, are
preloaded into the AWGs internal memory and triggered by an external TTL signal. The pulse
length is controlled by setting the waveform frequency fyuise = 1/7puise, adjustable for each
experimental run. Using four AWGs allows the generation of pulse sequences with non-uniform
durations, avoiding the overhead of reprogramming during experiments.
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Fig. 2.6.: Schematic representation of the Bragg laser system. An ECDL laser stabilised to a frequency offset
Of Awsragg,toc = +27 x 3160 MHz the state manifold |e) = [5°P; /o, F' = 2) of ®"Rb is used as seed for
power amplification (top left). Since the ECDL provides a maximum output power of ~ 30 mW, a MOPA
setup based on a TA is used to amplify the power to > 400 mW (top right). The TA board includes an
AOM used to stabilise the optical power guided to the laser table using the signal of a photodiode located
on the laser table after the fibre coupler. On the laser table, the beam is split and two AOMs are used to
shape the pulse envelope as well as to add the needed frequency difference Aw to couple the desired
momentum states. Two individual fibres are used to guide the light to the experiment table (bottom).
Every fibre coupling is combined with a PBS cube aligned to the slow axis of the polarisation maintaining
fibres to minimise polarisation drifts in the fibres.
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3. Dipole potentials based on conical refraction

“Did everyone see that? Because I will not be doing it again.”
— Captain Jack Sparrow, Pirates of the Caribbean: On Stranger Tides

Conical refraction (CR) as a special case of birefringence in biaxial crystals (BC) with three
principal refractive indices offers a unique and efficient method for generating structured light
fields, which are highly advantageous for optical trapping of ultracold atoms. Unlike conven-
tional birefringence, CR produces a hollow cone of light when a circularly polarised beam
propagates along one of the principal axes of a BC [41, 42], resulting in intensity distributions
that can be utilized as advanced optical dipole potentials. First described already in 1832 [41,
42], CR has sparked interest again recently. References [44, 105] give an extensive review of
the CR phenomenon, its fundamentals, and possible applications.

Optical dipole traps are a cornerstone of ultracold-atom experiments. Red-detuned traps,
such as those based on focused Gaussian beams, like the CDT used to produce the BEC at the
ATOMICS experiment, provide simple and robust geometries but inherently confine atoms at
intensity maxima, leading to increased photon scattering and decoherence. The simplicity
of red-detuned traps makes them especially attractive in scenarios where optical power is
abundant so that the detuning can be increased to a point where scattering can be neglected
on the timescales of the experiment. In contrast, blue-detuned traps confine atoms at intensity
minima, significantly reducing scattering. This property makes them ideal for high-sensitivity
and precision experiments like the investigation of BECs [43, 106], quantum information
processing, or quantum sensing with neutral atoms [107-109]. Optimally, such potentials
feature a central intensity minimum with large-intensity gradients, yielding high trapping
frequencies in all directions. Creating high-quality so-called bottle-beams traps continues to
present significant technical challenges. Different implementations of bottle beams have been
reported based on techniques utilising spatial light modulators (SLMs) [110], or phase plates
generating holograms [111], time-averaged potentials [112], conical lenses [113], interfering
Laguerre-Gaussian or vortex beams [114-116], and using birefringent crystals [117].
Compared to the method based on CR, most of these approaches have known limitations like
the need for increased precision regarding the alignment of multiple beams, a poor conversion
ratio of optical input power to the actual potential, and a potential minimum with a non-zero
intensity. The use of light fields produced by CR as optical potentials for ultracold atoms was
first proposed in the context of two-dimensional CR double-ring configurations, which have
already been employed to guide ultracold rubidium atoms [43, 45, 46, 57, 118]. Furthermore,
an implementation of a CR bottle-beam potential for absorbing droplets has been reported by
[119].

In the following chapter, a realisation of an optical bottle beam for ultracold atoms based on
CR in biaxial birefringent crystals is presented with the results published in [120] and parts of
the section taken verbatim from the article!. In Section 3.1 the fundamentals of light fields
generated by CR are presented followed by a detailed investigation of the dark focus regime

This article has been published in Physical Review A 108, 053320 (2023), DOI: https://doi.org/10.1103/PhysRe
vA.108.053320
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in Section 3.2 including the realisation of a bottle-beam potential for ultracold 8’Rb atoms.
Finally, the combination of CR and microlens array (MLA) as a path towards large arrays of
bottle beams is investigated. These results demonstrate the significant potential of CR for
next-generation quantum technologies

3.1. Fundamentals of conical refraction (CR)

Conical refraction is an optical phenomenon that occurs when light travels along an optic
axis within a biaxial crystal. Instead of passing straight through, an unpolarised or circularly
polarised Gaussian input beam emerges as a hollow cone or ring of light, creating distinctive
ring-shaped intensity patterns. This effect arises from the unique way biaxial crystals refract
light, and it can produce both internal and external conical refraction depending on the
geometry [44, 105]. In Fig. 3.1 (right), a schematic setup for the creation of CR light fields is
shown compared to the equivalent setup for a red-detuned optical dipole trap (left) based on a
focused Gaussian beam. The incident light field is focused to a waist wq by a lens of focal length
f. When a BC is positioned between the lens and the focal plane and the propagation axis of
the beam is aligned with one of the optical axis of the BC, unpolarised or circularly polarised
light is transformed into a ring-shaped intensity distribution at the focal plane. Depending on

Fig. 3.1.: (left) Schematic of the simplest setup to create a red-detuned dipole potential based on a Gaussian
beam focused to a waist wo by a lens of focal length f.
(right) Schematic representation of the CR effect. An incident light beam is focused through the biaxial
crystal by a lens of focal length f to a waist wo. If properly aligned, the emerging field forms a circular
intensity distribution in the focal plane of the lens. The distribution size is determined by the principal
ring radius Ro. The qualitative structure of the intensity distribution depends on the ratio of the principal
radius to the waist po = Ro/wo.

the length [ of the BC crystal, the emerging ring has a principal radius of Ry = al, describing
the radius of the emerging intensity distribution, where « is the semi-angle determined by the
three refractive indices n; > no > n3 [105] of the BC by

a= %arctan (\/(n% —n5)(n5 n§)> . CRY)

nins

In addition to the interesting spatial properties of the emerging light field, its polarisation is
linear everywhere with the polarisation angle depending on the position. Opposing azimuthal
positions of the ring have orthogonal polarisation vectors with respect to each other [121,
122].

The transformation of an unpolarised or circularly polarised incident light field by the CR can
be understood in terms of a unitary transformation acting on the plane wave spectrum a(k) of
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the incident light [123, 124]. Taking the full diffractive theory by Belskii and Khapalyuk [125]
in the formulation by Berry [126], using a normalised coordinate system given by

R
wo wo ZR

The field transformed by CR can be written in the form

1
D(p, ¢7 Z, PO) = ﬁMCRe (3.3)

with the waist wq of the focused light field, zg the Rayleigh length, and e the polarisation unit
vector. The 2 x 2 matrix Mcg takes the form

Bo(p, Z. po) + cos(¢) Bi(p. Z, po) sin(¢) Bi(p. Z, po) >
sin(¢)B1(p, Z, po) Bo(p, Z, po) — cos(¢)Bi(p, Z, po)

and e denotes the polarisation vector of the incident light field in Jones formalism [127]. Here,
By and B are the Belskii-Khapalyuk-Berry (BKB) integrals given by

Mcr = < 3.4

I iZK?

By (p, Z,po) = 27r/0 dk K a(k) cos (kpo) exp (— 2/; > Jo (kp) (3.5a)
I , iZk?

Bi(p,Z, po) = 27r/0 dk K a(k)sin (kpo) exp <—12Z ) Ji (kp) (3.5b)

where J; refers to the i-th order Bessel function of the first kind, n is the mean refractive
index, and a(k) the plane wave spectrum, defined via the Fourier transform of the incident
field. For a circularly polarised beam with polarisation unit vector e = 1/v/2 (1,1) the intensity
distribution simplifies to

ICP(:O’ Za PO) = |BO(p7 Za P0)|2 + |Bl(P, Za PO)|2- (36)

For cylindrically symmetric input light fields Ejy, a(x) is given by a(x) = 27 [;~dp pEin (p) Jo (kp).
For Gaussian incident light fields as described in Section 2.1.1 [Eq. (2.1)], the plane wave
spectrum is given by a(x) = 7Eg exp (—x?/4) with the electric field amplitude Ej, so that the
BKB integrals take the form

1 [ K2 A
By Gauss (P; Z, po) = E0§ dk Kk exp I cos (kpg) exp ~ Jo (kp) (3.7a)
0

1 [ A i
B1 Gauss (p, Z; po) = E0§ dk kexp 1 sin (kpo) €xp | —
0

As mentioned, the normalised radius of the CR intensity distribution py characterises the
qualitative structure of the light field with py < 1 resulting in super-Gaussian and with pg > 1
in clear double-ring distributions separated by a ring of low intensity, the so-called Poggendorf
dark ring [126]. For values 0.9 < py < 2, the intensity distribution changes drastically from
a doughnut-like mode at py = 0.924 with a zero central intensity to a distribution forming a
bright ring with a central intensity maximum at py ~ 1.5 to the double ring mode at pg > 2.
In Fig. 3.2 this transitional region is shown as a false colour plot for a fixed value of Ry and
values 0.924 < py < 5. In typical experimental setups, po has a fixed value determined by the
properties of the incident beam and the BC crystal. Using lenses of variable focal length, py can

/472

2n

) J1 (kp) . (3.7b)
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Fig. 3.2.: False colour plot of I(p, Z = 0) for ratios 0.5 < po < 5. By focusing the incident light to an ever smaller
waist, different intensity distribution can be created by CR. Starting with super-Gaussian beams for
po < 1 followed by the dark focus (DF) regime at p§" = 0.924 two bright rings emerge, separated by the
Poggendorf dark ring for po > 2. A dashed white line marks the dark focus regime.

be dynamically changed as used in [128] to investigate the dynamics of BECs in dynamically
changing trapping geometries based on CR. Furthermore, it can be shown that placing an
aperture in the first focal plane of the lens focusing through the BC results in a truncation of
the BKB integrals. This effect was used to dynamically change the effective ring regime to
investigate topology changes of BECs [46].

Since Fig. 3.2 only visualises a one-dimensional cut through the intensity in the focal plane
of the lens and does not show the behaviour along beam propagation, in Fig. 3.3 the two-
dimensional (zy—plane) intensity distribution in the focal plane as well as a cut in the yz—plane
for three distinct values py € [0.924, 1.5, 5] are shown. The plot reveals that a dark focus (DF)
configuration at p§* = 0.924 a central region of zero intensity is formed, surrounded by regions
of high intensity along all three dimensions. Consequently, this configuration is ideally suited
for implementing a blue-detuned, single-beam three-dimensional dipole trap for cold atoms.
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Fig. 3.3.: Intensity distributions in the xy (left) and yz-plane (right) for different values of po. The top row shows
the dark focus regime pb" = 0.924 with the doughnut-like intensity distribution in the focal plane. In
the centre row, an intermediate regime po = 1.5 is shown where a local intensity maximum emerges in
the centre of a bright ring, providing a dark ring structure in the focal plane. The bottom row shows a
double-ring separated through the Poggendorf dark ring at po = 5. For higher values of po, the intensity
distribution remains a double ring.

3.2. The CR dark focus as bottle-beam trap

As discussed in the previous section, for p5f = 0.924 the light field produced by CR forms a
dark region of zero intensity surrounded by high intensity in all directions. In the following, a
detailed analysis of the resulting intensity distribution is given, investigating potential depth
and trapping frequencies. Further, an experimental realisation of such a light field will be
explored and compared to numerical calculations. The light field will be used to trap ultracold
87TRb atoms in all three dimensions without the help of additional light fields. Finally, concepts
to improve on this trapping technique are given. The results of this section have been published
in [120].

3.2.1. Properties of the dark focus

To derive some key properties of the ideal dark focus at p§* = 0.924, the intensity distribution is
calculated numerically for |Z| < 2 and p < 2 using Egs. (3.7a) and (3.7b) and finally Eq. (3.6).
In Fig. 3.4 (top), the resulting intensity distribution is shown on a linear false colour map,
normalised to the peak intensity in the focal plane. From this intensity distribution, relevant
properties of this light field can be derived, where the given uncertainties refer to the numerical
grid used to calculate the intensity distribution. For optical dipole potential applications, the
magnitude and spatial positions of the limiting intensity thresholds are of particular importance,
determining the maximum potential depth. In the focal plane at Z = 0, the radial maximum
forms a ring with radius p = 1.096(1) as can be seen in Fig. 3.3 (top left) with an intensity of
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Fig. 3.4.: (top ) False colour plot of a cut through the pZ-plane of the normalised intensity distribution for pbf =
0.924. The red curve traces the position of the radial maximum numerically extracted from the calculated
intensities. Black diamonds mark the position of the maximum on-axis intensity at Z = +1.388(1), black
dots mark the respective maxima on the radial direction for Z = 0 at p = 1.096(1). Black crosses mark
the locations of the weakest radial intensity maxima, which form a saddle point at p = 0.619(1) and
Z = £1.111(1). (bottom) On axis I(p = 0, Z) (blue) and radial maximum values I.x(Z)(red) of the
intensity. Vertical lines and a black arrow mark the location of the weakest points of the intensity at
Z = +1.111(1).

I, max = 0.199 Iy. Here, Iy = 2P /(mw3) denotes the peak intensity of the Gaussian input beam
when focused to a waist wy. When used as a blue-detuned dipole trap, this point marks the
potential maximum in the radial direction with a potential of U, nax = 0.199 Uly. The position
of the radial maximum is marked with black dots in Fig. 3.4 (top).

For p = 0, the on-axis intensity reaches a maximum value of /7 nax = 0.138 Iy at Z = +1.388(1)
(black diamonds in Fig. 3.4 (top)), marking the maximum length of the potential in axial
direction. For Z = +0.598(1), the on-axis intensity reaches 50 % of this value /509, = 0.069 Ij.
A potential, suitable for trapping ultracold atoms is only provided for regions, where a radial
intensity minimum is present. To find the axial position where the radial minimum vanishes,
the radial maximum I, max(Z) is numerically determined for each value of Z in the calculated
intensity distribution respectively. The red curve in Fig. 3.4 (top) traces the position of the
radial maximum with the intensity values plotted in Fig. 3.4 (bottom). Comparing these values
to the on-axis intensity [blue curve Fig. 3.4 (bottom)] gives a value of Iy = 0.134 I at
Z = £1.174(1) for the point where the radial minimum vanishes and the radial maximum
equals the on-axis intensity.

Further investigation of the radial maximum values shows, that at Z = £1.111(1) and p =
0.619(1) the radial maximum intensity /, max(Z) has a local minimum with a value of I;;ap =
0.133 I [black crosses in Fig. 3.4 (top)]. Since this value is smaller than the on-axis maximum
Iivap < Iz max, this point is the weakest point of the trap when using this light field as a dipole
potential. Given by the radial symmetry of the light field, this leads to two ring-shaped minima
of the potential, located at p = 0.619(1) and Z = +1.111(1). In Tab. 3.1 a summary of the
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discussed points is given with the intensities normalised to .
In experiments with ultracold atoms, the potentials are often only sampled by the atomic

Tab. 3.1.: Specific intensity values and corresponding positions characterising the dark-focus beam for py = p5°
in reference to the maximum intensity I, of a focused Gaussian beam with waist w, and identical power.

Intensity Position
Ipmax =0.199 Iy | p=1.096(1) Z =0
I7max =0.1381p | p=0 Z = +1.388(1)
Tivap = 0.133 Iy | p=0.619(1) Z=+£1.111(1)
Itk =0.134 Iy | p=10 Z = =+1.174(1)
ISO%,Z = 0.069 I() p = 0 Z = i0.598(1)
Isow,p =0.01 Iy | p=10.593(1) Z=0

ensembles close to the minimum, which allows the use of a harmonic approximation for most
potentials. Such an approximation was derived in [44, 120] close to p§F = 0.924. Normalising
the intensity distribution to Iy and applying the harmonic approximation, the normalised
intensity for |Z| ~ 0 and p ~ 0 can be described by

2

I(p,Z =0 . 3

7@’ I ) ~ pr2, with x, = 4p(2) iF1 <2, 2 —p%) ~ 0.293 (3.823)
0

I(p=0,7 . 1

(”17) ~xzZ?%, with yz = 1 (3.8b)
0

where 1F} (a, b, ¢) is the Kummer confluent hyper-geometric function [129] and in the last step
pSF = 0.924 was inserted. In the radial direction, this approximation is only valid for values of
|Z| < 1.174 where a radial minimum is present and in general x, becomes dependent on Z [see
Appendix B ]. Fig. 3.5 displays the normalized intensity profiles I(p, Z = 0) (top, blue) and
I(p =0, Z7) (bottom, blue), alongside their harmonic approximations (orange curves) derived
from Egs. (3.8a) and (3.8b). From this plot, it is evident, that the harmonic approximation
only describes the intensity well for small values around p = 0 and Z = 0.

3.2.2. Conical-refraction dark focus

At the ATOMICS experiment CR light fields can be created using different potassium gadolinium
tungstate [KGd(WOy),] crystals of varying lengths from 2.2(1) mm to 16.0(1) mm. This type of
crystal is optically transparent for a wide range of wavelengths between 350 nm and 5500 nm
[130] which makes it an ideal candidate for the generation of optical potentials for all alkaline
atoms [67, 131-136]. Furthermore, optical anti-reflective coatings are available with high
quality, allowing in principle a conversion efficiency above 99 %.

Calculating the three principal refractive indices for this type of crystal and a wavelength of

A = 793.96 nm with
B
n(A,B,C,D,\) = A+ ——— — D\? (3.9)
1

leads to the values summarised in Tab. 3.2. Based on these values with Eq. (3.1) a semi angle
of @ = 19.07mrad can be calculated [137].

Therefore, principal radii of Ry = 41.95(190) pm to 305.0(19) pm can be realised for the avail-
able crystals without re-imaging the light field with additional optics. For the generation of
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Fig. 3.5.: Radial (top) and axial (bottom) intensity for pit = 0.924 in blue normalised to the maximum intensity
I, of the input Gaussian beam. Harmonic approximation based on Egs. (3.8a) and (3.8b) are shown in
orange.

Tab. 3.2.: Values of A to D for [KGd(WO, )2 and calculated refractive indices for Ags = 793.96 nm [137].
A B C [1/nm] D [1/nm?]
1.3867 0.6573 170.02 x 1077 0.2913 x 10~%" n;=2.0754
1.5437 0.4541 188.91 x 1079 2.1567 x 10727 ny=2.0237
1.5344 0.4360 186.18 x 1072 2.0999 x 10727 n3=1.9944

the dark focus regime, one of the CR-crystals with length 2.2(1) mm is chosen (APQ-1211).
The light field in the focal plane is investigated to verify that a sufficient potential can be
generated. To reach the desired value of pj¥ = 0.924 a Gaussian beam with a focused waist
of wy = 45.4(21) pm is needed. The light fot the CR intensity distribution is produced by one
of the Ti:Sa laser systems described in Section 2.4.3 and guided to the experiment with an
optical fibre. After the light is coupled out of the fibre, a beam waist of wy;, = 1050(20) pm
was determined by fitting a 2D Gaussian of the form Eq. (2.2) to an image taken of the beam
with a COHU INC. 6410 RS-170 charge-coupled device (CCD) camera. A combination of
A/2 plate with a PBS ensures a pure linear polarisation of the light which can be converted
to circularly polarised light by including an additional \/4 plate. By using an achromatic
lens with focal length fi; = 200 mm, the initial Gaussian beam can be focused to a waist of
wp = 43.6(30) pm with a measured Rayleigh length of 2z = 6.85(50) mm. Both values are
extracted from Gaussian fits to the focused beam along its propagation axis. This gives an
expected value of py = 0.96(8) which is close to the intended value for the dark focus.

The CR-crystal is mounted in a way allowing the control over the alignment between the optical
axis of the crystal and the propagation axis of the beam. This is crucial to ensure a symmetric
intensity distribution since even small misalignments can cause asymmetries in the produced
light field, leading to additional weak points in the potential later on. It is known that for an
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optimal output intensity the alignment of the axes of beam and crystal, the polarisation, and the
overall optical quality of the crystal need to be optimised. Placing the BC in the focused beam
and adjusting the polarisation produces an intensity distribution close to the numerically calcu-
lated dark focus. Again, the COHU INC. 6410 RS-170 camera is used to image the intensity
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Fig. 3.6.: Comparison of the intensity distribution in the pZ plane of the measured (right) and the numerically
calculated (left) intensities for the experimentally obtained beam parameters wo = 43.6(30) pm, po =
0.96(8), and zzr = 6.85(50) mm. Both intensity distributions are scaled to the same optical input power
to increase comparability and normalised to Iy = 2P/7wj.

produced by the combination of the focused beam and the CR crystal in the xy-plane. A series
of 63 images is taken along the propagation axis of the beam equally spaced by 250(10) pm to
capture not just the doughnut-like distribution in the focal plane but the full length of the dark
focus which is expected to be on the order of 2 x 1.174 x 6.85(50) mm = 16.1(12) mm. For
each image plane, the alignment of the crystal is adjusted to optimise the intensity distribution.
Finally, all images are centred and scaled to an arbitrary optical power of 1 mW for comparison
against the numerically calculated intensity with the same optical power. From the series of
images, the radial mean intensity values are calculated and displayed as a false colour plot
in Fig. 3.6 (right) next to the numerically calculated intensity (left) for the parameter set
given in the caption of Fig. 3.6. For a quantitative comparison, similar to the discussion in
Section 3.2.1 the axial intensity I(p = 0, Z) as well as the radial maximum values Imax(p, Z)
are evaluated. In Fig. 3.7 (top), the radial maxima are represented by red diamonds and the
axial values by blue dots. Both exhibit good agreement with the numerical results (indicated
by dashed black lines). All values are normalised to the maximum of the numerical data.
To evaluate the length of the potential where a radial minimum is present on the axis, the
ratio I(p = 0,7)/Imax(Z) is evaluated and shown in Fig. 3.7 (bottom) with experimental
values marked by green crosses and the numerical values as black dashed line. Taking a 5%
error into account, the length of the bottle can be evaluated as I(p = 0, Z)/Imax(Z) < 0.95
for |Z| < Ipp/2 leading to lgg = 12.75(50) mm which is slightly smaller than the value of
2 x 1.044 zg = 14.3(10) mm derived from the numerical data based on the same criterium.
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Fig. 3.7.: (top) Experimental values of the radial maximum I.x(Z) (red diamonds) and central axial intensity
I(p =0, Z) (blue dots) compared to the numerical values (black dashed) corresponding to the numerical
and experimental intensity distributions shown in Fig. 3.6. (bottom) Ratio of I(p = 0, Z)/Imax(Z) for
the experimental values (green cross) and numerical results (black dashed). Defining the length of the
bottleas I(p = 0, Z) /Imax(Z) < 0.95 for | Z| < lgs/2 gives lgg = 12.75(50) mm for the experimental data,
shown as black arrow in the top plot. From the theoretical data a value of 2 x 1.044 x zg = 14.3(10) mm
can be derived which is slightly larger.

In Fig. 3.8, a comparison of the azimuthally averaged radial values I(p, Z = 0) of the experi-
mental data (blue) and the numerical values I(p, Z = 0) (black dashed) is shown, which fit
well. The shaded area marks the computed standard deviation for the experimental values.
The Ti:Sa laser used to produce this intensity distribution can provide an intensity stabilised
maximum optical power of Pgg = 52(5) mW to the experiment, including losses at the CR
crystal and additional optics. Based on Egs. (3.8a) and (3.8b) trapping frequencies in axial
and radial direction can be calculated by switching back from normalised intensities to SI units
and multiplying them with the corresponding dipole factor U()\) (Eq. (2.3))

3 8U,P 8U, P
ya) (2, >, pg) | = 0.357 4| —— = 0.357 wyg (3.10)
2 TMgTW TMgTWy
1 AU P 1 [4U0,PX2 1
P P LY e AN (3.11)
2\ mmgrwyzg 2\ mPmsrwg 2

where mg; denotes the mass of 87Rb, w, the waist of the Gaussian beam and P the optical
power. In the last step, py = 0.96 was used and the known trapping frequencies w, ¢ and w, g
of a Gaussian beam were factored out.

Using the experimental parameter Pgg = 52(5) mW, wo = 43.6(30) pm, zg = 6.85(50) mm, and
A = 793.96 nm, the resulting calculated trapping frequencies are w, = 27 x 295(65) Hz and
w, = 2m x 1.87(23) Hz in the focal plane of the CR. Harmonic fits to the experimental axial and

Wy = \/§P0

and
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experimental values from Fig. 3.6 (blue shaded area). The width of the shaded area represents the
standard deviation of the experimental intensity values. Both curves are normalised to the maximum of
the numerical data.

radial intensity values shown in Fig. 3.7 (bottom) and Fig. 3.8 result in values for x, and xz
that can be converted to trapping frequencies. The resulting values are wy © = 27 x 325(38) Hz
and ws® = 1.97(21) Hz which are in excellent agreement with the calculated values for the
experimental optical powers and beam parameters.

3.2.3. 3D trapping of ultracold ®’Rb atoms in the CR dark focus

ccp
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Fig. 3.9.: Schematic experimental setup for 3D trapping of cold atoms based on the CR bottle-beam potential.
The intensity distribution of the dark focus is relayed into the vacuum chamber via the non-polarising
beam splitter (BS), and demagnified by L2 — L5. In the atom plane, the beam propagation axis is aligned
with gravity. The inset shows the intensity distribution in the focal plane of L1. The two detection paths
are marked as light-red beams with the CDT shown as magenta beam.

Since the focal plane at which the dark focus is created lies outside of the vacuum chamber of
the experiment, additional optics are used to relay the intensity distribution to the atom plane
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in the vacuum chamber. To ensure a sufficient potential to trap atoms in 3D, the relay optics
are chosen to have a total magnification | M| < 1. Reimaging scales the spatial dimensions of
the light field while preserving the overall structure of the intensity distribution. The expected
scaling for the beam waist wy and the radial size is linear with | M|, while the Rayleigh
length 2 and therefore the axial length of the bottle scale with |M|?. For the trapping
frequencies, a scaling of 1/|M|? is expected for w, and 1/|M;o|* is expected for w, which is
beneficial for the case, where the direction of the beam propagation and hence the weak axis
of the potential are aligned with gravity as is the case at the ATOMICS experiment. Taking
these scaling relations and the weakest point of the bottle-beam potential at I;rap = 0.133 I
at Z = +1.111, the maximally tolerated magnification can be calculated by equating the
potential value Uyrap = 0.133 Ul /| Mmax|? with the gravitational potential at the weakest point
Ugray = —1.111 mgy g 2r | Mmax|?. Here, radiation pressure and other effects are neglected and
it is assumed that the axial minimum of the bottle-beam potential is aligned with the plane of
the CDT at z = 0. Evaluating this leads to a maximum total magnification of | Mmax| < 0.39(1).
The experimental setup illustrated schematically in Fig. 3.9 is employed for measurements
involving ultracold atoms within the bottle-beam potential. The achromatic lenses L2 (f> =
400mm) and L3 (f3 = 200 mm) are used to demagnify the conical refraction (CR) intensity dis-
tribution and create an intermediate image plane, achieving a magnification of | M5 3| = 0.5(1).
For precise positioning of the optical potential within the vacuum chamber, L3 is mounted on
a z-axis translation stage, allowing for fine adjustment of the intermediate image plane. The
intermediate image is then relayed into the vacuum chamber by a second pair of achromatic
lenses, L4 (f4 = 400mm) and L5 (f5 = 300 mm), which are fixed to the chamber and provide
a magnification of |M,5| = 0.60(3). This lens pair also projects the atom plane onto the
Photometric Sensys CCD camera for imaging. A shift of Az, of the intermediate image
will result in a shift of | My 5|2Azgs in the vacuum chamber. The total magnification of the
system is expected to be | M| = 0.3(2) < |Mpin| which would result in expected trapping
frequencies of wA* = 27 x 2881(730) Hz and w’® = 27 x 57(13) Hz in the atom plane.

Measuring the axial trapping frequency

Since the radial trapping frequency is expected to be in the kHz range it is for technical reasons
not experimentally accessible. The axial trapping frequency on the other hand can be measured
by exciting dipole oscillations of the atomic ensemble in the bottle-beam potential. Along the
vertical axis of the ATOMICS experiment no additional light fields are available to excite such
oscillations. Therefore, the bottle-beam light field is shifted in such a way, that the plane of the
CDT and the minimum of the bottle-beam potential no longer coincide by utilising the shift of
the intermediate image via displacement of L3. In the following, the experimental procedure
to excite dipole oscillations in the bottle-beam potential is described.

After the production of a BEC in the CDT via forced evaporative cooling (Section 2.2), the
optical power of the CDT is again raised slightly to 41.7(20) mW to ensure a sufficient potential
for the transition from CDT to the bottle-beam potential. The power in the bottle beam is raised
in three distinct linear ramps from 0 mW to 2.4 mW in 20 ms, then from 2.4 mW to 19 mW in
2ms and finally from 19 mW to 52 mW in 2 ms. After this transition, the CDT is switched off
and the atoms are trapped in the bottle-beam potential where they start to oscillate around
the minimum of the potential with an amplitude proportional to the initial displacement. The
oscillation time 7" in the potential is varied from 2.5 ms to 70 ms in steps of 2.5 ms after which
the atoms are detected via the horizontal detection following a TOF of 700 ps. In Fig. 3.10
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Fig. 3.10.: (top) Experimental scheme to measure the axial trapping frequency w.. The optical power in the
bottle beam is increased to 52 mW in three distinct linear ramps while the CDT power is held constant.
Following the turn off of the CDT, the atoms are left oscillating in the bottle beam for a variable time T’
from 2.5 ms to 70 ms.

(bottom) Total radial w, and axial w, trapping frequency of the combined potential of CDT and bottle

beam.

(top) the experimental scheme is visualised in terms of the optical power of the CDT and the
bottle-beam potential and in Fig. 3.10 (bottom) the calculated radial (blue) and axial (red)
trapping frequencies are shown. The hatched region marks the variable time of oscillations 7" in
the bottle beam. A total of seven individual positions of L3 are used to measure the oscillations
of atoms in the bottle-beam trap. Fig. 3.11 shows the atomic distributions (averaged over
three separate realisations) for each time step and lens position. It clearly can be seen that
the amplitude decreases as the axial point where the atoms are loaded into the bottle beam
approaches the potential minimum.

From the data shown in Fig. 3.11 the central position can be extracted by performing fits of
2D Gaussians 7i(x, z) = fg - exp(—(z — 20)%/202 — (2 — 20)?/202) + Tief to the column density
distributions. Here, 7,y denotes the maximum atomic column density, =y and zy the central
position with o, , the width of the Gaussian along the respective axis, and finally 7.¢ accounts
for any offset of the background. The resulting z;, component of the central position is shown
in Fig. 3.12 for each time and initial displacement as coloured dots. A damped sinusoidal
oscillation z(t) = zmaxexp (—7t) sin (w.(t — to)) + 2o is fit to each set of values to extract
the oscillation amplitude zn,x including the sign of the initial phase, damping constant ~,
oscillation frequency w, and equilibrium position z,g. Solid coloured lines in Fig. 3.12 show
the resulting fit with excellent agreement to the experimental data.

From the amplitudes zmax and equilibrium points z. the magnification | M, 5| can be extracted
by a linear fit with slope m. Through [Mys| = +/[m] this results in M;3" = 0.59(1) and
M, ffg = 0.59(1) which is in excellent agreement with the expected value |M, 5| = 0.60(3). In
Fig. 3.13 (top), the values of zpnax (blue dots) and z.¢ (orange diamonds) are shown with the
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Fig. 3.11.: Averaged atomic densities for different positions of L3 resulting in varying initial axial displacements
of the potential minimum from the plane of the CDT. For larger displacements, the oscillations of
the atomic ensemble in the bottle beam are more pronounced. Extracting the position along the z-
axis in dependency of the oscillation time can be used to determine the axial trapping frequency to
w2 max = 55.9(7) Hz for the smallest initial distance from the potential minimum. The average frequency
over all initial displacements is w. = 27 x 53.7(7) Hz.

corresponding linear fits (green solid and red dashed). The extracted oscillation frequencies
shown in Fig. 3.13 (bottom) show a symmetric decline for larger displacements from the
equilibrium position with a maximum value w, max = 27 % 55.9(7) Hz for the smallest shift and
an average value of w, = 27 x 53.7(7) Hz. For the following discussions w, max Will be used.
An increasing anharmonicity of the potential for larger deviations from the potential minimum
expected to be one reason behind this shift towards smaller oscillation frequencies. Interestingly,
the largest damping constant v = 18.7(55) 1/s is found for the smallest displacement from
the equilibrium position Fig. 3.13 (bottom) which can also be seen in the raw data shown in
Fig. 3.11. The average damping constant is evaluated to 4 = 10.7(67) 1/s.
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(top) Amplitudes zmax (blue dots) and offset 2. (orange diamonds) of the damped oscillation fits in
Fig. 3.12 as a function of the initial position with linear fits shown and green solid and red dashed
lines. From the slope of both amplitude and offset of the sinusoidal fits, the magnification value of the
two lenses L4 and L5 can be extracted to M35 = 0.59(1) and M = 0.59(1). (bottom) Oscillation
frequencies w, (blue dots) and damping constants « (orange diamonds) as a function of the initial
position. The highest frequency is measured for the initial position closest to the potential minimum
w=max = 27 X 55.9(7) Hz coinciding with the highest damping rate v = 18.7(55) 1/s with an average
value of ¥ = 10.7(67) 1/s.
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Spatial extent of the bottle-beam potential

In addition to the axial trapping frequency, the size of the bottle-beam potential in the atom
plane is investigated. To confirm the spatial extent of the bottle-beam potential, a light-sheet
(LS) potential [see Section 2.4.3] is used to sample planes of finite thickness of the bottle-
beam potential in the plane of the CDT. The used ligh-sheet is built as a MOPA setup with
a TA laser at 783.5 nm providing an attractive potential with a vertical trapping frequency of
w, s = 2m x 169.0(15) Hz and axial trapping frequencies w, , < 27 x 10Hz. Therefore, the
light sheet provides a quasi-uniform potential in the zy-plane where the atoms expand almost
undisturbed. For typical atom numbers in a BEC and temperatures of thermal clouds, the
resulting thickness of the density distribution inside the light sheet is below 10 pm which makes
it an ideal tool to perform a tomographic measurement of the bottle-beam potential. Again,
the measurement is performed for different axial positions of L3 with spacing of 500(10) pm
which results in displacements of 174(8) pum of the bottle-beam potential in the atom plane.
A BEC is produced in the CDT. By linearly decreasing the optical power of the CDT from
41.7mW to 0mW and simultaneously increasing the optical power in the light sheet from
0mW to 137.5mW in 40 ms [see Fig. 3.14] the atoms are transferred into the light sheet poten-
tial. Following this transfer, the atoms expand for a time of 7 ms to form a thin layer of atoms
that samples the radial structure of the bottle-beam potential in the selected plane. Finally;,
the optical power in the bottle beam is raised from 0 mW to 9.4 mW over 3 ms and kept at that
power for an additional 5 ms. Imaging is performed in vertical direction in situ. The low optical
power in the bottle beam and short exposure times are chosen to decrease the spontaneous
scattering rate for planes outside the CR focal plane with a non-vanishing intensity also for the
central region.

Since the bottle-beam potential is repulsive, it decreases the atomic density in the light sheet
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Fig. 3.14.: Schematic visualisation of the experiment to probe the radial potential in the atom plane. A BEC is
created in the CDT and transferred to the light sheet potential by simultaneously increasing the optical
power in the light sheet while decreasing the one in the CDT over 40 ms. After an expansion time of
7ms in the light sheet, the atoms form a thin layer and the bottle-beam potential is switched on for a
total of 8 ms after which the resulting density distribution is detected. The resulting atomic column
density distributions are shown in Fig. 3.15.

proportionally to the intensity gradient. This results in an imprint of the intensity distribution
in the atomic density visualised in Fig. 3.15 for all selected planes. For planes where the
bottle beam has a radial minimum, a part of the atoms remain in the centre of the density
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distributions. The doughnut-shaped intensity of the bottle beam is clearly visible for all planes
investigated though, which is counter-intuitive since the total displacement range is well above
the expected length of the bottle-beam potential in the atom plane. An explanation for this
observation is given by the vertical detection used to capture these atomic density distributions.
Through this type of detection, all information regarding the position of atoms along the z-axis
is lost, caused by the integrative nature of the vertical detection. This results in atoms scattered
out of the light sheet potential but remaining radially trapped by the bottle beam to be detected
in the central position of the bottle beam caused by the short exposure time and TOF.

The number of atoms that have been captured in the centre of the bottle beam in dependence
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Fig. 3.15.: Atomic column density distributions obtained by the experiment for different axial positions of the
intermediate image. The repulsive potential of the bottle beam pushes atoms away from regions of
high intensity, leaving behind an imprint of the radial intensity distribution. From the atomic column
density in the centre, the axial length of the bottle beam can be inferred.

on the axial position of L3 can be used to estimate the length of the bottle beam in the vacuum
chamber. In Fig. 3.16 (top) the averaged line density is visualised, derived by selecting a
square region containing the central column density from Fig. 3.15 integrating over both axes
separately and taking the average. Integrating over both axes of the central column density
gives the atom number trapped radially by the bottle beam as shown in Fig. 3.16(bottom).
From this atom distribution, the length of the bottle-beam potential in the vacuum chamber
can be inferred to I45 = 1570(174) pm which is in good agreement with the expected value
of 1465(224) pm given by scaling the length of the dark focus with the total magnification
| Miot| = 0.32(2). The offset of approximately 500 atoms for large shifts of the bottle beam can
be explained by atoms being pushed out of the light sheet by spontaneous scattering while
remaining radially trapped by the bottle beam as explained before. Furthermore, from the
radial extent of the central column density distribution, the radial dimension of the bottle beam
can be estimated to R4® = 13.2(26) um which is in excellent agreement with the expected
value of | Miot| X Ry = 0.32(2) x 41.95(190) pm = 13.4(10) pm.

The experimentally determined value for the total magnification | M| = 0.32(2) used for
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these estimates is extracted from a measurement characterising the axial position of the atomic
density in relation to the optical power used for the bottle beam. Due to gravity, the axial
equilibrium position of the atoms is dependent on the strength of the bottle-beam potential.
Varying the optical power of the bottle beam shifts the equilibrium position in a known fashion,
therefore leaving the magnification as a free parameter. To extract this information, a BEC is
loaded into the bottle beam at maximal power. After an initial holding time, the optical power
is lowered to the targeted value and an additional holding time is added to ensure minimum.
From the axial position of the atom cloud as a function of the optical power, the magnification
is determined to | M| = 0.32(2) in agreement with the value of | M{}| = 0.30(2) calculated
from the parameters of the optical reimaging system.

In conclusion, the axial and radial spatial extent of the bottle-beam potential were experimen-
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Fig. 3.16.: (top) Central atomic line density depending on the initial position of the bottle-beam potential extracted
from the column densities in Fig. 3.15. (bottom) From the determined atom distribution, the length of
the bottle can be inferred to 4% = 1570(174) pm in the vacuum chamber. The background signal of
approximately 500 atoms originates from atoms outside the light-sheet potential but radially confined by
the bottle beam, which the detection system cannot differentiate from atoms in the light-sheet potential.

tally verified with good agreement with the expected values. Furthermore, the axial trapping
frequency was determined from dipole oscillations of atomic ensembles for varying initial
displacements of the potential equilibrium. In Tab. 3.3, a complete summary of all values
calculated using the experimental properties of the Gaussian beam, the BC, the optical setup,
as well as the values measured by the described experiments is given.
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Tab. 3.3.: Comparison of measured and calculated parameters of the bottle beam: Experimental values are
determined from the intensity distribution in the focal plane and the atom distribution in the atom plane.
Calculated values in the focal plane: 55, wEP, and wE” are determined for po = 0.96(8) using Egs. (3.10)
and (3.11) and the experimental values for wo and zx as input; the experimental value of Ry is not applied
for calculations since for its determination an assumption for the value of po has to be made, leading to
large uncertainties. Calculated values in the atom plane: wo, Ro, lgs, Usrap, Utrap, ¢, wr, and w, are based
on the calculated values in the focal plane and the magnification | M| = 0.32(2). The potential depth
Utrap, ¢ includes the effect of gravity.

Focal plane Atom plane
Calculation Light field Calculation Experiment
wo 44.0(19) pm 43.6(30) pm 14.1(11) pm -
Ry 42.0(19) pm 41.2(28) pm 13.4(10) pm 13.2(26) pm
- 14.3(10) mm 12.75(50) mm 1.47(22000) pm | 1.570(174) mm
wy | 27 x 295(65)Hz | 27 x 325(38)Hz | 27 x 2881(730) Hz -
w, | 27 x 1.87(23)Hz | 27 x 1.97(21)Hz | 27 x 57(13)Hz | 27 x 55.9(7) Hz
Utrap - - kg x 166.5 uK —
Utrap,g — — kg x 87.0 uK —

Holding-time measurement

After successfully characterising the bottle-beam potential the holding time of an atomic
ensemble is measured. To determine the holding time of an ensemble of ultracold atoms
in such a potential, the number of residual atoms in the potential for varying holding times
from 25 ms to 500 ms is performed. The measurement is done analogously to the oscillation
measurement described in Fig. 3.10 with a longer TOF of 2 ms to ensure the atomic density has
decreased enough to avoid full absorption of the detection light. In Fig. 3.17 (top), the atomic
column densities (averaged over multiple realisations) for the selected holding times are shown
as a false-colour plot, normalised to the maximum column density for the smallest holding time
of 25 ms. Using a series of 2D Gaussian fits, the atom number can be determined and plotted
over the holding time, see Fig. 3.17 (bottom). The holding time 7 defined as the 1/e time can
be determined by fitting an exponential decay N (¢) = Nyexp (—t/7) to the atom number. This
results in a holding time of 205(3) ms which is an order of magnitude smaller than the holding
time of the atoms in the CDT which typically is on the order of 10s. The decreased holding in
the bottle beam is due to several reasons, one being the small detuning necessary to produce
a strong enough potential to hold the atoms against the gravitational potential paired with
the large demagnification. This large demagnification results in a radial trapping frequency in
the kHz range, effectively squeezing the atoms into a 1D line. The orientation of the bottle
beam with the weak propagation axis parallel to gravity also leads to a drastically increased
scattering rate, since the effective potential minimum is shifted away from the low-intensity
region of the bottle beam. This counteracts the beneficial properties of the bottle beam. For
this reason, in the next subsection, an idealised bottle-beam potential is compared against
red-detuned potentials based on Gaussian beams in different experimental scenarios.
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Fig. 3.17.: (top) Atomic column density in the bottle beam imaged by the horizontal detection as a function of
the holding time in the bottle-beam potential. (bottom) Determined average atom number (blue dots)
depending on the holding time. Through an exponential fit (orange) to the points for ¢t > 100 ms, a
lifetime of = = 205(3) ms can be extracted.

3.2.4. Improving the bottle-beam trap

As discussed in Section 3.2.2, the bottle-beam potential created by CR is capable of trapping
atoms in 3D. Since the current setup at the ATOMICS experiment is not appropriate for fur-
ther investigations for multiple reasons, leading to short lifetimes in the trap and the certain
destruction of the BEC state, in this section advanced setups are discussed based on numerical
calculations. For these comparisons it is assumed that the weak dimension of the potentials are
oriented perpendicular to gravity so that the influence of the gravitational potential, especially
the shift of the potential minimum, can be neglected. In detail, three experimental setups
widely used in cold-atoms experiments are investigated: the single beam and crossed beam
configuration for BEC experiments as well as a tweezer array setup for neutral-atom quantum
computing. In Tabs. 3.4 to 3.6, trap setups based on attractive Gaussian beam and the bottle
beam (pRF = 0.924) are compared taking several key values like the radial and axial trapping
frequencies w, and w,, the average harmonic oscillator frequency wy,, the mean scattering rate
I'rr for a BEC in the Thomas-Fermi approximation, and the potential depth Uyrap into account.

Single-beam trap

For the single beam setup, an optical power of P; = 1 mW at a detuning of +1 nm with respect
to the D; line of 8’Rb at A\p; = 794.98nm is chosen for the Gaussian beam with an equal
detuning of opposite sign for the bottle beam. To match the radial trapping frequency of the
Gaussian beam setup, the required optical power in the bottle beam Pgg can be calculated by
dividing Eq. (3.10) by Eq. (2.7) which results in the condition

1
~0.3832

Uo,g

Uo.pB

Uo,g

Ps. (3.12)

Fgp P; =6.82

Uo,pB
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In this context, matching the radial trapping frequencies provides a basis for comparing the
traps, though matching the radial trapping depth could serve as an alternative criterion. With
Eq. (3.12), the necessary optical power for the bottle beam can be calculated to Pgg = 9.00 mW.
For this optical power and detuning, the axial trapping frequency of the bottle beam is slightly
increased with respect to the Gaussian beam with the trap depth being fractionally smaller.
Here, the trap depth of the bottle beam is given by the weakest point of the potential [see
Tab. 3.1]. To compare both potentials in terms of the mean scattering rates, a BEC is assumed
of 20000 87Rb atoms in the F' = 1 hyperfine state, with a scattering length a;; = 100.4ag
where ay denotes the Bohr radius [87]. For both beams a waist of 38 ym is chosen to match the
CDT at the ATOMICS experiment. The mean scattering rate is computed by determining the
atomic density distribution in the Thomas-Fermi approximation. Transforming the density to a
probability distribution by normalisation and multiplying it with the numerically computed
intensities of the Gaussian beam and the bottle beam results in a mean scattering rate I that
represents the real situation of an atomic ensemble in such potentials better than comparing
just the central scattering rates. Here, the main advantage of the bottle beam is clearly evident
since the mean scattering rate is reduced by a factor of about 700 compared to the Gaussian
beam whilst the remaining parameters are nearly identical.

Tab. 3.4.: Comparison of Gaussian and bottle-beam based trap for BECs in a single-beam configuration. The
dark-focus trap exhibits reduced rates for spontaneous scattering at comparable trapping properties.

Application Light-field parameters and calculated
case values for configuration based on
Gaussian beam Bottle beam
BEC in P =1mW Prp = 9.00mW
single-beam trap | Ag = 795.98nm  Agg = 793.98 nm
Wy 27 x 176.3Hz 21 x 176.3Hz
W, 2w x 0.831 Hz 2w x 1.083 Hz
@ho 21 x 29.6 Hz 21 x 32.3Hz
Utrap kp x —4.63pK kp x 4.20 uK
I'rr 6.55 1 9.19 x 10731

Crossed-beam trap

Next, the CDT setup of the ATOMICS experiment with a wavelength of 1070 nm and a typical
optical power of 35 mW at the end of evaporation is compared to a bottle-beam setup with
an equal power [Tab. 3.5]. From Eq. (3.12), the necessary wavelength can be determined,
again under the constraint of equal radial trapping frequencies, which gives A\gg = 758.5 nm.
In both cases, the total potential is given by the sum of two individual single-beam potentials
intersecting orthogonally. Again, the parameters are similar to the bottle beam providing an
increased potential depth and reduced mean scattering rate. The scattering rate in the bottle
beam can be further reduced by increasing the optical power and detuning. This showcases,
that in scenarios where a large detuning is not available, the bottle-beam potential can offer a
valuable alternative to fardetuned optical traps.

Single-atom tweezers
Finally, a setup for quantum computing based on neutral atoms in red-detuned Gaussian-beam
tweezer arrays is compared to an array of bottle beams. Here, a typical waist of 1 um is used
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Tab. 3.5.: Comparison of Gaussian and bottle-beam based crossed-beam configuration for BECs.

Application Light-field parameters and calculated
case values for configuration based on
Gaussian beam Bottle beam
BEC in PG = 35mW PBB = 35mW
crossed-beam trap | Ag = 1070 nm ABB = 758.5nm
w, (one beam) 271 x 124.8Hz 27 x 124.9Hz
w, (one beam) 21 x 0.791 Hz 27 x 0.733Hz
“ho 2w x 140.0Hz 2w x 140.2 Hz
Utrap kg x —2.321K kg x 3.16 uK
Crp 16.1 x 1073 1 3.05 x 10731

which is readily achievable by quantum gas microscopes with large numerical aperture (NA)
objectives. The goal is to create a number of 100 traps with a depth of |Uyap| = kg x 1mK
with a total optical power of 1 W available at A\¢ = 1051 nm and A\gg = 759 nm. Since this
setup is used with single atoms, for the mean scattering rate, the ground state wave function
based on the trapping frequencies is calculated and the scattering rate is averaged over this
wave function. For this setup, the biggest advantage for the bottle beam can be gained with
the mean scattering rate being reduced by a factor of 10° compared to the Gaussian-beam
tweezer. This result is not surprising, since the ground state wave function samples only a
small area very close to the potential minimum where in the case of the Gaussian beam, the
largest scattering rates are observed. Therefore, using bottle beams instead of conventional
Gaussian beam traps as tweezer arrays would vastly decrease the scattering and heating of
single neutral atoms and hence increase their lifetime. This would be beneficial for quantum
computing efforts based on this approach since decreased heating means extended lifetimes
and less decoherence.

The combination of tweezer arrays with CR has not yet been studied. In the following section,
the combination of a technique based on MLA to create tweezer arrays in combination with
CR is investigated numerically and an example of an implementation is given.

Tab. 3.6.: Comparison of Gaussian and bottle-beam based trap for an optical tweezer-arrays setup with possible
applications in neutral-atom quantum computers.

Application
case

Light-field parameters and calculated
values for configuration based on

Gaussian beam

Bottle beam

Single-atom | Pg = 10mW Pgg = 10mW

tweezers Ag = 1051 nm ABp = 759 nm

Wy 21 x 98 479 Hz 2w x 98477Hz

Wy 21 x 23285 Hz 21 x 21976 Hz

@ho 27 x 60896 Hz 2w x 59732Hz
Utrap kg x —1001 pK kg x 907 uK
s 3.871 11.7x 10701
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3.3. Conical refraction with microlens arrays

Recent efforts to build experimental setups based on neutral atoms, for of quantum computing,
quantum simulation, and quantum sensing, have led to increasing numbers of individual
neutral atoms trapped in arrays of optical tweezers [64, 65, 138-141]. Different techniques
are used to generate the tweezer arrays necessary to trap large numbers of neutral atoms like
optical lattices [142], SLM based tweezers [143], and tweezer arrays based on MLAs [63, 64,
139, 144]. Typically, these tweezer arrays function as red-detuned optical dipole potentials,
trapping the atoms in the intensity maximum. As discussed in the case of ultracold atoms in
the previous Section 3.2.2 this leads to increased scattering and therefore increased heating
and decoherence. Especially, since to reach large numbers of tweezers with limited optical
power, the detuning has to be small increasing the scattering even further.

As mentioned, a common technique to create arrays of optical tweezers are microlens ar-
rays consisting of a regular grid of small lenses typically with an aperture in the range of
10 pm to 200 pm with a separation (pitch) between the individual lenses on the same order.
Such MLA can provide more than 10000 optical tweezers which makes them an ideal candidate
for quantum computing and quantum simulation efforts based on neutral atoms. Additionally,
setups based on such tweezer arrays can benefit from the Talbot effect [145]. This effect
emerges, when multiple focused beams produced by the MLA interfere with each other in the
direction of beam propagation, resulting in multiple planes with focal spots, so-called Talbot
planes [60].

In this section, the combination of MLAs with the CR phenomenon is investigated in order
to create arrays of bottle beams, providing trapping geometries with significantly reduced
scattering rate and the capability to trap even atoms in highly excited Rydberg states [109].

3.3.1. Theoretical investigations

Generally, the Gaussian beam illuminating of the MLA is assumed to have a spatial extent
much larger than the aperture of an individual microlens of the MLA. Therefore, the emerging
fields can be described by focused plane waves, leading to a rather complex description of
the intensity [146, Chapter 8.8]. The diffractive effects at the lens aperture become more
pronounced as the lens diameter d decreases relative to the wavelength ), characterized by
the Fresnel number FN = d? /4 f,, where f, is the geometric focal length determined by the
diffractive properties of the lens. This leads to a reduction of the focal length, resulting in an
effective focal length f.. For FN > 3, this reduction remains small compared to the geometric
focal length [147].
Since the focus of this section is the general investigation of the CR phenomenon combined
with MLAs, for the remainder of this investigation it will be assumed, that the electric field of
each microlens can be described by the field of a focused Gaussian beam and each microlens
produces an identical field, shifted in space by the pitch of the MLA.
Given the pitch apa, the position of the Talbot planes for quadratic MLAs can be calculated by
[60, 148, 149]
2

2T,quad = QOJ% (3.13)
Calculating the electric fields for a 5 x 5 MLA with properties given in Tab. 3.7 results in the
intensity distribution shown in Fig. 3.18. In the top part, the intensity distribution in the
yz-plane is shown for |z| < zr and |y| < a. Red vertical dashed lines indicate the Talbot planes
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Tab. 3.7.: Properties of the APO-Q-P72-R1 .45 MLA (for A = 780 nm) used for the numerical calculations of
the Talbot planes in Fig. 3.18 and the bottle-beam array in Fig. 3.19.

MLA-type  |amia (km) ROC (mm) f, (mm) f, (mm) NA FN wo, (m) p,
APO—Q—P72—R‘I.45‘ 72 1.45 3.194 1.571 0.011 0.5 32.04 2.25

z+1, 2+1/2, and the focal plane 2, for which the intensity distribution in the plane is shown in
the lower part of Fig. 3.18. In the fractional Talbot planes z. /o, focal spots are visible, shifted
by amia/2 while in the principal planes 21 a self-image of the focal plane z, is produced. As
mentioned above, these calculations assume Gaussian beams for each microlens and effects
like diffraction and a non-uniform illumination of the microlenses are neglected. Under these

z/zr
—1.00 —0.75 —0.50 —0.25 0.00 0.25 0.50 0.75 1.00

Fig. 3.18.: (top) Intensity calculated for a 5 x 5 array of microlenses with properties based on Tab. 3.7 in the y=
plane for |y| < ama and |z| < zr. For |z| = zr a self-image of the focal plane is formed. Here, an
identical Gaussian beam for each microlens is assumed with equal optical power P, waist wo and
Rayleigh length zr. (bottom) Intensitiens in the zy-plane for the planes zo, z41,2, and z+1.

assumptions, it is straightforward to calculate the expected intensity distribution for the CR
in combination with the input field created by the microlens array described above. Since an
array of bottle beams is of interest, pb¥ = 0.924 is numerically implemented and similar to
the MLA calculation above, a 5 x 5 setup is used. The electric field is numerically calculated
for each input field using Egs. (3.3), (3.7a) and (3.7b) and coherently added up to result in
the total electric field, then the absolute square is taken to calculate the intensity distribution.
In Fig. 3.19, analogously to Fig. 3.18, the intensity in the yz-plane is shown (top) with the
intensity in the Talbot planes at the bottom of Fig. 3.19. Interestingly, the formation of multiple
planes of bottle beams can be seen, similar to the formation of multiple planes of focal spots
for the case without CR. This result is surprising since the electric field far outside of the focal
plane of the CR resembles a Gaussian beam for pPF = 0.924 as can be seen in Fig. 3.3. To gain
a better understanding of the properties of such a potential, in Fig. 3.20, the axial intensity
I(p =0, Z) (top blue) is shown for a 1 x 1 configuration, therefore a single bottle beam, as
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Fig. 3.19.: (top) Analogously to Fig. 3.18, the intensity is computed for the same 5 x 5 array of es including the CR
effect based on Eq. (3.3). Similarly to the Talbot effect without the CR, the formation of self-images of
the focal plane can be observed. (bottom) In the zy-plane intensity distributions for the different Talbot
planes zo, z+1,2, and z+1, multiple dark foci are formed confirming the emergence of the Talbot effect
in combination with CR.

well as for the 5 x 5 configuration (orange). Similarly, the radial intensity I(p, Z = 0) in the
focal plane is shown for both setups Fig. 3.20 (bottom). For this plot, the intensities have been
normalised to the maximum intensity of the input Gaussian beams Iy = 2P /7w3, hence the
values for the single bottle beam are the same as in Fig. 3.5. From this comparison, it is already
evident, that the midpoint intensity I(p = 0, Z = 0) is increased drastically from /;1(0,0) =0
to I5x5(0,0) = 0.0771y. Further, the radial and axial points of maximum intensity have shifted
to Isxs(p = 1.125,Z = 0) = 0.442 and I5x5(p = 0, Z = £1.611) = 0.767. Performing harmonic
fits based on Eq. (3.8) to the radial and axial intensity values of both the 1 x 1 and 5 x 5
configuration for |Z| < 0.5 and |p| < 0.5 results in x,*' = 0.295(1) and x5*° = 0.470(6) as
well as ! = 0.239(10) and x*®> = 1.01(4). For the harmonic fits, the midpoint intensity was
subtracted. This leads to a 26 % increase in the radial and 100 % increase in the axial trapping
frequency. The increase of the midpoint intensity to I5.5(0,0) = 0.077 Ij is unintended and
makes this configuration suboptimal for the trapping of BECs or single atoms. By leveraging
the symmetries of the MLA as well as the sin(¢) and cos(¢) terms in Eq. (3.4), the midpoint
intensity of the central trap can be written as

2
I(p=0,Z=0)=| Y  D;;(i>+j%pa,0) (3.14)
1,j=—m
2
m
=1 Y Bo(Vi®+4%pa;0) (3.15)
1,)=—m
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Fig. 3.20.: (top) Comparison of the axial intensity 7(p = 0, Z), normalised to the maximum intensity I, of a single
microlens, for the single (1 x 1) dark focus (blue) and the central field in a 5 x 5 microlens setup (orange).
The latter shows an increased maximum value of I5sx5(p = 1.125, Z = 0) = 0.442 I, shifted further
away from the focal plane. (bottom) Radial intensity I(p, Z = 0) in the focal plane, again for the single
(1 x 1) dark focus (blue) and the central field in a 5 x 5 microlens setup (orange). Specifically, the
elevated central intensity I5x5(0,0) = 0.077 I is suboptimal for applications employing this intensity
distribution as potentials for ultracold or single neutral atoms.

where i and j enumerate the array positions of each lens contributing and p, = ampa/wo is
the normalised pitch of the MLA. Calculating the dependency of this midpoint intensity value
for different configurations leads to an interesting result shown in Fig. 3.21. The midpoint
intensity for a single bottle beam is naturally equal to zero and adding the diagonal traps does
not change this significantly. Only when by a factor of /2 closer traps are added in the 1 x 3 or
+ configuration, the midpoint intensity starts to increase. Finally, it reaches the maximum value
for the 3 x 3 configuration with no further increase for the 5 x 5 setup at the numerical precision
chosen. It is important to note, that these results have been obtained using a single value
of pp and p, and cannot be simply extrapolated to all combinations of these two parameters.
Since the light fields produced by CR have a unique distribution of polarisations as discussed
in Section 3.1, the behaviour of the midpoint intensity depending on pg or the pitch of the
MLA appa is non-trivial. The fact that p, of the MLA does not change under (de-)magnification
means that the waist can be adjusted to reach any value of py for a given principal radius Ry.
To analyse the dependence of the midpoint intensity on this ratio and p, for a 3 x 3 array, it is
calculated over the parameter ranges 2 < p, < 4 and 0.5 < py < 2 using

I343(0,0) = |By(0,0) 4+ 4By (pa, 0) + 4Bo(V2 pa, 0)|?. (3.16)

For these values of py and p, it was numerically verified, that the increase of intensity by
the higher order 5 x 5 can be neglected. The results are visualised in Fig. 3.22 on a linear
(left) and logarithmic (right) colour map. For better clarity, for each value of p, the value
of pg with the lowest midpoint intensity is marked in red. Interestingly, for p, > 2.60(2) this
value bifurcates. One branch asymptotically approaches p5f = 0.924 which, for large values of
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Fig. 3.21.: Midpoint intensity values I(p = 0, Z = 0) /I, for the central lens depending of different configurations.
The contribution from the diagonal lens is suppressed due to its v/2-fold greater distance, whereas
the on-axis lenses contribute appreciably. Therefore, between the 5 x 5 and 3 x 3 setup no further
increase can be determined at the numeric precision chosen. For the properties of the assumed MLA
the midpoint intensity is increased to I5x5(0,0) = 0.077 Io.

Pa, is equal to separate bottle beams that show no interference. However, the other branch
approaches the asymptote py ~ 0.779p, — 0.632 which was determined by a linear fit. This
can be understood by substituting pg = Ry/wo which leads to Ry ~ 0.779appa — 0.632wy.
Hence, for MLA pitch values close to the principal radius R of the CR crystal, the light fields
destructively interfere in the centre of each trap, leading to lower intensity values. Based on
this evaluation, the optimal value is py = 0.98 with a midpoint intensity of I2:%® = 0.067 I,
which is only a marginal improvement. From the minimal intensities for each value of p, from
Fig. 3.22, as shown in Fig. B1 in Appendix B, can be deduced that only for p, > 2.5 significant

reduction of the midpoint intensity can be achieved.
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Fig. 3.22.: (left) Midpoint intensity of central lens for a 3 x 3 setup depending on the ratio of pitch to waist p, and
po on a linear colour scale. Each value is normalised to the respective I. Red dots mark the values of po
for which the lowest midpoint intensity can be reached. (right) Representation on a logarithmic colour
map. Only for values p, > 2.5, the midpoint intensity decreases again to I3»3(0,0) < 1 x 1072 I.

3.3.2. Experimental realisation of a dark-focus array

As discussed in the previous Section 3.3.1, the optimal value of py depends on the ratio
pa = amra/wo and can be extracted from Fig. 3.22. For the MLA AP0-Q-P72-R1.45, in [150]
an experimental investigation of the combination of MLA and CR was conducted. Since the
principal radius of the available CR crystal (APQ-1211) is Ry = 42.0(19) pm, an additional
magnification by a factor of |M| = 1.5 is necessary to increase the waist. The resulting spot
array had a measured pitch of aypa = 106(2) pm and a waist of wy = 36.7(20) pm which implies
in a magnification of |M| = 1.47(3) based on the measured pitch and results in p, = 2.89(17).
Restricted by the size of the crystal, a maximum number of ~ 20 individual bottle-beams are
realised in the experimental setup of [150]. Additionally, the Talbot planes z; /, to 2, were
experimentally confirmed and closely match theoretical predictions. Due to experimental
constraints of the optical setup, the effect of destructive interference in the centre of the
bottle beam traps could not be verified in [150] since individual control over each trap site is
necessary requiring devices like DMDs or other SLMs. In addition to the comparison in the
focal plane directly behind the crystal, another set of lenses was used to relay the intensity
with a magnification of |M| = 0.48(2) producing a pitch of 51.5(20) pm. Fig. 3.23 presents
a comparison of the reimaged experimental intensity distribution (bottom) in the yz-plane
and numerical calculations (top) based on the experimental parameters aypa = 106(2) pm,
wo = 36.7(20) pm, Ry = 42.0(19) pm, and A = 793.96 nm. For the experimental distribution,
a total of 181 images along the propagation axis z were taken and realigned manually. The
theoretical data was calculated assuming 21 x 21 bottle beams and scaled down by |M| = 0.5
to match the experimental reimaging. Dashed white lines in Fig. 3.23 mark the location of
the zp and z;/, planes with 2z = 1.33(15) mm and zr = 7.1(3) mm ~ 5.3(5) 2r. Theory and
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experiment show strong agreement. This way, the reproduction of the same effects under a
reimaging with |M| # 1 could be verified. Therefore, a MLA with a large enough value of p,
can be chosen to produce an array of dark foci with significantly reduced midpoint intensities
that can be reimaged with a magnification to match the desired pitch at the plane of interest.
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Fig. 3.23.: Qualitative comparison of the numerically calculated (top) and experimentally observed (bottom)
intensity distribution in the yz-plane of a large number of microlenses in the reimaged focal plane
(experimental data from [150]). The numerical results are based on the experimental values for (avia =
106(2) pm, wo = 36.7(20) pm, Ry = 42(2) pm) and a 21 x 21 setup was calculated since the size of
the crystal limits the experimental number of lenses contributing to the final intensity distribution.
The numerical data was scaled down with |M| = 0.5 to match the reimaging of th experimental
distribution. White dashed lines indicate the location of the 2z and z; . planes, located at z = 0 and
2z =0.5zr = 2.65 zgr.
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3.4. Summary

This chapter presented an approach to blue-detuned bottle-beam potentials based on the
phenomenon of conical refraction (CR). An in-depth numerical investigation of the light field
produced by CR for pB¥ = 0.924, known as the dark focus, was carried out, resulting in harmonic
approximations for the light field. Key features of the intensity distribution were numerically
determined to quantify both the spatial extent and the potential depths relevant for optical
dipole trapping of ultracold 8"Rb atoms.

At the ATOMICS experiment, a CR light field with a measured ring regime of py = 0.96(8) at a
wavelength of 793.96 nm was generated. This light field was successfully used to trap ultracold
8TRb atoms in the bottle-beam potential. Important trapping characteristics, including the
axial trapping frequency w,, spatial dimensions in the atom plane, and trap holding times,
were measured and found to be in excellent agreement with the numerically predicted values.
The results have been published in [120].

Additionally, a numerical study of optimized configurations for bottle-beam potentials was
conducted, highlighting their implementation in single-beam, crossed-beam, and microlens
array setups.

Finally, a brief introduction to combining CR with microlens arrays (MLA) was presented,
laying the groundwork for future applications in single neutral atom trapping for quantum
computing or simulation. The presence of the Talbot effect under the CR phenomenon was
both numerically predicted and experimentally verified for a specific MLA by [150]. Notably,
the dependence of the traps midpoint intensity on the normalized pitch p, revealed that the
optimal ring regime pg for achieving minimal midpoint intensity is determined by the value of
pq relative to the waist.
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4. Atom Interferometry with Bragg diffraction

“I do, like many of you, appreciate the comforts of the everyday routine, the security of
the familiar, the tranquility of repetition.”
-V, V for Vendetta

Atom interferometry has emerged as an essential tool for quantum sensing, metrology and
the investigation of fundamental physics [26, 27, 33, 34, 36, 151]. In this context, atomic
Bragg diffraction is a cornerstone of light-pulse atom interferometry. Interchanging the roles of
light and matter, it is the matter-wave analogue of the well-known Bragg diffraction of X-rays
on crystalline structures. When considering higher diffraction orders, an important property
of atomic Bragg diffraction is the possibility to transfer large momenta [152-155]. This can
also be realised via Bloch oscillations [156-160] or sequential pulses [161-163]. Often, a
combination of several techniques is deployed [26, 36, 38, 155, 164, 165].

Especially the combination of large-momentum-transfer (LMT) with atomic interferometer
schemes like Mach-Zehnder interferometers (MZIs) has attracted ever increasing interest with
the goal of realising even more precise measurements [26, 36, 37, 166, 167].

At the ATOMICS experiment, in recent works a variety of Bragg diffraction implementations
and interferometric realisations have been performed. Ranging from experimental realisations
of double Bragg diffraction [45, 168] to atomic interferometers in external guiding potentials
[46, 57]. One fundamental challenge encountered in all of these works is an apparently
fast loss contrast in the interferometers, effectively prohibiting the successful realisation of
long-interrogation-time MZIs [46]. The goal of this chapter is to gain a better understanding of
the implementation of atomic interferometers at the ATOMICS experiment and find solutions
to the underlying challenges. Essentially, the ATOMICS experiment is being prepared to enable
long-interrogation-time MZIs with higher-order Bragg diffraction, thereby opening up new
possibilities and avenues for research with this setup.

In the first section of this chapter, a fundamental understanding of atomic Bragg diffraction is
built, introducing the theoretical framework to describe this effect. Concepts like beam splitter
and mirror pulses are developed and a brief overview over the experimental implementation
at the ATOMICS experiment is given. Bragg diffraction up to the fifth order is discussed.

In Section 4.3, experimental investigations of MZIs in first and third order are presented, leading
to the discovery of an external magnetic field gradient in the ATOMICS vacuum chamber. The
effective loss of visibility caused by the non-coherent summation of interferometer signals of
different magnetic myp sub-states is discussed and methods for differential measurement and
evaluation of correlated MZIs are presented.

Finally, an additional challenge, i. e., the emergence of parasitic paths in higher-order Bragg
diffraction and LMT atom interferometry is addressed. One solution based on dichroic mirror
pulse (DMP) is experimentally verified in third and fifth order following a theoretical proposal
by J. N.Kirsten-Siemf3 et al. [169, 170]. The result of this section have been published as
an open-access research letter in Physical Review Research in collaboration with the group of
Prof. E. Giese [171]. Parts of the section are taken verbatim from this publication’.

IThis article has been published in Physical Review Research 7, L012028 (2025) under the terms of the Creative
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4.1. Bragg diffraction

In the following section, the theoretical and experimental foundations required to describe
atomic Bragg diffraction are established, with the goal of implementing Mach-Zehnder type
light-pulse atom interferometers. A concise introduction to the quantum-mechanical treatment
of light-atom interactions is given, formulating the necessary dynamics of Bragg transitions.
Following this theoretical framework, the experimental implementation of Bragg diffraction
at the ATOMICS experiment is described. A systematic investigation of Rabi oscillations for
momentum transfers of 1/keg to Shkes is presented, showcasing the non-linear dependency of
higher-order Bragg transitions on the laser intensity. Furthermore, a reduction in transition
efficiency and a heightened influence of velocity selectivity become evident. The theoretical
description presented here includes only the most essential contributions needed to build an
intuitive understanding of the experiments presented in the following sections and follows the
notation from [172].

4.1.1. Fundamentals

In contrast to the well-known principle of Bragg diffraction of light waves from crystalline
structures, governed by Braggs law [173]

nA = 2d sin(6) 4.1

in atomic Bragg diffraction the principle is inverted and an atomic ensemble diffracts off a
light grating produced by interfering light waves of counterpropagating laser beams. Here A
is the wavelength of the light, d is the spacing between crystal planes, and 6 is the glancing
angle at which scattering of order n occurs. This effect can be described in terms of the atoms
absorbing a photon with wave vector k, (k, = |k,|) and frequency w, from one beam and
subsequently emitting a photon with wave vector k;, (k, = |k;|) and frequency wj, into the other
beam by stimulated emission. Through this process, a total momentum of hikeg = h(kq + k) is
transferred from the laser beams to the atom which therefore changes its momentum state from
Pin tO pin + fikegr. In contrast to the similar process of Raman diffraction, in Bragg diffraction
the internal state of the atoms remains unchanged, effectively coupling the two states |g, pin)
and |g, pin + hkegr) With |g) being the atomic ground state [21]. In Fig. 4.1, the process of
such a momentum transfer is shown schematically. Solid red and blue arrows depict the
absorption and emission of photons from the two beams with coloured Gaussians visualising
populations in the respective momentum states with a certain spread in momentum space. The
parabolas drawn show the energy of the atomic ground |g) and excited |e) state that is only
virtually populated. In order not to drive transitions to the excited state |e), a large detuning
A = Weg — Wq R Weg — wp has to be used. To conserve energy and momentum, all processes
have to start and end on the parabola of the ground state |g). Processes that do not end on the
parabola (dashed arrows) are out of resonance and therefore suppressed. To drive a resonant
transition, the frequency difference of the laser field involved have to obey the resonance

Commons Attribution License 4.0 [CC BY]. DOI: https://doi.org/10.1103/PhysRevResearch.7.1.012028
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Energy

p [ Rkegt

Fig. 4.1.: Schematic momentum-energy diagram for first-order Bragg diffraction. The absorption of a photon from
one and subsequent emittance into the counterpropagating field leads to a momentum transfer of ik
from the field to the atom. In order for the process to be resonant (solid arrows), the energy gained by
the additional momentum needs to be accounted for by the energy difference of the two laser fields
I(wy — wa). Dashed arrows depict non-resonant processes and the grey dashed parabola the detuning
of the laser fields to the excited state |e).
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Here n denotes the Bragg diffraction order describing how many momenta #ik.¢ are transferred
to the atom by a 2n photon process, m the mass of the atom, w_, the recoil frequency of the
two-photon momentum transfer, and wp the Doppler frequency shift. The Doppler frequency
shift is responsible for an effect called velocity selectivity. This effect emerges, when an atomic
ensemble has a momentum distribution with a width large enough that for parts of the ensem-
ble the Bragg transition is shifted out of resonance [174]. Applying short pulses with large
amplitudes can be used to mitigate this effect since short pulses have broader frequency spectra
therefore interact with broader momentum distributions[127, 175, Sec. 7.9]. Long pulses
correspond to the deep Bragg regime, mitigating the population of additional momentum
states at the cost of velocity selectivity [176]. Below, higher-order Bragg diffraction n > 1 will
be discussed with the fundamental description given for an n = 1 first-order Bragg diffraction
process.

The one dimensional Hamiltonian describing the dipole interaction of a two-level atom inter-
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acting with the two ciunterpropagating light beams is given by
%
H= 7 + hweg le) (e + 5 {[Qb exp(i(kpz — wpt)) + Qa exp(i(—kaZ — wat))] [e) (9] + h.c.}
4.3)
where the rotating-wave approximation has already been applied to remove fast oscillating
terms [172, 177]. Here Q, and ), denote the single-photon Rabi frequencies coupling the
ground |g) and excited |e) state of the two level atom, defined by

2 .
Q= — (el dE; |g) (4.4

with the dipole operator d and the aplplitude of the respective electric field E;. Solving the
Schrédinger equation i d/dt |¥) = H |¥) for an initial state given by

/ﬂp p)19:5) + e(v) e, ) (4.5)

with time-dependent momentum distributions for the ground g(p) and excited state e(p) leads
to a set of coupled differential equations. These differential equations can further be simplified
by applying the adiabatic elimination of the excited state |e¢) and the method of averaging
described in [172, 178]. Introducing the adiabaticity parameter

Q
e=—= (4.6)
Wk
which includes the two frequencies involved in Bragg diffraction
Q.85 hkZy
QR - 2A 9 keff - 2m (4'7)

the effective two-photon Rabi frequency 2z and the two-photon recoil frequency wy, . allows
to differentiate between different regimes in Bragg diffraction. For ¢ < 1 the system is in
the deep Bragg regime where higher-order momentum states are not populated while for
€ > 1 in the Kapitza-Dirac regime many momentum states are populated simultaneously.
Most experiments are operating somewhere in between these extreme regimes in the so called
quasi-Bragg regime, where population of higher-orders is suppressed but velocity selectivity
does not decrease diffraction efficiency drastically [176, 179-181]. This enables the application
of the method of averaging, which simplifies the system of coupled differential equations by
eliminating rapidly oscillating terms, analogous to the rotating-wave approximation. For an
initial momentum py, = 0 and n = 1, the solution for the probability amplitude go(t) of an
atom being in the state |g, 0) or g1 (¢) for |g, hkeg) are given by

)\ _ cos (%) isin (QRt exp(i¢) (0)
<Z(1)(t)> B isin (Q2Rt>2exp(i¢) cos %) (?1)(0)> (4.8)

where the phase is given by ¢ = arg(£2,9; /4A). Finally, the probabilities for an atom being
the states |g,0) or |g, hike) for the initial condition go(0) = 1 and g;(¢) = 0 are given by

Po(t) = lan(0)? = cos* (5" (492
Pi(0) = (o) =sin (). (4.9
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Experimentally these probabilities are determined by measuring the atom number in a given
momentum state and normalising it to the total atom number.

Based on these probabilities, beam splitter and mirror pulses can be defined. A beam splitter
pulse is defined with an effective pulse area Qrt,/, = /2 leading to a probability of Py(t) =
P1(t) = 1/2 in the optimal case, effectively transferring half of the atoms into the state |g, fikeg).
Analogously, a mirror pulse with an effective pulse area Qrt, = 7 transfers all atoms into
the |g, hkeg) state leading to P;(¢) = 1. Pulses fulfilling these conditions can later be used to
build the atom interferometric analogue of the well known Mach-Zehnder interferometer by
combining them to the pulse sequence /2 — 7w — 7/2.

So far, the Rabi frequency was treated as time-independent, but generally it is advantageous to
use smooth pulse envelope functions such as Gaussians or the Blackman window function since
they have a narrow spectral bandwidth, suppressing off-resonant transitions [182]. In that
case, the Rabi frequency becomes time dependent which leads to an effective Rabi frequency
given by an integral over time [176]. Therefore, the discussed pulse areas for a beam-splitter
and mirror pulse are given by

727:/ at QF/2 (1), w:/ dt QI (1) (4.10)

translating into different pulse envelopes depending on the desired diffraction outcome. As
mentioned above, transferring multiple momenta hk.g is possible through n two-photon scat-
tering processes. This can be done by adjusting the detuning according to Eq. (4.2) and
increasing the optical power, typically called higher-order Bragg diffraction [152-155]. Calcu-
lating the effective Rabi frequency for higher-order Bragg diffraction is non trivial, since more
intermediate momentum states have to be taken into account. Here, methods like adiabatic
elimination of intermediate states and the averaging approach mentioned above have to be
used to describe the time evolution of the states involved [172, 176, 178, 183]. For the case
of constant two-photon Rabi frequencies Qg the effective 2n-photon Rabi frequency can be
calculated via
QR

(2wrec)™ 1 ((n = 1)1)?

where n denotes the diffraction order and for n = 1 it gives Qe = Qr [176].

(4.11)

Qetrp =

4.1.2. Experimental realisation

At the ATOMICS experiment a dedicated laser system, described in Section 2.4.4, is used to
realise Bragg diffraction. The two beams necessary for Bragg diffraction are produced on the
laser table and guided to the vacuum chamber via optical fibres. Furthermore, a counter-
propagating setup is used where both beams are out coupled on opposite sides of the chamber
and overlapped with one of the CDT beams. The size of the Bragg beams has been evaluated
to wp = 1170(50) pm by fitting a 2D Gaussian to an image of the beams intensity distribution.
The image has been taken at the entrance window of the vacuum chamber. By utilising a TA
system that provides more than 100(10) mW on the laser table, higher-order Bragg diffraction
can be achieved, although with drastically limited efficiency. For the following sections, a
maximum order of n = 5 has been used.

To optimise the efficiency of Bragg diffraction, smooth pulse envelopes have proven to be
beneficial. For the experiments described in this chapter, a pulse envelope based on the
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Fig. 4.2.: An atom ensemble with narrow momentum distribution is prepared via Bose-Einstein condensation in a
crossed dipole trap (transparent red). Two counterpropagating laser beams (blue and red) induce Bragg
diffraction and transfer momenta nhk.s; as beam splitters and mirrors.

simplified Blackman window function is used given by
27t 4t
Qr(t) = Qr max X [0.42 — 0.5 cos <:> +0.08 cos <:)] (4.12)

defined for 0 < ¢ < 7 and Qgr(7/2) = Qrmax and with FWHM ~ 0.4057. The effective
two-photon Rabi frequency is given by the integral of Eq. (4.12) from 0 to 7 resulting in
Qefr1 = 0.42 Qp max7. A comparable Gaussian pulse of shape fg = exp (—t?/(2¢?%)) has a
width of 0 = 0.17 7.

The envelope function is pre-loaded onto the HP33120A AWGs mentioned in Section 2.4.4 as
a waveform containing 16 000 data points and can be triggered by the experimental control
computer. To correct for the non-linearity of the ZAD-3+ mixer component that is used to
combine the envelope with the RF frequency provided by the AD9959 DDS, the resulting pulse
shape has been measured with a photodiode. Subtracting the measured intensity from the
expected envelope allows the calculation of the required correction to the waveform.
Currently, the AOM included in the TA setup is used to ensure a stable intensity prior to the
pulse shaping. The direct stabilisation of the pulses based on the two Bragg AOMs on the laser
table would further improve the stability of the system.

To calibrate the Bragg system, a scan of the two-photon Rabi frequency Qg for a fixed length
of a single Bragg pulse is realised by varying the optical power of the Bragg system. Choosing
Aw = 27 x 15.084 kHz allows for resonant Bragg diffraction on first order n = 1 coupling the
momentum states py = Ohkeg and p; = 1hkeg. Since the atomic ensembles produced in the
CDT are initially at rest with py = Ohkeg in the direction of the Bragg beams, the Doppler term
in Eq. (4.2) can be neglected. Typically, the BECs produced at the ATOMICS experiment have a
temperature of Tpgc = 25(5) nK which corresponds to a momentum width of Ap = 0.13(3)hkegt
after the mean field energy has been converted into kinetic energy by a TOF. Fixing the
pulse length to 7 = 100 ps and varying the optical power and therefore {2r max can be used to
determine the pulse amplitudes necessary for a 7/2 and 7 pulse. Estimating the width of this
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pulse in momentum space results in a FWHM value of Ap = 0.06hk.¢ [see Appendix C]. Further,
when using first-order Bragg diffraction, this approach can be used to calibrate the relation
of optical power Ppp,g to effective two-photon Rabi frequencies (. The experimentally
determined values can be compared to the calculated Rabi frequencies based on

45 Braggﬁ()

h
Qfeff,l(PBragg) =042 x h’]‘[‘w%

(4.13)

where wy and Pgragg denote the average waist and power of the Bragg beams while the factor
0.42 stems from the integration of the time-dependent two-photon Rabi frequency with a
Blackman envelope [20, 45, 66, 184].

In Fig. 4.3 scans of the effective two-photon Rabi frequency Q. ; are shown for different orders
of Bragg diffraction n € {1,2,3,4,5}. For each Rabi scan, the pulse length has been fixed to
7 = 100 ps and the frequency difference Aw was adjusted according to Eq. (4.2) to realise a
resonant process for the target order. The selected frequency differences and corresponding
AOM frequencies are summarised in Tab. 4.1. Using Eq. (4.13) and the known calibration of

Tab. 4.1.: Frequency detuning Aw calculated with Eq. (4.2) for 8’Rb with py = Ohke; and corresponding AOM
frequencies. A pair of two different Bragg orders can be realised by choosing the corresponding AOM
frequencies and programming the AD9959 DDS. Switching between the two chosen frequencies can
be carried out during the experiment by employing a fast RF switch controlled via a TTL signal. The
second AOM has a fixed frequency of 80 MHz.

Bragg order n | Aw/2m waoM/ 2T

1 15084Hz 79984916 Hz
30168 Hz 79969 832Hz
45252Hz 79954 748 Hz
60336 Hz 79939664 Hz
75420Hz 79924580 Hz

au ph WON

the optical power, Q¢ ; can be calculated for each of the Rabi scans.

The Rabi scans were carried out by producing a BEC in the CDT and releasing it by turning the
CDT off instantaneously. This allows for the mean field energy to be converted into kinetic
energy by free expansion prior to applying the Bragg pulse. An expansion time of 3 ms is
used in these experiments followed by the Bragg pulse. To separate the different momentum
states, a TOF of 15 ms is used to map each state to a different spatial location. Since it can
be expected that non-resonant momentum orders are occupied for higher values of (g, the
probability P; of measuring atoms in the momentum state p; with i € {—1,0,1,2,3,4,5} is
evaluated by summing the atomic density for each component and normalising to the sum
of all evaluated components. The resulting probabilities are shown in Fig. 4.3 (left) for each
Rabi scan adjusted to a different resonance with a false colour density plot visualised for
Pn ~ Py for each resonance (right). For n = 1, a maximum diffraction efficiency of 85(2) % at
Qefr1 = 27 x 3.8(7) kHz was determined which is limited by velocity selectivity. In Tab. 4.2 the
diffraction efficiencies for all Rabi scans are given with the corresponding calculated values of
Qefr 1. Generally, optimising the pulse length can be done to maximise the diffraction efficiency
for each Bragg order but for pulse lengths greater than the 100 ps, velocity selectivity of plays
an increasing role.
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Tab. 4.2.: Measured diffraction efficiencies for resonant Bragg diffraction of orders n € {1,2,3,4,5} with the
corresponding effective two-photon Rabi frequencies Q. 1 calculated using Eq. (4.13). The large error
of Q.1 is mainly reasoned in uncertainty of the optical power used to generate the Bragg pulses.

Bragg order n | Maximum efficiency Qefr1/2m
1 85(2) % 3.8(7)kHz
2 63(2) % 8.1(14) kHz
3 68(3) % 15.3(26) kHz
4 67(3) % 24.4(42) kHz
5 61(2) % 36.4(63) kHz
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Fig. 4.3.: (left) Scan of the effective two-photon Rabi frequency Q.1 for a fixed pulse length 7 = 100 ps and
resulting probabilities P; fori € {—1,0,1,2,3,4,5}. The frequency difference Aw was adjusted to be
resonant with different Bragg orders n € {1, 2, 3,4, 5} according to Eq. (4.2). The diffraction efficiency is
drastically reduced for n > 1 which can be addressed to a degree by optimising the pulse length. (right)
False colour column density plots for Py ~ P,,. The density plots have a size of 381 um x 1334 pm.
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Fixing Aw = 27 x 15084 Hz, 7 = 100 ps, and Qg o = 27 x 3.8(7) kHz results in a constant
effective pulse area. By varying the time between the release of a BEC from the CDT and the
application of the Bragg pulse, the spatial extend of the Bragg beams in the vacuum chamber can
be measured. Since the atoms are in free fall and the Bragg beams are aligned perpendicular to
gravity, they experience a spatially varying effective Rabi frequency depending on the free-fall
time. Therefore, the measured probability P; for an atom to be in the p; = fik.g component is
expected to behave like

2

() =) (4.14)

| T
P1(t) = Pi,max Sin §QR7max exp | — 5

with the maximum diffraction probability P; max, maximum two-photon Rabi frequency Qg max,
displacement 2, along gravity relative to the CDT and waist of the Bragg beams and w. For
values of 3 ms to 10 ms between the release of the atoms from the CDT and the Bragg pulse, the
measured population is shown in Fig. 4.4. A fit based on Eq. (4.14) is shown as solid orange
line with average parameters P max = 0.92(1), Qr max = 27 x 4.9(2) kHz, 29 = 26(22) pm, and
wo = 966(66) pm based on five individual experimental realisations and corresponding fits.
The resulting Qr max agrees well with the expected value of 27 x 5kHz for an effective pulse
area of m, and the extracted waist is consistent with the value determined from the imaged
intensity distribution.
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Fig. 4.4.: Measured probability ; of atoms being in the momentum state p; = hkes depending on the time
between release from the CDT and the applied Bragg pulse. The effective pulse area is kept constant,
adjusted to be a 7 pulse for the first measuring point at 3 ms.

4.2. Mach-Zehnder interferometry with Bragg diffraction

Based on the technique of atomic Bragg diffraction described in the previous section, light-pulse
atom interferometers can be implemented. At the ATOMICS experiment different interferome-
ter geometries like well-known MZI based on a sequence of 7/2 — m — 7/2 pulses, and the
Ramsey type (7/2 — m/2) interferometer have been realised in free space as well as in a multi-
tude of external guiding potentials [45, 46, 56, 57]. One main challenge encountered in these
previous works is the loss of contrast in the conducted experiments. In the work of F. Schmaltz,
a coherence time of 7., = 3.3 ms, defined as the total interferometer time where the contrast
of the interferometer decreased to 1/e, was determined for a first-order MZI experiment in
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a linear waveguide provided by the CDT [46]. Perspectively, the aim of of the ATOMICS
experiment is to implement interferometers in external guiding potentials like ring-shaped
waveguides with a spatial dimension requiring interferometer times of 773 = 7, > 10ms,
defining the times between the beam splitter and mirror pulses. In a ring-shaped waveguide
with a radius of 50 pm, the time it takes a BEC, accelerated to p; = hkeg, to travel once around
the circumference is 27 ms. To realise interferometers in such potentials either the coherence
time needs to be increased or higher-order Bragg diffraction needs to be used.

In the following sections, different methods to evaluate the signals generated by symmetric
MZIs in free-space are introduced, providing the possibility to extract information about the
experiment even in non-phase stable conditions. These methods are employed to investigate
the apparent loss of visibility in first and third-order MZIs leading to the identification of
an external magnetic field gradient present in the vacuum chamber of the ATOMICS exper-
iment. To gain deeper insights, a state-selective detection method that enables correlation
measurements of individual MZIs associated with the magnetic sub-levels (mg) of the hyperfine
ground state of 8"Rb is implemented. This approach allows to analyse each interferometer
separately, specifically examining their interferometric contrast and coherence times. For
first-order Bragg interferometers, a detailed discussion of the magnetic field gradient and its
impact on interferometric measurements is given with additional experiments in third-order
Bragg diffraction showing consistent scaling of the effect. Finally, in Section 4.4, a new method
to improve higher-order Bragg diffraction MZIs is experimentally implemented and discussed
based on a proposal made in [169, 170].

4.2.1. Fundamentals of Mach-Zehnder atom interferometers

Atomic MZIs use the wave properties of ensembles of ultracold atoms to detect phase shifts,
caused by external accelerations. To realise such an interferometer with Bragg diffraction,
a series of Bragg pulses is used to split the atom cloud in momentum space, redirect, and
recombine it to close the interferometer, similar as it is done in the optical case [185]. In
Fig. 4.5, a simple schematic of a free-space MZI at the ATOMICS experiment is shown. A BEC
is created in the CDT and then released for a period of free expansion, allowing the intrinsic
mean field energy to be completely converted into kinetic energy. Since the laser beams used to
generate the Bragg diffraction are perpendicular to gravity, the initial momentum with respect
to the direction of the Bragg diffraction is only given by the momentum distribution of the
atoms resulting from the mean-field energy. Additionally, this prevents the setup from being
used as a gravimeter. To implement such an interferometer using Bragg diffraction, a sequence
of Bragg pulses successively splits the atom cloud in momentum space, redirects its trajectory,
and recombines it to close the interferometric loop, analogous to optical implementations [185].
If the times 7} and T; are equal, the interferometer is called closed, for T} # T5 it is an open
interferometer where spatial interference fringes can be observed depending in the difference
between T and T» [46, 57]. In this work, only closed interferometers are investigated, for
which the interferometer signal S is defined by

No — N,

g 20—
Ny + N,

=YV cos(p) + B (4.15)
with the measured atom number in the 0fkes and nhkeg output ports Ny and N,,. The signal
S varies with the total acquired phase ¢ with the visibility V) and an offset B. Here, the
total phase ¢ includes all relative phases acquired by the atoms within the interferometer
sequence which generally is the sum of various phase contributions. The phase of the last beam
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Fig. 4.5.: (top) False colour series of atomic column densities after an MZI in first-order Bragg diffraction with
éL € [0,2) being scanned from left to right in 20 distinct values®. (bottom) Schematic visualisation of a
MZI experiment in free-space at the ATOMICS experiment. A BEC is produced in the CDT and the mean
field energy is released through a free expansion time prior to the /2 — Ty — 7 — T> — 7/2 sequence of
Bragg pulses forming the MZI. In a closed MZI, T} = T» = T is set and the atomic population oscillates
between the interferometer outputs depending on the total phase ¢. The pulse phase ¢, for the second
/2 pulse can be scanned to provide a controllable source of external phase for the MZI. Solid lines
trace the spatial paths of the wave packets with colours encoding the momentum state. A TOF is used
to separate the output ports (dashed lines) of the MZI for a better readout.

splitter pulse can be adjusted by changing the phase of the RF frequency driving the AOMs
[see Section 2.4.4] and for the remainder of this work is indicated by ¢r. In Fig. 4.5 (top), a
sequence of 20 averaged atomic column densities (averaged over 10 realisations for each phase
#1) is shown for a MZI in first order with ¢, linearly scanned across [0, 27)2.

Additionally, external accelerations can contribute to the total phase ¢ via

0= a kI (4.16)

where a is the external acceleration vector, ks the effective Bragg wave vector and 7' the
interferometer time [186]. The sensitivity of an interferometer therefore increases linearly with
ke and quadratically with 7', hence higher-order Bragg diffraction and long interferometer
times are the main goal in current research efforts [33, 34].

4.2.2. Statistical analysis

In a typical MZI, the external phase can be varied using, e. g. the phase of the light field ¢,
in the second 7 /2 pulse of the interferometer. If the experiment operates in a phase-stable

The step size is given by d¢r, = 27/20 and the phase scales as ¢, = j - dé1, with j € [0,19)].
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configuration, meaning that ¢ in Eq. (4.15) is dominated by the scanned pulse phase ¢ ~ ¢,
which can be externally controlled, an interference fringe can be generated by scanning
¢1 € [0,27). Such an numerically generated interference fringe is shown in Fig. 4.6 (red)
where ¢y, is scanned linearly over 1000 individual points with a random phase noise added
uniformly distributed over [—7/50,7/50] and a maximum visibility Vy = 0.75. The signal
is calculated based on Eq. (4.15) with the baseline B sampled from a normal distribution
Eq. (4.17b) centred around the mean b = 0 with a standard deviation of o = 0.025. These
baseline fluctuations include effects like a limited diffraction efficiency with atoms remaining in
the pp momentum state that cannot be discarded for short interferometer times and therefore
contribute to the interferometer signal S. If external noise sources, such as vibrations in the

11 &
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Fig. 4.6.: Demonstration of the statistic analysis of MZI signals in a phase-stable (red) and non-phase-stable (blue)
situation. While in the phase-stable case, the interference fringe can be extracted from the interferometer
signal, in the case of a dominating random phase, no discrete signal can be extracted. Using the statistic
analysis based on the histogram of the interferometer signal (right) can provide insights on especially
the visibility V of the interferometer. Both sets of data points have been numerically generated using
Eq. (4.15) with a linear phase scan ¢, € [0,27) and a added random phase noise [—7/50, 7/50] the
phase-stable and [—, 7] for the phase-unstable case. The offset B was chosen to be identical for both
and sampled from a normal distribution centred around the mean value b = 0 with a standard deviation
of o, = 0.025.

experimental setup, introduce a random phase contribution to the laser field, the interference
fringes disappear. Similarly, if the laser or the electronic components generating the Bragg
pulses are not phase-stable on the timescale of the MZI, the MZI signal becomes random
(blue). Assuming the phase noise is uniformly distributed over —7 to 7 and the baseline B in
Eq. (4.15) can be treated as an independent random variable based on a probability density
function (PDF) described by a normal distribution [see Eq. (4.17b)], another random variable
can be introduced A = V), cos(¢) which is described by the PDF given in Eq. (4.17a) assuming
a non-fluctuating visibility V, [187]

— if |z] <V,
falz) = Vory/1—(z/Vo)? 2] 0 (4.172)
0 otherwise
1 (b— B)2>
b) = —_ . 4.17b
fB(b) o exp < 202 ( )
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Therefore, the interferometer signal is described by the sum of two independent random
variables S = V) cos(¢) + B = A + B with the PDF given by the convolution (x) of A and B

Vo
dz
Vo

fs(u) W) (4.18)

1 1
= - _——— X —
V213 Vo V1= (z/V)? P < 207

The resulting PDF given by Eq. (4.18) can be used to extract information about the visibility
V) of the MZI by using either a least-square method to fit Eq. (4.18) to the histogram of the
interferometer signal S generated by the experiment or using a Bayesian estimator approach
[189-191]. This approach yields valuable insights into the overall performance of the studied
MZI and enhances understanding of the BECs coherence properties. However, it inherently
discards all phase information, which cannot be reconstructed from the acquired data. In
the following sections, an extension of this method is used to extract information about a
differential phase in a MZI by utilising the beating of independent MZIs generated by the
magnetic mg sub-states of 8"Rb.

4.3. Phase-stable summation of interferometers

In order to quantify the current capabilities of the ATOMICS experiment for realising MZIs
with interferometer times 7" > 10 ms, an estimate of the coherence time is needed. To get this
estimate, a series of MZI experiments in free space is conducted with interferometer times
T ranging from 1.1 ms to 2.1 ms. For each experiment, a BEC is produced in the CDT and
the mean field energy is released prior to the MZI by shutting off the CDT followed by a free
expansion time of 3 ms. As discussed in Section 4.1, the pulse areas can be calibrated using a
scan of the two-photon Rabi frequency )y via the pulse amplitude. The phase of the second
7 /2 pulse can be scanned using the electronic setup described in Section 2.4.4, providing
the possibility to observe an interference fringe if the experiment operates in a phase-stable
mode. For each interferometer time 7, the phase is varied from 0 to 27 in 20 discrete steps?
and multiple realisations (7) of each phase are conducted. After the interferometer, a TOF of
15 ms is used to separate the output ports and the atom number in each port is determined
by summation. The interferometer signal is then computed using Eq. (4.15). Utilising the
statistical analysis approach discussed in in Section 4.2.2, histograms of the signals are com-
puted for each interferometer time using 51 bins ranging from —1 to 1. In Fig. 4.7 (left), the
stacked histograms for the my distribution P(mg = —1) = 0.50(3), P(mg = 0) = 0.17(4) and
P(mr = +1) = 0.33(2) are shown on a colour map indicating the bin counts. High bin counts
are mapped to bright and low bin counts to dark colours. From this visualisation, it is clear that
the visibility vanishes completely for 7" =~ 2 ms while for 7" = 2.1 ms an increase in the visibility
can be seen. Conducting the same MZI experiment but optically pumping the atoms to the
mp = —1 sub-state prior to the evaporative cooling leads to drastically different results of the
MZI (Fig. 4.7 (right)) for the mg distribution P(mg = —1) = 0.68(4), P(mg = 0) = 0.21(4)
and P(mg = +1) = 0.10(2). For this case, the visibility of the MZI shows a reduction for
T ~ 2ms but remains at a minimal value of V(2 ms) ~ 0.5. The difference between these two
experimental realisations suggests that different mp sub-states acquire a state-dependent phase.
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Fig. 4.7.: (left) Stacked histograms of the interferometer signal for interferometers time 1.1 ms < 7' < 2.1ms. The
bin count is encoded on a colour map with brighter colours encoding a higher bin counts. From the
width of the histograms, the visibility V, of the MZI can be estimated with a clear minimal visibility for
T = 2ms. (right) Similar visualisation of the interferometer signal histograms for a BEC that has been
optically pumped to the mr = —1 sub-state. The optically pumped BEC shows a reduced decrease of
the visibility compared to the BEC consisting of a mixture of all three mr = +1, 0 sub-states.

This behaviour can be understood by realising, that for the unpumped case, the three mg = +1,0
sub-states form three distinct MZIs with signals S,,,,

Si1=P(mg =+1)(Vycos(¢ + 0) + B) (4.19a)
So = P(mg = 0)(Vy cos(¢) + B) (4.19b)
S_1=P(mg=—-1)Vycos(p — ) + B). (4.19¢)

Here, ¢ denotes the common phase accumulated by all three interferometers, f3 an external
phase only accumulated by the mp = +1 sub-state interferometers and P(mg = £1,0) the
probability of atoms being the respective mp sub-state with » , P(mg) = 1. This approach
neglects additional state-dependent phase contributions that generally could be present and
additionally assumes that the external phase g is imprinted with opposite sign to the mg = +1
sub-states as it is the case if magnetic fields are the source of #g [192]. If no state-selective
detection can be performed, the signals of the interferometers incoherently add up to the
total signal Sy = S_1 + So + Si1. Assuming the same maximum visibility V; and baseline
fluctuation B for all three interferometers, the total signal evaluates to

Stot = Ve cos(p) — Vgsin(p) + B (4.20a)
Ve = Vo [cos(0g) + P(mg = 0)(1 — cos(6p))] (4.20Db)
Vs = VoAP sin(fp) (4.20¢)

where AP = P(mr = +1) — P(mr = —1) is the difference of probabilities for mr = 1. This
form results from the summation of the three interferometer signals, simplified using trigono-
metric angle-sum identities [193, Sec. 2.5.2]. Here the different contributions modulating
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the visibility V as a function of 0, P(mg = 0), and AP become clear. For P(mg = 0) = 0 and
AP = 0, the visibility as a function of 6 is given by V(0g) = V) cos(fg).
The signal can be rewritten in the form as Eq. (4.15)

Stot =V cos(p + 8) + B (4.21a)
V=/V&+ V3 (4.21b)
(3 = arctan <VS> (4.21¢)

Vo

where V is the visibility of the combined interferometer signal depending on V¢ and Vg [193,
Sec. 2.5.2]. The additional contribution of 5 results in a constant phase offset for a fixed
interferometer time, restricted by the arctan to the interval (-7 /2, 7/2). In the case of large
phase noise, ¢ becomes a random variable equally distributed over ¢ € [0,27). Hence, the
constant and restricted phase offset 5 only shifts the total phase which can neglected when the
statistical analysis method is used. Rewriting St into this form allows again to introduce two
random variables analogously to Section 4.2.2 resulting in the same PDFs with V' substituted
for V, assuming ¢ is uniformly distributed.

To visualise this effect, in Fig. 4.8, two sets of numerically generated MZI signals are shown
for |0g| = 7/4 (top) and |fg| = /2 (bottom) with S ; shown as blue dots, S_; as red crosses,
and their sum as orange diamonds®. Here, AP = 0 and P(mg = 0) = 0 are assumed and
the same random phase noise as in Fig. 4.6 was used to calculate the signals with a chosen
maximum visibility V, = 0.75. This showcases, how the sum of the two interferometers can
lead to a complete loss of visibility for |#g| = 7/2 caused by the phase-stable summation of the
two interferometers [192, 194, 195]. In the general case of AP # 0 and P(mp = 0) # 0, the
visibility has a richer structure as a function of fg as can be seen from Eq. (4.20a).

As demonstrated by the model given above, the summation of individual MZI signals can
drastically influence the perceived signal if no state-selective measurement can be performed
and the experiment operates in a phase-unstable configuration. The differential phase measured
in Fig. 4.7 can therefore be explained by an external force, effecting the mr = +1 sub-states
with an equal absolute value but opposing directions generated by an external magnetic field
gradient. An external force generates a time-dependent phase following Eq. (4.16) and in the
case of a magnetic field gradient, the external force and therefore the acceleration a become
dependent on the my sub-states Eq. (2.25). In order to verify the assumption of a magnetic
field gradient in the ATOMICS experiment and to improve the experimental situation, in the
following sections a method of state-selective measurement of the three independent MZIs
is implemented. Furthermore, different evaluation techniques are introduced that allow for
precise measurements of differential phases in the future. Finally, the linear scaling of the
differential phase with kg is shown by measuring the magnetic field gradient in a third-order
Bragg MZI.

3Additionally in Appendix C [Fig. C2] a version of the signals is shown with reduced phase noise , visualising the
shift of S4; in opposite directions.
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Fig. 4.8.: Schematic visualisation of the phase-stable summation of correlated MZIs for 65 = 7/4 (top) and
0y = m/2 (bottom). Red crosses and blue dots show the individual MZI signals S+; with orange
diamonds showing their sum. On the right side the histograms of the positive S, 1, negative S_; and total
St Signals are shown in corresponding colours, showcasing a reduces apparent visibility for 05 = /4
and a complete loss for g = 7/2.

4.3.1. First-order Mach—Zehnder interferometer

To verify the hypothesis of a magnetic field disturbing the measurements by applying a state
dependent acceleration and thus a phase, the Stern-Gerlach method is implemented to separate
the mp sub-states after the MZI. This allows for a state-selective readout of the interferometer
signals and therefore a direct measure of the differential phase #g. In Fig. 4.9, a schematic
visualisation MZI experiment including the Stern-Gerlach method is shown. The MOT coil pro-
viding the Stern—Gerlach field is only engaged after the second /2 pulse closing the MZI and
the current is ramped up an additional 1 ms later to ensure the Stern-Gerlach field does not in-
terfere with the MZI. A current of 12.5 A is set in the experimental control software labscript
and the field is left on for a total time of 24 ms until detection. The Delta Elektronika
SM15-200 D power supply, used for both the MOT and Stern—Gerlach coils, exhibits a response
time too slow to achieve the target current during the coils engagement period. Consequently,
the actual current and resulting magnetic field strength remain undetermined. The parameters
for the Stern—Gerlach subsequent to the MZI have been experimentally optimised using a
heuristic approach. Including the 1 ms interval between the MZI and the onset of the 24 ms
Stern—Gerlach sequence yields a total TOF of 25 ms after the MZI. In the following sections,
three methods of evaluation are presented, each allowing to extract the external acceleration
and hence the magnetic field gradient.

Interference-fringe evaluation

Choosing small interferometer times 7" < 1 ms ensures the experiment operates in a phase-
stable configuration, making an interference fringe visible. The phase stability for these
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Fig. 4.9.: Schematic visualisation of a first-order Bragg MZI including the separation of the mr sub-states via the
Stern—Gerlach method. After the MZl is closed by the second 7 /2 pulse, one of the MOT coils is engaged.
To ensure the Stern—Gerlach field does not interfere with the MZI, the current is ramped up 1 ms after the
MZl is closed. The Stern—Gerlach field stays turned on for the remainder of the TOF to spatially separate
the mr. An averaged atomic density of the three MZIs is shown in the inset. A red dashed line depicts
the separation of the MZI outputs with white dashed lines isolating the my sub-states.

interferometer times has been experimentally verified in agreement with previous works [46].
In Fig. 4.10, such an interference fringe is shown for 7} o = 100 ps, 500 ps, and 1 ms averaged
over 10 individual realisation of a phase-scan in ¢, € [0, 27). The data points visualise the mean
interferometer signal with the error bars showing the standard deviation. Each individual
realisation of the phase scan is used to fit a function S = V cos(¢r, + 0) + B. Solid lines of
corresponding colour in Fig. 4.10 show the resulting interferometer signal calculated with the
mean fit parameters.

In Tab. 4.3 the averaged fit parameters are summarised for each interferometer time and
mp sub-state. From the values of #g for mg = +1, the differential phase A¢ and further the
absolute value of the external phase g can be calculated. The resulting values for fp are given
in the most right column of Tab. 4.3. Relatively large uncertainties in A¢ and consequently 6p
indicate that fringe-fitting for differential phase extraction is unreliable given the noisiness of
the experimental data presented here.

From the combination of the external phase g and interferometer time 7' the external accel-
eration and hence the external magnetic field gradient can be computed. Assuming a force
described by Eq. (2.25), the magnetic field gradient measured by the MZI is given by

VB - Kegt
Kett

Opmsgy
1B g M kege T2

=9B)| = (4.22)

with the Bohr magneton x5, the hyperfine Landé g-factor gr = —1/2 for the hyperfine ground
state |525) /2, F' = 1,mp = £1) of ¥Rb. This results in a magnetic field gradient |0By| along the
direction of kg of 1100(200) T/m (11(2) G/m) calculated using the value of g for 7" = 1000 ps.
Taking multiple devices such as the ion-getter pump and the vacuum pressure gauge into
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Fig. 4.10.: Interferometer signal depending on the controlled pulse phase ¢, for different interferometer times.
(top) Interference fringe for mg = +£1,0and 7" = T1 = T> = 100ps. (centre) T = T4 = T> = 500 ps
and (bottom) T' = Ty = T> = 1000 ps. Solid lines show the fits of Eq. (4.15) to the data to extract the
differential phase depending on 65.

account, both generating magnetic fields in close location to the vacuum chamber, the measured
gradient is on a realistic scale.

Additionally to extracting ¢ from an interference fringe of the phase scan and determining the
differential phase 20 = |#_1| + |0+1]| from these values, another method can be used.

Ellipse fitting

In contrast to the direct fitting of the interference fringe, the following method described here
has the advantage of removing the common phase ¢ [see Eq. (4.19)] including common noise
from the determination of the differential phase and not to be reliant on phase stability of the
system. The idea is to correlate two sets of interference signals, effectively doubling the data
point contribution. Here, it is clear that regarding the external phase 6g, the interferometer
signals Sy; are correlated. Therefore, they form an ellipse when used as coordinates of a
vector (S_1,S5,1)" in a parametric plot [22, 196-199].

Generally, an ellipse can be described by the conic section equation

0=Az>+Bay+Cy>+ Dz + Ey+ F (4.23)

with the additional constraint B2 — AC < 0 [196, 200]. However, since this is not a proper
function but a constraint, determining the conic parameters can be a challenge, that fortunately
has been solved leading to different approaches. Here, to compute the values of A to F', an
implementation of the ellipse-fitting algorithm of Halit and Flusser [200] is used which breaks
the task down to solving an eigenvalue equation which can be easily done numerically [201,
202]. To employ this technique, for each of the ten individual phase scans an ellipse is fitted
and the conic parameters are computed. In Fig. 4.11, the three resulting parametric plots are
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Tab. 4.3.: Averaged fit parameters for each interferometer time and mr sub-state and the resulting value for the
differential phase 05.

Tio | mp 1% 0 [rad] B A¢ [rad] 6Op [rad]
—1 0.86(6) 0.02(3)  0.02(4)

100ps | 0 | 0.83(10)  0.02(2)  0.05(6) | 0.05(3)  0.02(2)
+1| 0.87(4) —0.03(1)  -0.02(4)

(4)
—1] 0.83(4) 0.10(3)  0.01(3)
500ps | O | 0.90(4) —0.07(2) 0.01(6) | 0.33(4) 0.16(2)
+1 | 0.85(2) —0.23(3) -0.02(4)
1] 0.73(6) 0.10(13)  0.03(5)
1000ps | 0 | 0.82(6)
(6)

~0.50(13) —0.01(5) | 1.13(20) 0.57(10)
(

+1| 0.79(6) —1.03(14) —0.03(5)

S+1

Fig. 4.11.: Parametric plots of the interferometer signals Sy for 7' = T1 = T> = 100 us, 500 ps and 1000 ps. Each
dot represents an individual measurement with their colour encoding the pulse phase ¢ (see colour
bar). For these measurements the experiment is in a phase-stable situation, visualised by the ordered
colour gradient. Red solid lines represent the ellipses, drawn for the averaged conic parameters.

shown as coloured dots. The colour is used to encode the scanned pulse phase ¢;, which shows
an ordered colour gradient indicating the phase stability for the investigated interferometer
times. Solid red lines plot the ellipses for the mean conic parameters A to F'. Through

A¢ = arccos ( (4.24)

—B

vae) ~
the differential phase A¢ can be calculated from the conic parameters [196]. Similar to
the fringe fitting routine, the determined external phases can be converted to a magnetic
field gradient. This results in the averaged differential phases and magnetic field gradients
summarised in Tab. 4.4. For T' = 1000 ps the resulting magnetic gradient has an absolute value
of ‘83” = 1.1(2) mT/m. Compared to the value extracted from the interference fringe for the
same 7, the error is an order of magnitude reduced, showcasing the advantage of the ellipse
fitting approach compared to standard fringe fitting. Anyhow, as can be seen from Fig. 4.11
(left), for A¢p = jm with j € Ny the ellipse collapses onto the (anti-)diagonal effectively forming
a straight line that fluctuates with B. Therefore, this method of ellipse fitting struggles to
properly extract the correct differential phase for values that are close to A¢ = jm where the
experimental data point form a broadened line due to fluctuating B [196, 198].
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Tab. 4.4.: Average external phase 05 and resulting magnetic field gradient calculated from the conic parameters.

100 ps 500us 1000 ps
6 [rad] 0.06(1) 0.17(1) 0.56(1)
|0B| [mT/m] | 11.6(20) 1.3(1) 1.1(2)

Long interferometer times

Since the expected sensitivity of an MZI scales with 72, additional measurements are conducted
for T in the range of 1 ms to 3 ms. For these longer interferometer times it can be expected, that
the experiment operates in a non-phase-stable mode. Therefore, only the statistical analysis
based on the histograms of the interferometer signals and the ellipse fitting routine are used to
evaluate the results of the MZIs. The MZI experiments are carried out analogously to the ones
described above and shown in Fig. 4.9 with the Stern—Gerlach method utilised to separate the
mp sub-states. Prior to the MZI experiment, the pulse areas for each interferometer time 7'
are calibrated by performing scans of the two-photon Rabi frequency Qr which is especially
necessary for 7" > 2.5ms. Including the 24 ms needed for the Stern—Gerlach method, for the
maximum interferometer time 7' = 3 ms the total time of the atoms in free fall adds up to
34 ms, being close to the detection limit at the ATOMICS experiment restricted by technical
limitations.

Even though no phase-stable operation is expected for longer interferometer times, a phase-
scan is performed using 20 distinct equally spaced phase values ¢, € [0,27)2. A total of 7
phase-scans per interferometer time are conducted, totalling the number of individual MZI
realisations to N = 140 for each interferometer time 7.

Evaluation of the individual magnetic sub-state MZIs

To gain an understanding of the coherence time of the BEC produced at the ATOMICS ex-
periment, first the three individual MZIs generated by the three mp sub-states are evaluated.
For each my sub-state and interferometer time 7' the interferometer signal S is computed
using Eq. (4.15). Using the statistical analysis, all N = 140 individual realisations for each
T are combined in one data set and a histogram is computed using a constant number of
25 bins ranging from —1 to 1 for the interferometer signal S[see Fig. 4.12]. Stacking these
histograms for each 7" and mg leads to a 2D distribution with the binned interferometer signal
S on the z-axis and the interferometer time 7" as the y-axis. The resulting two-dimensional
distributions exhibit no discernible reduction in visibility, indicating perceived interference
contrast [see Fig. 4.12 (top)]. Using the one-dimensional PDF Eq. (4.18), for each mg sub-state
the visibility V(T') is determined by a fit. A summary of the determined values averaged over
all interferometer times 7' is given in Tab. 4.5. Here it is important to note, that generally
also 0, and b can be extracted from these fits with a precision fundamentally tied to the bin
width of the histogram and therefore the number of data points available [203]. Since all
N = 140 data points are used to generate the histograms, only one value of V for each T
can be extracted. The resulting values are shown in Fig. 4.12 (bottom) as coloured markers.
This confirms that over the range of interferometer times used, no loss of visibility can be
determined. Therefore, no clear coherence time can be identified. Nevertheless, these results
showcase that the coherence time, at least for free-space MZIs has to be in the order or multiple
6 ms which is a drastic improvement over previous works [46, 168].
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Fig. 4.12.: (top) Stacked histograms of the interferometer signal S for each mr sub-state evaluated individually.
The colour scheme indicates the bin count of the interferometers. None of the mz sub-states shows
a clear loss of visibility over the interferometer times T investigated. (bottom) Visibility Vip=o0,+1
determined by fitting Eq. (4.18) to the histograms for each 7. No clear loss of visibility can be detected,
hence the coherence time has to exceed 6 ms.

Tab. 4.5.: Visibility V averaged over all interferometer times 1 ms < 7' < 3 ms. All mr sub-states show the same
visibility with no discernible drop over the investigate interferometer times.
meg -1 0 +1
Vo 0.79(3) 0.81(3) 0.78(1)

Ellipse fitting

Following the evaluation of the individual mg sub-states, the ellipse fitting routine described
above is used to investigate the correlation between the mg = +1 states and gain a better
understanding of the differential phase imprinted by the external magnetic field gradient. For
each interferometer time 7', all N = 140 pairs of S are used for the parametric plots spanning
the ellipses and the conic parameters A to F' are computed using the ellipse fitting algorithm
[200, 202]. In Fig. 4.13 (top), three resulting ellipses are shown for 1.0 ms, 1.7 ms and 2.3 ms
as coloured dots with the colour encoding the pulse phase ¢. From the emerging disorder of
the phase-encoding colour of the data points, it can be estimated that the experiment transitions
from a phase-stable to a phase-unstable operation at around 7" = 1.5 ms for first-order Bragg
MZIs. Therefore, even in first-order MZIs for T' > 1.5 ms, only correlated measurements like
the experiments discussed here and the stochastic analysis method can be used to extract
information from the interferometer signals. Next, the differential phase A¢ is calculated for
each T from the conic parameters using Eq. (4.24). Finally, the resulting values of A¢ need to
be phase-unwrapped, since the ellipse fitting projects the differential phase onto [0, 7|. Since
all N = 140 data points acquired for each 7" are used to fit the ellipses, a measure for the
uncertainty of the calculated differential phase needs to be generated differently.
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A bootstrapping approach is employed here to estimate the uncertainty, operating under the
assumption that the experimental data accurately represents the true probability distribution
[204]. These uncertainties characterise the specific evaluation method chosen. The deviation
of the values for the acceleration ap and the magnetic field gradient B, as determined by
different evaluation methods, provides another way of estimating the uncertainty. From the
original dataset (N = 140), we generate 1000 randomised subsets (each with N,,,q = 140)
through resampling with replacement®. Each subset is fitted to an ellipse, yielding 1000
distinct conic parameter sets for every 7. The solid red lines in Fig. 4.13 (top) display ellipses
derived from averaged conic parameters obtained via bootstrapping. These parameters are
then used to compute differential phases, which are averaged in the final analysis step. The
subsequent discussion utilises the mean and standard deviation.

In Fig. 4.13 (bottom) green diamonds show the averaged differential phase A¢ determined
from the conic parameters of the bootstrapped ellipse fitting. Here it becomes clear, that
this approach struggles to properly identify differential phases of A¢ = jn. Especially for
T = 2.5ms where A¢ ~ 27, the mean differential phase determined by the ellipse fit is
A¢/m = 1.93(2). Additionally, blue crosses show the differential phase extracted from the
fringe fits for short times 7" discussed above. In the last step, the phase-unwrapped values of
A¢ can be used to fit a function A¢(T) = 2 kegapT? to extract the acceleration generated by
the external magnetic field gradient ag. A solid red line in Fig. 4.13 plots this function A¢(7T)
for the average acceleration.

1.5
10S
A
<
0.5
0.0
— Fit
¢  A¢ from ellipse
. 29 % A¢ from interference-fringes
~
ASS
< 4
0 M
T T T T T T T
0.0 0.5 1.0 1.5 2.0 2.5 3.0

T (ms)

Fig. 4.13.: (top) Parametric plots of S+ for T = 1.0ms, 1.7 ms and 2.3 ms with the colour of the dots encoding the
experimental pulse phase ¢y, (see colour bar). The emerging disorder of the colour shows the transition
from a phase-stable to a phase-unstable operation of the experiment at around 7" = 1.5 ms. Red solid
lines show the ellipses plotted for the conic parameters from the fit to the original data. (bottom)
Average differential phase A¢ computed from the conic parameters generated by the bootstrapping
method (green diamonds) and extracted from the interference-fringe evaluation for short interferometer
times (blue crosses). A solid red line shows A¢(T) = 2 kegasT? for the average acceleration value of
as = 31.40(3) mm/s>.

“Implemented using Pythons numpy package and its numpy.random.default_rng().choice() function [82].
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From the acceleration determined by the fit, the magnetic field gradient can be calculated by

apmasr

|0By| = |———
HBYFMF

(4.25)

and results in \8BH | = 980(1) pT/m which is in good agreement with the value determined by
the fringe fit for 7" = 1000 ps [see Tab. 4.4].

Phase-stable summation

Finally, the phase-stable summation of the individual interferometers generated by the three
mp sub-states is introduced as an additional method. As discussed at the beginning of this
section, the coexistence of three BECs in separate mg sub-states leads to three individual MZIs.
If no state-selective measurement can be performed and hence no interference-fringe or ellipse
fitting is available, the T-dependent summation of the interferometer signals can be used to
extract a differential phase A¢. In the following part this method is discussed based on the
data presented above.

The separation of the MZIs opens up the opportunity to artificially recombine them again
simply by summing up the individual interferometer signals S o leading to the phase-stable
summation signal already observed at the start of this section. In Fig. 4.14 (left top), the three
signals have been combined according to the measured distribution of the mg sub-states taken
from the atom number in the individual interferometers normalised to the total combined atom
number. A summary of the measured probabilities P,,,, averaged over the full experimental
data is given in Tab. 4.6.

After the recombination of the interferometer signals, the statistical approach is used to display

Tab. 4.6.: Measured probabilities P,,, of atoms being in the respective mr sub-state averaged over the complete
experimental data set of 2940 individual measurements.

mp=—-1 mr=0 mp=-+1
Pmp  0.37(3)  0.23(4) 0.40(3)

the stacked histograms similar to Fig. 4.7 and Fig. 4.12. Qualitatively, it is immediately visible,
that the same behaviour emerges that has been described at the beginning of this section.
Similar to the data shown in Fig. 4.7 (right) where no state-selective evaluation was performed,
the visibility almost vanishes for 7' = 1.9ms where 05 = 7/2 (A¢ = 26g = 7). Since in
this experiment interferometer times longer than 2ms have been used, the revival of the
visibility can be observed. The second maximum is reached for 7" = 2.5 ms with a value of
V(2.5ms) = 0.37(2) which is significantly lower than the visibility of the individual MZIs [see
Fig. 4.12]. Considering Eq. (4.20a), this can be understood by the contribution of the mr = 0
component reducing the maximum visibility at 6 = 7 to V(A¢ = 27) = V|2Py—1|. In contrast,
if only the mp = £1 sub-states are recombined, the visibility reaches V(2.5 ms) = 0.75(2) which
is close to the maximum value. The stacked histograms for this case are shown in Fig. 4.14
(top right).

To evaluate these data sets, again a bootstrapping approach is chosen, since all N = 140 values
of S are needed for each time 7" to generate a histogram that is not sparsely populated. Using
the description of Sy given in Eq. (4.21) and the resulting PDF including the general visibility
V results in a function that can be fitted to the stacked histograms which is done for 1000
bootstrapped data sets generated from the original data by sampling with replacement. For
the combination mg = +1, the fit function was restricted by setting Py = 0. A summary of

80



the parameters extracted from the fit is given in Tab. 4.7, averaged over the experimental
realisations. Both fits return similar results for the external acceleration and maximum visibility
Vo. Furthermore, the value of P, is determined with excellent agreement to the experimental
value given in Tab. 4.6. Red solid lines in Fig. 4.14 (top) trace the visibility V(7") as calculated
for the averaged parameters determined by the two-dimensional fits. Additionally, for each

Tab. 4.7.: Average parameters extracted from a two-dimensional fit to the bootstrapped stacked histograms. The
fit is based on the PDF given in Eq. (4.18) with a modified visibility term given by Eq. (4.21b).

‘ Vo Po AP ag op b
mp = 41,0 | 0.76(1) 0.23(1) 0.00(1) 31.2(1)mm/s> 0.056(3) —0.009(1)
me=+1 | 077(1)  —  0.08(3) 3L5(1)mm/s> 0.054(4) —0.005(3)

interferometer time 7', the visibility V(7') is determined by performing a one-dimensional fit of
Eq. (4.18) to the bootstrapped dataset. In Appendix C, two histograms (1.6 ms and 2.5 ms)
and the corresponding PDF for the averaged fit parameters are shown. The resulting averaged
visibility values are shown in Fig. 4.14 (bottom) as coloured markers with the error bars
indicating the standard deviation. Dotted black lines represent the V(T') as calculated from
the two dimensional fits. Coloured solid and dashed lines plot the fits of Eq. (4.21b) with the
dashed lines representing a restricted fit where Py and AP were taken from the experimental
values [see Tab. 4.6]. All fits show excellent agreement.

In Tab. 4.8, a summary of all approaches to determine the magnetic field gradient is given. All
approaches result in a consistent magnetic field gradient of 1.0(6) mT/m along the direction of
Bragg diffraction summarised in Tab. 4.8. Since the gradient can only be evaluated along the
direction of Bragg diffraction, it’s absolute direction and value cannot be determined. Hence,
the precise origin of the magnetic field remains unknown. Future measurements including
additional magnetic fields to compensate parts of the gradient are conceivable. Using one of the
coils providing the quantisation field for the optical pumping (N = 30, R = 0.12m, d = 0.25m)
would allow to compensate part of the gradient using a current of approximately 5A. Since the
angle between the Bragg diffraction and any coils available is 45°, a combination of at least
two coils is needed to compensate the gradient completely. Then again, this gradient provides
a known differential phase and hence a known signal allowing for correlation measurements
between the mg = +1 sub-states rejecting common-mode noise to a high degree. In the future,
this approach could enable longer interferometer times in guiding potentials without requiring
phase-stable operation of the experiment.

Tab. 4.8.: Summary of the magnetic field gradients as determined by the different evaluation approaches.

B Interference-fringe evaluation 1100(200)

Phase scan (7" = 1000 ps) Ellipse fits 1100(200)
Ellipse fits ak.q T2 fit 980(1)
2D fit (mg = 0,£1) 970(3)
- . 2D fit (mp = +1) 980(3)
Statistic Analysis V(T) fit (mp = 0, +1) 963(7)
V(T) fit (mp = £1) 975(4)
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Fig. 4.14.: (top) Stacked histograms as generated by combining the interferometer signals of all my sub-states
S_1 + So + Sy1 (left) and only the ms = +1 sub-states S_; + Sy (right). The colour map shows
higher bin counts as brighter colours (see colour bar). Here, the same experimental data is used as
discussed above and artificially recombined to model the output of interferometers without state-
selective measurement [see e. g. Fig. 4.7]. Red solid lines trace V(T') as calculated by Eq. (4.21b) with
the averaged fit parameters from two-dimensional fits to the bootstrapped stacked histograms. (bottom)
Average visibility values V(T") determined by one-dimensional fits of Eq. (4.18) to the bootstrapped data
for So,+1 (blue dots) and S+ (orange diamonds). Dotted black lines show V(T') calculated from the
two-dimensional fits, dashed and solid lines plot a full (solid) and restricted (dashed) fit of Eq. (4.21b).
For the restricted fit, P, and AP were taken from the experimental values and are therefore no fit
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variables [see Tab. 4.6].
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4.3.2. Third-order Mach—-Zehnder interferometer

Since in the future, MZI experiments with higher-order Bragg diffraction are planned, the
behaviour of a third-order Bragg diffraction MZI is investigated in this subsection. Furthermore,
the linear scaling of the external phase imprinted by the external acceleration can be verified
by performing MZIs similar to the experiments discussed prior. In order to perform these
experiments, the detuning Aw is tuned to the third order and scans of the effective two-photon
Rabi frequency Q. ; are used to determine the necessary optical power to generate pulses
with an effective pulse area of /2 and 7 [see, e. g. Fig. 4.3]. Here, a constant pulse time of
Toulse = 100 s is used for both pulses and the pulse area is solely tuned by the amplitude.
Again, interferometer times in the range of 1 ms to 3 ms are investigated and the individual
interferometers created by the three mg sub-states are separated by the Stern-Gerlach method
described above. First, the three individual MZIs are evaluated separately to gain an under-
standing of the visibility } and possible coherence times 7.y, in third-order Bragg diffraction.
The measured probabilities P,,,, to be in the corresponding mr sub-state are given in Tab. 4.9
with very similar values compared to the first-order experiments.

Tab. 4.9.: Measured probabilities P,,, of atoms being in the respective mr sub-state averaged over the complete
experimental data set of 2520 individual measurements.

mp=—-—-1 mgp=0 mp=+1
P 0.36(3)  0.23(5)  0.41(4)

Evaluation of the individual my sub-state MZIs

From the raw atomic column densities, again in the first step the interferometer signals Sy +;
are determined for every interferometer time 7" and the statistical analysis approach is choses.
This generates the stacked histograms already discussed for the first-order MZIs and fits of PDF
Eq. (4.18) are performed for every my sub-state and interferometer time 7'. In Fig. 4.15 (top)
the resulting stacked histograms are visualised, containing all data points generated from six
realisations of the experiment. The visibility values V(7") determined by the one-dimensional
fits of Eq. (4.18) to the histograms are visualised in Fig. 4.15 (bottom). Similar to the first-
order individual MZIs, no clear loss of contrast can be detected over the interferometer times
investigated here. The average visibilities for each myg sub-state are given in Tab. 4.10 showing
slightly lower values than in first order. This may be a result of a lower overall efficiency or
the contribution of parasitic orders generated by the higher-order Bragg diffraction processes
[169, 170]. A possible solution to this challenge is given in the next section of this chapter.
Furthermore, atoms not taking part in the MZI cannot be fully discarded for interferometer
times smaller than approximately 5 ms and might lead to systematic errors in the interferometer
signals. From the data presented here, no proper estimation of a coherence time can be made,
similar to the first-order MZIs with the total duration of the interferometers of 27" = 6 ms being
a lower limit. To investigate coherence times, experiments require guiding potentials e. g., a
linear waveguide from the CDT or a two-dimensional potential generated by the optical setup
detailed in Chapter 5.

83



=
=]
=3
@]
()
108
«©
=
b0
5 &
T
0
0.9 1
0.8 o ® x & % o ) x
~ 000“2.‘0""000"“’
0.7
0.6
® mp = —1 x mp =0 ¢ mp = +1
0.5 T T T T T T T T T
1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00
T (ms)

Fig. 4.15.: (top) Stacked histograms of the interferometer signal S for each mr sub-state evaluated individually.
The colour scheme indicates the bin count of the interferometers. None of the mz sub-states shows
a clear loss of visibility over the interferometer times T investigated. (bottom) Visibility Vip=o0,+1
determined by fitting Eq. (4.18) to the histograms for each 7. No clear loss of visibility can be detected,
hence the coherence time has to exceed 6 ms.

Tab. 4.10.: Visibility V averaged over all interferometer times 1 ms < 7' < 3 ms. The values are slightly decreases
compared to the first-order visibilities. Possible reasons are a reduced diffraction efficiency and
parasitic diffraction orders. A method to mitigate the latter issue is introduced in Section 4.4.

me -1 0 11
Vo 0.77(2) 0.77(2) 0.76(1)

Ellipse fitting

Additionally to the evaluation of the individual interferometers, following behaviour regarding
the external phase g is discussed. Similar to the first order, it is expected that the external
magnetic field gradient imprints a phase g = keg agT? to the myp = +1 sub-states. Changing
the Bragg diffraction order to n = 3 also increases the absolute value of k¢ by a factor of
three. Hence, the imprinted phase g for each interferometer time 7T is increased and the time
where fg = /2 decreases by v/3. Again, the signals of the mg + 1 sub-states are bootstrapped
to generate 1000 random sets and the ellipse fitting algorithm is used to extract the conic
parameters A to F. In Fig. 4.16 (top) three selected parametric plots of S1; are shown for
1.0ms, 1.6 ms and 2.4 ms as coloured dots with the colour encoding the applied pulse phase ¢r..
Here in contrast to the first-order MZIs, even for the shortest interferometer time 7' = 1 ms, no
ordered phase gradient can be seen. This further hardens the suspicion, that vibrational noise
or phase instability of the electronics or laser randomises the effective phase of the Bragg pulses.
Since in third order, the number of photons scattered from the Bragg beams is three times
higher, phase noise is transferred to the atoms three times faster leading to a phase-unstable
operation of the experiment for shorter interferometer times. Fundamentally, for the ATOMICS
experiment this means efforts have to be made in order to reduce the phase noise by changing
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the optical layout to a retro-reflective setup to reduce optical components that can transfer
vibrational noise. Also, the electronic elements such as AOM drivers and amplifiers should
be considered as source of electronic phase noise. If the phase-stability cannot be drastically
increased by these measures, only the statistical analysis can be used to extract information
about the general visibility of the MZIs but does not provide phase information. Here, the
differential measurement using the myg sub-states provides an ideal tool, since common-mode
noise is drastically suppressed.

As in the first-order discussion [see Section 4.3.1], the differential phase A¢ can be calculated,
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Fig. 4.16.: (top) Parametric plots of Sy, for " = 1ms, 1.6 ms, and 2.4 ms with the colour of the dots encoding
the adjusted pulse phase ¢, (see colour bar). In contrast to the first-order ellipses in Fig. 4.13, no
order can be seen in the phase-encoding colour of the dots, hence in third-order Bragg diffraction the
experiments is phase-unstable already for 7" = 1 ms. Red solid lines show the ellipses plotted for the
conic parameters from the fit to the original data. (bottom) Average differential phase A¢ computed
from the conic parameters generated by the bootstrapping method (purple dots). Green diamonds
show the phase values determined from the first-order ellipse fitting for comparison, showcasing the
scaling with k.. A solid red line shows A¢(T) = 2 kegapT? for the average acceleration value of
as = 30.00(2) mm/s>.

and a fit of form A¢ = kegapT? is used to extract the external acceleration. In Fig. 4.16
(bottom) the unwrapped differential phase A¢ calculated from the conic parameters of the
bootstrapped data is shown as purple dots. A red solid line plots the fit function for the average
acceleration ag = 30.00(2) mm/s? which is in good agreement with the values determined
from the first-order MZIs. Green diamonds further illustrate the differential phase extracted
from first-order Bragg diffraction measurements, highlighting the distinct scaling relationship
with the effective wave vector k.. The averaged differential phases yield a scaling factor of
2.80(15), consistent with the theoretically expected dependence of 3.
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Phase-stable summation

Finally, the three interferometer signals can be combined again and the statistical evaluation
based on the stacked histograms is performed. In Fig. 4.17 (top) the stacked histograms of all
three mg sub-states (left) and only mg = +1 (right) are shown. In this visualisation again the
scaling of A¢ with respect to ke becomes clearly visible already in the qualitative structure.
As in the first-order Bragg interferometers the first minimum of the visibility is reached for
T ~ 1.9ms, in third order this time is reduced by /3 to approximately 1 ms. Furthermore,
the summation of the three interferometer signals Sy +; is clearly visible, producing periodic
minima and maxima in the visibility. Again, the influence of the population in the mg = 0
state shifts not only the times for which minima and maxima in the visibility occur, but also
decreases the maximal visibility reached for every second maximum. If mixing only mg = +1,
the maximal visibility is reached for every local maximum. As in first-order, the data is
bootstrapped and the modified PDF Eq. (4.18) is fitted resulting in the averaged fit parameters
summarised in Tab. 4.11, showing excellent agreement with the values determined by the
individual evaluation of the mg sub-states and the bootstrapped ellipse fitting routine. A solid

Tab. 4.11.: Parameters extracted from a two dimensional fit to the stacked histograms using the modified PDF

Eq. (4.18).
R Po Ap ap op b
mp =+1,0 | 0.72(1) 0.23(1) 0.03(2) 30.1(6)mm/s> 0.061(3) 0.037(3)
mp=+1 | 0.71(1) - 0.01(2) 30.2(3)mm/s?> 0.054(3) 0.033(3)

red line in Fig. 4.17 (top) traces the visibility V(7T') for the averaged fit parameters from these
two-dimensional fits. Additionally, the bootstrapped histograms for each T are fitted with the
one-dimensional PDF Eq. (4.18) extracting the values of V(T"), shown in Fig. 4.17 (bottom).
Again, dotted black lines plot the corresponding V(T') for the averaged fit parameters from the
two-dimensional fits. Solid and dashed lines plot the full and restricted fit of Eq. (4.21b) to the
visibility values. All fits show excellent agreement with each other and the visibility values.

Finally, in Tab. 4.12, a summary of the determined magnetic field gradients calculated from the
external accelerations is given. All methods show excellent agreement. Again, an average value
of 937(2) nT/m is determined, confirming the measurements in first-order Bragg diffraction
[see Tab. 4.8]. The difference compared to the measurements in first-order Bragg diffraction
are likely reasoned in a systematic differences in the experimental realisation of first- and third
order Bragg diffraction. First-order diffraction processes have a higher diffraction efficiency
and lower population in parasitic paths due to a lower effective two-photon Rabi frequency.
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Tab. 4.12.: Summary of the magnetic field gradients as determined by the different evaluation approaches for the
third-order Bragg MZls.

Ellipse fits ak g1 fit 934(1)

2D fit (my = 0, +1) 938(2)

. . 2D fit (mp = +1) 938(1)
Statistical analysis V(T) fit (mp = 0, +1) 939(4)
V(T) fit (mp = +1) 941(2)
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Fig. 4.17.: (top) Stacked histograms as generated by combining the interferometer signals of all my sub-states
S_1+ So + S+1 (left) and the mr = &1 sub-states S_1 + S41 (right). The colour map shows higher bin
counts as brighter colours (see colour bar). Red solid lines trace V(T') as calculated by Eq. (4.21b) with
the averaged fit parameters from two-dimensional fits to the bootstrapped stacked histograms. (bottom)
Average visibility values V(T") determined by one-dimensional fits of Eq. (4.18) to the bootstrapped data
for So,+1 (blue dots) and S, (orange diamonds). Dotted black lines show V(T') calculated from the
two-dimensional fits, dashed and solid lines plot a full (solid) and restricted (dashed) fit of Eq. (4.21b).
For the restricted fit, Py and AP were taken from the experimental values [see Tab. 4.10]
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4.3.3. Summary

To summarise, in this section improvements to the capabilities of the ATOMICS experiment in
regard to atom-interferometric measurements have been discussed. By evaluating the visibility
of MZIs in first-order Bragg diffraction for various interferometer times 100 s < 7' < 3ms, a
phase-stable summation of the individual MZI signals generated by the magnetic my sub-states
in combination with an external magnetic field gradient of approximately 1 mT/m could be
found. This summation leads to the total loss of the visibility of the interferometer if no
state-selective detection is performed. Similar effects have been proposed for quantum-clock
interferometry to measure relativistic effects with claimed geometric phase amplifications and
metrological gains at the point of no visibility [205]. In contrast to quantum clocks, where a
coherent superposition in internal degrees of freedom is needed, in the case presented here,
a similar effect is observed without coherence between the mg sub-states. Hence, this effect
may be used in experiments where no coherent superposition can be generated, but multiple
interferometer signals are summed.

Reasoned on this summation of the interferometer signals, a state-selective measurement
procedure based on the Stern—-Gerlach method was implemented allowing for correlation
measurement and the individual evaluation of the MZIs. In the experiments discussed here, no
loss of visibility could be detected for the individual MZIs indicating that the true coherence
time has to be significantly longer than the 6 ms of total interrogation time in the longest
interferometer investigated. This opens the opportunity to investigate MZIs in external guiding
potentials for increased interferometer times. In addition, two methods to evaluate correlated
interferometer were used to evaluate the MZIs (i) ellipse fitting and (ii) phase-stable summation
of interferometer signals. The latter makes use of the summation of the interferometer signals
for correlated interferometers and uses the loss of visibility as a signal to evaluate the differential
phase. This technique shows promising results with similar precision to the ellipse fitting
in this case. Further investigations of this techniques is subject of current ongoing research
in collaboration with the research group of Prof. E. Giese. Finally, MZIs in third-order Bragg
diffraction were investigated, proving the linear scaling of the differential phase with the
effective wave vector keg. Again, similar to the first-order MZIs, no loss of contrast could be
detected for the interferometer times investigated when evaluating the individual mp sub-states.
This opens up the opportunity for future LMT interferometers at the ATOMICS experiment.
Overall, this highlights the capabilities of the ATOMICS experiment in new facets compared to
previous works [46, 56, 57, 168].
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4.4. Dichroic mirror pulses

As discussed in the previous section, scaling to higher-order Bragg diffraction at the ATOMICS
experiment is possible, with behaviour similar to that of the first-order Bragg diffraction when
used in an MZI. Increasing the sensitivity of light-pulse atom interferometers progressively
relies on LMT techniques. Precise control of such methods is imperative to exploit the full
capabilities of these quantum sensors. One key element is the mitigation of deleterious effects
such as parasitic paths deteriorating the interferometric signal, as mentioned above. In this
section, the experimental realisation of dichroic mirror pulses for atom interferometry, its
scalability to higher-order Bragg diffraction, and its robustness against initial momentum
spread are presented. This approach has been inspired by a proposal [169, 170] of momentum-
selective, i. e. dichroic mirror pulse (DMP) based on Bragg diffraction [172, 180] that only
redirects the two intentionally populated, i. e. resonant paths (distinguishable through their
momenta), while being made transparent for the dominant parasitic paths, which are not
redirected to the detected output of the interferometer. Such an evolution is induced by
applying a pulse area of 7 to the resonant paths, while parasitic orders experience pulse areas
of multiples of 27. This method effectively isolates the desired interferometric signal from
noise induced by unwanted paths. The scalability of this technique is established through an
examination of resonant third- and fifth-order diffraction. It can be readily applied to existing
setups capable of higher-order Bragg diffraction.

First, the mechanism of the proposed DMP is briefly introduced with an presentation of the
theoretical background given in [169, 170]. Following this introduction, the initial approach
in MZIs using conventional mirror pulses is discussed, leading to an experimental scheme to
design a DMP. Finally, DMPs are realised in third-order Bragg diffraction and showcasing the
scalability of this approach in fifth-order Bragg diffraction.

In this section, an experimental approach to find the parameters for a DMP in third order is
presented and the results are based on the Letter published in Physical Review Research [171].
Some parts have been taken verbatim from this publication. The theoretical data shown is
taken from the Letter and was provided by the research group of Prof. E. Giese®.

Mechanism of the dichroic mirror pulse

As mentioned, the approach of using a dichroic mirror pulse in a MZI light-pulse atom interfer-
ometer has been inspired by the proposal by J. N. Kirsten-Siemf$ et al. and an investigation is
given in their work [169, 170]. Here, only the fundamental idea behind the DMP is discussed
to give a better intuition of the mechanism that drives this approach. In Fig. 4.18 a third-order
Bragg diffraction is depicted in terms of the energy-momentum conservation. For every Bragg
diffraction process of order n, the dominating parasitic momenta p; are inherently given by
it =1andi =n—1[169, 170]. As visualised in Fig. 4.18 atoms occupying these states,
mainly due to imperfections of the initial 7/2 pulse, are coupled to the other parasitic order
by a resonant n — 4 photon process. In the case of n = 3 the states p; and p- are therefore
coupled by a resonant two-photon transition as can be verified by calculating the necessary
detuning Aw with Eq. (4.2). This results in two distinct effective Rabi frequencies driving
transitions between the states po — p3 as well as p; — po. For higher orders n > 3, more
resonant transitions are possible, coupling the states p,_; and p; hence more distinct effective

>Numerical data kindly provided by M. Dietrich and P. Schach for the Letter and visualised here for the sake of
completeness.
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Rabi frequencies need to be taken into account. To find the parameters for a DMP, the effective
two-photon Rabi frequency and the pulse length 7 have to be chosen such that the effective
pulse area is 7 for the desired transition while being multiples of 27 for all other transitions.
For time-independent pulse envelopes, i. e. box-pulses, this may be calculated using Eq. (4.13).
As discussed, for a third-order setup, only one additional transition has to be taken into account

Energy

—1 0 1 2 3
p [ Pkegt

Fig. 4.18.: Energy-momentum conservation in a third-order Bragg process. Blue and red arrows denote the induced
absorption and emission of photons of the corresponding Bragg beams. The light is strongly detuned
(A) with respect to one-photon transitions w., such that the excited state |e) is only virtually populated.
Dashed arrows indicate a off-resonant transitions that are suppressed while the dotted arrows show a
resonant two-photon process between the momentum states p1 = 1hkes and pe = 2hkeg.

while generally all possible transitions should be considered. If no combination of g and 7 is
found that fulfils the pulse-area condition, the relative population of the parasitic paths should
be taken into account to adjust the DMP parameters.

Experimental realisation of a DMP

Higher-order diffraction requires longer pulses or increased laser power, implying an increased
Qr. The two parameters are balanced to minimise velocity selectivity while still observing a
two-level behaviour between resonant momenta. However, this quasi-Bragg regime [176, 179-
181] leads to inevitable population of parasitic orders p; [see Fig. 4.3]. By using smooth pulse
envelopes [like Blackman pulses Eq. (4.12)] this issue can be mitigated, but not eliminated.

Fixing 7 = 90 ps and scanning Qg by varying the optical power of the pulse, and therefore the
effective two-photon Rabi frequency (1, when tuned to third-order resonance n = 3, the
probability P; of populating momenta p; is determined by extracting the atom numbers in the
relevant orders 7 = 0, 1, 2, 3 and normalising to their sum. In Fig. 4.19 the probabilities of pg
(purple diamonds) and p3 = po + 3hkegs (blue dots) is shown as a function of Qg 1. From this
scan the needed effective two-photon Rabi frequency Q¢ ; for beam splitter (7/2) and mirror
(m) pulses for third-order diffraction can be extracted. The transfer to momentum ps is limited
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to 65 %, which can be attributed to velocity selectivity, visible by the spatial structure of the
atomic density remaining in the py momentum state for Qg = 27 x 23(2) kHz [174].
The experimental observations are supported by simulations implementing the effective Hamil-
tonian [176]
52
H=2" 1 2hQp f(t) cos? <

" 2m

(4.26)

ket — Awt + gf))
2 )

with the phase of the Bragg beams ¢ and [z, p| = ih, since atomic interactions can be neglected
due to the low atom density after expansion. For these simulations, a Split-Step-Fourier method
implementing the palindromic PP 3/4 A scheme [206] was used. Numerical simulations have
been performed by M. Dietrich and P. Schach of the group of Prof. E. Giese for the collaboration
that led to the publication of these results [171]. Since the figure of merit, the diffracted
population, is not expected to depend on the pulse phase in Bragg diffraction, ¢, = 0 was
chosen for the simulations. Furthermore, since no interferometric measurements are carried
out including the DMP, there is no experimental access to this phase. The numerical model
was fitted to the data using the experimental values of 2.¢; and 7 and only leaving the initial
momentum spread Ap as a free parameter. The results are shown as solid lines in Fig. 4.19 and
agree well with the experiments with some numerical noise visible. Applying the same routine
to a larger data set varying 50 pus < 7 < 150 us, Ap = 0.13(1)%keg can be inferred, matching
the experimental value. Using the parameters obtained from this fit, the simulations can be
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Fig. 4.19.: Experiment and simulation of third-order Bragg diffraction. Resonant Rabi scan for a fixed duration
7 = 90 ps of a Blackman pulse. Scanning Q.1 induces Rabi oscillations between momentum states po
and p; (measured probabilities as purple diamonds and blue dots). Solid lines show a corresponding
simulation with a fitted width Ap = 0.13(1) ke of @ Gaussian momentum distribution. False-color
insets depict momentum distributions after a beam splitter (left) and mirror pulse (right) with population
in po at the bottom and in p; on top. The undeflected density lobes of py are caused by momentum
selectivity. (Numerical data courtesy of M. Dietrich and P. Schach of group of Prof. E. Giese)

extended to a full MZI sequence discussed in [171]. A supplementary plot of the numerical
simulations can be found in Appendix C [Fig. C3]. Besides the resonant paths py and ps,
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parasitic paths emerge after the first beam splitter as schematically shown in Fig. 4.20 (top). To
demonstrate their impact, in Fig. C3a a path-resolved version of the MZI simulation is shown.
The resonant paths 0 and 3 suffer loss from velocity selectivity, but the bulk of the population

Position

2 1 - - 1 - -
*] . 1 1.

before after before after before after before after

Population in momentum states

Fig. 4.20.: (top) Schematic visualisation of the four dominant order in a third-order MZI (colours correspond to
Fig. 4.18). Solid lines show that all orders are effectively reflected towards the interferometer output by
the conventional mirror pulse and dotted lines mark atoms not reflected by the mirror because of e. g.
velocity selectivity. Hence, the parasitic paths contribute to the interferometer signal depicted by thin
dashed lines in the exit ports. A numerically calculate version, courtesy of M. Dietrich and P. Schach is
shown in Fig. C3a. (bottom) Experimental absorption images of momentum distributions before (left
columns) and after (right columns) the mirror pulse with parameters obtained from the Rabi scan in
Fig. 4.19. The resonant orders (purple and blue) are efficiently reflected, but so are the parasitic orders
(red and green), which are redirected to the exit ports with high efficiency.

couples into the output ports as intended. Because the mirror pulse also redirects the parasitic
paths 1 and 2, they are coupled into the relevant output ports, interfering with resonant paths
and corrupting the signal. While the effect is small for adiabatic pulses that suppress the initial
population of parasitic paths, it can limit the sensitivity of the interferometer [169].

To verify the numerical observation that the mirror pulse redirects both resonant and parasitic
paths, atoms in four input states py, € {po, p1, p2, p3} are selectively prepared by applying
Bragg pulses at the respective resonance, as shown in the left columns of Fig. 4.20 (bottom) by
absorption images in the far field. The colour scheme has been adapted to match the colours
chosen for the respective diffraction order. After 4 ms of propagation, the third-order mirror
pulse (7 = 90 ps, Qe = 27 x 23(2) kHz) is applied. The experimental scheme is visualised
in Fig. 4.21 with the length of the Bragg pulses increased for visual purposes. Solid coloured
lines trace the centre of mass (COM) motion and are exemplary shown for p;, = p; with
colours corresponding the colour scheme chosen in Fig. 4.20. The right column of Fig. 4.20
shows the resulting momentum distributions after applying the conventional mirror pulse with
parameters taken from the Rabi scan [see Fig. 4.19]. The resonant orders (purple and blue)
are efficiently reflected, but so are the parasitic orders (red and green), which are redirected
to the exit ports with high efficiency.
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Fig. 4.21.: Schematic visualisation of the experiments carried out to determine the parameters for a DMP. After a

BEC is released from the CDT, a free expansion of 3 ms is used to convert the mean field energy into
kinetic energy. An initial  pulse with the resonance tuned to order n € {0, 1, 2,3} (here n = 1) is used
to transfer the atoms in the momentum state p,,. Separated by a free propagation of the BEC of 4 ms,
the second Bragg pulse tuned to resonance of the third order n = 3 is applied with varying lengths 7
and maximum two-photon Rabi frequency Qr and thus Q. ;. The resulting momentum distribution is
spatially separated with a TOF of 15 ms and detected.

To overcome this problem, a DMP is implemented that is reflective only for the resonant paths
0 and 3 while not redirecting the parasitic paths 1 and 2. Similar to the experiment presented
in Fig. 4.20 and Fig. 4.21, ensembles in all four relevant p;, are prepared and a mirror pulse

resonant to third-order diffraction, varying 7 and Q. is applied. To obtain the reflectivity
Rinout for each path, the final probability of all four output momenta poy is measured by

integrating over the respective momentum distribution in the far field and normalising it. The
resulting probabilities for all p;; and poy: are shown in Fig. 4.22, strikingly visualising the
resonant coupling between py <> p3 and p; «> py and the different scales of effective Rabi
frequencies at play. From the measured probabilities, it is evident that the reflectivities Ry 3
and Rz as well as Ry » and R;; behave symmetrically. Therefore, it is sufficient to only take
Ry 3 and R; » (marked by a red frame in Fig. 4.22) into account.
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Fig. 4.22.: Experimental probabilities to find atoms in the state pou: for every pin € {po, p1, p2, ps} after the applica-

tion of a Bragg pulse tuned to the third-order resonance. The pulse length 7 is varied from 50 ps to 150 ps
with the effective two-photon Rabi frequency ranging from 27 x 4.6(4) kHz to 27 x 32.2(31) kHz giving
rise to different effective pulse areas. From this plot the symmetry between Ry 3 and Rs o as well
as Ri1 2 and R» 1 is evident, making it sufficient to take Ro 3 and R, » (red frame) into account when
searching for a DMP.

94



In Fig. 4.23 (left column) the measured values for Ry 3 and R; > are shown. Corresponding

0.0 0.2 0.4 Reflectivity 0.6 0.8 1.0

Experiment Theory

27 pulse

50 100 150 50 100 150
7 (ns)

Fig. 4.23.: Experiment and simulation of third-order Bragg diffraction with DMP. Comparison of experimental (left)
and numerical (right) reflectivities Ry 3 (top) for resonant six-photon and R; » (bottom) for parasitic
two-photon diffraction. Scanning = and Q.1 reveals different effective Rabi frequencies for both cases.
The white diamonds indicate the DMP [r = 120 s, Qefr,; = 27 x 21(2) kHz] with significantly improved
performance over the mirror pulse (black cross) obtained in Fig. 4.19. The labels indicate pulse areas
of multiples of 7. (Numerical data courtesy of M. Dietrich and P. Schach of group of Prof. E. Giese)

simulations are depicted in the right column, showing excellent agreement. The white dashed
line indicates the Rabi-frequency scan of Fig. 4.19. Since resonant paths are redirected by
six-photon processes but parasitic paths by two-photon transitions, their effective multi-photon
Rabi frequencies differ, as can be seen from different oscillation periods in the top and bottom
panels. This behaviour suggests a parameter set where resonant orders experience a pulse area
m, while parasitic orders experience pulse areas of multiples of 27. In fact, for 7 = 120 us and
Qefr1 = 2m x 21(2) kHz a DMP with Ry 3 = 0.62(1) and Ry 2 = 0.08(1) (white diamonds) can be
observed. In comparison to the parameters of Fig. 4.19 with Ry 3 = 0.65(2) and R; » = 0.72(1)
(black crosses), the reflectivity of parasitic paths drops significantly while the one of resonant
paths remains almost unaltered. The pronounced reflectivity of resonant paths combined with
the low reflectivity of parasitic paths implements the intended DMP schematically visualised
in Fig. 4.24 (top). As in Fig. 4.20 (bottom), the momentum distributions before (left) and
after (right) the DMP are shown to confirm the dichroic behaviour. Indeed, the DMP is
reflective for resonant paths and redirects them to the exit ports, while maintaining near-perfect
transparency for both parasitic paths where the output momentum distribution resembles the
input. Additionally, a path-resolved MZI simulation in Fig. C3 is displayed in the supplementary
material Appendix C.
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Fig. 4.24.: (top) Schematic visualisation of the four dominant order in a third-order MZI with a DMP (colours
correspond to Fig. 4.18). Solid lines show that the parasitic orders are not reflected towards the
interferometer output as was the case for the conventional mirror [see Fig. 4.20]. Hence, the parasitic
paths do not significantly contribute to the interferometer signal. A numerically calculate version,
courtesy of M. Dietrich and P. Schach is shown in Fig. C3b. (bottom) Confirming this dichroic behaviour
experimentally by absorption images of the momentum distribution before (left columns) and after
(right columns) the DMP, where parasitic paths are not reflected by the DMP and almost fully remain in
their input momentum class.
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Expansion to fifth order

These results can be transferred to any odd diffraction order, in particular to fifth order,
which is a good compromise [174] between available laser power, velocity selectivity, and
loss from spontaneous emission. This scalability is experimentally verified by implementing
a fifth-order DMP and measuring Ry 5, R1,4, and Ry 3 (Fig. 4.25 (bottom)). The latter two
reflectivities are associated with parasitic paths as shown in Fig. 4.25 (top). The different
scaling of the multi-photon Rabi frequencies [176] allows to identify parameters (= = 100 s,
Qefr1 = 2m x 52(5) kHz) where the pulse area is close to 7 for the resonant path, but 47 and
67 for the parasitic ones, giving reflectivities Ry s = 0.57(1), Ry 4 = 0.16(1), R2 3 = 0.10(1).
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Fig. 4.25.: Fifth-order MZI (top) highlighting the paths associated with the reflectivities Ro 5, R1.4, and R2 5 as
measured in (bottom) for different pulse lengths = and effective two-photon Rabi frequencies Qe 1 -
The DMP is marked by a white diamond (7 = 100 ps, Qefr,1 = 27 x 52(5) kHz), where the resonant path
experiences a pulse area close to 7, while the parasitic paths undergo 47 and 67 pulses, respectively.
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4.5. Summary

To summarise, in this chapter the requirements for long-interrogation time Mach-Zehnder
interferometers (MZIs) in combination with higher-order Bragg diffraction were discussed
and implemented. In Section 4.3, a magnetic field gradient in combination with a mixture
of different magnetic sub-states was identified as the dominant cause for an apparent loss
of visibility in the signal of MZIs. Furthermore, the magnitude of the gradient along the
direction of Bragg diffraction was measured to be approximately 960(20) nT/m (9.6(2) G/m),
confirmed by multiple evaluation techniques introduced in this section like fringe and ellipse
fitting. Based in the loss of the visibility, a theoretical model was described, explaining the
underlying mechanism that leads to the observed behaviour: a phase-stable summation of the
interferometer signals of correlated MZIs with a differential phase.

Following this mechanism, an evaluation method was introduced that can be used to extract
a differential phase with surprising precision, even when no state-selective measurements
can be performed. The proper scaling of these effect for higher-order Bragg processed was
investigated, realising MZIs in third-order Bragg diffraction. To complete the set of evaluation
tools available for future interferometric experiments at the ATOMICS experiment, a state-
selective detection scheme was implemented based on the Stern—Gerlach method allowing
for an individual evaluation of the MZIs generated by the mg sub-states. Neither in first nor
third-order MZIs, a significant drop of the visibility could be observed on the time scales of
investigated interferometer times, hence it can be expected that the coherence time 7., is at
least 6 ms.

Finally, an implementation of a dichroic mirror pulse (DMP) was discussed, complementing
the possibility of realising large-momentum-transfer (LMT) atom interferometers in the future.
The results of Section 4.4 have been produced in cooperation with the research group of
Prof. E. Giese at the TU Darmstadt and have been published as an open access research letter
in Physical Review Research [171].
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5. Digital-micromirror-device potentials for
ultracold ensembles

“When I see a bird that walks like a duck and swims like a duck and quacks like a duck,
I call that bird a duck.”

— James Whitcomb Riley

The development of techniques for configurable optical potentials has opened the possibility to
investigate ultracold atomic ensembles including BECs in arbitrary potentials, giving rise to
the research field of ATOMTRONICS striving to utilise the coherent and superfluid properties
of such ensembles [40, 51, 52, 207]. Using two acousto-optical deflectors combined to control
a beam in the zy-plane has been used to “paint” potentials guiding ultracold atoms, realising
waveguides similar to optical fibres for light, splitters and recombiners [50, 208, 209]. Recently,
quasi one-dimensional potentials implementing so-called prime number potentials have been
implemented using spatial light modulators (SLMs) generating the potential using holographic
methods [49]. Next to these approaches, digital micromirror devices (DMDs) that can primarily
be found in data projectors have become an established method for the generation of arbitrary
dynamic potentials [47, 210]. This has enabled studies from vortex dynamics and animatronic
oscillator circuits to large persistent currents in BECs [55, 211-214]. Furthermore, DMDs have
been deployed studying persistent currents and Kelvin-Helmholtz instabilities in fermionic
systems [48, 215-2171].

The advantages of a DMD-based system offering high flexibility while being relatively easy
to implement make them an ideal expansion for the ATOMICS experiment, especially since a
DMD has already been used in combination with the CR [46]. Replacing the complexity of the
CR potentials, prone to misalignment, beam and polarisation errors with a direct imaging of
the DMD surface reduces the complexity of the setup while increasing the flexibility.

In the following chapter, a new optical setup is introduced combining two DMDs allowing for
the combination of attractive and repulsive potentials. This system has partially been built by
L. Lind in his master thesis and since then has been extended for the operation of a second
DMD [218]. Projects utilising the capabilities of this optical setup are being investigated in
ongoing close collaborations with the research group of Prof. A. Yakimenko from the Taras
Shevchenko National University of Kyiv and Prof. M. Edwards from the Georgia Southern
University [54, 219].

Corrugations on the light sheet potential prevent this system to be fully utilised for experiments
in arbitrary potentials at the time of this work (June 2025), which are briefly discussed. Finally,
the DMD system is deployed to realise the adiabatic generation of ultracold atom ensembles in
dynamic dimple potentials, paving the way for the generation of multiple consecutive BECs
from one thermal reservoir.
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Fig. 5.1.: (left) Micro mirror arrays of a DMD. Each mirror is a built as an individual micro-electromechanical
system (MEMS) and can be tilted by +£12° relative to its neutral position reflecting light towards the
experimental beam path or into a beam dump [220]. (right) Schematic drawing of the micro mirror array
with a pitch of 7.4 um generating a blaze grating [221].

5.1. Characterisation of the DMD system

The DMD system at the ATOMICS experiment was conceptualised and partially built in the
master thesis of L. Lind [218]. It is based on two TI DLP® 3000 LightCrafter modules,
with a separate beam path for each of the DMDs. The micromirror array of this DMD consists
of 608 x 684 individual quadratic mirrors with a pitch of 7.4 um [see Fig. 5.1 (right)] spanning a
total area of 6.57 mm x 3.7 mm. Each mirror can be tilted by +12° relative to the DMD surface,
reflecting light either towards the experimental beam path or into a beam dump.

Which way each mirror is tilted is controlled by a binary image file displayed on the DMD,
in the following called potential mask. At the ATOMICS experiment, a set of Python scripts
is available to convert calculated potentials into corresponding potential masks. Initially, the
desired potential is calculated and the script determines the necessary optical power to realise
the potential. Since the DMD can only display binary files, a dithering algorithm is used to
convert the target potential into a binary potential mask. Here, a dithering approach based
on the Bayer-16 method is implemented [222]. To calculate the potential mask properly, the
properties of the optical setup such as the wavelength, optical power and magnification as well
as the waist of the illuminating beam need to be supplied.

A total of up to 96 potential masks can be stored on the internal buffer of the DMD. These can
be cycled by applying a TTL signal to the trigger input of the DMD which allows to generate
semi-dynamic potentials by cycling between changing potential masks. The minimum time a
potential mask has to be displayed when using 96 masks is 385 ps [221].

As mentioned in Section 2.4.3, two individual Ti:Sa laser systems are used to supply the laser
light for this system. A schematic overview of the DMD setup in its current form is shown in
Fig. 5.2. Since both paths are constructed analogously, the red-detuned path will be described
in the following with a summary of the properties for both paths given in Tab. 5.1. The light
generated by the Ti:Sa laser is outcoupled from an optical fibre guiding the light from the
laser system to the optical table. A combination of a A\/2 waveplate and a PBS is used to
ensure a linear polarisation of the light. Following, part of the light is sampled and guided
to a photodiode for intensity stabilisation via an RPI. The beam is then guided to the DMD
surface with the incident angle matched such that the part reflected towards the experiment is
perpendicular to the DMD surface. Here it is important to mention, that the surface of the DMD
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Tab. 5.1.: Properties of the DMD system at the ATOMICS experiment at the time of this work (June 2025). The
maximum optical power Pnax is measured between the beamsplitter (Bs) and the last two lenses (1.4,
L5) mounted on top of the vacuum chamber.
A Prax WDMD M Umax
Red-detuned DMD  800.3nm 19.2(10)mW 1.0(1)mm 0.148(20) —5.7(5) Erec
Blue-detuned DMD 776.3nm 41.4(10)mW 1.2(1)mm 0.178(20) 26.1(5) Erec

generates a reflective diffraction grating. To maximise the diffraction efficiency, the incident
angle has to be close to the third-order diffraction angle along both axis of the micromirror
arrays [223]. Furthermore, these diffractive properties of the DMD make it necessary to
realign the optical system in case of a wavelength change. The waists of the Gaussian beams
illuminating the DMDs are measured as wpmp red = 1.0(1) mm and wpyp piye = 1.2(1) mm.
For both beampaths two achromatic lenses with focal lengths fr1, = fri1» = 400 mm and
fror = frop = 100 mm remap the surface of the DMD to an intermediate image plane with a
magnification of | o| = 0.25. Additionally, these lenses are configured in a 2(f; + f2) setup
giving access to the Fourier plane where an aperture is placed allowing the manipulation of the
k-vector distribution. Hence, the image can be smoothed out by reducing the opening of the
aperture, removing large k-vector components associated with sharp edges [127, Chap. 11].
In a PBS, both beams of the red-detuned and blue-detuned path are combined with both
intermediate image planes overlapped. Prior to entering the vacuum chamber, a 50 : 50
non-polarising beam splitter cube splits the combined beam with one part being reflected
towards the chamber. The combination of two achromatic lenses (L4 with = 75mm and
fia = 400mm, L5 with = 75mm and fi3 = 300 mm), permanently mounted on top of the
vacuum chamber and also used for the vertical detection path, remap the intermediate image
to plane of the CDT in the chamber with a magnification |M| = 0.60(3).

A second pair of achromatic lenses (L1mon, L2mon) With focal lengths fimon = 400 mm and
fomon = 300 mm is used to relay the intermediate image in the transmitted beam of the non-
polarising beam splitter to a monitoring camera Point Grey CM3-U3-13S2M. This monitoring
beam path can be used to observe a twin-image of the intensity distribution in the vacuum
chamber with similar properties.

The optical resolution of both DMD paths is limited by the lenses mounted to the vacuum
chamber and is given by Ad = 3.8 um. Here, Ad is the diffraction limited spot size calculated
at 780 nm for L; according to the Rayleigh criterion Ad = 1.22f\/[61, Sec. 5.7]. Using the
DMDs to display potentials of a known size, the total magnification for the red-detuned path is
measured to |M|; = 0.148(20) and for the blue-detuned path | M|, = 0.178(20) from the DMD
surface to the plane of the atoms in the vacuum chamber. For the monitoring beam path, the
magnification is measured to |M|mon = 0.168(20) from the DMD surface to the monitoring
image plane.
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Fig. 5.2.: Schematic visualisation of the DMD optical setup. The light produced by two separate Ti:Sa lasers

(Area = 800.3nm and Apye = 776.3 nm) is outcoupled from optical fibres with a combination of a /2
waveplate and a polarising beam splitter cube (PBS) ensuring a linear polarisation. Part of the beam is
sampled and focused onto a photodiode (PD) for intensity stabilisation. The remainder of the beam is
illuminating the DMDs with a combination of two achromatic lenses (f1 and f2) in 2(f1 + f2) configuration
reimaging the surface to an intermediate plane with magnification |M| = 0.25 and giving access to
manipulate the k-wave spectrum in the Fourier plane. A PBS is used to combine the two beams with
the two lenses fixed to the vacuum chamber (L4, L5) reimaging the intermediate plane into the vacuum
chamber. The non-polarising 50 : 50 beam splitter (BS) cube combines the DMD beam path with the
vertical detection light (light red) propagating in opposite direction. The secondary output of this BS
is used as a monitoring path for the DMD potentials. Insets in the top left show a blue-detuned ring
barrier with a radius of 100 um as used for the adiabatic generation of BECs and the red-detuned dimple
potentials spaced 100 um apart (sizes given for the atom plane in the vacuum chamber). Right inset
shows the combination of both potentials with the linear waveguide (LWG) oriented perpendicular to the
dimple potentials (dashed line).
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5.2. Bose-Einstein condensation in DMD potentials

As described above, the DMD system can be used to generate arbitrary two-dimensional
potentials by reimaging the surface of the DMDs into the plane of the atoms. Since these
potentials provide no confinement in the vertical direction and hence against gravity, an
additional potential needs to be used. This can be generated by the light sheet system described
in Section 2.4.3, ideally providing a strong confinement in the vertical direction and close to
no confinement in the horizontal plane.

The combination of light sheet and the DMD potentials provides the opportunity the extent
the interferometric measurements discussed in Chapter 4 using arbitrary external guiding
potentials. Furthermore, the direct creation of BECs in such potentials, especially ring-shaped
potentials opens up the possibility to investigate the dynamics of BECs including rotational
states and the Josephson effect [54, 219, 224-226]. Moreover, the investigation of the topology
change of a BEC in a dynamic trap becomes feasible, opening the opportunity to expand further
on the understanding of excitations in such systems, discussed in the theses of J. Teske and
F. Schmaltz [46, 227].

Additionally, the research field of ATOMTRONICS, investigating various approaches to utilise
the properties of ultra cold atoms and BECs from quantum sensors to fundamental physics,
relies heavily on arbitrary guiding potentials that can be generated by, e. g. a DMD system
[40].

While the system can generally be used to trap atomic ensembles in combined potentials from
the light sheet and DMD system, an additional challenge has been encountered. To fully
utilise the capabilities of the DMD system, the light sheet potential needs to have a potential
roughness well below the chemical potential of, e. g. a BEC. If the potential has corrugations
larger than the chemical potential, the BEC will sample the potential landscape leading to
uneven atomic densities or the separation of the BEC into smaller sub-ensembles effectively
destroying the BEC. In the master thesis of D. Derr such corrugations on the light sheet system
used at that time (2022) have been found and investigated in detail [80]. Several approaches
to mitigate these corrugations, including a rebuild of the laser system and optical setup has
been found ineffective at the time of this work (June 2025). By altering the optical setup,
the qualitative structure of the corrugations can be affected in unpredictable ways. So far, no
configuration was found that produced a section of the light sheet sufficiently smooth to allow
atomic ensembles to expand uniformly within the potential.

By changing the optical layout from the laser providing the optical power, including a change
in wavelength from 783.5 nm to 797.8 nm, to the vacuum chamber window through which the
beam is guided to the atoms with corrugations appearing for any setup, multiple causes were
ruled. A possible reason is the interference of the light sheet beam with a reflection, generated
as the beam passes through the windows of the vacuum chamber. Since the spatial expansion
of the beam in the horizontal direction is larger than the lateral offset of the reflection, this is
the most likely reason for the unevenness. Recently, J. Henning has investigated additional
compensation potentials based on blue- and red-detuned DMD potentials with limited success
[228]. Additionally, the possibility to build a new light sheet system at A = 1070 nm using the
laser generating the CDT is currently being investigated.
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5.2.1. Adiabatic generation of Bose-Einstein condensates

To create a BEC by forced evaporative cooling in the CDT takes typically 18 s including the
MOT loading phase. Furthermore, to create a BEC, the majority of the atoms are discarded
despite being already close to quantum degeneracy. Ideally, techniques to create multiple BECs
from one pre-cooled yet thermal reservoir could be implemented to increase the repetition rate
of an atomic interferometer. Since the CDT only provides a single potential, this cannot be
realised in this configuration.

Using the DMD system on the other hand, allows for a reconfigurable potential landscape
that can be used to implement a technique based on the adiabatic generation of BECs [68,
Sec. 10.7]. The underlying idea behind this method is that a thermal ensemble in a reservoir
potential with a temperature above the critical temperature has a chemical potential jires < O.
By introducing a narrow (dimple) potential with depth Ugimp = —fires the atoms will start to
macroscopically occupy the new lowest potential state, effectively forming a BEC. This effect
cannot simply be understood in terms of an increase in the critical temperature in the dimple
since increasing the trapping frequency will increase the temperature of the thermal ensemble,
even if done adiabatically [68, Sec. 10.7].

Already in the early stages of experimental BEC research, this method has been successfully
used to create BECs [229, 230]. Recently, an adapted version of this method has been used
to create a BEC in a thermal reservoir continuously refilled with thermal atoms extending
the lifetime of the BEC [231]. The growth dynamics and kinetics of BECs in such dimple
potentials have been studied experimentally for various dimple depths [232] with a kinetic
model describing the dynamics studied by S. Dutta and E. Miiller [233].

Experimental reservoir and dimple potentials

To realise this method at the ATOMICS experiment, a combination of the light sheet potential
and the DMDs potentials could be used, opening up the possibility to transfer the BECs directly
into a guiding potential for, e. g. guided atom interferometric measurements. Increasing the
smoothness of the light sheet potential is a necessary step to realise such experiments. Hence,
for an initial implementation of this method, the CDT is chosen as a thermal reservoir, described
in the following section. In Fig. 5.3, the combination of potentials used to implement the
dimple method is shown. A magenta solid line depicts the main reservoir potential depth as
generated by one arm of the CDT. The blue-detuned DMD system is used to generate a repulsive
ring-shaped potential with a height of Uy, = 5 Erec [See also inset of Fig. 5.2] constraining
the reservoir along the y-axis. A small dimple is generated by a Gaussian-shaped potential
with a waist of approximately 5 pm along the y-axis (red). The reconfigurability of the DMD
allows to introduce multiple of such dimple potentials [see inset of Fig. 5.2]. Furthermore,
the dynamic properties of the DMD can be used to move the dimples after the creation of
an ensemble in order to create secondary dimples. In Tab. 5.2, a summary of the dimple
potential properties is given for a depth of |Ulgimp = 1Erec. The large uncertainties in the
expected trapping frequencies, especially along the y-axis are reasoned in the uncertainties of
the magnifications | M |mon and | M|.eq as well as the short Rayleigh length along this axis. For
an expected waist of w, = 6.6 um, the Rayleigh length is zr , = 170 pm which is comparable
to the positioning precision of the potentials along the propagation axis i. e. the precision with
which the focal plane of the DMD potentials can be overlapped with the plane of the CDT [see
also Section 3.2.3].
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Fig. 5.3.: Potentials along the y-axis as used in the ATOMICS experiment to realise the adiabatic generation of
BECs. A magenta solid line depicts the main reservoir potential realised by using one of the CDT beams
as LWG. The reservoir is restricted by a repulsive barrier potential (blue) generated by a blue-detuned
ring-shaped DMD potential. Using the red-detuned DMD beam, a dimple potential can be introduced
(red) with the narrow dimension perpendicular to the weak reservoir axis. A dashed black line shows a
harmonic potential used to estimate a critical temperature in the reservoir.

Tab. 5.2.: Properties of the dimple potentials for |Ul4imp = 1.0(1) Erec @s measured by the monitoring camera.
Spatial dimensions are equal for the dimple with |U|gimp = 2.0(2) Erec. For the expected waists and trap-
ping frequencies, the measured waists in the monitoring image plane are scaled by the magnifications
|M|ea = 0.148(20) and | M |mon = 0.168(20) to infer the waist at the atom plane. For an uncertainty
estimation of the trapping frequencies, a 10% error in the potential depth is assumed. Here, only the
properties of the dimple potentials are presented. The total potential is given by a combination of
dimple and reservoir potential. The y-direction is dominated by the dimple while z- and = direction are
dominated by the reservoir potential [see Tab. 5.3].

Monitoring Vacuum chamber Monitoring Vacuum chamber
w$ wz w$ wy wy (.Uy
105(2)pm  92.5pm 27 x 1473 Hz  7.5(10)pm  6.6pm 27 x 20375 Hz

Thermal reservoir

Employing the single beam of the CDT alongside the blue-detuned ring-shaped potential (in-
set of Fig. 5.2) as a reservoir for adiabatic BEC generation presents distinct advantages over
light-sheet-based reservoirs [see Section 2.4.3]. This approach combines large detuning with
high optical power to create deep potentials while maintaining scattering rates negligible
on experimental timescales. To load the reservoir, a pre-cooled ensemble generated in the
CDT with initial atom number Nj,;; = 84 000(1200) at Tin;; = 760(30) nK is used. The critical
temperature for this ensemble in the CDT with w, = 27 x 210Hz and w, = 27 x 300Hz is
Twit = 465 nK which is below the measured temperature of the ensemble. Hence, it can be
assured that the initial ensemble is purely thermal.

A linear ramp is used to transfer the atoms from the CDT to the reservoir potential, simultane-
ously increasing the power in the IWG, i. e. the CDT beam along y, and blue-detuned DMD
potential and decreasing the power in the second CDT beam along z. For all experiments
discussed in this work, the length of the ramp was chosen to be 100 ms. To ensure a thermal
equilibrium, after the transfer from the CDT to the reservoir, an additional waiting time of
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250 ms is added.

Upon the transition to the reservoir, i. e. linear-wave guide potential, the atom number de-
creases to Nres(1250ms) = 56 000(4300) with a temperature of Tres(1250ms) = 350(10) nK
for a hold time of 1250ms. A summary of the reservoir parameters is given in Tab. 5.3.
Through evaporation, this atom number decreases further with increased holding time to
Nres(5000 ms) = 47 900(1000) with a temperature of Tres(5000 ms) = 240(10) nK.

Since the reservoir potential is provided by one arm of the CDT, the trapping frequency along the
propagation axis of the LWG decreases to 27 x 1.3 Hz, hence the critical temperature decreases
to 70 nK for this configuration. This provides a lower bound for the critical temperature only,
since the atoms are restricted by the blue-detuned DMD potential to a length of /;es = 200 pm
effectively increasing the density and hence the critical temperature. To calculate an upper
bound, a harmonic potential is assumed, centred in the middle of the reservoir with a potential
height of 5 Ee. at the radius of the DMD potential [see Fig. 5.3]. The critical temperature
for this configuration is evaluated to 170 nK which is still well below the temperature of the
ensemble determined by the TOF measurement. This again ensures, that the ensemble in the
reservoir remains thermal without the dimple potentials.

Finally, the aspect ratio of the atom ensemble is evaluated as ratio of o, /0, taken from the
two-dimensional Gaussian fits used in the TOF measurement to determine the temperature.
The ensemble has an initial aspect ratio of 0.18 which increases to a value of 0.97 for the
maximal TOF of 30 ms.

Tab. 5.3.: Summarised reservoir parameters for this work. The value of |U. | includes the reduction of the potential
by the gravitational potential.

Nres Tles Wy = Wy = Wy Wy |Uy| |UZ| ’UI|
56 000(4300) 350(10) nK 27 x210Hz 27 x1.3Hz b5E;ec 11.7Eiec 36.6Efec

Single dimple

To investigate the interaction between the thermal reservoir and an additional narrow dimple
potential, the experimental procedure schematically shown in Fig. 5.4 is realised. First the
reservoir is loaded from the CDT in ¢j,,q = 100 ms as discussed in the previous section. After the
equilibration time of teq = 250 ms, the potential depth of the dimple is linearly increased to its
maximum value over t;,;y = 100 ms. The dimple potential is kept constant for a varying holding
time 250ms < tpoq < 5000 ms while the reservoir barrier is switched off ¢purge = 150 ms prior
to the end of ¢;,,q. Following the purging of the reservoir, all potentials are switched off and
a TOF measurement can be performed. A summary of the experimental times and dimple
potential depths used is given in Tab. 5.4.

It was observed that the atomic density in the dimple potentials remains below the detection
threshold when the reservoir is present. Even normalisation and background-subtraction
measurements of the reservoir (with and without dimple potentials) and subsequent subtraction
of the averaged reservoir density from the measurements with dimple potential failed to enhance

Tab. 5.4.: Parameters used for the measurements with static dimple potentials.

Linit thold tpurge |U |dimp TOF
100ms 250ms to 5000ms 150ms 1E;ec, 2Erec Oms to 10ms
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Fig. 5.4.: Schematic visualisation of the experimental protocol used for the static dimple experiments. The
reservoir is loaded from the CDT (red) by transitioning to the LWG (light red) while increasing the barrier
potential (blue). After an equilibrium time, the dimple potential (magenta) depth ins linearly increased

and all potentials are kept constant for the holding time. To purge the reservoir, the barrier potential is
removed ahead of the TOF measurement.

the detectability of dimple potential signals. In order to lower the density of the reservoir
atoms prior to the detection, a purge of the reservoir is implemented by removing the repulsive
barrier potential ahead of time while the dimple and LWG are kept at constant depth. This
allows the thermal atoms of the reservoir to distribute along the LIWG, drastically reducing the
density at the location of the dimple, hence, improving the detection. In addition to lowering
the density of the reservoir, enhancing the detectability of the dimple ensembles, this might
provide some form of evaporative cooling which is currently being investigated by L. Lind at
the ATOMICS experiment. Furthermore, for every measurement, a comparative realisation
with the same parameters but |U|gimp = 0 is carried out. In the evaluation of the experimental
data, these comparative measurements are averaged and subtracted from the realisations with
|U|dimp # 0. The remaining densities resemble the atoms present in the dimple potentials.

In the following, the results for a holding time of #,,q = 1000 ms are discussed. For the
remaining holding times, the resulting observations are similar.

In Fig. 5.5 (top), the atomic densities are depicted for dimple potential depths of |U|gimp =
1Eec and 2 E;e. and the TOF of 0 ms to 10 ms. Here, the reservoir atoms have been subtracted
via the comparative measurement without any dimple potential as described above. To evaluate
the expansion behaviour, two-dimensional Gaussian functions [see Eq. (2.26)] are fitted to
the resulting densities to extract the time dependent widths o, ,. The resulting widths can
be used to estimate a temperature both along the z- and y-axis using Eq. (2.27). For a
dimple potential of |U|gimp = 1 Erec, temperatures of T, = 40(2) nK and T, = 250(20) nK are
determined, averaged over six experimental realisations. Comparing 7, to the temperature of
the reservoir atoms evaluated from the comparative measurements without a dimple 7}, res =
360 nK shows that the ensemble from the dimple has a similar temperature along the z-axis.
Computing the aspect ratio of the widths o, /o, for each TOF [see Fig. 5.5 (centre)] reveals a
remarkable behaviour. Initially, the ensemble has an aspect ratio of 1.02(7) which approaches
an asymptotic value of 2.2(2) for an increasing TOF. This is in stark contrast to the behaviour
of a purely thermal ensemble, which invariably becomes isotropic. Using the atom number in
the dimple NV = 1040(200), determined by summing over the density distribution, combined
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Fig. 5.5.: (top) Column density plots for |U|dgimp = 1Erc and 2E. dimple potentials and all TOF values from
Omsto 10ms. (centre) Aspect ratio o, /0, for the time-dependent widths o, , extracted by two-
dimensional Gaussian fits [see Eq. (2.26)]. For both dimple potential depths investigated, the final
aspect ratio (dotted and dashed lines) differs significantly from 1 the value that would be expected for
a purely thermal distribution. (bottom) Gaussian widths o, , used to determine the aspect ratio and
estimate the temperatures of the ensembles.

with the expected trapping frequencies for the reservoir [see Section 5.2.1] and the dimple
[see Section 5.2.1] the value Nas./ap, can be calculated. As discussed in Section 2.2, this
value needs to be greater than 1 to justify the Thomas—Fermi approximation in the case that
the ensemble would be on a BEC state. For this dimple depth, a value of Nag./ap, =~ 7 is
calculated, ensuring the validity of the Thomas-Fermi approximation in the case of a BEC.
Similarly, for the dimple with |U|gimp = 2Erec the temperatures 7, = 70(5)nK and 7T, =
270(40) nK are estimated with an initial aspect ratio of 0.94(7) asymptotically approaching
1.8(1) for longer TOFs. With an atom number of 1200(240), a value of Nas./ap, ~ 13 again
ensures the validity of the Thomas—Fermi approximation in the case of a BEC. In Tab. 5.5,
these parameters are summarised for both dimple potential depths investigated.

The difference in the aspect ratio, with the larger value for the dimple with a higher trapping

Tab. 5.5.: Averaged properties extracted by fitting a two-dimensional Gaussian to the column density distributions.
The asymptotic aspect ratio o, /oy is calculated by averaging over the aspect ratios for TOFs from
3ms to 10 ms.

|U|dimp T, T, N Nage/ano O'x/ay
1Erec  250(20)nK  40(2)nK 1040(200)  7.470%  2.2(2)
2Erec  270(40)nK  70(5)nK 1200(240) 13.007915  1.8(1)

~— ~—

frequency w, confirms, that the shape of the density distributions is dominated by the radial
trapping frequency of the reservoir i. e. the linear waveguide. Furthermore, the large asymptotic
value for |U|gimp = 1Erec does not match the ratio of trapping frequencies expected by the
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dimple parameters, pointing towards significantly smaller values of w,.. Since the optical power
carried by the dimple potential in the atom plane cannot be measured, the true value of w,
and |U|gimp need to be determined using methods like, e. g. Bragg scattering to excite dipole
oscillations in the future.

Double dimple

Since the results with a single dimple are promising, it is of interest to investigate whether two
separate dimple potentials can produce identical ensembles with properties similar to those
observed in the single dimple case. Again, the same routine as described above is used with the
new dimple potential containing two identical dimples, offset to y = +50 pm respectively along
the y-axis of the reservoir [see Fig. 5.2], totalling in 100 pm distance between the dimples to
prevent crosstalk. The resulting densities for the same potential depths as in the single dimple
case are visualised in Fig. 5.6 (top). Qualitatively, each dimple shows a similar expansion
behaviour as the single dimple discussed in above.

Again, using two-dimensional Gaussian fits the time-dependent widths o, , are determined.
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Fig. 5.6.: (top) Column density plots for the TOF expansion of a double-dimple setup for |U|dimp = 1 Erec and 2 Erec.
(centre) and (bottom) changes of the aspect ratio o, /o, during the TOF of 0 ms to 10 ms for the upper
dimple a +50 pm (blue) and lower dimple at —50 pm (orange). Both dimples show a similar behaviour to
the single dimple case with the asymptotic aspect ratio (dashed lines) agreeing well for both dimple
potential depths.

The resulting aspect ratios, averaged over 5 experimental realisations, are depicted in Fig. 5.6
(centre and bottom) for both dimples and potential depths. A summary of the determined
temperatures, atom numbers and aspect ratios, averaged over upper and lower dimple is given
in Tab. 5.6. Comparing the parameters of the double-dimple system no significant difference
to the single dimple can be found. Both dimples show the same expansion behaviour as
the single dimple for both potential depths used with similar asymptotic aspect ratios. This
opens the opportunity to create multiple ensembles from one thermal reservoir without any
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Tab. 5.6.: Averaged properties for the double-dimple system. Compared to the single dimple, the expansion
behaviour has not changed significantly.

|U | dimp T, T, N Nasc/ano 02/0y(10ms)
1Erec  280(60)nK 30(8)nK  780(230)  5.670% 2.6(4)
2Frc  270(40)nK 70(5)nK 1200(240)  9.29 1.8(1)

drawback compared to the single dimple setup. Therefore, the next phase investigates the
dynamic displacement of a dimple potential alongside the simultaneous implementation of a
second dimple, advancing toward a setup capable of dynamically generating multiple ultracold
ensembles with similar properties in pulsed operation.

Dynamic dimple systems

As discussed in the previous sections, a dimple potential can be used to produce an ultracold
ensemble with properties indicating increased phase-space density. Furthermore, it has been
shown that not only a single ensemble can be produced but multiple ensembles from the same
thermal reservoir are possible. On the roadmap from a single BEC produced in the CDT to a
setup that produces many consecutive BECs, the next logical step is to introduce dynamical
dimple potentials, showcasing the possibility to move these ensembles without changing their
properties. Ultimately, this will allow to remove the ensemble from the reservoir potential,
allowing for the successive generation of a new ensemble.

To realise such an experiment, the dynamic properties of the DMDs, mainly the red-detuned
DMD path, are used. Initially, the reservoir is loaded from the CDT and two dimple potentials
symmetrically displaced by |Ay| = 20 um from the centre are included, analogously to the
experimental scheme discussed previously. After a holding time of ¢}, = 1000 ms, the initial
dimples are moved to |Ay| = 60 pm in ¢yeve = 100 ms using 48 of the available 96 individual
potential masks stored on the DMD. This equates to steps of 0.83 pm per potential mask which
is well below the optical resolution of the system. Again, using the dynamic feature of the
DMD the remaining 48 potential masks are used to increase the potential depth of the two
additional dimples, located at y = 20 pm to |U/|gimp in 100 ms. Finally, a holding time #pq)q is
added again to ensure the formation of an ensemble in the secondary dimple traps. Prior to
any detection the purging method is deployed to reduce the density of thermal atoms in the
reservoir. The complete experimental cycle is schematically visualised in Fig. 5.7.

To inspect the experimental cycle, the dynamic process is stopped after each individual step in
the dynamic process, only cycling to the i-th potential mask with i € [1,96], and detection is
performed in situ without TOF. This results in atomic density distributions representing each
discrete potential step of the dynamic process. In Fig. 5.8 (top), the line densities, obtained by
summing along the z-axis of the column density distributions, for each step are shown as a
time series, visualising the displacement of the initial dimples and the growth of the atomic
ensemble in the second dimples. The four bottom rows of Fig. 5.8 show the atom number,
obtained by summing over the line density of each dimple!. At the final potential configuration,
each of the four dimples contains 900(150) atoms.

'From the absorption images obtained at the experiment, the two-dimensional column density is calculated with
unit atoms/m?. Integrating i.e. summing these along one axis results in a line density with unit atoms/m.
Summing over the second axis gives the total atom number detected in the initial column density.
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Fig. 5.7.: Schematic visualisation of the experimental cycle including the dynamic displacement of the initial two
dimple traps and successive implementation of two secondary dimples. Prior to the displacement of the
initial dimples and after the secondary dimple potentials have reached the final depth, a holding time is
implemented to ensure the formation of an equilibrated ensemble in the dimple potentials. Again, the
purging of the thermal reservoir prior to detection has to be implemented in order to evaluate the atomic
ensembles formed in the dimple potentials.

Hence, this cycle can be used to produce a set of initial ensembles, dynamically move them
within the thermal reservoir close to the boundary and introduce a second set of dimple
potentials again producing an ensemble each. To investigate the expansion dynamics of this
system of four ensembles, the complete dynamical cycle as described above is used with a
holding time of t;,,q = 1000 ms prior to the dynamics as well as afterwards. The reservoir
is purged with tpyge = 150ms in advance of the TOF. Similarly to the single- and double-
dimple experiments described in the sections above, a TOF of 0 ms to 10 ms is used. In Fig. 5.9
(top) the normalised line density for each TOF is visualised for |U|gimp = 1Erec (left) and
|U|dimp = 2 Erec (right). Here, a remarkable effect can be observed as the ensembles released
from the four dimple potentials and the density distributions start to expand and overlap. For
|U|dimp = 1Erec and a TOF of 10ms, three maxima become visible, located at the positions
initially between the dimple potentials. In Fig. 5.9 (bottom left), the normalised line densities
for 2ms and 10 ms are depicted, clearly showing the three maxima at the location of initially
minimal density at 10 ms.

As expected from the faster expansion along the y-axis for |U \dimp = 2E e [see Section 5.2.1],
this effect emerges for a shorter TOF of 7ms as depicted in Fig. 5.9 (bottom right). Assuming
the ensembles in the dimple potentials to be BECs and an interference effect as cause, the
expected fringe spacing would be on the order of thermal de-Broglie wavelength associated
with the relative velocity of the two clouds

2mht

Adp = —— 5.1
B =" 5.1

with the time ¢ and initial distance d [71]. Evaluating this for a TOF of 10 ms and initial
separation d = 40 pm gives a fringe period of A\qg = 1.15 um which is well below the optical
resolution of the experiment. Hence, this cannot be described as interference by of individual

coherent wave packets but must be a density-density effect.
Taking Eq. (2.28) and integrating over one of the coordinates results in the line densities of
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Fig. 5.8.: (top) Line densities for each potential as it changes with time via the dynamic capabilities of the DMD.
The initial dimples are moved from y = +20um to y = +60 pum in the first 100 ms of the dynamical
process and remain stationary afterwards. In the second 100 ms, the potential depth of the secondary
dimples (y = 420 um) is linearly increased to the same depths as the initial dimples. The formation of
an localised atom ensemble can be observed with the atom number depending on the potential depth.
In the bottom rows, the atom number in the dimples is shown with the rows corresponding to the vertical
position of the dimple potentials.

the thermal and BEC fractions given by

2

2
ﬁBEC(y) ZﬁBEc(O) max [1 — (g) ,O] (5.2a)
Y
2
Nitherm (V) :ﬁtherm(o)g5/2 |:Z exp <_2Zi_2>:| . (5.2b)
Yy

Given the properties of the dimple potential and of the ensemble discussed above for the single
dimple case, the expansion of a purely thermal ensemble and a pure BEC can be computed.
For the thermal expansion, o,(0) for a TOF of 0 ms and T, are used to compute o,(t) based
on Eq. (2.27) and the chemical potential pmerm iS set to the potential depth of the dimple
to evaluate the fugacity z = exp(—|Ugimp|/k8T)[68, Sec. 10.7]. Similarly, for the pure BEC,
R, = 0,(0) and Eq. (2.22) are used to model the expansion.

In Fig. 5.10 a comparison of a pure BEC expansion (left) and a fully thermal ensemble (right)
is shown. Analogously to Fig. 5.9, the top panels show the expansion based on the line density
as a false-colour plot. Here the different expansion behaviours become obvious with the pure
BEC showing a similar effect as the ensembles measured [see Fig. 5.9 (top)]. In contrast, the
thermal ensemble shows no signs of an appearing local minimum at the initial dimple locations.
Hence, the observations made in the expansion of the experimental ensembles can not be ex-
plained by a non-interacting thermal ensemble described by a line density similar to Eq. (5.2b).
Moreover, even when employing a line Gaussian density distribution, derived by integrating
Eqg. (2.26) along one axis, the results cannot be replicated.
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Fig. 5.9.: (top) False colour representation of the normalised line density during the TOF for |U|gimp = 1 Erec (left)
and |Ulgimp = 2 Erec (right). An unexpected behaviour emerges when the density of the individual dimples
start to overlap, leading to local maxima located at positions of initially low density. This effect depends
on the dimple depth since the expansion rate for the tighter confinement in the deeper dimple is faster.
(bottom) Corresponding line density for 2ms (blue) and 10 ms for |U |gimp = 1 Erec, s well as 2ms (blue)
and 7 ms for |U|qmp = 2 Erec (Orange), visualising the initial location of the dimple potentials. At 10 ms for
|Udimp = 1 Erec and 7ms for |U|gimp = 2 Erec local maxima emerge located between the dimple positions.
Dashed lines in the top row images show the selected line densities.

The variation in emergence times of this effect arises from differences in the Thomas—Fermi
radius expansion rate, which is directly linked to the trapping frequency [see Eq. (2.22)]. Since
the exact optical power and optical resolution i.e. the exact potential in the atom plane is
unknown, a difference in the calculated and real trapping frequency has to be expected, leading
to a quantitatively varying results. Nevertheless, qualitatively a similar expansion behaviour is
expected.
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Fig. 5.10.: (top) Corresponding line density calculated for the experimental parameters determined for the single

dimple (|U4imp = 1 Erec) [see Section 5.2.1]. Expansion for a pure BEC (left) and thermal ensemble
(right) calculated using Eq. (5.2). The pure BEC shows a similar effect as observed in the experimental
data [see Fig. 5.9]. (bottom) Corresponding line density shown for 2 ms (blue) and 6 ms (orange). The
selection of different times for the presentation can be justified by the uncertainties of the assumed
potentials. A thermal ensemble, as described by Eq. (5.2b), will not reproduce the observed effect.
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5.3. Summary

In this chapter, a new optical setup based on two DMDs was introduced. This system can be
used to generate arbitrary two-dimensional potentials by directly reimaging the surface of
the DMDs. Using two Ti:Sa lasers further expands the flexibility of this system by providing
sufficient optical power over a wide range of wavelengths from 750 nm to 850 nm, hence any
combination of red- and blue-detuned potentials can be realised. In the future, this optical setup
can be used to extent the atom-interferometric measurements to versatile guiding potentials
e. g. ring-shaped potentials or atomtronic circuits. Currently, corrugations on the necessary
light sheet potential make experiments in combined potential of light sheet and DMD potential
infeasible. These corrugations have been detected for multiple iterations of the light sheet
laser and optical system and are very likely produced by interference effects of reflections
of the laser beam on the window of the vacuum chamber. Several techniques to mitigate or
compensate the corrugations have been investigated with limited success, including using the
DMD to introduce additional correction potentials. Additional steps to improve the situation
are changing the vacuum chamber window for one with an improved anti-reflective coating
and building a light sheet at 1070 nm.

Combining a IWG generated by one of the CDT beams with the potentials generated by the
DMD setup has been used to implement an adiabatic generation of ultracold ensembles in
dynamic dimple potentials. Atom ensembles with properties diverging from a non-interacting
thermal cloud were generated in single-, double- and dynamic quadruple-dimple potentials.
The expansion behaviour of these ensembles was investigated leading to temperatures well
below the critical temperature for various depths of the dimple. Furthermore, the aspect ratio
of these ensembles defined by the ratio of their Gaussian widths o, /o, has been investigated
with the ensembles expanding asymmetrically to an asymptotic aspect ratio greater then one.
Using different dimple depths, the dependency of the asymptotic aspect ratio was investigated,
showing the expected behaviour. Releasing four ensembles, generated by a dynamic process
involving the displacement of the two initial dimples and the successive implementation of
two secondary dimple potentials resulted in a density-density effect that cannot be interpreted
by the incoherent sum of non-interacting thermal ensembles.

To conclude, the extension of the ATOMICS experiment by an optical setup based around two
individual DMDs and realisation of the adiabatic generation of ultracold ensembles paves the
way for future experiments involving multiple BECs in external guiding potentials. Possible
applications are the stochastic generation of vortex states as well as guided atom interferometer.
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6. Discussion and future perspectives

This thesis has significantly advanced the experimental capabilities of the ATOMICS plat-
form, enabling large-momentum-transfer atom interferometry in external guiding potentials.
Through the integration of advanced experimental control software, the development of new
laser systems, and the design of optical setups for higher-order Bragg diffraction and arbitrary
external potentials using digital micromirror devices, the groundwork for next-generation
quantum sensing and manipulation has been established. A suite of evaluation methods for
Mach-Zehnder interferometer signals was discussed, including techniques that extract differ-
ential phases from correlated interferometers without relying on state-selective measurements.
These methods broaden the scope of data analysis extending the capabilities of experiments.

Implementing the labscript suite experimental control environment has fundamentally
changed the capabilities of the ATOMICS experiment. In combination with drastic improve-
ments in general laboratory environmental stability, this has enabled automated measurement
campaigns running for more than 12 hours, allowing for large parameter scans, increased
statistics or a combination of both. Many of the results presented here would have been im-
possible to the extent discussed in this work without this improvements. Including additional
devices such as cameras and other data acquisition devices into the existing implementation
will further expand the experiments capabilities by allowing automated data evaluation using
the lyse environment. This may also be used to add auto-calibration schemes, reducing the
maintenance required at the experiment.

The thesis also presents the first three-dimensional trapping of ultracold atoms using a
blue-detuned bottle beam generated via conical refraction. By focusing a circularly polarised
laser beam through a biaxial crystal, ring-shaped light fields with variable intensity distributions
can be realised. For the optimal ring regime, a central dark focus surrounded by steep intensity
gradients was achieved, providing a robust trapping potential. Numerical simulations of these
light fields were validated by experimental measurements, demonstrating excellent agreement
in spatial extent, trapping frequencies, and potential depths.

The experimental realisation of the dark focus using a KGd(WO,), crystal in combination with
a Ti:Sa laser system, followed by reimaging into the vacuum chamber with achromatic lenses,
enabled the implementation of a blue-detuned optical dipole trap for 8’ Rb ensembles. The
successful transfer of BECs from a crossed dipole trap into the bottle-beam potential confirms
the feasibility of three-dimensional trapping in a single blue-detuned potential generated by
conical refraction without additional potentials. Measurements of trapping frequencies and
the spatial extent further substantiate the effectiveness of this approach, marking the first such
realisation for ultracold atomic ensembles [120].

The combination of microlens arrays with conical refraction was explored numerically, revealing
the Talbot effect in combination with conical refraction and enabling the theoretical design
of bottle-beam arrays. These arrays hold promise for neutral atom quantum computing and
quantum sensing, as they can facilitate the storage and manipulation of multiple BECs or single
atoms, including highly excited Rydberg states.
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Utilising a purpose-built laser system, higher-order Bragg diffraction has been experimentally
demonstrated up to the fifth-order, transferring 5%hk.s to an atomic ensemble. Combining a
series of pulses, atomic MZIs have been investigated in first- and third-order Bragg diffraction,
revealing an apparent loss and revival of visibility at longer interferometer times, linked to the
mixture of mg sub-states. To evaluate the signals for longer interferometer times, a statistical
approach was chosen, reasoned in the phase-unstable operation mode of the experiment,
making a direct fit to the interference fringe impossible. A statistical model was introduced to
describe this effect with the assumption that a state-dependent external phase is imprinted
onto the individual mg sub-states. Further experimental investigations lead to the discovery
of a magnetic field gradient of 1.0(1) mT/m present in the vacuum chamber of the ATOMICS
experiment. Introducing a state-selective measurement scheme based on the Stern-Gerlach
method and additional evaluation techniques such as ellipse fitting for correlated interfer-
ometers allowed for an in-depth discussion of the observed effect. Moreover, an evaluation
technique for cases where no state-selective measurement can be performed was introduced,
making use of the phase-stable summation of the individual interferometer signals leading to
the loss of visibility. Interferometer measurements using third-order Bragg diffraction were
conducted, confirming the linear scaling of this effect with the Bragg order and in excellent
agreement with the simple model introduced to describe the effect. Notably, the coherence
time for interferometers up to third-order in free space was found to be at least 6 ms, with no
loss of visibility for individual interferometers within this window.

To further increase the performance and sensitivity of large-momentum-transfer atom interfer-
ometers, a new technique for the generation of mirror pulses was experimentally implemented.
Following a theoretical proposal, the length and amplitude of the mirror pulses were adjusted
to generate pulses that selectively reflect only the desired diffraction order. This approach
ensures transparency for parasitic paths, which are inherent to higher-order Bragg diffraction
[169, 170]. Hence, mirror pulses showing a dichroic behaviour have been successfully imple-
mented for the first time. Extensive experimental investigations in third order, accompanied by
numerical studies in collaboration with the research group of Prof. E. Giese were conducted to
showcase the capabilities of this new technique. Additional measurements in fifth order were
used to confirm the scalability of the technique [171].

The techniques presented pave the way for the experimental implementation of higher-order
MZIs at the ATOMICS experiment. To further investigate the experimental capabilities, the
step towards guided interferometers is unavoidable either in a linear waveguide (LWG) or
arbitrary guiding structures provided by additional optical setups. Changing the layout of the
Bragg system from counter-propagating to a retro-reflective or hybrid setup will likely reduce
phase noise, enabling phase-stable operation over longer interferometer times and improving
signal evaluation.

Furthermore, the simplicity of the selected methods ensures they can be easily integrated into
existing experimental setups that utilise Bragg diffraction for atomic interferometry. Expanding
the technique to double-Bragg diffraction will further improve the robustness of quantum
sensors built around atomic interferometers.

Finally, a new optical setup based on two digital micromirror devices (DMDs) has been
introduced, capable of producing arbitrary two-dimensional optical dipole potentials by direct
reimaging of the DMDs surfaces. Using two Ti:Sa laser systems allows both identical optical
setups to be utilised in red- or blue-detuned configurations, offering a high degree of flexibility
for external guiding and manipulation of ultracold ensembles such as BECs. The dynamic
capabilities of the DMD modules allow for time-dependent potentials to be used, implement-
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ing control over spatial and potential depth properties. Combining these external potentials
with a light sheet system can be used to manipulate atomic ensembles in fully customisable
two-dimensional potential landscapes. However, the appearance of corrugations in the light
sheet system presents a challenge for fully implementing these potentials, and ongoing work is
focused on mitigation strategies and improved optical setups.

The combination of DMD systems with a linear waveguide (IWG) generated by one of the
crossed dipole trap (CDT) beams enabled the adiabatic formation of ultracold ensembles in
dipole potentials. Starting with a purely thermal ensemble above the critical temperature for
condensation in a reservoir potential of the attractive LWG in combination with a blue-detuned
barrier generated by a DMD, narrow red-detuned dimples were introduced generated by the a
DMD. Implementing purging techniques to lower the atomic density of the thermal reservoir
upon detection and using time of flight methods, the expansion behaviour of single, double and
quadruple dimple setups were investigated. The ensembles generated show temperatures well
below the critical temperature and asymptomatically expand to aspect ratios differencing from
unity, showcasing clear signs of ensembles with increased phase-space density. Implementing
time-dependent dimple potentials was used to generate two initial dimple ensembles and move
them from the centre of the reservoir close to the edge. This allowed for the generation of a
secondary pair of ensembles, totalling to four ensembles generated from the same thermal
reservoir in a dynamic process. The incoherent sum of the expanding ensembles lead to the
discovery of an intriguing pattern, showing an inversion of the location of maximum and
minimum intensity depending on the expansion time. Comparing the observed expansion
behaviour to numerical results for purely thermal atoms and BECs in the Thomas—Fermi regime
was conducted. This led to the conclusion, that the observed effect cannot be explained by
thermal expansion of a non-interacting ensemble. The experimental results obtained in this
project are in good agreement with similar experiments conducted in other groups at earlier
times [232].

In summary, the techniques and results presented in this thesis establish a versatile platform

for advanced quantum control and precision measurement with ultracold atoms. The innova-
tions in trapping, interferometry, and potential engineering not only address key challenges in
the field, but also open new avenues for scalable quantum technologies.
Future work will focus on three main directions. First, integrating automated data analysis
and refining optical potentials will further optimise experimental performance. Second, the
realisation of guided interferometry and multi-site quantum devices will expand the capa-
bilities of the platform, with particular emphasis on interferometric measurements in linear
waveguides using higher-order Bragg diffraction and the estimation of BEC coherence times.
Third, combining compensation techniques with a new optical setup to overcome corrugations
in the light sheet system will enable the use of a wider variety of external guiding potentials.
Additionally, extending the promising results of adiabatic generation of ultracold ensembles
and increasing the number of atoms will allow for interferometric measurements analogous to
those performed with a BEC from the CDT, providing a direct means to verify the coherence
properties of these ensembles.

Overall, the methods developed in this work are broadly applicable and have the potential
to accelerate progress in quantum sensing, computation, and fundamental research.
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A. ATOMICS setup supplementary material

In addition to the brief description of the ATOMICS laser systems given in Section 2.4, here
some additional information is presented for documentation purposes. In Fig. A1, the hyper-
fine structure is schematically visualised as taken from [67]. Coloured solid arrows depict
the optical transitions used for cooling (|525; 2, F=2) — 152 Py /2, F' = 3)) and repumping
(|52S1 /9, F = 1) — [5°Py 5, F' = 2)) in the MOT stage of the experiment. Additionally, the
transition used for the optical pumping is shown (|525; o, F' = 1) — |52 P35, F' = 1)).

A second set of coloured arrows shows the actual stabilised laser frequencies including their
respective offset relative to the transition on ®’Rb. The spectroscopy master and repumping
laser are stabilised to a fixed offset of A = +27 x 200 MHz relative to the respective transition,
while the offset of the cooling laser is shifted for the optical molasses shown by a dashed red
line, visualising the maximum frequency shift. AOMs with fixed frequencies, visualised by
blue downwards pointing arrows, are utilised to shift the light back into resonance. The light
necessary for the optical pumping is generated by compensating the offset via an AOM in
double-pass configuration (doubled blue arrows) such that the light is shifted by twice the
AOM frequency.

Shaded areas depict the frequency range over which the chirp-cooling and chirp-repumping
laser are continuously chirped to compensate for the changing Doppler detuning.
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Fig. A1.: Hyperfine structure of the D2-line of 87Rb [67]. Solid red, blue, and green arrows depict the import optical
transitions for the MOT i.e. the cooling and repump transition. Furthermore the transition used for
optically pumping atoms in a dedicated mr sub-state is shown. Additional arrows depict the stabilised
operating frequency for the spectroscopy master, cooling and repumping laser. The offset frequency of
the cooling laser is variable and can be changed to realise the optical molasses (red dashed line below
F’ = 3). Shaded areas show the frequency chirping range for the chirp-cooler and chirp-repump laser.
Solid downwards pointing arrows depict the frequency shifts applied by AOMs. This schematic was
initially made by P. Mittenbdihler for his bachelor thesis and adapted for this work [101].
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B. Conical refraction supplementary material

Similar to the derivation of the trapping frequencies in radial and axial direction discussed
in [44, 105, 120], here the normalised coordinates are used to derive the prefactors for a
harmonic approximation of the light field. The derivation presented here is a reproduction of
the references mentioned, using the normalised coordinate system.

Assuming a radially symmetric Gaussian input beam, the Belskii—-Khapalyuk-Berry (BKB)
integrals are given by Egs. (3.7a) and (3.7b). Using the identity of the i-th order Bessel
function of the first kind J; given by

> (71)771 T\ 2m+ta
Ja(z) = mzz:o m!l'(m +a+1) (5) (B.1)

the BKB integrals can be solved analytically [193, Sec. 3.3.1.3.4]. This results in

o0 (_l)mp2m 1 _pg
Bo(p,2) = Eo(2) Y ——2b xF L5 B2
0(p, Z) = Eo( )g_:om!(lJriZ)mH X1y <m+ ’2’1+iZ> (B.2a)
o
(—1)mp2m+1 3 —p3
Bi(p,Z) =2pEo(2) S ~ L P L F 2, 5 s B.2b
1(P, ) 0o 0( )Z m!(l—l—iZ)m+2 X1 | m+ ’2’(1+iZ)2 ( )

with the Ej the initial amplitude of the Gaussian input field and F; the Kummer confluent
hyper-geometric function [129, 193, Sec. 3.3.1.3.4]. Keeping only the m = 0 terms, which is
sufficient to describe the intensity distribution for p < 1 [44] results in

1 1 —p}

B Z)=Ey(Z)——= x1I1 (1, = B.
0 (0.2) = Bu(2) 1y o (L o) ®3)
1 3 —pt
B]_ (p, Z) = QPOEO(Z)m X]_Fl 2, 5, m . (B.4)

Therefore, the intensity distribution for circularly polarised light given by

I(p$1,2)=|Bo(p. Z)|* + |B1(p, Z) |? (B.5)
2 2 2 2
A (13 58 A (23 5%)
= Ey(Z)? 4p2p? B.6
0(2)" 1+iZ T T iz (B.6)

The first term represents an offset that is equal to 0 for the dark-focus regime and Z = 0
which increases for Z # 0. Dividing by the maximal intensity Io(Z) = |Eo(Z)|? removes the
dependency on specific properties of the input Gaussian beam resulting in

3
2 lFl <27 57 _p%)>

2
P = xpp* (B.7)
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for the focal plane at Z = 0. For planes outside of the focal plane, the parameter y, becomes
Z-dependent

2 2
3 —P
1 (27 20 1+i0Z)

(1 +iz)? 8

Xp(Z) = 4/03

For the harmonic approximation along the Z-axis only By(0, Z) has to be considered, since
B1(0,Z) = 0. In this case, the integral in By (0, Z) can be solved analytically, resulting in

2 2p0D (2
I(UaZ)=|Bo(072)’2=io‘ljim 1+ p°\/1<T V?;Z>
1

(B.9)

with the Dawson function D(z) [44, 105, 120, 234]. Again, dividing by 1(0,0) = E3 to remove
experimental dependencies and taking the Taylor series, leads to
1(0,2)
1(0,0)

FN

~
~

Conical refraction with microlens arrays

Fig. B1 shows the minimum intensity reached in the central bottle-beam trap as a function
of the ratio of pitch aya of an microlens array (MLA) to the waist w(0. The intensity value is
shown for the optimal ring regime p, [see Fig. 3.22] for each ratio p, = ampa/wo, normalised
to the respective Iy on a linear (blue) and logarithmic (red) scale.

124



1 110
0.6 - 10
10!
0.5 1 W
L1072
w3
X 04 A )
o E 1077
I
N
- | | —4
= 03 L 10
|
%‘ L 1070
gg 0.2 \ 2
& _
3 10-6
0.1 1 \ i
\ _ v
0.0 A | 1078
T T T T T T T T T
2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00
aMLA/wo

Fig. B1.: Minimal midpoint intensity for the optimal value of py as a function of p, = ama/wo normalised to the
respective I, on a linear (blue) and logarithmic (red) scale. For p, > 2.54(2) the midpoint intensity is less
then 1 x 1073 x I. For values p, > 3.46(2), the optimal ring regime is p5° = 0.924 and the midpoint
intensity decreases as expected. The discontinuous behaviour in the centre if the logarithmic plot is likely
reasoned in numerical precision of the grid chosen.
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C. Bragg diffraction supplementary material

To estimate the width of a pulse width 100 us length, the time-bandwidth product (TBP) of
a Gaussian pulse is used, given by the product of the FWHM in time and frequency domain
[235]:

T B Pgayss = FWHM; x FWHM,, =~ 0.44 (B.1)

Using the Doppler shift term of Eq. (4.2) and the FWHM of the Gaussian pulse in time domain
FWHM, = 40.5 ps, the resulting FWHM in momentum space is given by

T'B Pgauss m

FWHM, =
P FWHM; kg

= 0.067kegt (B.2)

for 87Rb.

Statistic analysis

In Fig. C1, two histograms of the total interferometer signal Sy, = S; + S_ of a first order MZI
for T'= 1.6 ms (blue) and 7' = 2.5 ms (orange) are shown. Additionally, the PDF is plotted for
the average fit parameters obtained by the bootstrapping method. For T' = 1.6 ms, the average
visibility V(1.6 ms) = 0.18(1) is close to the minimum, reached for 7" ~ 1.75ms. At T' = 2.5 ms,
the revival of the visibility can be observed, reaching V(2.5ms) = 0.75(2) close to the initial
maximum visibility Vy = 0.77(1) [see Section 4.3].
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Fig. C1.: Histograms of the total interferometer signal Sy« = S+ + S_ of a first order MZI for T = 1.6 ms (blue)
and T = 2.5ms (orange). A dashed line shows the PDF given by Eq. (4.18) plotted for the averaged
fit parameters for T = 1.5 ms obtained by the bootstrapping method [see Section 4.3]. The solid line
shows the respective PDF for T = 2.5 ms with the average visibilities given by V(1.6 ms) = 0.18(1) and
V(2.5ms) = 0.75(2).
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Phase-stable summation of interferometers

Fig. C2 shows the same signals as Fig. 4.8 with reduced phase noise, revealing the interference
fringes of the individual interferometers. This serves to highlight the effect of how the phase-
shifted summation of two signals can lead to the total loss of visibility for g = 7/2. The
visibility is set to ¥V = 0.75 with the phase-noise generated from an uniformly distribution
[—7/50,7/50]. The baseline noise is given by a normal distribution Eq. (4.17b) with o}, = 0.025
and b = 0.

Interference signal S

Interference signal S

T T T T T
0 200 400 600 800 1000
Experimental realisation (#)

Fig. C2.: Schematic visualisation of the beating of correlated MZIs for g = 7 /4 (top) and 6 = 7/2 (bottom). Red
crosses and blue dots show the individual MZI signals S+, with orange diamonds showing their sum.
On the right side the histograms of the positive, negative and sum signals are shown in corresponding
colours, showcasing a reduces apparent visibility for 65 = 7/4 and a complete loss for 65 = 7/2.

Dichroic mirror pulses

To experimentally verify the efficiency of an DMP in a MZI, interferometer times greater than
4 ms are needed to properly discard the parasitic paths which is currently not possible at the
ATOMICS experiment. Therefore, only the reflectivity of the DMP was measured experimentally
and the full MZI sequence was investigated numerically by P. Schach and M. Dietrich from the
group of Prof. E. Giese. For a conventional mirror Fig. C3a and the optimised DMP Fig. C3b
presented here to complement the experimental findings. A detailed discussion can be found
in [169, 171].
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(a) Initial configuration without optimised DMP. (left) Numerical simulation shows both resonant (0,3) and parasitic (1,2) paths
being reflected into output ports (black dashed lines). (right) Experimental absorption images confirm parasitic orders
(red/green) are reflected alongside resonant orders (blue/purple) [see Fig. 4.20].
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(b) Optimised DMP configuration. (Left) Simulation demonstrates selective reflection - only resonant paths (0,3) are reflected
while parasitic paths (1,2) transmit through. (Right) Experimental images show parasitic orders remain in input momentum
class after mirror pulse.

Fig. C3.: Comparison of Bragg mirror pulse performance (a) without and (b) with optimised dichroic mirror pulse
(DMP). Numerical simulations (left columns) and experimental absorption images (right columns)
demonstrate the DMPs ability to suppress parasitic diffraction orders while maintaining high efficiency
for resonant paths. Numerical data courtesy of M. Dietrich and P. Schach (group of Prof. E. Giese). The
atom density is displayed on logarithmic scale with the input to every path normalised to unity. Dashed
coloured lines indicate the paths of non-displayed orders and dashed black lines the output ports of the
MZI associated with po and ps. The final section of the time evolution hides the atoms not detected in
these ports to augment the contribution of each path to the signal.
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D. DMD potentials supplementary material

In addition to the measurements presented in Section 5.2.1, a similar measurement has been
conducted with increased waist sizes w, = 15 um to evaluate if a different expansion behaviour
can be observed. The experiment was carried out for the same parameters as discussed in
the main section. In Fig. D1 the normalised line densities are shown analogously to Fig. 5.9
with the same expansion behaviour visible. For a dimple depth of |U|gimp = 2 Erec [Fig. D1
(top right)], the emerging pattern is qualitatively very similar to the numerically calculated
expansion pattern in Fig. 5.10 (top left). This again indicates a non-thermal nature of the
ensembles produced as it is described by Eq. (5.2b).
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Fig. D1.: Analogue visualisation of the expansion behaviour of for dynamically generated ensembles in dimple
potentials of increased waist w, = 15um. (top) False colour representation of the normalised one-
dimensional density for the expansion during the TOF for |U|gimp = 1 Erec (left) and |U|gimp = 2 Erec (right).
(bottom) Corresponding one-dimensional density for 0 ms (blue) and 6 ms for |U |gimp = 0 Erec and 0 ms for
|Udimp = 2 Erec (0range), visualising the initial location of the dimple potentials. Dashed lines in the top
row images show the selected line densities.
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E. Python environment

To run the evaluation an plotting Python scripts Python 3.12.3 64bit was used. Furthermore,
necessary packages including their version are summarised in Tab. F1. Additionally, the
complete environment has been archived.

Tab. F1.: Python environment and packages required to compile the evaluation scripts for this thesis.

Component Version / Value

Spyder 6.0.7 (conda)

Python 3.12.3 64-bit

Qt 5.15.2

PyQt5 5.15.10

Operating System Windows-11-10.0.26100-SPO
matplotlib 3.9.2

numba 0.60.0

numpy 1.26.4

scipy 1.13.1
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F. List of publications

D. Pfeiffer, L. Lind, J. Kiiber, F. Schmaltz, A. Turpin, V. Ahufinger, J. Mompart, and G .Birkl,
Trapping of Bose-Einstein condensates in a three-dimensional dark focus generated by conical
refraction, Physical Review A 108, 053320 (2023)!

D. Pfeiffer, M. Dietrich, P. Schach, E. Giese, and G. Birkl, mirror pulses for optimized higher-order
atomic Bragg diffraction, Physical Review Research 7, L012028 (2025)?

N. Bazhan, A. Svetlichnyi, D. Pfeiffer, D. Derr, G. Birkl, and A. Yakimenko, Generation of Joseph-
son vortices in stacked toroidal Bose-Einstein condensates, Physical Review A 106, 043305 (2022)

Y. Borysenko, N. Bazhan, O. Prykhodko, D. Pfeiffer, L. Lind, G. Birkl, and A. Yakimenko,
Acceleration-driven dynamics of Josephson vortices in coplanar superfluid rings, Physical Review
A 111, 043308 (2025)

L. Lind, D. Pfeiffer, S. Reikig, and G. Birkl, Optimized three-dimensional bottle-beam arrays
generated by conical refraction, (in preparation)

My contributions to this work include the collection, evaluation, and presentation of experimental data in close
collaboration with L. Lind. Furthermore, the generation, evaluation, and presentation of all numerical data has
been done by me.

2My contributions to this work include the collection, evaluation, and presentation of all experimental data as
well as the presentation of all numerical data generated by M. Dietrich and P. Schach.
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