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SUMMARY

In 1925, Einstein predicted the condensation of bosons into the ground state
of the system for low (but finite) temperatures. Several phenomena, including
superfluidity and superconductivity have been associated with Bose-Einstein
condensation, but these systems interact strongly with their environment and
pure Bose-Einstein condensation could not be established. It took 70 years,
in which time the laser was discovered, and laser cooling techniques to ma-
nipulate atoms in a dilute atomic gas, before Bose-Einstein condensation in
dilute atomic gases could be demonstrated in 1995. In the first condensation
experiments, BECs were created in a magnetic trap. Since in a magnetic
trap not all mF states of the atom can be trapped simultaneously, thereby
limiting the number of experiments that can be done, other ways of trapping
and generating BECs were sought and found. In 2001, the first all-optical
BEC was made, where the dipole force was used to trap atoms in the crossing
of two far red detuned laser beams. In an optical dipole trap not only atoms
in different internal states can be trapped, but also different atomic species
simultaneously.

In this thesis, the formation of an all-optical Bose-Einstein condensate
with rubidium atoms is presented. Conventional all-optical BECs are usu-
ally created in high power CO2 laser dipole traps, or have complicated laser
cooling schemes and complex dipole trap setups. In our simple and straight-
forward setup, we load rubidium atoms from a magneto-optical trap into a
crossed optical dipole trap created by a single frequency Yb:YAG laser with
a wavelength at 1030 nm. The small wavelength allows for a small diffrac-
tion limit, and permits us to use standard optical materials, thus making the
experimental setup cost effective. Other attempts to achieve Bose-Einstein
condensation in a multi-mode (frequency) fiber laser at 1064 nm failed, be-
cause the atom loss was quite high. It is assumed that the multi-mode
character of the fiber laser induces Raman transitions in rubidium atoms,
thereby heating them.

We can trap about ∼ 5 · 107 atoms in a single beam dipole trap out of
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∼ 5·109 atoms trapped in the MOT, and ∼ 350, 000 atoms can be trapped in a
crossed beam dipole trap due to the smaller trap volume. 70% of the atoms in
the dipole trap is optically pumped into one mF state. Quantum degeneracy
is reached by evaporatively cooling the atoms in the crossed dipole trap by
ramping down the laser power with three linear ramps. We can independently
change the power of each beam by an AOM. This allows us to use one beam
as an atom waveguide for future experiments.

After evaporation, we typically have about 10, 000 atoms at a temperature
below the critical temperature. We have proved Bose-Einstein condensation
by using the anisotropic expansion of a quantum degenerate gas trapped
in an anisotropic potential. The aspect ratio of our atom cloud changed
during a time of flight from 0.7 to 1.2 in 10 ms, thus proving that we have
reached quantum degeneracy. We have about 5, 000 condensed atoms in our
optical dipole trap at a temperature less than 100 nK. The remaining atoms
are thermal. Bose-Einstein condensation is obtained within 8 s, and we can
repeat the experiment every 30 s.

It should be mentioned that the Bose-Einstein experiment was moved
from the ”Leibniz Universität Hannover” to the ”Technische Universität Darm-
stadt”, and had to be completely rebuilt. All-optical Bose-Einstein conden-
sation was reached within one year after the move.

Our Bose-Einstein condensation setup presents an ideal starting point for
using our condensates in combination with miniaturized atom optical setups
based on our novel microfabricated optical elements. With our microlenses,
we can create a number of possible dipole trap configurations, such as the
dipole trap array or the cylindrical microlens array. Using microlenses in
miniaturized atom optical setups opens a completely new field of coherent
atom optics. Also because the tight confinement of the microtraps allows us
to load a 3D BEC, a 1D BEC, or a Tonks-Girardeau gas in the micropoten-
tials depending on the density.



ZUSAMMENFASSUNG

Einstein sagte 1925 voraus, dass unterhalb einer gewissen Temperatur nahe
dem absoluten Nullpunkt ein signifikanter Anteil eines bosonischen Atom-
ensembles im Grundzustand eines Systems kondensieren kann. Mehrere
Phänomene wie zum Beispiel die Suprafluidität und die Supraleitung stehen
in engem Zusammenhang mit der Bose-Einstein-Kondensation, jedoch gibt
es in diesen Systemen starke Wechselwirkungen mit der Umgebung, sodass
die Realisierung eines reinen Bose-Einstein-Kondensates erschwert ist. Es
dauerte 70 Jahre, in denen der Laser und die Laserkühltechniken entwickelt
wurden, die eine Manipulation von Atomen erlauben, bis 1995 erstmals ein
Kondensat in verdünnten atomaren Gasen realisiert werden konnte. In den
ersten Experimenten fand die Kondensation in einer Magnetfalle statt. Da
aber in einer solchen Falle nicht alle magnetischen Unterzustände eines Atoms
gefangen werden können, wurde nach anderen Möglichkeiten gesucht. In 2001
wurde das erste Kondensat mit rein optischen Methoden erzeugt. In diesem
Experiment wurde die optische Dipolkraft genutzt, um Atome im Fokus
zweier gekreuzter fern rotverstimmter Laserstrahlen zu gefangen. In einem
rotverstimmten Laserstrahl können nicht nur alle magnetische Unterzustände
gleichzeitig gefangen werden, sondern auch unterschiedliche Atomsorten.

In dieser Doktorarbeit wird die Erzeugung eines Bose-Einstein-Konden-
sates aus Rubidium-Atomen mit rein optischen Mitteln präsentiert. Bis-
lang wurden Kondensate zumeist im Fokus eines Hochleistungs-CO2 Laser-
strahls erzeugt, oder die verwendeten experimentellen Aufbauten waren sehr
aufwendig und komplex. In unserem einfachen Aufbau werden Rubidium-
Atome direkt aus einer magneto-optischen Falle in einer gekreuzten Dipol-
falle umgeladen. Die Dipolfalle wird von einem Yb:YAG Laser mit einer
Wellenlänge bei 1030 nm erzeugt. Die niedrige Wellenlänge weist ein geringes
Beugungslimit auf und erlaubt uns die Benutzung von konventioneller Optik
und macht dadurch den experimentellen Aufbau kostengünstig. Andere Ver-
suche ein Kondensat mit einem Mehrmodenfaserlaser bei einer Wellenlänge
von 1064 nm zu erzeugen sind gescheitert, da die Verluste in der Dipolfalle



vi Contents

viel zu hoch waren. Es wird vermutet, dass die Mehrmoden-Charakter des
Faserlasers Raman Übergange in den Rubidium-Atomen hervorgerufen wer-
den, die zu einem Aufheizen des Atomensembles führen.

Wir können ∼ 5 · 109 Atome in unserer magneto-optischen Falle fangen,
von denen wir ∼ 5 · 107 Atome in einer Einzelstrahldipolfalle, und etwa
350, 000 Atome in einer gekreuzten Dipolfalle umladen können. 70% der
Atome pumpen wir optisch in einen einzigen magnetischen Unterzustand.
Quantenentartung wird erreicht durch das evaporative Kühlen der Atome in
der Falle, indem die Intensität des Lasers in drei linearen Rampen herun-
tergefahren wird. Dabei können wir über akustooptische Modulatoren jeden
der beiden Strahlen individuell in der Leistung ansteuern. Dies erlaubt es
uns auch, einen der Strahlen als einen Wellenleiter für künftige Experimente
zu nutzen.

Nach der Evaporation haben wir typischerweise 10, 000 Atome mit einer
Temperatur unterhalb der kritische Temperatur. Wir haben das Erreichen
der Bose-Einstein Kondensation nachweisen können, indem wir die anisotrope
Ausdehnung eines Kondensats in einem anisotropen Potenital ausgenutzt
haben. Das Aspektverhältnis unserer Atomwolke hat sich dabei innerhalb 10
ms von 0.7 auf 1.2 umgekehrt, damit wurde das Beweis von dem Erreichen
der Bose-Einstein Kondensation in unserer optischen Dipolfalle geliefert. Wir
haben 5, 000 kondensierte Atome bei einer Temperatur unterhalb 100 nK in
unserer Dipolfalle. Die restlichen Atome sind thermisch. Die Bose-Einstein
Kondensation kann innerhalb 8 s erreicht werden, und wir können alle 30 s
das Experiment wiederholen.

Dabei sollte erwähnt werden, dass das Experiment von dem Leibniz Uni-
versität Hannover nach der Technischen Universität Darmstadt umgezogen
wurde. Das Experiment wurde komplett neu aufgebaut, und Bose-Einstein
Kondensation konnte innerhalb eines Jahres nach der Neuaufbau erreicht
werden. Unser Aufbau stellt eine ideale Grundlage für weitere atomopti-
sche Experimente mit unseren Kondensaten in mit mikrooptischen Elementen
erzeugten Dipolfallen dar. Mit diesen Mikrolinsen können wir verschiedene
Dipolfallengeometrien realisieren, wie zum Beispiel ein Dipolfallenarray oder
ein zylindrisches Dipolfallenarray. Das Benutzen von Mikrolinsen in minia-
turisierten atomoptischen Aufbauten eröffnet ein neues Forschungsgebiet in
der kohärenten Atomoptik. Besonders der enge Einschluss in den Mikrofallen
sollte uns die Erzeugung eines 3D Kondensats, eines 1D Kondensats, oder
eines Tonks-Girardeau gases erlauben, je nach dem wie die Dichte der Wolke
ist.



1. INTRODUCING BOSE-EINSTEIN CONDENSATES IN

DIPOLE TRAPS

In 1924, Satyendra Nath Bose derived Plancks law for blackbody radiation.
In his paper he assumed that the photons were identical and indistinghuish-
able, and allowed any number of photons to occupy the same quantum state.
He sent his paper to Albert Einstein, who generalized this idea to an ideal gas
of identical atoms or molecules. This led to the Bose-Einstein distribution

f(E) =
1

e(E−µ)/kBT − 1
, (1.1)

where E is the energy, µ is the chemical potential, kB is Boltzmann’s constant
and T is the temperature. Einstein did an astonishing discovery, he found
that for low but finite temperatures the particles condense into the ground
state! This phenomenon is called Bose-Einstein condensation (BEC), and it
can only occur for integer spin particles (bosons).

Bose-Einstein condensation is based on the indistinguishability and wave
nature of particles. An ideal gas at room temperature can be described with
a classical Maxwell-Boltzmann distribution, all the atoms are assumed identi-
cal but they are distinguishable. This is because the de Broglie wavelength of
the atom is much smaller than the average distance between the atoms. Due
to the Heisenberg uncertainty principle the position of an atom is smeared
out over a distance, which is given by the de Broglie wavelength

ΛdB =
h√

2πmkBT
, (1.2)

where h is Planck’s constant, m and T are the mass and the temperature
of the atom, respectively. As can be seen in equation (1.2), when the tem-
perature decreases, the de Broglie wavelength ΛdB increases. For very low
temperatures the wavelength becomes on the order of the average distance
between the atoms, and the wavepackets start to overlap. The indistin-
guishability of the atoms becomes important, and the (bosonic) atomic gas
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is governed by Bose-Einstein statistics. At this critical temperature a phase
transition occurs: All the atoms are condensed into the same quantum state
and form a Bose-Einstein condensate (BEC). Since all the atoms in a BEC
are described by the same quantum mechanical wave function, they behave
as a single macroscopic quantum entity. This phenomenon allows us to in-
vestigate quantum mechanical effects with macroscopic entities.

The first evidence for BEC was found by F. London in the 1930s while he
was investigating liquid helium. When liquid helium is cooled to a temper-
ature lower than 2.17 K, the liquid undergoes a transition from the normal
phase to the superfluid phase. This superfluidity of the liquid occurs when
atoms condense to the lowest energy state. Bose-Einstein condensation can
also be observed in superconducting solids. A superconductor loses its re-
sistivity below a certain critical temperature, this disappearance of the re-
sistance is explained in the BCS theory, developed by John Bardeen, Leon
Cooper and Robert Schrieffer. In the BCS theory, Cooper pairs are formed,
when two electrons close to the Fermi level couple through interactions with
the crystal lattice. The Cooper pairs act like bosons and can condense into
a state of zero electrical resistance. However, both systems interact strong
with their environment, thereby complicating the physics involved.

Bose-Einstein condensation in a dilute atomic gas was observed for the
first time in 1995 by the groups at JILA in Boulder, Colorado (rubidium) [1],
Rice University in Houston, Texas (lithium) [2] and at MIT in Cambridge,
Massachusetts (sodium) [3]. In 2001, the nobel prize was given to Eric A.
Cornell, Wolfgang Ketterle and Carl E. Wieman for their work on Bose-
Einstein condensation.

The first condensates were created in a magnetic trap, in which only
atoms in a certain mF state can be trapped at the local minimum of the
magnetic field. Nonetheless, for many experiments it is more advantageous
to trap atoms independently from their magnetic moment, which can be done
with optical dipole traps. The optical dipole trap is based on the interaction
of inhomogeneous light fields with the induced electric dipole moment of the
atoms, and was demonstrated for the first time with neutral atoms in 1986 [4].
The dipole trap can not only be used to trap atoms in different internal states,
but it can also be used to trap atoms without a magnetic moment, or to
trap different isotopic atoms or atomic samples simultaneously. Furthermore,
the dipole trap can be overlapped with a magnetic field, to manipulate the
scattering length of the atom through Feshbach resonances [5].

The first BEC in an optical dipole trap was transferred from a magnetic
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trap into the dipole trap in 1998, but it wasn’t until 2001, before a so-called
all-optical BEC could be created in a dipole trap [6]. Rubidium atoms were
trapped in the crossing of two CO2 laser beams and evaporatively cooled
down to quantum degeneracy by ramping down the laser power. Since then
a variety of all-optical BECs, such as sodium [7], cesium [5] and ytterbium
[8] have been prepared.

In this thesis, the preparation of a 87Rb Bose-Einstein condensate in an
optical dipole trap is presented. The optical dipole trap is created with an
Yb:YAG laser with a wavelength λ = 1030 nm. To our knowledge, we are
the first to have reached all-optical Bose-Einstein condensation with rubidium
atoms in an 1-micron laser in a simple and direct manner. In our experiment,
we dispense with complex cooling techniques, like they employed in the group
of D. Weiss [9]. In their experiment, they precooled rubidium atoms in an
optical lattice before they loaded the atoms in a compressable crossed dipole
trap. In our simple scheme, we load atoms from a magneto-optical trap
directly into our dipole trap and with subsequent cooling, we reach quantum
degeneracy.

Using a 1-micron laser has several advantages in respect with the CO2

laser, which has a wavelength λ = 10 µm, since the diffraction limit of the
CO2 laser is much larger and therefore cannot be used in combination with
the microfabricated microlenses used in our research group [10]. Another
advantage is that the 1-micron laser can be used with standard optical ma-
terials, making the setup cost effective.

The Bose-Einstein condensate is the first step towards experiments where
we want to investigate and exploit the wave nature of atomic matter. This
particular research field is called atom optics and explores the possibility of
manipulating atoms in the same way that conventional optics controls light
beams. The field of atom optics started in 1929, where Stern demonstrated
the reflection and diffraction of atoms from metallic and crystalline surfaces
[11, 12]. However, it wasn’t until the introduction of laser cooling techniques
[4, 13, 14] that the field of atom optics with neutral atoms started to boom.
Since then, many atom optical elements (such as lenses, mirrors, beam split-
ters, etc. [15]) have been created, and atom interferometers have been used
to measure fundamental constants [16], atomic properties [17, 18], accelera-
tion forces [19, 20, 21] and the rotation of the earth [22, 23, 24]. With the
discovery of Bose-Einstein condensates in dilute atomic gases, the interest
of atom optics nowadays lies in creating compact and reliable atom optical
setups, which expands the applicability of atom optics in fundamental re-
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search, and simultaneously allows the technological implementation of atom
optical measurement systems. Many miniaturized atom optical setups are
based on microfabricated charged and current carrying structures [25]. With
these so-called atom chips, neutral atoms can be guided, trapped, manipu-
lated [26, 27, 28], and even Bose-Einstein condensates can be created with
the miniaturized setups [29, 30].

There are a number of disadvantages connected with trapping and ma-
nipulating atoms with charge or current carrying wires. The biggest dis-
advantage is that the atoms are trapped only a few 100 µm away from a
metallic surface. This significantly reduces the trapping and coherence times
due to the coupling of atoms to fluctuating magnetic fields resulting from the
roughness of the surface or the wires [31, 32]. Other disadvantages are that
the optical access is limited, and the setups are relatively complex. These
disadvantages can be circumvented when miniaturized and integrated atom
optical setups based on microfabricated optical elements are used. Our re-
search interest is based on loading our condensates into the micropotentials
created by illuminating the microfabricated lenses with light. As the next
important experiment, we want to load the condensate into a ring-shaped
potential created by a microfabricated ring-lens. The ring can be used as a
Sagnac interferometer.

This thesis is structured as follows: Chapter 2 explains the theory of Bose-
Einstein condensation. In chapter 3, the optical dipole force is explained,
which we use to create optical potentials in which we can trap atoms. For
our BEC experiment we use a crossed optical dipole trap. In this trap, we
capture rubidium atoms loaded directly from a magneto-optical trap (MOT).
The experimental setup is explained in the second half of chapter 3. Chap-
ter 4 demonstrates how we generate a Bose-Einstein condensate. First, the
loading of atoms from the MOT into the dipole trap is explained and op-
timized. Then, through subsequent evaporative cooling, we cool down the
atoms until we reach quantum degeneracy. Chapter 5 shows a preparatory
experiment: The Bose-Einstein condensate will in the near future be loaded
into the ring-shaped potential. Due to the tight trapping frequencies, the
BEC might become a 1D BEC or a Tonks-Girardeau gas, depending on the
density.



2. BOSE-EINSTEIN CONDENSATION

Bose-Einstein condensation is based on the indistinguishability and wave
nature of particles. In a very simple description, atoms are depicted as
quantum mechanical wavepackets with an expansion on the order of the
thermal de Broglie wavelength:

ΛdB =

√

2π~2

mkBT
, (2.1)

where m and T are the mass and the temperature of the atom. As the atoms
are cooled down, the de Broglie wavelength increases. When the atoms are
cooled down to a temperature for which the de Broglie wavelength equals
the mean distance between the atoms, the wavepackets start to overlap and
the indistinguishability of the particles becomes important. Depending on
whether the particles are fermions (particles with half-integer spin) or bosons
(particles with integer spin), they behave differently and obey Fermi-Dirac
or Bose-Einstein statistics, respectively. As the gas is cooled down to quan-
tum degeneracy, bosons condense into the ground state of the system, and
form a Bose-Einstein condensate (BEC), whereas fermions fill up the lowest
lying energy states of the system, where each quantum mechanical state is
occupied by only one fermion, forming a Fermi sea. The formation of a BEC
is depicted in figure 2.1.

As the theory of Bose-Einstein condensation has been explained in many
textbooks, this chapter will only summarize the main findings that are im-
portant for this thesis. More literature can be found in [33, 34, 35].

2.1 The Non-Interacting Bose Gas

2.1.1 The Thermodynamic Limit

For trapped non-interacting bosonic atoms in thermal equilibrium, the mean
occupation number for a given quantum state ν is given by the Bose distri-
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Fig. 2.1: Bose-Einstein condensation. At high temperatures, the atoms can be
described by Maxwell-Boltzmann statistics just as well as by quantum
statistics. As the temperature is lowered, the de Broglie wavelength of
the atoms become larger, until the de Broglie waves start to overlap and
the atoms condense into the ground state.

bution function:

f(ǫν) =
1

e(ǫν−µ)/kBT − 1
, (2.2)

where ǫν is the energy of the respective state and µ is the chemical potential.
The chemical potential is determined by the condition that the sum of the
occupancies of the individual levels must be equal to the total number of
atoms: N =

∑

ν f(ǫν). The mean occupation number of the ground state
is much smaller than 1 for high temperatures. The chemical potential µ is
therefore smaller than the energy of the lowest energy state ǫ0. When the
temperature is lowered, the occupancy in the lowest energy state increases,
and the chemical potential also increases. The total number of atoms can
be split into the total number of atoms in the ground state N0 and the
total number of atoms in excited states Nex. When the chemical potential
µ approaches the energy of the ground state ǫ0, the number of atoms in the
ground state becomes macroscopic, thus approaching the total number of
atoms of the system. The total atom number is given by:

N = N0 + Nex = N0 +
∑

ν 6=0

1

e(ǫν−ǫ0)/kBT − 1
. (2.3)

A macroscopic number of atoms is in the ground state, as soon as the excited
atom number Nex falls below the total atom number N . This describes the
effect of Bose-Einstein condensation. The highest temperature for which a
BEC exists is referred to as the transition temperature and is denoted by



2.1. The Non-Interacting Bose Gas 7

Tc. This critical temperature Tc can also be defined as being the lowest
temperature for which all the atoms are still in excited states (N0 ≪ N).
The critical temperature can then be determined from equation 2.3. Here
we do this for the case of a harmonic trap as it is used in the work described
in this thesis. Therefore, we replace the sum over the states by an integral
over the energy density of states, and use the density of states for a harmonic
potential g(ǫ) = ǫ2

2~3ω̄3 , and obtain:

Nex =

∫ ∞

0

dǫ
ǫ2

2~3ω̄3(e(ǫ−ǫ0)/kBT − 1)
. (2.4)

Evaluating the integral and setting Nex = N yields for the critical tempera-
ture:

kBTc = ~ω̄

(

N

ζ(3)

)1/3

, (2.5)

where ω̄ = (ωxωyωz)
1/3 is the geometric mean of the oscillator frequencies of

the three-dimensional harmonic potential

V (r) =
1

2
m(ω2

xx
2 + ω2

yy
2 + ω2

zz
2), (2.6)

and ζ(α) =
∑∞

n=1 n−α is the Riemann zeta function with ζ(3) ≈ 1.202. The
equation shows that for tighter confinement of atoms in a trap and/or larger
atom numbers, Bose-Einstein condensation happens at higher temperatures.
The fraction of condensed atoms in the trap can be calculated from equation
2.3 as well, giving

N0

N
= 1 −

(

T

Tc

)3

. (2.7)

The onset of Bose-Einstein condensation can be determined from the phase
space density. The phase space density is the spatial density of the atoms
multiplied with the density of one atom in momentum space:

ρpsd = nΛ3
dB. (2.8)

The density consists of the condensate density and the thermal density n =
n0(~r) + nT (~r). The thermal density is given by the integral over momentum
space [35]

nT (~r) =

∫

d~p
1

(2π~)3

1

e(V (~r)−µ)/kBT − 1

=
1

Λ3
dB

g3/2(e
−(V (~r)−µ)/kBT ), (2.9)
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with the Bose function gα(x) =
∑∞

n=1
xn

nα . Independent of the trap geome-
try, at T = Tc, the chemical potential fulfills µ ≈ U(~r) and Bose-Einstein
condensation occurs, when in the center of the trap the phase space density
attains the value

ρpsd(0) = nT (0)Λ3
dB(Tc)g3/2(1) = g3/2(1) ≈ 2.612. (2.10)

In the above analysis, the semiclassical approximation was used, where it
was assumed that the atom number goes to infinity. The semiclassical ap-
proximation makes use of a continuous level structure instead of a discrete
level structure. This is only valid when kBTc is much larger than the energy
level spacing ~ω̄. Equation 2.5 shows that kBTc can indeed be much larger
than ~ω̄. In BECs of a few thousand to several million atoms, the transition
temperature is ∼ 20−200 times larger than the energy level spacing ~ω̄, thus
the semiclassical approximation is a good description of the condensate.

2.1.2 The Finite Size Effect

In reality, the thermodynamic limit is never reached, because the number of
atoms that can be trapped and condensed is not infinite. Therefore, Bose-
Einstein condensation is not exactly a phase transition, however the macro-
scopic occupation of the lowest energy level still happens rather abruptly as
the temperature is lowered. To calculate corrections due to the finite atom
number for a non-interacting Bose gas, one can calculate the summation
N =

∑

ν f(ǫν) for a finite number of atoms numerically, as is given in refer-
ence [36]. The results of reference [36] are shown in figure 2.2(a), where it
is demonstrated that there is only a small difference between the thermody-
namic limit and taking into account the finite size of the gas. The condensate
fraction calculated numerically is smaller than in the thermodynamic limit,
and near the phase transition, the onset of BEC is not sudden, but is slightly
rounded off.

A correction to equation 2.7 has been determined in reference [37]:

N0

N
= 1 −

(

T

Tc

)3

− 3ωmζ(2)

2ω̄(ζ(3))2/3

(

T

Tc

)2

N−1/3, (2.11)

where ωm = (ωx + ωy + ωz)/3 is the algebraic mean of the frequencies. It
fits perfectly to the numeric calculations of [36], except for a narrow region
around the critical temperature, where higher orders should be taken into
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Fig. 2.2: (a) Figure taken from reference [36]. It shows the numerically calculated
condensate fraction for a finite number of atoms in a three-dimensional
harmonic potential versus the temperature. The plots are for N = 100
atoms (solid line), N = 1, 000 (short dashes), N = 10, 000 (long dashes)
and N = ∞ atoms (dots). The lower graph is an enlargement of the
region around T = Tc. (b) The graph shows the condensate fraction as
a function of the temperature according to equation 2.11, calculated for
the potential used in our experiments (section 4.5).
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account [35]. Figure 2.2(b) shows the condensate fraction calculated with
equation 2.11 for the potential used in our experiments (section 4.5), together
with the result from the thermodynamic limit. As can be seen in the graph,
equation 2.11 does not take the ”rounding effect” near the critical temper-
ature into account. Nevertheless, the condensate fraction for temperatures
lower than the critical temperature can be calculated from this equation.
Using equation 2.7 to calculate the condensate fraction leads to an error of
approximately 7% for a Bose gas consisting of 1, 000 atoms. Equation 2.7
becomes more accurate for higher atom numbers, for a Bose gas consisting
of 10, 000 atoms, the deviation is only 3%.

Not only the condensate fraction is lowered by the finite size of the Bose
gas, the critical temperature is also lower than the critical temperature given
by equation 2.5. The shift in the critical temperature can be estimated by
setting the condensate fraction in equation 2.11 to zero:

δTc

Tc

= − ωmζ(2)

2ω̄(ζ(3))2/3
N−1/3 ≃ −0.73

ωm

ω̄
N−1/3. (2.12)

For a gas with 1, 000 atoms, the transition temperature is lowered by 7%
compared to the critical temperature calculated with equation 2.5. The fi-
nite size effect can be measured in current experiments. Equation 2.7 still
describes the condensate fraction quite well, as long as the correction to
the critical temperature, given by equation 2.12, is used in the calculations:
Tc → Tc + δTc.

2.1.3 Interacting Atoms

Although BEC is easily achieved in dilute gases (na3 ≪ 1), where the in-
teractions between the atoms are low, they cannot be neglected. The effect
of repulsive interactions is that it expands the atomic cloud, thus decreasing
the density and lowering the critical temperature. The opposite happens
for attractive interactions: The atomic cloud is compressed, leading to an
increase in the density and a higher critical temperature. The shift in the
critical temperature can be determined using the Hartree-Fock approxima-
tion [35, 34], where it is assumed that the atoms are non-interacting bosons
moving in a self-consistent mean field. The shift is given by:

δTc

Tc

= −1.3
a

aho

N1/6, (2.13)
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a is the s-wave scattering length, which is the dominating scattering process
at low temperatures. The harmonic oscillator length aho is given by:

aho =

(

~

mω̄

)1/2

. (2.14)

Equation 2.13 shows that the critical temperature shifts proportionally to
the scattering length. The shift is negative for repulsive interactions, where
the scattering length is positive (a = 110a0 for rubidium [38]). The shift
induced by the interactions is of the same order as the shift due to the finite
number. However, the shift due to the finite number disappears for high
atom numbers, whereas the shift due to the interactions cannot be ignored
and even increases for higher atom numbers. Attractive interactions induce
a positive shift of the critical temperature. In this case, the shift due to the
finite size of the cloud cannot be overlooked, since the number of atoms has
to be small to prevent the effect of collapse of the condensate.

Similarly, the condensate fraction is also effected by the interactions. An
expression is given in reference [39]:

N0

N
= 1 −

(

T

Tc

)3

− ζ(2)

ζ(3)
a

(

N1/6 a

aho

)2/5(
T

Tc

)2
(

1 −
(

T

Tc

)3
)2/5

. (2.15)

The decrease of the condensate fraction is only due to interactions within the
condensate, since the thermal cloud and the condensate are spatially sepa-
rated from one another.

The corrections in critical temperature and condensate fraction due to
finite size and interaction effects described above can be measured in BEC
experiments, but they are small, usually in the order of a few percent. There-
fore, most of the experiments described in this thesis can still be well under-
stood quantitatively when the corrections are neglected, and the equations
describing the critical temperature and the condensate fraction in the ther-
modynamic limit (Eqs. 2.5 and 2.7) are used.
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2.2 The Wave Function of the Condensate

2.2.1 An Ideal Bose Gas

A gas with N noninteracting atoms can be described by a simple Schrödinger
equation for the single particle Hamiltonian

H = − ~
2

2m
∇2 + Vext(~r). (2.16)

The eigenvalues of the Hamiltonian are

ǫnxnynz =

(

nx +
1

2

)

~ωx +

(

ny +
1

2

)

~ωy +

(

nz +
1

2

)

~ωz. (2.17)

The ground state function φ(~r1, . . . , ~rN) of N noninteracting bosons trapped
in a harmonic potential (Eq. 2.6) is just the product of the single particle
ground state wave function φ0(~r)

φ(~r1, . . . , ~rN) =
N
∏

i

φ0(~ri), (2.18)

with

φ0(~r) =
(mω̄

π~

)3/4

e−
m
2~

(ωxx2+ωyy2+ωzz2). (2.19)

The density of the condensate is given by:

n0(~r) = N |φ0(~r)|2, (2.20)

and increases with increasing N . The density distribution is anisotropic if the
three frequencies ωx, ωy, and ωz are not equal. The size ai in dimension i of
the cloud does not depend on the number of atoms and shows the anisotropy
due to its dependence on the trap frequencies:

ai =

√

~

mωi

, with i = x, y, z. (2.21)

The aspect ratio is then proportional to the root of the reciprocal ratio of
the trap frequencies:

ai

aj

=

√

ωj

ωi

, with i, j = x, y, z. (2.22)
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When the atom cloud is allowed to expand, the distribution of the atoms
does not only depend on the initial density distribution, but also on the
initial velocity distribution. According to Heisenberg’s uncertainty principle,
a narrow spatial distribution implies a broad momentum distribution, and
conversely. The ratio of the momentum widths is then:

√

ωi

ωj

, with i, j = x, y, z. (2.23)

This result can also be found by taking the Fourier transform of the ground
state wave function (Eq. 2.19).

At temperatures well above the critical temperature, the density of the
cloud can be approximated by a Maxwell-Boltzmann distribution n(~r) ∝
e−Vext(~r)/kBT . In a harmonic trap, the thermal widths are given by:

ri =

√

2kBT

mω2
i

, with i = x, y, z. (2.24)

The size of the thermal cloud is much larger than the size of the condensate
under normal experimental conditions (kBT ≫ ~ω̄). As a consequence, the
condensate appears as a narrow peak in the spatial distribution at tempera-
tures below the critical temperature.

Above the critical temperature, the momentum distribution only depends
on the temperature and the mass of the atoms in the cloud. Maxwell-
Boltzmann statistics can be applied again, leading to a density in momen-
tum space n(~p) ∝ e−p2/2mkBT . The distribution is isotropic, and a ther-
mal cloud will be spherically symmetric after a long enough free expansion
time, whereas a condensate will be anisotropic after its expansion, given an
anisotropic confining potential. The occurence of anisotropy in condensate
expansion can be used as proof for condensation, and has been recognized as
an important signature of BEC from the very beginning [1, 3, 40].

2.2.2 Taking Interactions into Account

Interactions between the atoms cannot be ignored, since the interactions al-
ter the size and the form of the cloud: Repulsive interactions expand the
condensate, whereas attractive interactions can lead to a collapse of the con-
densate. Furthermore, when the condensate is allowed to expand freely, the
interaction energy of the atoms is transformed into kinetic energy, thereby
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changing the momentum distribution.
The many-body Hamiltonian describing N interacting atoms in a har-

monic potential (Eq. 2.6) is given by:

Ĥ =

∫

d~rΨ̂†(~r)

[

− ~
2

2m
∇2 + Vext(~r)

]

Ψ̂(~r)

+
1

2

∫

d~rd~r′Ψ̂†(~r)Ψ̂†(~r′)V (~r − ~r′)Ψ̂(~r′)Ψ̂(~r), (2.25)

where Ψ̂(~r) and Ψ̂†(~r) are the boson field operators, that annihilate respec-
tively create a particle at the position ~r, and V (~r − ~r′) is the interatomic
two-body potential accounting for the interactions. The equation of motion
is given by the Schrödinger equation in operator form i~ ∂

∂t
Ψ̂ = ĤΨ̂:

i~
∂

∂t
Ψ̂(~r, t) =

[

−~
2∇2

2m
+ Vext(~r) +

∫

d~r′Ψ̂†(~r′, t)V (~r − ~r′)Ψ̂(~r′, t)

]

Ψ̂(~r, t).

(2.26)
The solution of the equation of motion entails all the interesting properties of
the Bose gas, but is too complicated and a complete solution is not possible.

The Gross-Pitaevskii Equation

In order to avoid solving the complete Schrödinger equation, mean field ap-
proaches have been developed. One approach was developed by Bogoliubov
in 1947 [41], and consisted in separating the contribution of the conden-
sate from the Boson field operators. In general, the Boson field operator is
given by Ψ̂(~r) =

∑

α Ψα(~r)aα, where Ψα(~r) are the single particle wave func-
tions and aα are the corresponding annihilation operators. As shown before,
Bose-Einstein condensation occurs when the ground state is macroscopically
occupied. This is accompanied by an abrupt change of the macroscopic
properties of the condensate of the Bose gas (such as the specific heat) at the
transition point, and thus it can be said that the phase transition is a second
order phase transition (this is similar to spontaneous symmetry breaking)
[42]. The system below the critical temperature is therefore characterized
by a so-called order parameter, which vanishes for temperatures above the
critical temperature. In our case, this is the condensate wave function. The
Boson field operator can then be split in two parts:

Ψ̂(~r, t) = 〈Φ̂(~r, t)〉 + Ψ̂′(~r, t), (2.27)
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where the first parameter 〈Φ̂(~r, t)〉 ≡ Φ(~r, t) is the condensate wave function,
and is responsible for the creation and annihilation of condensed particles.
The operators aα can be neglected in the thermodynamic limit. The second
parameter Ψ̂′(~r, t) describes excitations of the Bose gas.

In quantum degenerate dilute Bose gases, the de Broglie wavelength is
much larger than the interatomic distance. In this case, the interaction po-
tential V (~r−~r′) can be well approximated by a so-called zero range potential
(or also pseudopotential) gδ(~r − ~r′) [43]. The coupling constant g is related
to the scattering length a by:

g =
4π~

2a

m
(2.28)

Putting this in equation 2.26, and exchanging the Boson field operator Ψ̂(~r, t)
with the condensate wave function Φ, since the occupation of higher energy
levels can be neglected for low temperatures T ≪ Tc, we get:

i~
∂

∂t
Φ(~r, t) =

[

−~
2∇2

2m
+ Vext(~r) + g|Φ(~r, t)|2

]

Φ(~r, t). (2.29)

This is the so-called Gross-Pitaevskii equation, which has been derived inde-
pendently by Gross and Pitaevskii in 1961 [44, 45]. The equation shows that
the interaction leads to an effective potential g|Φ(~r, t)|2, which is proportional
to the density, acting on a particle. Since the density is always positive, the
sign of the potential energy is determined by the scattering length a. If the
scattering length is positive, then the potential energy increases with the
density, and the interaction is repulsive. If the scattering length is negative,
it is favourable for a homogeneous gas to shrink to a smaller volume, and
can lead to the phenomenon of collapse of the condensate.

The order parameter Φ is substituted with φe−iµt, where µ is the chemical
potential and φ is normalized to the total number of atoms N :

∫

d~rφ2 = N ,
to obtain the time independent Gross-Pitaevskii equation:

µφ(~r) =

[

−~
2∇2

2m
+ Vext(~r) + gφ2(~r)

]

φ(~r). (2.30)

This equation can be interpreted as a nonlinear Schrödinger equation with the
mean field potential gφ2(~r) as a nonlinear term, which is proportional to the
density n = φ2(~r). The equation reduces to the single particle Hamiltonian
(Eq. 2.16), when there are no interactions between the atoms (g = 0).
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The energy of the condensate may be expressed by the energy functional
[34]:

E[Φ] =

∫

d~r

[

~
2

2m
|∇Φ|2 + Vext(~r)|Φ|2 +

g

2
|Φ|4

]

. (2.31)

The factor 1
2

comes from the fact that two bosons are needed for the interac-
tion. Inserting the solution of the Gross-Pitaevskii equation for the ground
state n = φ2(~r) in the energy function gives:

E[n] =

∫

d~r

[

~
2

2m
|∇

√
n|2 + nVext(~r) +

gn2

2

]

= Ekin + Eho + Eint. (2.32)

The first term is the kinetic energy of the condensate Ekin and is also called
the ‘quantum pressure’. This term vanishes for uniform systems. The second
term is the harmonic oscillator energy Eho, and the third term is the mean
field interaction energy Eint. When the (harmonic) trap is suddenly turned
off, the harmonic oscillator energy term disappears, and the kinetic energy
of the condensate and the interaction energy are converted in kinetic energy
of motion. The release energy Erel = Ekin + Eint depends on the number of
atoms N , which means that the more atoms, the greater the release energy
per atom.

An important length scale called the healing length ξ can be found, when
the two energies Ekin and Eint are equated. The healing length is the mini-
mum distance over which the order parameter can heal, i.e. over which it can
balance density fluctuations. The smallest distance necessary for the density
of the condensate to grow from 0 to n is given by:

ξ =
1√

8πna
. (2.33)

The healing length is important for superfluid effects, such as vortices, where
the size of the core of the vortex is given by the healing length.

The Thomas-Fermi Approximation

For large condensates with large atom numbers, the repulsive interactions
lead to a lower density in the cloud, since the atoms are pushed outwards.
As a consequence, the quantum pressure has a smaller influence and only
contributes near the boundary surface of the condensate. Compared to the
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interaction energy, it can therefore be ignored. With this approximation, the
time independent Gross-Pitaevskii equation (Eq. 2.30) becomes:

µφ(~r) =
[

Vext(~r) + gφ2(~r)
]

φ(~r). (2.34)

This is referred to as the Thomas-Fermi approximation, and gives the solution

n(~r) = φ2(~r) =
[µ − Vext(~r)]

g
(2.35)

in the region where µ > Vext(~r), and n(~r) = 0 outside this region. This means
that the boundary of the cloud is given by the chemical potential Vext(~r) = µ.
The normalisation condition N =

∫

d~rn(~r) defines the chemical potential as
a function of the atom number:

µ =
~ω̄

2

(

15Na

aho

)2/5

. (2.36)

Since µ = ∂E
∂N

, the total energy per particle can be obtained from equation
2.36:

E

N
=

5

7
µ. (2.37)

This energy splits into the potential energy Eho and the interaction energy
Eint. The ratio between these two energies can be found by inserting the
solution attained from the Thomas-Fermi approximation (Eq. 2.35) into
equation 2.31, whereby the kinetic energy of the condensate is neglected.
Thus

Eint

Eho

=
2

3
(2.38)

is obtained. The interaction energy per atom is then

Eint

N
=

2

7
µ. (2.39)

As mentioned before, the boundary of the cloud is given by the chemical
potential Vext(~r) = µ. From this relation, the size of the condensate can be
determined. Using a harmonic trap, the size Ri of the condensate becomes:

Ri = aho
ω̄

ωi

(

15Na

aho

)1/5

, with i = x, y, z. (2.40)
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The size of the condensate grows with the number of atoms. The aspect ratio
is given by the inverse ratio of the trap frequencies:

Ri

Rj

=
ωj

ωi

, with i, j = x, y, z. (2.41)

As has been shown for a condensate without interatomic interactions, the
expansion of the cloud is anisotropic, if the trap is anisotropic. When the
interactions are included, all the interaction energy is transformed into kinetic
energy upon release, and anisotropy is thereby further increased. In axially
symmetric traps, where the radial confinement is much tighter than the axial
confinement (ωradial > ωaxial), the interaction energy is mainly changed into
kinetic energy in the radial direction, since the interaction force

Fint = −∇Eint = −g∇n (2.42)

is much larger in the radial direction than in the axial direction. This means
that the cloud expands faster in the radial direction than in the axial direc-
tion, forming an ellipsoid with Rradial > Raxial for long expansion times.

It should be noted that the Thomas-Fermi approximation can only be ap-
plied, when the order parameter Φ varies slowly. Therefore, the approxima-
tion fails near the cloud surface, which becomes important for when e.g. vor-
tices are studied.

In this thesis, the creation of a Bose-Einstein condensate in an optical
dipole trap is described. In the dipole trap, we evaporatively cool the atoms
down to quantum degeneracy. At the end of the evaporation cycle, we typi-
cally have ∼ 10, 000 atoms at a temperature below the critical temperature
Tc. We assume that in our small trap the density is so high that the influ-
ence of the repulsive interactions is much larger than the quantum pressure.
Therefore, all the physics necessary to describe the condensate is contained
in the Thomas-Fermi approximation.



3. TRAPPING ATOMS IN OPTICAL DIPOLE TRAPS

Overview of this chapter

In this chapter, the theory behind trapping atoms in an optical dipole trap is
explained. Section 3.1 explains the theory of the optical dipole potential. In
our experiments, neutral rubidium atoms are trapped in the crossing point of
two laser beams. How we trap atoms in the focus of a laser beam is explained
in section 3.2. The atoms are loaded straight from a magneto-optical trap
into the dipole trap, after which the atoms are evaporatively cooled. The
experimental setup used to cool and trap atoms in the magneto-optical trap
and subsequently in the dipole trap is described in section 3.3.

3.1 The Optical Dipole Potential

The experiments described in this thesis use the dipole force to trap rubid-
ium atoms and cool them down to nanokelvin temperatures. An atom placed
in a laser field experiences two kinds of forces: A dipole force and a scat-
tering force, also called radiation force. The scattering force originates from
the momentum p associated with light: Each photon does not only carry
energy E = ~ω, but also momentum p = ~k with k = 2π/λ, and angular
momentum ~. An atom absorbing a photon stores the energy by going into
an excited state, and it conserves the momentum by changing its velocity
with the amount vR = ~k/m, where m is the mass of the atom. At a later
time, the atom de-excites by emitting a photon in a random direction. Over
many absorptions and emissions, the recoil energy of the de-exciting atom
averages to zero. This can lead to a big velocity change, when the atom only
absorbs photons coming from one direction (see also section 3.3.2).

The dipole force results from the dispersive interaction of an induced
atomic dipole moment with a gradient in the intensity of a laser beam.

The dipole force was first exploited in 1970 to manipulate micron-sized
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particles [46]. It was demonstrated that the dipole force could be used to
displace and levitate dielectric particles in both water and air. This work led
to the development of the optical dipole trap, which was first demonstrated
in 1986. In two separate experiments, it was shown that not only dielectric
particles could be trapped in the focus of a single laser beam [47], but also
neutral atoms [4].

The theory of the optical dipole force is explained in this section, start-
ing with the classical oscillator model. An outstanding review article about
trapping neutral atoms in optical dipole traps can be found in [48].

3.1.1 The Classical Oscillator Model

In the following, we assume the atom is a pure two-level system. In the
classical picture the atom is a harmonic oscillator, which is coupled to an
external electromagnetic field ~E(~r, t) = ǫE(~r)e−iωt + c.c. through its induced
dipole moment ~p = ǫp(~r)e−iωt + c.c.. The dipole moment ~p oscillates in
the direction of the unit polarisation vector ǫ with the driving frequency ω.
The amplitude of the dipole moment p(~r) is related to the amplitude of the
electric field E(~r) by

p(~r) = α(ω)E(~r), (3.1)

where α(ω) is the complex polarisability. The dipole potential is calculated
by taking the temporal average of the interaction energy

UDip = −1

2
〈~p ~E〉 = − 1

2ǫ0c
Re(α)I(~r). (3.2)

The factor 1
2

comes from the fact that the dipole moment is induced. The
power absorbed from the electromagnetic field can be calculated in a similar
way

Pabs = 〈~̇p ~E〉 =
ω

ǫ0c
Im(α)I(~r). (3.3)

The scattering rate can be deduced from the absorbed power, by assuming
that the absorbed power is a photon scattering process where the atom ab-
sorbs light and reemits the light by subsequent spontaneous emission. The
scattering rate is therefore

ΓScat =
Pabs

~ω
=

1

~ǫ0c
Im(α)I(~r). (3.4)
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The real part of the polarisability describes the in-phase oscillation responsi-
ble for the dispersive nature of the interaction, the imaginary part describes
the out-of-phase component of the oscillation and is responsible for the ab-
sorption. When we look at the dipole force (~FDip = −∇UDip) we see that it
is proportional to the real part of the polarisability

~FDip =
1

2ǫ0c
Re(α)∇I(~r) (3.5)

thus the dipole force ~FDip is a conservative force, whose strength is pro-
portional to the intensity gradient of the driving field. The polarisability
is calculated by considering Lorentz’s model of the harmonic oscillator, in
which an electron is elastically bound to the core with an oscillation eigen-
frequency ω0, which is the optical transition frequency of the two-level atom.
The dipole radiation is responsible for the damping according to Larmor’s
formula for the power radiated by an accelerated charge. From the equation
of motion ẍ + Γωẋ + ω2

0x = − eE(t)
me

we get

α =
e2

me

1

ω2
0 − ω2 − iωΓω

. (3.6)

Γω is the classical damping rate due to the radiative energy loss, given by

Γω =
e2ω2

6πǫ0mec3
. (3.7)

Putting equations 3.6 and 3.7 into equations 3.2 and 3.4 and using the on-
resonance damping rate Γ ≡ Γω0 = (ω0/ω)2Γω, we get for the dipole potential

UDip(~r) = −3πc2

2ω3
0

(

Γ

ω0 − ω
+

Γ

ω0 + ω

)

I(~r) (3.8)

and for the scattering rate

ΓScat(~r) =
3πc2

2~ω3
0

(

ω

ω0

)3(
Γ

ω0 − ω
+

Γ

ω0 + ω

)2

I(~r). (3.9)

For small detunings ∆ ≡ ω0 − ω, where |∆| ≪ ω0, the counter-rotating term
can be neglected in the so-called rotating-wave-approximation. The general
expression for the dipole potential and the scattering rate then simplify to

UDip(~r) =
3πc2

2ω3
0

Γ

∆
I(~r), (3.10)
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Fig. 3.1: Light shifts for a two-level atom. Left: For a red detuned laser beam,
∆ < 0, the light shift of the ground state is negative, whereas the light
shift of the excited state is positive. Right: The light shift is proportional
to the intensity of the applied field, therefore a spatially inhomogeneous
field (e.g. a Gaussian laser beam) creates a ground state potential well,
in which the atom can be trapped.
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Fig. 3.2: Dipole potentials for red (∆ < 0), respectively blue (∆ > 0) detuned laser
beams. The blue detuned case requires e2 times more laser power or a
smaller detuning to achieve the same potential depth, since the atoms are
repelled from the light.
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ΓScat(~r) =
3πc2

2~ω3
0

(

Γ

∆

)2

I(~r). (3.11)

From equation 3.10 it is clear that when the laser field interacting with the
atom is red detuned from the atomic transition (∆ < 0), a negative potential
is created and the atom is attracted to higher intensities. Therefore, a very
simple and effective way to trap atoms in a dipole trap is to use a focussed
Gaussian laser beam (Fig. 3.1). As the scattering rate scales with a factor
I/∆2 and the dipole potential with only a factor I/∆, the scattering rate of
a red detuned laser beam can be kept as low as possible by using very large
detunings and high intensities, assuring longer lifetimes of atoms in the trap.

Atoms are repelled from the light when the laser is blue detuned (∆ > 0).
Trapping atoms with blue detuned laser is possible by using a Laguerre-
Gaussian mode, also called doughnut mode. Figure 3.2 shows two dipole
trap configurations.

3.1.2 The Semi-Classical Model

In this approach, the atom is also considered a pure two-level system which in-
teracts with the electromagnetic field. When saturation effects are neglected,
the same results are found for the polarisability. However, the damping rate
cannot be calculated from Larmor’s formula, but it is determined by the
dipole matrix element between the ground state |g〉 and the excited state |e〉

Γ =
ω3

0

3πǫ0~c3
|〈e|µ|g〉|2. (3.12)

This corresponds to the spontaneous decay rate of the excited level |e〉. As
mentioned before, when saturation effects are neglected, equation 3.6 is a very
good approximation for the polarisability. However, at high laser intensities
the excited state gets highly populated and equation 3.6 is not valid anymore.
Nevertheless, in most experiments, atoms are trapped in far-detuned dipole
traps, where the scattering rate is low (ΓScat ≪ Γ) and the classical formulas
are valid.

For real atoms the above models are not complete, but they show that an
oscillating electromagnetic field can be used to exert a force on any polaris-
able particle, such as molecules, glass or plastic microspheres and biological
specimens, such as cells or the organelles within living cells [47], [49], [50]. In
the next section, the dipole potential of multi-level atoms in a far-detuned
laser field is described.
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Fig. 3.3: The dressed atom with eigenstates such as |e, n〉 and |g, n + 1〉. The
eigenstates are degenerate for zero detuning. The shifts shown here are
for red detuned light.

3.1.3 Dressing Atoms

The dressed atom model describes the atom and light field not independently,
but takes the atom and laser mode together and describes it as a whole
[51, 52]. The Hamiltonian can be written as

HDA = Hint + Hfield + V (3.13)

where the kinetic energy term is omitted, so that the Hamiltonian can be
diagonalised at a point ~r. The dressed atom has eigenstates which are linear
combinations of photon and atom states such as |e, n〉 and |g, n + 1〉 where
n is the number of photons in the laser mode (Fig. 3.3). The lasermodes
|e, n〉 and |g, n + 1〉 are degenerate for zero detuning. The effect that the
(far-detuned) light has on the energy levels, can be treated as a second-
order perturbation of the electromagnetic field. The perturbation V = p̂ ~E
describes the atomic transitions |g〉 ↔ |e〉 via the dipole interaction between
the laser field and the atom which occur at the Rabi oscillation frequency ΩR

〈e, n|V |g, n + 1〉 =
~ΩR

2
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ΩR =

√

12πc2ΓI(~r)

~ω3
0

. (3.14)

Solving the complete Hamiltonian HDAΨi = EΨi leads to the dressed states
|1, n〉 and |2, n〉 with the eigenenergies

E|1,n〉 = (n + 1)~ωL − 1

2
~∆ +

1

2
~Ω

E|2,n〉 = (n + 1)~ωL − 1

2
~∆ − 1

2
~Ω (3.15)

where Ω =
√

∆2 + Ω2
R is the energy level splitting. As can be seen from

equation 3.14, the energies from equation 3.15 are intensity dependent. The
energies are therefore position dependent for inhomogeneous light fields: In
a red detuned (∆ < 0) Gaussian laser beam the energy of the ground state
|g, n + 1〉 decreases proportional to the increasing intensity of the laser, as a
result, the atom moves to the potential minimum (Fig. 3.1). The optically
induced shift of the i-th state is given by:

∆Ei =
∑

j 6=i

|〈j|p̂ ~E|i〉|2
Ei − Ej

. (3.16)

The shift of the ground state in a two-level atom exactly corresponds to the
classical dipole potential (Eq. 3.10). The excited state also shows a shift,
but in the opposite direction. The shift of the ground state can be seen as
the dipole potential, when the atom resides most of its time in the ground
state, this is the case for low saturation.

In reality, an atom is not a pure two-level system, but has many energy
levels which interact with the light. To calculate the dipole potential of
an alkali atom (e.g. rubidium, see also appendix A), the dipole matrix
elements pij = 〈ei|p|gi〉 between the ground state |gi〉 and each contributing
excited state |ei〉 has to be known, taking into account the relevant Clebsch-
Gordon coefficients and detunings. The calculation can be simplified by
chosing a laser detuning which is much larger than the hyperfine structure of
the excited state. The dipole potential of the ground state with total angular
momentum F and magnetic quantum number mF reduces to

UDip(~r) = −πc2

2

(1 − PgF mF )

ω3
D1

[

ΓD1

ωD1 − ω
+

ΓD1

ωD1 + ω

]

I(~r)

−πc2

2

(2 + PgF mF )

ω3
D2

[

ΓD2

ωD2 − ω
+

ΓD2

ωD2 + ω

]

I(~r), (3.17)
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gF is the Landé factor and P is the laser polarisation: For linear polarisation
P = 0 and for circular σ± polarisation P = ±1. ωD1 and ωD2 are the
transition frequencies of the two D lines and ΓD1 and ΓD2 the corresponding
natural linewidths.

3.2 Trapping Atoms with Lasers

There are many ways to trap atoms with lasers, using blue or red detuned
lasers or a combination of both. As mentioned before, atoms are repelled from
the laser field when the laser frequency is higher than the transition frequency
(blue detuning) and attracted to maximum intensity when the laser frequency
is lower than the transition frequency (red detuned). Trapping the atoms
with a blue detuned laser has the advantage that the trapping light has little
or no influence on the atoms, thus unwanted effects such as photon scattering,
light shifts of the energy levels, and light-assisted collisions are not there or
minimized. A disadvantage is that trapping the atoms in blue detuned lasers
is not as straightforward as trapping them in red detuned lasers: Trapping
atoms with a red detuned laser can be done by simply focussing the laser
beam, whereas at least two blue detuned lasers are needed to form a trap.
Therefore, only traps created by red detuned lasers are discussed in this
thesis.

3.2.1 Catching Atoms with a Single Beam

The simplest way to trap atoms in three dimensions is by focussing a red
detuned Gaussian laser beam. This method was used for the first time by
Chu and Ashkin [4] and due to its simplicity, it is still being used by many
groups all over the world. The intensity distribution of a focussed Gaussian
beam is given by [53]

I(r, z) = I(z)e
− 2r2

w2(z)

=
2P0

πw2(z)
e
− 2r2

w2(z) (3.18)

where P0 is the total laser power, r =
√

x2 + y2 is the radius of the beam,
and z is the longitudinal axis, or axis of propagation. The waist w(z) is the
radial distance r, where the intensity I(z) of the beam has fallen down to
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I(z) · 1
e2 . The development of the waist along the propagation axis is

w(z) = w0

√

1 +

(

z

zR

)2

, (3.19)

where zR is the Rayleigh range, which is the distance where the waist has
increased a factor

√
2 compared with the waist w0 at the focus:

zR =
w2

0π

λ
. (3.20)

The intensity I(z) at the rayleigh range is I(zR) = I0/2. When a Gaussian
beam is focussed by a lens or a mirror with focal length f , the waist at the
focus is

w0 =
fλ

πw(f)
, (3.21)

with w(f) being the waist of the beam at the position of the lens, and λ
is the wavelength of the laser. Since the dipole potential is proportional to
the intensity distribution, the trap depth UDip is given by UDip = |UDip(r =
0, z = 0)|. The steepness of the trap in the radial and the axial direction is
not the same, but differs by a factor of πw0/λ. Hence, the potential in the
radial direction is steeper.

When the thermal energy kBT of atoms trapped in the optical potential is
small compared to the trap depth UDip, the spread of the atoms in the trap is
radially and axially small compared to the waist w0 and the Rayleigh range
zR, respectively. In this case, the optical potential can be approximated
by a cylindrically symmetric harmonic oscillator. This leads to oscillation
frequencies

ωr =

√

4UDip

mw2
0

(3.22)

in the radial direction, and

ωz =

√

2UDip

mz2
R

(3.23)

in the axial direction, with m being the atomic mass. Figure 3.4 shows a
schematic representation of the single beam optical dipole trap, but also an
image of our experimental optical dipole trap taken by absorption detection
imaging (section 3.3.6). Also shown in the picture is a crossed dipole trap,
where two focussed laser beams are overlapped in their foci.
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Fig. 3.4: In the graph are shown representations of a single beam dipole trap and
a crossed beam dipole trap. The corresponding calculated potentials are
also shown, as well as pictures of the experimental optical dipole trap
taken with absorption imaging techniques (section 3.3.6). The graph
clearly shows that a crossed dipole trap has a smaller trapping volume
and a tighter confinement.

3.2.2 Crossing the Laser Beams

Achieving Bose-Einstein condensation in an optical dipole trap is done by
evaporatively cooling the atoms in the trap: High-energetic atoms are re-
moved from the trap and the remaining atoms thermalize through elastic
collisions. For this process, high collision rates are necessary, which means
that high trapping frequencies are needed. A single beam dipole trap is an
anisotropic trap with a relatively weak confinement in the axial direction and
a tight confinement in the radial direction and as such is not very suitable
for applying evaporative cooling. A crossed dipole trap, however, has a tight
confinement in all three dimensions and is thus a good candidate for applying
evaporative cooling. Crossing two focussed beams in their foci under a 90◦

angle creates an almost isotropic trap. Interference effects can be neglected,
when the polarisations of the two beams are orthogonal to one another. In
this case, the intensity distribution of both beams can be added up:

Itot =
2Px

πw2(x)
e
−

2(x2+y2)

w2(x) +
2Py

πw2(y)
e
−

2(x2+y2)

w2(y) , (3.24)
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with x and y being the axes of the laser beams. The trap depth UDip is
calculated by inserting the total intensity Itot in equation 3.17, but keep in
mind that the effective dipole potential is only UDip/2 for two beams with
identical laser powers, since atoms with a larger energy leave the trap along
one of the arms. The potential can also be described by a harmonic oscillator
to derive the oscillation frequencies of the trap, given by

ωx =

√

−8Uω

πm

(

Px

2w2
0,xx

2
R

+
Py

w4
0,y

)

ωy =

√

−8Uω

πm

(

Px

w4
0,x

+
Py

2w2
0,yy

2
R

)

(3.25)

ωz =

√

−8Uω

πm

(

Px

w4
0,x

+
Py

w4
0,y

)

,

where Uω is the optical dipole potential without the intensity distribution
(UDip = Uω · Itot):

Uω = −πc2

2

1

ω3
D1

[

ΓD1

ωD1 − ω
+

ΓD1

ωD1 + ω

]

−πc2

2

2

ω3
D2

[

ΓD2

ωD2 − ω
+

ΓD2

ωD2 + ω

]

. (3.26)

The oscillation frequencies are now in the three dimensions x, y and z, where
x and y are the axes of the laser beams, note that ωz is not the axial oscillation
frequency of section 3.2.1! From equations 3.26 it is clear that the atoms have
the tightest confinement in the z-direction. The laser beams are therefore
usually set up in the horizontal plane, so that the strongest dipole force works
in the direction of gravity. The gravity does not play a big role when deep
dipole traps are used, but when the atoms are evaporatively cooled, the trap
depth becomes very small and gravity starts to play a significant role (see
also section 4.5).

3.3 Putting Theory into Practice

Several demands have to be met, before a Bose-Einstein condensate can be
made in an ”all optical way”. First of all, the atoms have to be transferred
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Fig. 3.5: The vacuum chamber.

into the dipole trap as efficiently as possible. This means that the trap should
be as large as possible, having a large trap depth and a large trapping volume
to trap as many atoms as possible. But at the same time, large densities and
high oscillation frequencies are needed for the high collision rate necessary
for the evaporative cooling. Another requirement is that losses from the trap
and heating effects should be as small as possible. The way to fullfill all these
demands is explained in this section, starting with the experimental set up
necessary to cool rubidium atoms (see appendix A for a short introduction
to the rubidium 87 atom).

3.3.1 The Vacuum Chamber

First of all, we need an environment for the rubidium atoms, where they
are completely isolated from the surroundings: This is done by placing them
in a vacuum. The vacuum chamber is shown in figure 3.5. The oven with
rubidium atoms is separated from the main experiment chamber by a differ-
ential pumping stage (a tube of 15 cm length and 3 mm inner diameter) so
that the pressure in the experiment chamber can be kept very small. The
oven chamber is being pumped by a turbopump (Turbovac TW300, Leybold
Vacuum), which is connected to a backing pump (rotary vane pump DUO
035D, Pfeiffer Vacuum). The experiment chamber is pumped by an ion get-
ter pump (Noble Diode, Varian) and the Ti:Sublimation pump (SS-400/275,
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Thermionics Laboratory, Inc.) can also be used when needed. The pressure
reached in the experiment chamber is ∼ 6 · 10−11 mbar and the pressure in
the oven chamber is ∼ 5 · 10−7 mbar in normal operation mode. The by-
pass valve is only opened, when the vacuum has been breached (e.g. when
the rubidium in the oven is refreshed) and we need a high pumping speed
to pump the experiment chamber from atmospheric pressure down to lower
pressures, after which we can start the ion getter pump. In normal operation,
the bypass valve is always closed.

Before the atoms can be cooled down to nanoKelvin temperatures, they
have to be first heated up to 100◦ − 150◦ so that they can leave the oven.
A picture of the oven is shown in figure 3.6. Rubidium metal (10 gram,
99.5%, ChemPur Feinchemikalien und Forschungsbedarf GmbH) is placed in
the rubidium chamber every 1 − 2 years. The rubidium chamber is heated
(heating element SEA 20/500, Thermocoax) to free atoms from the metal,
upon which they enter the nozzle chamber. The nozzle chamber prevents the
metal from blocking the nozzle and from entering the oven chamber. It is
also heated, but made ten degrees hotter so that the atoms do not condense
in the chamber and block the nozzle. The flange closing the rubidium cham-
ber is heated from the outside for the same reason. The bellow allows us to
align the nozzle of the oven with the axis of the differential pumping stage
tube. Atoms leaving the oven have a velocity of about 300 − 400 m/s and
thus have to be cooled with standard laser cooling techniques before they can
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be trapped in a magneto-optical trap (MOT), which has a typical velocity
capture range of ∼ 50 m/s.

3.3.2 Cooling the Atoms

A complete description of laser cooling can be found in [54] and [55]. The
first person to show that light exerts a force on atoms was Otto Frisch in 1933
[56], who used a low intensity sodium lamp to deflect atoms. The observed
deflection was very small: For this reason controlling the motion of atoms
with light forces wasn’t feasible until the discovery of tunable lasers. Laser
cooling is based on the absorption and emission of photons with an energy
E = ~ω and an impuls p = ~k. An atom absorbing a photon is excited
and its momentum changes from ~pi to ~pk = ~pi + ~~k. At a later time, the
atom de-excites by emitting a photon in a random direction. If the atom is
placed in a laser field, which is in resonance with the transition, the atom
can absorb and emit many photons. Although the recoil is very small (for
the D2 transition of 87Rb at 780 nm is the recoil velocity ~k/m = 5.9 mm/s),
the cumulative effect of absorbing and emitting many photons can result in
a big velocity change. The averaged force working on the atom is given by
the scattering force:

~Fscat = ~~kΓs, (3.27)

with the total scattering rate Γs given by:

Γs =
s0Γ/2

1 + s0 + [2(∆ + ∆ωDoppler)/Γ]2
, (3.28)

where ∆ = ω0 − ω is the detuning from resonance, ∆ωDoppler is the Doppler
shift, and the saturation parameter s0 = I

Is
, where Is is the saturation inten-

sity. The direction of the force is given by the wave vector ~k.
Atoms coming from the oven are decelerated by a laser beam coming from

the opposite direction. To maximize the light absorption and the scattering
rate, the Doppler shifted laser frequency in the moving atoms reference frame
should match the atomic transition frequency. This can be done by using
the Zeeman effect, where a spatially varying magnetic field shifts the energy
levels of the atoms such that the changing Doppler shift is compensated, or
by changing the laser frequency during the deceleration (chirp cooling). We
use the latter method: The disadvantage of this method is that the magneto-
optical trap is not loaded continuously, but the atoms arive in packages. The
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advantage is that disturbing residual magnetic fields from a Zeeman slower
are avoided.

It should be noted that deceleration is not the same as cooling, but as
the atoms are slowed down, the originally wide thermal velocity distribu-
tion is not only shifted to lower velocities but also compressed, leading to an
increase in phase space density, and thus atoms are cooled.

3.3.3 The Magneto-Optical Trap (MOT)

The most widely used trap for neutral atoms is the magneto-optical trap,
which was first realised in 1987 [57]. A MOT is a combination of a quadrupole
field created by two coils in anti-Helmholtz configuration and six red detuned
laser beams with circular polarisations (σ+ and σ−), as shown in figure 3.7.
The force working on the atoms is now not only velocity dependent, but
also position dependent: Due to the circular polarisation of the laser beams,
the transitions only take place in the magnetic substates mF of the atom,
which depend on the inhomogeneous magnetic field. Therefore, the atoms in
a MOT are not only trapped, but are also compressed and cooled.

High densities are necessary to achieve Bose-Einstein condensation, but
in a MOT there are a few effects which limit the density: First of all, the
density of the MOT is limited by collision processes, but another density
limiting effect is the fluorescence radiated by deexciting atoms in the MOT.
The fluorescence can be absorbed by other atoms in the MOT, leading to
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a repulsion between the atoms. Additionally, the trapped cloud becomes
opaque for high densities. The density limit can be overcome by reducing
the intensity of the repumping light so that only a fraction of the atoms
reside in the transition used for cooling. This reduces the effective force on
the atoms, but the density can be increased by a factor of 100 [58]. The phase
space density in a MOT is typically 10−7 − 10−6, with an atomic density of
∼ 1011 atoms/cm3.

The quadrupole field in the experiment is made by two coils in anti-
Helmholtz configuration, spaced 2.5 cm apart, and a coil radius of 4 cm. Each
coil has 37 windings through which 7 A current is flowing, corresponding to
a 12 G/cm magnetic field. The MOT is placed precisely in the center of the
chamber so that the chirp laser beams and the atom beam, which are placed
6 mm above the center of the chamber, do not influence the trapped atom
cloud. The MOT can trap 5 · 109 atoms.

3.3.4 The Lasers

Grating stabilized laser systems in Littrow configuration are used for the
chirp cooling process. The 52S1/2, F = 2 → 52P3/2, F

′ = 3 transition of 87Rb
is used for cooling (appendix A). Because of the small but finite probability
for atoms to excite to the 52P3/2, F

′ = 2 level, a repumping laser is needed
to pump them back into the cooling cycle. The repumping laser is resonant
with the 52S1/2, F = 1 → 52P3/2, F

′ = 2 transition. The lasers are frequency
stabilized by rubidium saturation spectroscopy. The gratings of both chirp
lasers are directly attached to a piezo, and are continuously moved over a
small range, so that the frequency of the lasers varies over 440 MHz to coun-
teract the changing Doppler shift of the slowing atoms. As a result, the
position of the laser beam moves slightly. For this reason, the cooling laser
beam is coupled into the laser diode of a slave laser. About 21 mW is used
to cool the atoms in the chirp beam, and 1.2 mW to pump them back in the
cooling transition.

Just with the chirp laser system, we need two laser systems to cool rubid-
ium atoms in the MOT. The MOT cooling laser consists of a master laser,
which is then amplified by a tapered amplifier (Eagleyard) to a maximum
output power of 1 W. The master laser and the repumping laser are also
grating stabilized systems in Littrow configuration, but now following the
design presented in [59]. The main differences are that in this design both
the laser diode and the grating are temperature stabilized, and the grating
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is not directly attached to the piezo, but to a cantilever, which is moved by
the piezo. The changes in laser design lead to a higher stability of the laser,
since the laser is less sensitive to mechanical vibrations and thermal drifts.

The MOT repumping laser and the MOT cooling master laser are stabi-
lized by generating a beat note, whereby a part of the light is superimposed
with a reference laser on a photodiode. The servo system ensures a fixed
frequency offset to the MOT laser by locking the frequency of the beat note
to a constant value. The so-called offset locking technique allows for a large
tuning range of the laser frequency. The error signal for locking the MOT
repumping laser is made by an electronic delay line, which produces a fre-
quency dependent phase shift. This phase shift is then converted into an
amplitude signal by an electronic phase detector [60]. For the MOT cooling
laser a frequency-to-voltage convertor is used [61]. Both lasers are 15 MHz
red detuned from resonance.

The reference laser is an interference-filter-stabilized diode laser [62],
which is stabilized with a rubidium saturation spectroscopy. The laser is
simultaneously used as the detection laser for absorption imaging. The in-
tensity (and the frequency) of each laser, except the chirp lasers, can be varied
with acousto-optical modulators (AOM). Mechanical shutters (LS2T2, Uni-
blitz) with a shutter time of 1−2 ms are placed in the laser beams to prevent
resonant laser light from entering the experimental chamber when the atoms
are loaded in the optical dipole trap.

The laser systems and the vacuum chamber are placed on two separate
optical tables. The cooling laser beam and the repumping laser beam used
for the separate cooling processes are overlapped on the laser table before
they are coupled into polarisation maintaining fibers, which bring the light
to the experiment. The six laser beams necessary for the MOT are made
by retro-reflecting three laser beams. The overlapped cooling and repump-
ing beam is divided in three beams on the laser table, before each beam is
coupled into a fiber.

3.3.5 The Optical Dipole Trap in Practice

The optical dipole trap is created by a diode pumped Yb:YAG thin disk
laser (VersaDisk) from ELS Elektronik Laser System GmbH, now Sahajanand
Laser Technologies. The VersaDisk produces a maximum output power of
25 W at 1030 nm in single frequency operation. The emitted beam has a
Gaussian beam profile with a M2 value better than 1.1.
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Fig. 3.9: The crossed optical dipole trap. The beam coming from the laser is split in
two, after which each laser beam is sent through an AOM. The frequency
of the horizontally polarized laser beam is shifted +120 MHz and the
vertically polarized beam is shifted −120 MHz. The beams are collimated
and then focussed by a 200 mm focal length lens. The foci are imaged into
the vacuum chamber by two 500 mm focal length lenses. The intensity of
each laser beam is stabilized by detecting the transmission of the beam
through a mirror with a photodiode. The corresponding signal is sent to
a PI-control box.

The laser beam is split in two parts with equal intensities, but with per-
pendicular linear polarisations to avoid interference effects. Both beams
are focussed down into an AOM (3110-125 (Horizontal polarisation) and
3110-197 (vertical polarisation), Crystal Technologies), and the first order
diffracted beam is used to create the crossed dipole trap. Both AOMs shift
the frequency of the laser beams 120 MHz, but the horizontally polarized
beam is shifted to higher frequencies, whereas the vertically polarized beam
is shifted to lower frequencies (Fig. 3.9). Then, the laser beams are colli-
mated. The 1/e2 waist of the laser beam is 1.4 mm, so that by careful choice
of the focussing lens, a focus with a waist between 5 and 100 µm can be
selected. This focus is then imaged 1 : 1 into the experiment chamber. We
used a 200 mm focussing lens, creating a (theoretical) waist of 47 µm in the
focal plane.

The diffracted beam intensity of the AOM is a function of the acoustic
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Fig. 3.10: The focus of the dipole trap beam is moved due to the thermal lens
effect. The beam traversing the AOM is collimated. (a) The foci of both
beams are exactly in the crossing point. (b) Only one beam is shown for
clarity. The laser power is ramped down from 6 W to 600 mW in 1 s.
(c) The laser power is ramped down in 15 s. The focus moves at least 1
mm.

power, therefore, the AOM is used to turn of the dipole trap beam (response
time ∼ 100 ns), or to perform evaporative cooling by ramping down the RF
power and hence, the intensity. The AOM is also used for an active intensity
stabilisation of the laser: The VersaDisk has a 10% power fluctuation, which
has a negative effect on the number of atoms loaded in the dipole trap. For
these purposes, a small part of the light that is transmitted through a normal
mirror (transmission is ∼ 0.1%, which corresponds to a power of 5− 10 mW
in our case for a single beam) is used and sent onto a photodiode (Fig. 3.9).
The photodiode signal is sent to a PI-control box, and from there back to
the AOM. The only downfall of this system is the dependence of the mirror
transmission on the polarisation of the beam, since acousto-optic devices can
rotate the polarisation of an optical beam [63]. In fact, in our stabilisation
setup, only the intensity of the beam falling onto the photodiode is kept con-
stant, but that does not mean that the intensity of the first order beam is
kept constant. By creating a little (more) anisotropy in the crystal, the in-
cident beam and the diffracted beam will see different refractive indices and
the polarisation is changed. This is only a problem during the evaporation
cycle, where we lower the intensity of the laser beam by decreasing the RF
power of the AOM. We have solved the problem by placing a polarisation
beamsplitter cube right behind the AOMs.

Another problem concerning the AOM is the thermal lensing effect. We
have seen in our experiments, that when the RF power is ramped down, the
focus of the dipole trap moves at least 1 mm along the beam propagation
axis (Fig. 3.10). The thermal lensing effect can be reduced by optimizing
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the shape of the beam. We have reduced the effect, by focussing the beam
through the AOM. The width of the focus in the AOM is ∼ 150 µm, corre-
sponding to an optical power density of ∼ 35 kW/cm2, which is well below
the 10 MW/cm2 optical power density specified for our AOMs.

3.3.6 Detecting the Atoms

There are three processes connected with the interaction of atoms with light,
which can be exploited for the detection of atoms. The re-emission of photons
is used in the fluorescence imaging method, and the phase shift of a beam
transmitted through a cloud is used in dispersive imaging methods. The
atoms in our experiment are detected with absorption imaging. In essence,
absorption imaging relies on the resonant scattering of photons out of a probe
beam, and the decrease of the probe beam intensity is measured. The setup
is shown in figure 3.11. The atom cloud is imaged 1 : 1.3 onto a CCD camera
(SenSys KAF-0401E, with a pixel area of 9 × 9 µm2, Photometrics) by a
single lens with f = 150 mm focal length. The atoms absorb photons from
the probe beam, which is resonant with the F = 2 → F ′ = 3 transition. The
resulting shadow casted on the camera is used to determine the number of
atoms. For each measurement, three pictures are taken: The first picture is
the actual absorption image. After readout, which takes 2 s for our camera,
a second picture is taken (reference picture), where the probe beam is turned
on again with the same intensity and the same period of time. The atoms
have fallen out of the detection region, thus the full intensity of the laser is
measured. The third picture (dark picture) taken is without the probe laser,
but under the same conditions as before. The dark picture is subtracted from
the first two pictures, to eliminate dark counts of the camera and background
light.

The decrease in intensity of the probe beam in an atom cloud is expo-
nential, and is described by the Lambert-Beer law:

I = Iprobee
−OD = Iprobee

−ñσ0 ,

lnI − lnIprobe = −OD, (3.29)

Iprobe is the intensity of the probe beam. The optical density OD is the
column density ñ =

∫

nσ0dz of atoms along the direction of the beam for the
scattering cross section σ0 = 3λ2

2π
. Equation 3.29 is only valid for probe beams

which are on resonance. When the probe beam is detuned from resonance,
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Fig. 3.11: The detection setup for absorption imaging. The atom cloud is imaged
1 : 1 onto the CCD camera.

we can include this detuning by multiplying the scattering cross section in
equation 3.29 with the scattering rate Γs (Eq. 3.28). The number of atoms
per pixel can be attained by multiplying the area A of the atom cloud imaged
on camera pixel with the column density ñ. For a 1 : 1 imaging, the area is
just the area of one pixel (81 µm2). However, we have a small magnification
M in our setup (M = 1.3), so we have to multiply the pixel area with the
magnification factor squared: A = (bM)2, b is the size of the pixel. From
equation 3.29, we get for the atom number N :

N =
∑

pixel

2AIs

~ωΓα

(

1 +

(

2∆

Γ

)2
)

ln

(

cAbsorption − cDark

cReference − cDark

)

. (3.30)

This equation is valid for small intensities Iprobe << Is, the saturation pa-
rameter is for rubidium 87 atoms Is = 1.669 mW/cm2. The photon counts
for each pixel are denoted by cAbsorption, cReference and cDark for the absorp-
tion picture, reference picture and dark picture, respectively. An important
parameter is the absorption coefficient α, which depends on the polarisation
of the probe beam and the mF -states of the transition, α = 1 for circular
polarisation, and α = 0.5 for linear polarisation.

Equation 3.30 does not depend on the intensity of the probe beam, which
is very advantageous, because detecting with coherent light almost always
occurs with interference. The interference pattern only has a small influence
on the total number of atoms, since the data is analyzed per pixel. However,
the interference patterns of the absorption and reference picture have to be
identical, which is not always the case due to beam pointing instability of
the detection beam.
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4. A FAST ROUTE TO BOSE-EINSTEIN CONDENSATION

Overview of this chapter

In this chapter, a simple and fast route to Bose-Einstein condensation is
described. Our experiment starts with loading the MOT with rubidium
atoms, during this time the dipole trap is already turned on and running
with full laser power. This has no visible effect on the atom number loaded
in the MOT (∼ 5 · 109 atoms), or on the number of atoms loaded in the
dipole trap (∼ 3.5 · 105 atoms). After the MOT is loaded, the atoms are
transferred to the dipole trap. In the loading phase, or the molasses phase,
the detuning of the MOT cooling laser is increased, and the intensity of the
repumping and cooling laser is decreased to maximize the number of atoms
loaded, as is described in the following (section 4.2). Then, we can start the
evaporation cycle, where the laser power is ramped down with three linear
ramps (section 4.3), and a BEC is made (section 4.5).

4.1 Characterizing the Dipole Trap

The trapped atoms in the dipole trap are imaged with the absorbtion imaging
technique explained in section 3.3.6. The probe laser is resonant with the
52S1/2, F = 2 → 52P3/2, F

′ = 3 transition and illuminates the atoms for
20 µs. We have to take care that we do not heat the cloud during the
ilumination. Therefore, the duration of the light pulse is kept short, and the
intensity is low (Iabs 6 130 µWcm−2 ≪ Is). The trap is switched off during
the illumination to avoid the complexity arising from the AC Stark shift. In
a normal experiment, about 3 ·105−4 ·105 atoms are captured in the crossed
dipole potential out of ∼ 5 · 109 atoms loaded in the MOT. This is much
less than the number of atoms that can be trapped in a single beam trap
(∼ 5 · 107 atoms), because the trapping volume is much smaller (Fig. 4.3).
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4.1.1 The Lifetime

The lifetime of atoms in the dipole trap is determined by three processes:
One-body losses, two-body losses, and three-body recombination. Two-body
losses and three-body recombination are collisional losses, and therefore de-
pend on the density of the atom cloud: The higher the density, the higher
the losses. Two-body losses include photoassociation (which can be induced
by the trapping laser light), ground state hyperfine changing collision, and
radiative escape. In three-body collisions, three atoms collide and are lost,
because two of the colliding atoms form a molecule, and the third carries away
the excess energy. However, as will be shown later in this section, the lifetime
of the dipole trap is mainly limited by one-body losses caused by background
collisions and heating mechanisms, such as laser induced heating, heating
due to photon scattering and heating due to background collisions. The first
process arises from laser intensity fluctuations and pointing instability. It
causes parametric heating, by which the atoms can be driven out of the trap
(section 4.1.2). The dipole trap laser is intensity stabilized as explained in
section 3.3.5, thus reducing heating due to intensity fluctuations. We have
not observed beam pointing instability in our experiment.

The heating due to photon scattering can be determined by calculating
the photon scattering rate given by equation 3.9. In a crossed dipole trap,
where the waists of the laser beams are 40 µm and the laser power is 14 W,
the scattering rate is 4 photons/s. The energy gained by an atom due to the
absorption of one photon is

Erecoil =
~

2k2

2m
. (4.1)

The heating induced by the scattering is given by

Ė = Γs × 2Erecoil, (4.2)

which gives a heating rate of ∼ 800 nK/s for a dipole trap with a kB · 900
µK trap depth. This means that ∼ 1125 scattering processes are needed to
heat one atom out of the trap, leading to a (theoretical) lifetime of ∼ 280 s.
The heating rate decreases when the laser power decreases, e.g. during the
evaporative cooling. For typical end values of 200 mW, the scattering rate is
0.05 photons/s, and the heating rate is 10 nK/s.

Heating also arises from collisions with background atoms, where the
colliding atom does not leave the trap. This happens for small scattering



4.1. Characterizing the Dipole Trap 43

angles θ, which is the angle between the final and initial relative velocity
~vr = ~va − ~vb, with the velocity of the trapped atom ~va, and the velocity
of the background atom ~vb. For an atom to leave the trap, the scattering
angle should be larger than the threshold angle θ0. The threshold angle
is determined by ∆E(θ0) = UDip, where ∆E is the average energy that a
trapped atom gains after colliding with a background atom. The change in
average energy of a trapped atom when it collides with a background gas
atom is [64]

∆E =
4π~

2

mσ
, (4.3)

where σ is the total scattering cross section. In the case of rubidium atoms,
the energy due to the collision between a trapped and an untrapped atom is
kB · 2.8 mK [64], which is much larger than our trap depth. The heating rate
is given by [64]:

Q̇ = 0.37α
U2

Dip

∆E
, (4.4)

where α is the one-body loss rate. As is shown later in this section, the 1/e
lifetime τ = 12 s of our dipole trap with a kB · 400 µK trap depth is limited
by one-body losses (Fig. 4.1). The heating rate due to background collisions
in the trap is then Q̇ = 1.7 µK/s.

The lifetime of the dipole trap can be increased, by decreasing the pres-
sure in the vacuum chamber. In this case, the possibility of trapped atoms
colliding with background atoms is lowered, resulting in a lower heating rate.
Bose-Einstein condensation was reached with a typical vacuum chamber pres-
sure of ∼ 5 · 10−11 mbar.

The lifetime of the dipole trap is measured by observing the number of
atoms in the trap for different holding times. All the other light sources are
blocked, so that resonant light cannot influence the lifetime of the atoms in
the trap. Figure 4.1 shows the decay of rubidium atoms in the F = 1 state
and in the F = 2 state of the 52S1/2 ground state for a background pressure
of 6 · 10−10 mbar. The loss of the atoms is well described by

dN

dt
= −αN − βN2 − γN3, (4.5)

where α is an exponential loss rate caused by heating mechanisms and
background collisions, β a collisional loss coefficient and γ is a three-body
loss coefficient. The three-body rate constant for rubidium atoms in the
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Fig. 4.1: Lifetime measurements of the 52S1/2, F = 1 and the 52S1/2, F = 2 ground
state. Three measurements were taken for each data point and the error
bar is the standard deviation. The data was fitted to equation 4.6. Atoms
in the F = 1 ground state show an exponential decay, whereas atoms in
the F = 2 ground state cannot be described by equation 4.6. The loss
rate for atoms in the F = 2 ground state is much larger than the atoms
in the F = 1 ground state. This can be contributed to three-body losses
and hyperfine changing collisions. The measurement was made with a
background pressure of 6 · 10−10 mbar.
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F = 1,mF = −1 state is 4.3 · 10−29 cm6s−1 [65]. For a dipole trap with
kB · 400 µK trap depth, and an initial density n = 3.4 · 1013 atoms/cm3 and
atom number N = 350, 000, this leads to an atom loss of 3300 atoms/s.1

The three-body 1/e lifetime of the trap is then 66 s, much larger than the
actual lifetime of 12 s. Therefore, the three-body loss term is neglected. The
solution of the loss rate becomes

N(t) =
N0α

(α + N0β)eαt − N0β
. (4.6)

The one-body loss coefficient α is only dominant for long holding times and
for low densities, but the collisional loss coefficient β depends on the density
of the atom cloud and becomes increasingly important for higher densities.
During the evaporative cooling, the density of our atom cloud is increased.
Therefore, the collisional loss parameter β becomes the main loss parameter
for our experiment during evaporation.

Figure 4.1 shows an exponential loss rate for the atoms in the F = 1
ground state. This means that the lifetime of the atoms is only limited by
collisions with background atoms and heating, which is an exponential decay
with a lifetime τ = α−1. Equation 4.6 is used as a fit function to the data
to obtain the loss coefficients α and β for the two ground states. The loss
coefficients for the F = 1 ground state are

αF=1 = 0.058 ± 0.004 s−1

βF=1 = 1.4 · 10−7 ± 2.5 · 10−8 s−1. (4.7)

The errors of the loss coefficients were determined by the fit. The value of the
one-body loss coefficient α is much larger than the collisonal loss coefficient
β. This, and the 7% uncertainty in the one-body loss rate shows us that
the contribution of the collisional loss parameter β to the decay cannot be
determined accurately. Therefore, the 20% error determined by the fit for β
is much too small. The effective dipole trap volume Veff given by

Veff =

(

2πkBT

m

)3/2
1

ω̄3
, (4.8)

1 The loss due to three-body recombination is given by the loss rate equation dN

dt
=

−K3

∫

V
n3(~r, t)d~r. In a harmonic potential, the density distribution can be approximated

by a Gaussian function, and the equation becomes dN

dt
= −K3

N
3

π38
√

27σ2
xσ2

yσ2
z

with σi =
√

kBT

mω2

i

for i = x, y, z.
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was in the lifetime measurement 1.03·10−8 cm3, giving a volume independent
collisional loss rate β′

β′
F=1 = 1.4 · 10−15 cm3s−1 (4.9)

This is one order of magnitude larger, than the value given in reference [65]:
β 6 1.6 · 10−16 cm3s−1. This value was determined in a magnetic trap, and
thus does not include light assisted collisions. In our dipole trap with a
kB · 400 µK trap depth, the scattering rate is only 2 photons/s. Therefore,
the contribution of the light assisted collisions to the two-body loss rate
is negligable, and does not explain the one order of magnitude difference.
One of the differences between magnetic traps and optical dipole traps is
that optical dipole traps have a finite trap depth, whereas the trap depth
of magnetic traps is only limited by the geometry of the quadrupole coils
creating the magnetic field. For this reason, atoms trapped in an optical
dipole trap require a smaller energy to escape the trap. Even though we
cannot accurately determine the two-body loss rate, this might explain the
larger two-body loss rate of the optical dipole trap.

The F = 1 ground state shows a small incline in atom number in the first
second of the lifetime measurement. This is because the dipole trap beams
are not completely horizontal, so that atoms from the arms of the dipole
trap can slide into the crossing point (Fig. 4.3). This might lead to a smaller
value for α, since the dipole trap loses atoms due to collisions and heating,
but at the same time gains atoms from the arms.

Equation 4.6 cannot be fitted to the lifetime measurement of the F = 2
ground state and thus does not describe the loss processes of the atoms in
this state. The graph shows two decay processes: In the first decay process,
the number of atoms in the dipole trap has dropped down to N/e in only
300 ms. This can partly be contributed to ground state hyperfine changing
collision, which only occurs for atoms in the F = 2 ground state. However,
this is not the only loss process contributing to the fast decay. The other
loss rate influencing the lifetime of the atoms can only be contributed to
three-body losses, since we have neglected this term in the loss rate fitted
to our data (Eq. 4.6). After about 1 s, the second decay process becomes
prominent, and resembles the loss rate of atoms loaded in the F = 1 state.
This part has been fitted with equation 4.6, and shows an exponential decay
with an one-body loss coefficient αF=2 = 0.08 s−1. The second decay process
is thus only limited by background collisions.

The loss rate of the atoms in the F = 2 ground state is much larger, than
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the loss rate of the atoms in the F = 1 ground state. For this reason, we
pump the atoms into the F = 1 ground state, when they are loaded in the
optical dipole trap, to avoid the larger loss rate and thus a smaller lifetime
(section 4.2).

For a pure exponential decay, the lifetime τ of the dipole trap is inversely
related to the one-body coefficient α:

τ = α−1 = 17 s. (4.10)

However, since the dipole trap does not only suffer losses due to heating
and background collisions, but also collisional two-body losses, the lifetime is
given by the time for which the atom number has dropped down to N0/e. The
lifetime of our dipole trap with an initial particle number N(1 s) = 310, 000
and density n(1 s) = 3.0 · 1013 atoms/cm3 is then

τF=1 = 12 s. (4.11)

The lifetime of the F = 1 ground state is long enough for the evaporation
cycle, which has a typical duration of 6 s (section 4.5).

4.1.2 Oscillation Frequencies

The oscillation frequencies, and thus the waist of the dipole trap (Eq. 3.26),
can be measured through a parametric resonance [66], [67]. The intensity of
the dipole trap laser is modulated with a sinusoidal signal, thereby oscillating
the trap depth so that the atoms in the trap are forced to oscillate. If the
oscillation frequency is twice the trap frequency of the dipole trap (ωmod =
2ω0), the atoms are parametrically excited. The kinetic energy of the atoms
on resonance increases exponentially with time and the atoms are heated
out of the trap. The dipole potential is proportional to the square of the
trap frequencies according to equation 3.26. Accordingly, we can take for a
harmonic oscillator in a modulated potential:

U(x) = −ω2
0(1 + ǫsin(ωmodt))x, (4.12)

ǫ is the strength of the modulation. The solution of the equation shows
resonances at ωmod = 2ω0/n for n = 1, 2, 3... As the width of the resonances
decrease exponentially with n, we only expect to see the resonances ωmod =
2ω0 and ωmod = ω0 [66].

To determine the trap frequencies in our experiment, the intensity of the
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Fig. 4.2: Parametric heating. The atoms are trapped in a single beam trap, which
is modulated in the intensity by 2%. The atoms are heated out of the trap,
when the modulation frequency is twice the trap frequency. Figure (a)
shows a resonance at 1.7 kHz for the single beam trap in the x-direction
(Fig. 4.3). Figure (b) shows a resonance at 2.4 kHz for the single beam
trap in the y-direction. A Lorentz profile was fitted to the data.

single beam dipole trap laser is modulated by 2%. The results are shown in
figure 4.2. Resonances at twice the trap frequencies were measured at 1.7 kHz
and 2.4 kHz for the single beam trap in the x- and y-direction, respectively.
Combining equations 3.22 and 3.17 leads to the radial trap frequencies for
the two single beam traps. The laser beam traveling in the x-direction had
4.3 W laser power, leading to a waist of the single beam trap of 49 ± 2 µm.
The beam traveling in the y-direction had 3.45 W laser power, and thus the
waist of the laser beam is 40 ± 2 µm in the focus. As a consequence, our
dipole trap is slightly anisotropic.

The waist of the dipole trap laser beam traveling in the y-direction was
also measured by moving a sharp edge in the laser beam, and measuring the
decreasing intensity with a photodiode. By integrating the intensity profile,
a Gaussian distribution is obtained, from which the waist can be determined.
The waist of the beam was 42 ± 2 µm, which is in good agreement with the
waist measured with the parametric heating experiment. The waist of the
dipole trap laser beam traveling in the x-direction could not be measured
due to experimental difficulties.
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4.2 Loading the Atoms in the Dipole Trap

The first all-optical BEC has been made in the group of Chapman [6], where
they have used a CO2 laser with 10 µm wavelength. The BEC was created in
a crossed dipole trap, in which evaporative cooling was performed by ramping
down the laser power. Since then, more groups have created an all-optical
BEC with a CO2 laser [68]. However, the diffraction limit

w0 ≈
λf

πw(f)
, (4.13)

where w(f) is the waist of the laser beam at the position of the lens with
focal length f , of the CO2 laser is quite large due to its large wavelength. For
this reason, other groups have tried to achieve Bose-Einstein condensation
with smaller wavelengths. Another advantage is that lasers with smaller
wavelengths can be used in combination with standard optical materials. The
first BEC at a smaller wavelength was created by the experimental group of
Weiss [9, 69]: They used a YAG laser with 1064 nm wavelength. Their setup
was not a straightforward route to BEC: they first cooled rubidium atoms
in an optical lattice and then loaded them into the crossed dipole trap. In
2006, a sodium BEC was created in a straight manner in the group of Lett
[7]: The atoms were loaded directly from the MOT into the 1 µm crossed
optical dipole trap. Our way to quantum degeneracy is similar, as far as we
know we are the first to have reached Bose-Einstein condensation of rubidium
atoms with a 1 µm dipole trap in a very simple and direct manner (section
4.5).

In our experiment, the dipole trap is continuously overlapped with the
MOT. This has no visible effect on the atom number loaded in the MOT (N ∼
5·109 atoms), or on the number of atoms loaded in the dipole trap. The atoms
are loaded straight from the MOT into the dipole trap by cooling them using
a molasses (Fig. 4.3). The flux of atoms into the trapping volume depends on
the density of the MOT, the temperature of the atoms and the parameters
of the dipole trap [70]. Throughout the loading process, losses from the
trap caused by heating mechanisms and collisional processes occur. Heating
is caused by spontaneously scattered dipole trap laser photons, background
gas collisions and intensity fluctuations. But for large numbers of atoms,
the losses are dominated by collisional processes such as photoassociation,
ground state hyperfine changing collisions and radiative escape. To obtain a
large loading rate into the trap and as little losses as possible, the parameters
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Fig. 4.3: The dipole trap is continuously overlapped with the MOT. The intensity
of the MOT repumping and cooling laser is lowered during the loading
process, to optimize the number of atoms loaded in the dipole trap. Si-
multaneously, the detuning of the MOT cooling laser is increased. (a)
Single beam optical dipole trap overlapped with the MOT. The trapping
volume is much larger than the trapping volume of the crossed dipole
trap. (b) Crossed optical dipole trap with ∼ 350, 000 atoms trapped in
the crossing.

of the MOT have to be changed, starting with the duration of the loading
phase. Figure 4.4(d) shows the number of atoms loaded in the trap as a
function of the loading phase duration. Initially, the number of atoms loaded
increases linearly in time, until a maximum is reached. For longer loading
times the number of atoms loaded decreases, because of two reasons: First
of all, the MOT loses atoms due to the changed detuning of the cooling laser
for the molasses, and due to the reduced intensity of the repumping laser to
pump the atoms into the F = 1 ground state (section 4.1.1). Secondly, the
dipole trap loss rates have become large enough to counteract the loading.
The losses can be determined by a lifetime measurement, shown in figure 4.1.

In the loading process, the intensity of the repumping laser is lowered,
so that a large proportion of the atoms are loaded in the F = 1 ground
state. Figure 4.4(a) shows the effect on the number of atoms loaded, when
the intensity of the repumping laser is reduced. The repumping laser power
in the normal MOT operation mode is 2.1 mW (Irepump = 2.7 mWcm−2),
and in the loading process it has to be reduced to ∼ 1 µW to maximize the
number of atoms loaded. For lower intensities of the repump laser, the loading
rate decreases, because the MOT is not sustained. For larger intensities,
the loading rate is larger due to the higher number of atoms in the MOT
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Fig. 4.4: Atoms loaded in the dipole trap as a function of (a) the repumping laser
intensity, (b) the cooling laser intensity, (c) the cooling laser detuning from
resonance, and (d) the duration of the loading phase. (a) The intensity of
the repumping laser is decreased, so that the atoms are pumped into the
F = 1 ground state. The optimum repumping laser intensity is ∼ 1 µW.
The MOT is not sustained for lower intensities, and for higher intensities,
the light induced losses increase. (b) The intensity of the MOT cooling
laser has a similar effect on the number of atoms loaded in the dipole
trap. (c) The light shift induced by the dipole trap increases the effective
detuning of the atoms in the trap. The larger effective detuning reduces
the excitation rate of the atoms in the dipole trap, and thus also reduces
light induced collisions. At the same time, the cooling rate of the MOT
is reduced, leading to a smaller loading rate in the dipole trap. (d) The
number of atoms loaded increases linearly in time, until a maximum is
reached. For longer loading times the number of atoms loaded decreases,
because the MOT loses atoms due to the different detuning of the cooling
laser and the reduced intensity of the repumping laser. Secondly, the trap
loss rates have become large enough to counteract the loading.
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and cooling rate, but the light induced loss rates also become larger with
increasing repumping intensity. Another effect limiting the atom number is
the radiative repulsion leading to a smaller density in the MOT and thus to
a lower loading rate [58]. Reducing the repumping laser intensity increases
the number of atoms loaded in the F = 1 ground state, and thus removing
them out of the cooling transition, thereby reducing the radiative repulsion.

Because the main losses are light induced, it is clear that the intensity of
the cooling laser also has an effect on the number of atoms loaded. According
to figure 4.4(b), the MOT cooling laser power has to be reduced from 70
mW (normal MOT laser power, Icool = 91 mWcm−2) to 30 mW (Icool = 39
mWcm−2) in the loading phase. Below this level, the MOT is not sustained.

The final parameter that has to be changed in the loading process is the
MOT cooling laser detuning. Figure 4.4(c) shows the number of atoms loaded
in the dipole trap versus the detuning of the MOT cooling laser. The MOT
cooling laser is 15 MHz red detuned from resonance. However, the light shift
induced by the dipole trap increases the effective detuning for the atoms in
the trap:

∆eff = ∆MOT − ∆Stark, (4.14)

∆MOT is the detuning of the MOT lasers (15 MHz in our case) and ∆Stark

is the Stark shift of the dipole trap. The Stark shift for a dipole trap with
kB · 450 µK trap depth is ωshift = ∆E/~ = 2UDip/~ ≈ 18 MHz. The factor 2
comes from the fact that ∆E is the shift of the ground and excited state and
UDip is just the shift of the ground state. The larger effective detuning reduces
the excitation rate of the atoms in the dipole trap, and thus also reduces light
induced collisions. At the same time, the cooling rate of the MOT is reduced,
leading to a smaller loading rate in the dipole trap. In addition, atoms are
cooled down to sub Doppler temperatures by increasing the detuning of the
cooling laser, thereby increasing the probability of trapping the atoms in
the dipole trap (polarisation gradient cooling). The optimum detuning for a
dipole trap with ∼ kB ·450 µK trap depth is ∼ 75 MHz. The optimized total
number of atoms loaded in the dipole trap is ∼ 3.5 · 105 at a temperature of
∼ 30 µK. As can be seen from equation 4.14, the optimum detuning depends
on the optical dipole trap depth. A deeper trap means a larger light shift
of the atoms, which means a reduced MOT cooling rate. For this reason,
usually a smaller detuning is chosen for deeper traps [71, 70]. The detuning
of the repumping laser is not changed in the loading process.
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4.3 Evaporative Cooling

Evaporative cooling was first demonstrated with magnetically trapped hy-
drogen in 1988 [72], but was extended to alkali atoms in 1994 [3, 73]. It
turned out to be the standard technique to cool atoms to low temperatures
and high densities, because soon thereafter, a Bose-Einstein condensate was
made [1, 2, 3]. The advantage of evaporative cooling is that it does not involve
density limiting interactions with light. In general, evaporative cooling of a
trapped gas is the removal of atoms with an energy higher than the average
energy of the atom cloud. Atoms confined in a trap with depth UDip can leave
the trap, when their energy E is larger than the trap depth UDip. This re-
duces the average energy of the remaining atoms and the atoms rethermalize
through elastic collisions towards a new equilibrium at a lower temperature.
The elastic collisions also provide new atoms with an energy E higher than
the trap depth, thus the evaporation continues. As the temperature drops,
the number of atoms that are able to leave the trap decreases exponentially,
and the cooling and thus the evaporation stops. The evaporative cooling is
continued by lowering the trap depth UDip.

Evaporative cooling in an optical dipole trap is performed by lowering the
intensity of the dipole trap laser (Eq. 3.10). Unlike magnetic traps, where
the trap depth is lowered with the radio-frequency-knife method, the trap
strength changes during the evaporation as can be understood from equation
3.26 and seen in figure 4.5. The trap becomes shallower during the evapo-
ration and the trap frequencies given by equation 3.26 are decreased. This
is accompanied by a lower elastic collision rate and the evaporative cooling
slows down. For this reason, high initial densities and trap frequencies are
necessary to reach quantum degeneracy.

4.3.1 Colliding Atoms

To evaporatively cool an atom cloud efficiently, many elastic collisions are
necessary. This requirement is fulfilled when the atom cloud is trapped in
a trap with high oscillation frequencies and has a high density. However,
inelastic collisions are also density dependent. Therefore, the ratio between
elastic and inelastic collisions has to be as large as possible, so that evapo-
rative cooling is efficient.

To calculate the good-to-bad collisions ratio, the time between two suc-
ceeding elastic collisions has to be known. This depends on the elastic cross
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Fig. 4.5: By lowering the intensity of the dipole trap laser beam, the trap depth
is reduced so that hotter atoms can leave the trap. The trap frequencies
decrease during the evaporation, because the optical dipole trap reduces
its curvature.

section σ, the density n of the atomic cloud and the average relative velocity√
2v̄ of the two colliding atoms

τel =
1

nσ
√

2v̄
(4.15)

where the elastic cross section is given by σ = 8πa, with a = 110a0 the
scattering length of rubidium, a0 is the Bohr radius [38]. The average thermal
velocity v̄ is given by

v̄ =

√

8kBT

πm
. (4.16)

The elastic collision rate for atoms with a density of 1.7 · 1013 cm−3 confined
in a trap with a depth of ∼ kB · 300 µK, and having a temperature of ∼ 30
µK (this particular trap was used to create a condensate in, see section 4.5),
is

Γel =
1

τel

= 1788 s−1. (4.17)

The inelastic collision rate can be found by adding up the collision rates of
each density independent loss coefficients:

Γinel =
1

τinel

= α + β′n + γ′n2. (4.18)
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Although the three-body losses γ′ were neglected in the lifetime measure-
ments, they become more and more significant as the density increases dur-
ing the evaporation, due to their dependence on the density squared. This
means that the ratio between the elastic and inelastic collisions will decrease
throughout the evaporation, because the density increases. The ratio is given
by:

R(T, n) =
Γel

Γinel

, (4.19)

and should have a value R > 500 [74, 75] throughout the evaporation process
for efficient evaporative cooling. The lifetime measurements showed that our
main losses result from heating and collisional processes, therefore the initial
ratio R0 for an atom cloud with a density of 1.7 · 1013 cm−3 is given by

R0 =
τ−1
el

α + β′n
= 1.9 · 104. (4.20)

This is an upper limit, because the one-body loss coefficient α is probably
larger for reasons explained in section 4.1.1. Nevertheless, the ratio R0 shows
a good starting condition for the evaporative cooling in our optical dipole trap
with a depth of ∼ kB · 300 µK.

During the evaporation, the atoms need on average 4 − 5 collisions to
thermalize at a lower temperature [71, 75]. Due to the high oscillation fre-
quencies of our optical dipole trap, and the high elastic-inelastic collisions
ratio, we can reach the quantum degenerate regime much faster and with a
lower atom loss than in a magnetic trap. In magnetic traps, the oscillation
frequencies usually are 10−50 Hz in the axial direction, and ∼ 400 Hz in the
radial direction, whereas the oscillation frequencies of an optical dipole trap
are several kHz. The quantum degenerate regime in a magnetic trap can be
reached in half a minute, but only takes a few seconds in a dipole trap (Fig.
4.6). The atom loss in a magnetic trap is a factor of 100−1000, in our dipole
trap, we only lose a factor of 35− 40 in atom number. Therefore, the dipole
trap is more efficient. Nevertheless, the trapping volume in a dipole trap is
quite small. More atoms can be trapped in a magnetic trap (N = 108), thus
condensates with a high atom number can be obtained. In our dipole trap,
we can only trap ∼ 350, 000 atoms (see section 4.2).
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4.3.2 Evaporating Atoms

As mentioned before, the dipole trap strength decreases during the evapora-
tion process, leading to a decrease in the oscillation frequencies and thus the
elastis collision rate, because the elastic collision rate (Eq. 4.15) depends on
the trap frequencies through the density n (Eq. 4.40). The final densities
and temperatures reached with evaporative cooling are determined by how
the dipole trap strength changes during the evaporation: High densities and
high trap frequencies apply for a faster evaporation ramp, and low densities
and/or trap frequencies demand a slower evaporation ramp. This means that
the evaporation ramp for atoms in an optical dipole trap starts with a steep
slope, which flattens out for longer evaporating times.

The atoms in our experiment are evaporatively cooled by ramping down
the laser power with the two AOMs (Fig. 3.9) with three linear ramps. The
decrease in laser power of both beams is kept equal throughout the evapo-
ration, but can be adjusted independently, if necessary. The first ramp is
a steep slope, because of the high initial density and rethermalisation time
(section 4.3.1). The two following ramps are more moderate, thus taking the
changing dipole strength into account. The speed of the evaporation ramp
is very important: If the trap depth is ramped down too fast, the atoms do
not have the time to thermalize and the evaporative cooling is not efficient.
On the other hand, if the trap depth is ramped down too slow, losses due
to inelastic collisions become more and more important, and the evaporative
cooling is also not efficient.

Scaling laws describing the evolution of the phase space density and the
atom number during the evaporative cooling in time dependent optical traps
were derived by O’Hara [76]. The scaling laws depend on the so-called cut-
off parameter η =

UDip

kBT
, the ratio of the trap depth and the energy of the

atoms. The cut-off parameter η is usually 10 for optical dipole traps [76],
which could be confirmed for our dipole trap in the case for when gravitation
does not play a role (see section 4.5). The parameter tells us that when the
trap depth is lowered such that the value of η is smaller than 10, the atoms
evaporate out of the trap until η = 10 again.

The phase space density ρpsd is increased during the evaporation, and
scales with the trap depth and the atom number as

ρpsd

ρpsd,ini

=

(

Uini

U

)

3(η′−4)

2(η′−3)

=

(

Nini

N

)η′−4

, (4.21)
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Fig. 4.6: The atoms are evaporatively cooled by ramping down the AOMs (Fig.
3.9) with three linear ramps. Each ramp is empirically determined by
measuring the tempreature and the number of atoms after each ramp.
The optimum duration of the ramp is the one where we obtain the most
atoms for a given final laser power, which determines the lowest tem-
perature of the atoms that can be reached. The graph was fitted by
the equation describing the time dependent potential depth (Eq. 4.24),
1
τ = 0.18 and −2(η′−3)

η′ determined by the fit is −4.1. The equation does
not take inelastic collisions into account.
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where the subscript ini denotes the initial condition of the parameter, and
η′ = η + η−5

η−4
. The speed of the evaporation is determined by the elastic

collision rate Γel (Eq. 4.17). Because the trap becomes less curved for lower
intensities, the collision rate decreases. The decrease of the collision rate is
given by:

Γel

Γel,ini

=

(

U

Uini

)
η′

2(η′−3)

. (4.22)

The evaporation rate is given by the s-wave Boltzmann equation [77]:

Ṅ = −2(η − 4)e−ηΓelN. (4.23)

Combining this equation with equation 4.21 leads to a time dependent po-
tential depth:

U(t)

Uini

=

(

1 +
t

τ

)

−2(η′−3)

η′

, (4.24)

the time constant τ is given by:
1

τ
=

2

3
η′(η − 4)e−ηΓel,ini. (4.25)

Equation 4.24 resembles an exponential, which has been approximated in
our experiment by three linear ramps (Fig. 4.6). The slope of each ramp
is determined empirically by measuring the number of atoms and the tem-
perature of the atoms at the end of each ramp. The optimum duration of
the ramp is the one where we obtain the most atoms for a given final laser
power, which determines the lowest temperature of the atoms that can be
reached. The experimental evaporation curve was fitted with the equation for
the time dependent trap depth (Eq. 4.24). The fitted parameters 1

τ
= 0.18

and −2(η′−3)
η′ = −4.1 with η = 4.5 are smaller than expected ( 1

τ
= 3.5 and

−2(η′−3)
η′ =-1.4, where we have taken η = 10 and Γel = 1788, see equation

4.17), because the equation does not take inelastic collisions into account. In
addition, we have observed in our experiments that our cut-off parameter η
decreases during the evaporation. At the end of the evaporation cycle, the
temperature of the atom cloud equals the trap depth (η ∼ 1).

4.4 Detecting a Bose-Einstein Condensate

Section 3.3.6 explained the imaging technique we use to determine the atom
number of our sample. However, to determine the temperature or the waist
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of the cloud, we have to fit the sample with a density distribution. All
the properties of thermal clouds and condensates can be obtained from the
density distribution by comparing the measured density distribution with
models of the dilute atom gas. These density distribution models are well
understood for thermal atom clouds (T ≥ Tc) and pure condensates, but in
the intermediate region where the cloud is partly condensed and partly still
thermal, the density distributions can only be approximated.

The optical dipole potential can be approximated with a harmonic po-
tential:

U(~r) =
1

2
m(ω2

xx
2 + ω2

yy
2 + ω2

zz
2). (4.26)

The distribution density for a thermal cloud in this harmonic potential is
then (see also Eq. 2.9):

nT (~r) =
1

Λ3
dB

g3/2(e
µ−(U(~r))/kBT ). (4.27)

The semiclassical approach can also be used to determine the distribution
after a time of flight (TOF): When the trap is switched off, the atoms fly
ballistically in every direction with the velocity they had at the time of the
switching off. The distribution as a function of the expansion time t is given
by [33]:

nTOF (~r, t) =
1

Λ3
dB

∑

i=x,y,z

(

1

1 + ω2
i t

2

)

· g3/2e

„

µ−m
2

„

P

i=x,y,z i2
„

ω2
i

1+ω2
i

t2

«««

/kBT
.

(4.28)
As mentioned in section 2.2.1, the expansion of an ideal thermal cloud is
isotropic for large expansion times, and the density profile can be approxi-
mated by:

nTOF (~r, t) =
1

Λ3
dB

g3/2(e
µ−m~r2

2t2
/kBT ). (4.29)

In the case of a (pure) condensate in a harmonic potential, the density distri-
bution in the Thomas-Fermi approximation is given by (see also Eq. 2.35):

n(~r) = max

{

[µ − U(~r)]

g
, 0

}

. (4.30)

The condensate can be seen as filling up the bottom of the trapping potential
up to a ”height” given by the chemical potential µ.
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The expansion of the condensate is anisotropic, when the trapping po-
tential is anisotropic: The interaction energy is converted in kinetic energy
upon release, and the anisotropy is increased (section 2.2.2). The parabolic
form of equation 4.30 is thereby conserved, just the axes are rescaled [78].
The radii of the condensate scale as:

Ri(t) = Ri(0)bi(t) =

√

2µ

mωi(0)2
bi(t), with i = x, y, z, (4.31)

where the time dependent scaling factor bi(t) satisfies the differential equation

b̈i + ωi(t)
2bi −

ωi(0)2

bibxbybz

= 0, with i = x, y, z. (4.32)

The equations of the scaling parameters can be simplified by considering an
axially symmetric harmonic potential (ω1 = ω2 ≡ ω⊥ and ω3 ≡ ωz), which is
turned off at t = 0:

d2

dτ 2
b⊥ =

1

b3
⊥bz

d2

dτ 2
bz =

ℓ2

b2
⊥b2

z

, (4.33)

τ is a dimensionless time variable, given by τ = ω⊥(0)t, and ℓ = ωz(0)
ω⊥(0)

. The

equations can be solved analytically for ℓ ≪ 1, leading to the equations:

b⊥(τ) =
√

1 + τ 2

bz(τ) = 1 + ℓ2
(

τarctanτ − ln
√

1 + τ 2
)

. (4.34)

The solutions to the differential equations show three stages of the free expan-
sion: The first stage is where the interaction energy is converted in kinetic
energy (τ < 1). Figure 4.7a shows the conversion into kinetic energy for
an anisotropic optical dipole trap in ∼ 1 ms. The second stage shows the
expansion of both directions, whereby the expansion in the direction of the
tighter confinement (higher trap frequencies) is large, and the expansion in
the second direction is much smaller (1 < τ < ℓ2). The third stage shows an
asymptotic behaviour of the aspect ratio R⊥

Rz
= πℓ2

2
(ℓ2 < τ). In figure 4.7(b),

this asymptotic behaviour is not visible.
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With the absorption imaging technique only column densities along the
imaging axis can be measured. The pictures obtained are thus two-dimen-
sional, and the density distribution for the thermal cloud changes into

ñT (x, y) =
ñT (0)

g2(eµ/kBT )
g2(e

(µ−m
2

(ω2
xx2+ω2

yy2))/kBT ) (4.35)

where the imaging axis is in the z direction. The thermal cloud can also
be fitted with a Gaussian distribution for temperatures above the critical
temperature:

nfit,T (x, y) = e
− x2

2σ2
x
− y2

2σ2
y . (4.36)

The fit improves for higher temperatures, because eµ/kBT ≪ 1 for T ≫ Tc

and g2(x) ≈ x when x ≪ 1.
As mentioned before, partly condensed clouds can only be approximated

with a density distribution. Section 2.2.1 already mentioned the bimodal
behaviour of a partly condensed cloud. This feature is used in the density
distribution fit: The Gaussian distribution and the parabolic distribution are
added up, where the Gaussian distribution describes the thermal cloud, and
the parabolic distribution describes the condensate fraction. The density
distribution becomes [33]

nfit(x, y) =
ñT (0)

g2(1)
g2(e

− x2

2σ2
x(t)

− y2

2σ2
y(t) )

+ñBEC(0)max

{

1 − x2

R2
x(t)

− y2

R2
y(t)

, 0

}

. (4.37)

The temperature of the cloud is determined by the radii of the thermal cloud
σi. To obtain the temperature of the partly condensed cloud, the fit should
be limited to the thermal part, where the condensed atoms are absent, to
prevent errors due to the interaction energy. The temperature of the cloud
is given by:

kBT = m

(

ω2
i σ

2
i

1 + ω2
i t

2

)

, with i = x, y, (4.38)

where t is the expansion time. By measuring the radii of the cloud for several
expansion times t1 and t2, the temperature can be determined by

T =
m

kB

σ2
i,1 − σ2

i,2

t21 − t22
, with i = x, y. (4.39)
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Fig. 4.7: (a) The graph shows the numerical solution to the differential equations
describing the expansion of a Bose-Einstein condensate during a time
of flight (Eqs. 4.31 and 4.32). (b) The changing aspect ratio derived
numerically. The 1/e2 radii of the two beams in the crossing are 72 µm
and 40 µm in the x and y direction, respectively. The corresponding trap
frequencies are ωx = 2π × 125 Hz and ωy = 2π × 56 Hz.

4.5 Bose-Einstein Condensation

Bose-Einstein condensation is reached when the phase space density of the
cloud is larger than 2.612 (Eq. 2.10). The phase space density can be de-
termined from known trap parameters, by measuring the temperature of the
cloud and the number of atoms N . Through the number of atoms we obtain
the density of the cloud in the trap, by dividing it with the effective volume
Veff of the trapping potential:

n =
N

Veff

with

Veff =

(

2πkBT

m

)3/2
1

ω̄3
, (4.40)

ω̄ = (ωxωyωz)
1/3 is the geometric mean of the trap frequencies. Nevertheless,

determining the phase space density to prove that we have reached quantum
degeneracy is not enough.

The onset of BEC is ususally accompanied by the formation of a sharp
peak in the density distribution of the atomic cloud. When this is observed
and the bimodal function (Eq. 4.37) can be fitted to the distribution, we
have a clear indication that we have reached Bose-Einstein condensation.
Another means of detecting the onset of Bose-Einstein condensation is given
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Fig. 4.8: The dipole potential under the influence of gravity. The waists of the
beams are 50 µm and 40 µm in the x and y direction respectively. (a)
The total laser power in the crossing is 120 mW, according to equation
3.17 is the trap depth UDip = 6.6 µK, however the effective potential
depth is Ueff = 1.6 µK. (b) The gravity has opened the trap such that
the atoms cannot be contained in the trap. The total laser power in the
crossing is 70 mW.

by the three-body recombination: The three-body loss rate is a factor of 3!
smaller in a condensate than in a thermal cloud of the same density [79],
[65]. Nonetheless, we use the special feature of the BEC that it converts its
interaction energy into kinetic energy when the trap is suddenly switched off,
because it turned out to be impracticle to fit the bimodal function to our
cloud for several reasons. First of all, gravity affects the dipole trap potential.
The atoms are attracted to the bottom of the dipole trap, so that the center
of the trapping potential is moved downwards. This effect is negligible for
strongly confining optical dipole traps, but it cannot be ignored when the
trap depth is lowered, for instance during the evaporation. The influence
of the gravity is added up to the dipole potential (Eq. 3.17) to obtain the
effective dipole potential:

Ueff = UDip(x, y, z) − mgz. (4.41)

Figure 4.8 shows the influence of gravity on the dipole potential. As can be
clearly seen, gravity lowers the potential barrier seen by the atoms. A typical
value for the laser power at the end of the evaporation cycle is Ptot = 120
mW. In this case, the effective dipole potential is only 1.6 µK, four times
lower than the dipole potential calculated with equation 3.17. When the
laser intensity is lowered even more, the barrier is decreased until there is no
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potential left to confine the atoms. This happens at a total laser power of
70 mW (Fig. 4.8(b)). At this point, the gravity is in equilibrium with the
trapping potential. Atoms can be trapped in an optical dipole potential as
long as the energy kBT of the atoms is lower than the potential barrier.

Unfortunately, the (partly condensed) atom clouds we have observed were
all trapped in a potential with a barely existing potential barrier. Which
means that the cloud could expand outside the potential barrier, before the
trap was switched off, leading to a bimodal distribution regardless of the fact
whether we had reached quantum degeneracy or not. This problem is easily
solved by adding a second detection setup in the horizontal direction (x, y
direction).

Secondly, it is possible that we have trapped partly condensed clouds
where the thermal cloud is almost nonexistent. According to reference [80,
81], a shallow optical dipole potential cannot be approximated with a para-
bolic potential, since the anharmonicity of the trapping potential has to be
taken into account. Approximating the potential with a Gaussian leads to
much higher condensate fractions.

In additon to reaching high enough phase space density ρpsd, we based
our proof of Bose-Einstein condensation on the anisotropic expansion of a
quantum degenerate gas trapped in an anisotropic trap. Our trap is already
slightly anisotropic (the waist of the beam travelling in the x direction is 49
µm, and in the y direction it is 40 µm), but we increased the anisotropy of the
trap by moving one focus several mm out of the crossing to increase the 1/e2

radius of the beam in the crossing point. The focus of the beam travelling
in the x direction was moved 8 mm outside of the crossing point, so that the
1/e2 radius of the beam in the crossing became 72 µm (Eq. 3.19). Figure
4.9 shows the anisotropic dipole trap and the TOF images of the evaporated
cloud. As can be clearly seen in 4.9(b) and 4.9(c), the cloud changed its
aspect ratio during the free expansion. The orientation of the cloud changed
from a vertical orientation to a horizontal orientation in 6 ms.

Since we do not have an axially symmetric trap, we have numerically cal-
culated the differential equations of the scaling parameters of the condensate
radii (Eq. 4.32), to obtain the changing aspect ratio predicted by theory [78].
The parameters used for the calculation resembled the experimental param-
eters: The 1/e2 radii of the two beams in the crossing are 72 µm and 40 µm
in the x and y direction, respectively. The corresponding trap frequencies at
the end of the evaporation cycle are ωx = 2π × 125 Hz and ωy = 2π × 56
Hz. The results are shown in figure 4.7. The theoretical aspect ratio of the
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Fig. 4.9: A Bose-Einstein condensate. The aspect ratio of the cloud changed during
its free expansion. (a) The focus of the beam travelling in the x direction
was moved 8 mm outside of the crossing point, so that the 1/e2 radius
of the beam in the crossing became 72 µm. The waist of the second
beam was 40 µm. (b) Time of flight (TOF) images of the condensate. (c)
Aspect ratio Rx/Ry versus the time of flight.

Optical power after evaporation P 120 mW
1/e waist in the crossing (x-direction) wx 40 µm
1/e waist in the crossing (y-direction) wy 72 µm
Final trap depth UDip/kB 4.3 µK
Critical temperature Tc 100 nK
Phase space density ρpsd > 3
Number of atoms N 10, 000
Number of condensed atoms Nc 5, 000
Initial aspect ratio (tTOF = 0 ms) Rx/Ry 0.73
Final aspect ratio (tTOF = 10 ms) Rx/Ry 1.20

Tab. 4.1: Parameters of the dipole trap and the Bose-Einstein condensate.



66 4. A Fast Route to Bose-Einstein Condensation

0.7

0.8

0.9

1.1

1.2

1.3

Time of flight [ms]

2 6 8 104

A
s
p

e
c
t 

ra
ti
o

Experiment
Theory

Fig. 4.10: The theoretical curve shown in figure 4.7b was weighted with the camera
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cloud at t = 0 ms is much larger than the measured aspect ratio, since in
the calculation we have not taken the camera resolution into account. We
have a small magnification M = 1.3 in our camera setup. Combined with
the size of our camera pixel (one pixel is 9 µm, section 3.3.6), this leads to
the minimum size of 7 µm we can image with the camera. The theoretical
curve shown in figure 4.7b was weighted with the camera resolution and the
resulting curve is shown in figure 4.10.

Figure 4.10 shows that the theory nicely confirms our experimental data,
considering all the assumptions we have made. Each data point consists of
at least 3 − 5 measurements. We estimate that 10% of these measurements
consisted of clouds which did not reach Bose-Einstein condensation, and thus
were thermal clouds with an isotropic expansion. This decreases the aspect
ratio value. Another assumption we have made was with the fitting process:
The data was fitted with a Gaussian distribution instead of with a bimodal
distribution, since the data could not be accurately fitted with the bimodal
function.

The 1/e2 radii of the laser beams also show an error of about 10%: The
displacement of the beam travelling in the x direction could be measured
with an accuracy of 1 mm. A larger 1/e2 radius leads to a downward move-
ment of the aspect ratio function.

Table 4.1 shows some parameters of our optical dipole trap and the con-
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densate.

4.6 Summarizing the Route to BEC

In this chapter, I have proved that we have reached Bose-Einstein condensa-
tion in an optical dipole trap in a simple and straightforward way. We start
our experiment by loading ∼ 350, 000 atoms from the MOT into the crossed
dipole trap. 70% of the atoms in the dipole trap is optically pumped into
one mF state. We have optimized the number of atoms trapped in the dipole
trap by decreasing the intensity of the repumping and cooling laser, and by
increasing the detuning from resonance of the cooling laser. Thereby reduc-
ing the light induced losses. Due to the decreased intensity of the repumping
laser, the atoms are pumped into the F = 1 ground state. This increases the
lifetime of atoms trapped in the dipole trap from less than 1 s for atoms in
the F = 2 ground state, to 12 s for atoms in the F = 1 ground state (Fig.
4.1). The high oscillation frequencies of our dipole trap and low losses allow
for a high ratio between the elastic and inelastic collisions (Eq. 4.20), which
we need for an efficient evaporative cooling process. The atoms are evapo-
rated by ramping down the laser power with three linear ramps. At the end
of our evaporation cycle, we are left with about 10, 000 atoms at a temper-
ature below the critical temperature Tc ≃ 100 nK. We proved Bose-Einstein
condensation through the changing aspect ratio. The cloud changed its as-
pect ratio in a time of flight of 10 ms from 0.7 to 1.2, thereby confirming
our theoretical prediction, thus proving quantum degeneracy. Our atomic
cloud consists of ∼ 5, 000 condensed atoms. The temperature of quantum
degenerate clouds are usually determined by fitting a density distribution
to the thermal part of the cloud. Due to the fact that our clouds can ex-
pand outside the (low) potential barrier of the optical dipole trap, before the
trap is switched off, we cannot accurately determine the temperature of our
quantum degenerate clouds.
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5. USING THE COHERENCE PROPERTIES OF

BOSE-EINSTEIN CONDENSATES

Overview of this Chapter

In this chapter, a novel realisation for Sagnac interferometry is proposed.
In this experiment, we want to load a Bose-Einstein condensate into a ring-
shaped potential created by illuminating a microfabricated microoptical ring-
lens. The diameter of the ring is 1.5 mm with a waist of 1.2 µm (section 5.2).
The small waist leads to a tight confinement of the Bose-Einstein condensate
and can lead to a 1D BEC or even a Tonks-Girardeau gas (section 5.3).

5.1 Introduction

Now that we have proved to have reached Bose-Einstein condensation, we
want to use the coherence properties of the condensate to study several ef-
fects. In this respect, the atom interferometer is a very powerful tool: It
can be used to study fundamental quantum mechanical phenomena, probe
atomic and material properties, and measure inertial diplacements. To per-
form atom interferometry experiments, our experimental setup has to satisfy
several conditions. First we have to prepare our initial state, in our case
this is the Bose-Einstein condensate. Then, we have to coherently split the
condensate and apply interactions to the two parts (or two quantum states),
which affect the clouds differently. Now, the two clouds can be recombined
and the phase shift can be measured by detecting the fringes of the interfer-
ence pattern.

In our experiment, we want to use a microfabricated ring-lens as an atom
interferometer. When the ring-lens is illuminated by a laser, a ring-shaped
focus is imaged in the focal plane. Atoms can be loaded in this ring-shaped
potential, given by equation 3.17. The advantage of using an atom interfer-
ometer that confines atoms is that the atoms are supported against gravity.
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This leads to largely enhanced experiment times, which is advantageous for
precision experiments. Another advantage is that the location of the atoms
can be known with high precision. This is important for experiments where
spatially varying fields or interactions with small objects are studied. How-
ever, the density in ”confined” atom interferometers is high to acquire high
signals. This comes with several disadvantages, namely that the matter waves
become nonlinear due to the interatomic interactions leading to a mean field
potential. In the case of atoms trapped in a double well potential, this causes
a relative frequency shift between atoms in the two wells. When the double
well potential reverts into a single well potential, the nonlinear interaction
can create solitons. Solitons enhance the sensitivity of phase measurements,
but are hard to control [82]. Releasing the BECs before they are overlapped
averts problems arising from the nonlinearity.

The ring can be used as a Sagnac interferometer. In 1913, Sagnac showed
that the phase in a ring interferometer is sensitive to rotation. The Sagnac
effect for light is given by:

δφ =
8πAΩ

λc
, (5.1)

and in the case for atoms:

δφ =
8πAΩ

λdBv
=

4mAΩ

~
, (5.2)

where A is the enclosed area of the interferometer, Ω is the rotation, and δφ
is the phase shift. Due to the de Broglie wavelength, the Sagnac effect is
more sensitive when atoms are used. The sensitivity can even be enhanced
when massive particles are used. Nevertheless, atom interferometers largest
disadvantage (and thus a big advantage for light) is the small areas that can
be used. In a fiber ring interferometer, the enclosed area can be as large as
108 m2, whereas the enclosed areas for atom interferometers is only a few
mm2 [82, 15]. Nonetheless, a larger sensitivity should be possible with an
atom interferometer when cold atoms are used.

A few groups have created a magnetic storage ring for Sagnac interfer-
ometry in which they loaded neutral atoms [83, 84]. However, using optical
potentials instead of magnetic potentials to create a ring has several ad-
vantages. Because our ring-shaped trap is all-optical, it does not involve
material surfaces, as is the case for magnetic ring traps, which can cause
matter wave decoherence. Furthermore, it allows for the possibility of trap-
ping multiple magnetic sublevels and the investigation of multi-component
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Fig. 5.1: (a) A schematic representation of the microfabricated ringlens. In our
experimental setup, the focus of the ring lies in the xy plane specified
by the crossed dipole trap beams (Fig. 4.3) (b) Rubidium 87 atoms
were loaded in the ringlens straight from our MOT and were able to
propagate freely along the ring. (c) Rubidium 87 atoms were loaded in
the ringlens from the optical dipole trap by cooling the atoms in the
dipole trap through evaporation. The atoms in the ring are not quantum
degenerate.

(one-dimensional) gases.

5.2 The Microfabricated Ring-Lens

The microfabricated ring-lens was made by bending a cylindrical diffractive
microlens into a ring with a maximum outer diameter of the diffractive el-
ement of 3 mm. The ring-lens was made in collaboration with the research
group of Jahns at the ”Fernuniversität Hagen”. The ring-lens images a ring-
shaped focus in its focal plane (F = 2 mm), as can be seen in figure 5.1(a).
The diameter of the ring-focus is 1.5 mm, and the minimum waist of the
ring-focus is 1.2 µm. This waist can only be reached when the numerical
aperture of the following optical elements is large enough so that lens aber-
rations and intensity losses do not occur.

The ring-lens is illuminated by a Ti:Sapph laser at 796 nm, and the re-
sulting focus is imaged 1 : 1 into the vacuum chamber. The ring-focus lies in
the horizontal xy plane as specified by the crossed dipole trap beams (Fig.
4.3). The intensity in the focus of the ring-lens is given by [85]

I0 =
P√

2ππRw0

. (5.3)

The dipole trap depth can then be calculated through equation 3.17. We
have about 400 mW laser power at our disposal to illuminate the ring-lens,
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leading to a maximum trap depth U0 = kB · 0.4 mK, where it is assumed
that the waist of the ring-focus is 2 µm. The trap frequencies can be cal-
culated with the equations for the single beam dipole trap (Eqs. 3.22 and
3.23), and the radial trap frequency ωr = 2π · 30 kHz and the axial trap
frequency ωz = 2π · 3 kHz. The confinement of the atoms in the ring-lens
trap is therefore very tight, this can lead to interesting effects when we load
a BEC in the ring. These effects are described in the following section.

Figure 5.1(b) shows rubidium atoms in the ring, which were loaded di-
rectly from the MOT. In figure 5.1(c), the ring is superimposed with the
dipole trap. Atoms are loaded in the ring by evaporatively cooling the atoms
in the dipole trap. The atoms in the ring are not quantum degenerate, so far
we have not been able to load a BEC in the ring.

5.3 1D Quantum Degenerate Gases in a Toroidal Trap

Loading a Bose-Einstein condensate into the microfabricated ringlens can
lead to a different behaviour of the quantum degenerate gas, because the
tight confinement in the radial and axial direction of the ring-lens might
lead to a trapped 1D degenerate gas. The 1D regime is obtained, when the
motion of the atoms in the transverse directions is confined to zero-point
oscillations. This happens, when the temperature and the interaction energy
per particle ε do not exceed the radial level spacing ~ω⊥. The confinement in
one dimension has a remarkable feature: When the atomic density is lowered,
the interactions between the atoms become more important and the character
of the system changes. Fow very low densities, a Tonks-Girardeau gas can
be formed [86, 87, 88], where the bosonic atoms behave like fermions.

In the following it is assumed that a condensate is loaded into a tubes with
strong two-dimensional confinement. The tight confinement is in the radial
direction, and the atoms can propagate freely in the longitudinal direction.
A trapped 1D gas is characterized by a single parameter γ, which is the ratio
between the interaction energy and the kinetic energy of the ground state:

γ =
mg1D

~2n1D

, (5.4)

where g1D is the 1D coupling constant of the interaction potential, and n1D

is the the 1D density. The interaction potential can be approximated by a
two-atom interaction potential [89, 90]:

U1D(z) = g1Dδ(z). (5.5)
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Fig. 5.2: Atom distributions of a 1D quantum degenerate gas. As γ increases, the
length of the single particle wave function λ becomes smaller, while the
interparticle spacing r becomes larger, until the bosons become spatially
distinct, which resembles fermionic behaviour. For a gas trapped in a
longitudinal tube, γ can be changed by transversely squeezing the tube
or by changing the density. The gas acts like a fluid for γ ≪ 1, and
therefore expands axially when squeezed. For increasing γ, the squeezing
affects the axial expansion less and less. For γ ≫ 1, the gas is deep in
the Tonk-Girardeau regime, and transverse squeezing has no effect on the
axial distribution (or on the energy) [69]
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The coupling constant is given by:

g1D =
−~

2

µ̃a1D

, (5.6)

with the one dimensional scattering length a1D =
−a2

⊥

a
(1−C a

a⊥

) [89, 90], and

the constant C = 1.4603, a⊥ =
√

~

µ̃ω⊥

is the size of the ground state in the

radial direction (see also Eq. 2.14), and µ̃ = m/2 is the reduced mass.
For high densities (γ ≫ 1), the system is weakly interacting, and in a

harmonic potential Bose-Einstein condensation is possible. This 1D BEC
resembles a condensate trapped in three dimensions. However, when the
particle density n is decreased, the interactions between the atoms become
more important, whereas a 3D gas would become more ideal. Decreasing
the density in a 1D trap reduces the kinetic energy of the ground state, and
the kinetic energy may become smaller than the interaction energy. When
the interaction energy equals the kinetic energy (γ ≈ 1), adding an optical
lattice along the axial direction changes the superfluid phase into a Mott
insulator phase [91, 92]. When the density is decreased even more (γ ≪ 1, a
similar efect is attained by increasing the trapping frequencies in the radial
direction), the repulsive interactions between the bosonic atoms dominate.
The bosons minimize their repulsion, by preventing them from occupying
the same region of space. This is called a Tonks-Girardeau gas. This resem-
bles the Pauli exclusion principle for fermions, causing the bosonic atoms to
exhibit fermionic properties, but the bosons do not have to be in another
momentum states, as would be the case for fermions. The three regimes are
depicted in figure 5.2. The first Tonks-Girardeau gases were observed in the
group of Bloch [93] and Weiss [69], where they created the Tonks-Girardeau
gas in an optical lattice.

An interesting feature of the Tonks-Girardeau gas is that it resembles a
fermionic gas. Therefore, it is possible to map the impenetrable bosonic sys-
tem one to one onto a gas of noninteracting fermions. For N bosons confined
in an one-dimensional box with length L the ground state of the system ΨB

is given by an absolute value of the N particle ideal Fermi gas [86, 89]:

ΨB = |ΨF |, (5.7)

where the ground state of the Fermi gas is described by:

ΨF (z1, . . . , zN) =
1√

N !LN
det(eikαzβ), (5.8)
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with

kα =
2π

L
α, (5.9)

where α is an integer, and kα 6 |kF | and kF = π(N−1)
L

is the one-dimensional
Fermi radius. The Slater determinant guarantees that the wavefunction van-
ishes whenever two particles occupy the same position in space. In other
words, the bosons in the Tonks-Girardeau gas are not allowed to occupy the
same region of space. As a result, the bosons are distributed over a more
extended region in momentum space than in the case of an ideal, or weakly
interacting Bose gas. In a one-dimensional box with length L this means
that there exists an upper limit to the number of atoms [89]:

N ≪ L

π|a1D|
. (5.10)

In the case of our ring-shaped dipole trap, we can say that the length of the
one dimensional box is given by the circumference of the ring L = 2π·7.5·10−4

[94, 95]. For our radial trap frequency ωr = 2π · 30 kHz this would mean
that we cannot load more than 2500 atoms in our trap to obtain a Tonks-
Girardeau gas. However, our axial trap frequency is much smaller, this will
effect the 1D gas such that we need an even lower number of atoms in our
trap for a Tonks-Girardeau gas. Using the axial trap frequency ωz = 2π · 3
kHz, the maximum number of atoms becomes 230.

5.4 A Possible Interferometry Experiment

When we want to use the ring as an interferometer, we have to be able to
split the atoms in the ring, guide them along the two arms of the ring, and
recombine them on the other side. When the ring is illuminated by a line-
shaped laser beam, then depending on the position of the laser beam with
respect to the ring-lens, we have one or two maxima (Fig. 5.3). By moving
the beam from the top to the bottom, we can make a single well potential
split into a double well potential, and recombine it back into a single well
potential (Fig. 5.4). A Bose-Einstein condensate loaded in the single well
potential of the line-shaped laser beam is thus split in two clouds when the
beam is moved across the ring-lens. Upon recombination, the two clouds can
interfere with one another.

Another experiment, which enhances the sensitivity of the interferometer,
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Fig. 5.3: Picture taken from reference [85]. By illuminating a part of the ring with
a line-shaped laser beam, we obtain one or two maxima, depending on
the position of the laser beam with respect to the ring-lens.

Fig. 5.4: Picture taken from reference [85]. Part of the ringlens is illuminated by
a line-shaped laser beam, which has a horizontal waist of 301 µm and a
vertical waist of 1853 µm. The ring has a diameter of 1.5 mm. Thermal
atoms were loaded in the potential created by the line-shaped laser beam.
Atoms loaded in the potential can be moved along the ring, when the
line-shaped beam is moved from the left to the right. The atoms are split
in two clouds and recombined on the right side of the ring.

deals with the interference of two solitons [96]. A soliton is a self-reinforcing
solitary wave that maintains its shape while it travels at constant speed. It
was described for the first time in 1834 by John Scott Russel who observed the
phenomenon in water. The soliton can propagate without dispersing, because
nonlinear effects compensate the dispersion. In a Bose-Einstein condensate,
the nonlinearity is provided by the mean-field energy Vint = gn(~r) = 4π~

2an(~r)
m

(Eq. 2.28). Depending on whether the interaction is repulsive (a > 0) or at-
tractive (a < 0), the solitions are either dark or bright, respectively. A bright
soliton is a peak in the amplitude of the density, whereas a dark soliton is
characterized by a local density minimum with a phase step at the position
of the minimum. The first solitons detected in BECs were dark solitions
[97, 98], but with the usage of Feshbach resonances, a bright soliton could be
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detected only a few years later [99]
Because we create Bose-Einstein condensates with rubidium (87Rb) at-

oms, which have a positive scattering length, we can only create dark solitons,
unless we use Feshbach resonances to tune the scattering length [100]. Soli-
tons can be generated with the method of phase imprinting [101], where a
phase step is drawn onto the condensate. This can be done with a far de-
tuned light pulse, which projects a mask onto the condensate. Because of
the light shifts, a phase distribution proportional to the light distribution is
imprinted. To generate solitons in a condensate which homogeneously fills
our ring-potential, we can imprint a phase on half of the BEC in the ring. We
then obtain so-called gray solitons whose phase step is not infinite. The ve-
locity of a gray soliton depends on the imposed phase shift [95, 102]. Another
possibility to create a phase step is to pierce the ring with a high intense blue
detuned laser beam [95, 102].
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6. SOME CONCLUDING REMARKS

In this thesis, it was shown that we have achieved an all-optical Bose-Einstein
condensation with rubidium atoms. The rubidium atoms were loaded in an
optical potential created by two focussed laser beams intersecting under a 90◦

angle. By optimizing the loading of atoms from the MOT into the dipole trap,
we were able to trap ∼ 350, 000 atoms at the crossing point. The atoms were
subsequently evaporatively cooled down to quantum degeneracy by ramping
down the laser power with three linear ramps. Bose-Einstein condensation
has been proven by using the anisotropic expansion of a quantum degenerate
gas trapped in an anisotropic potential. We obtained ∼ 5, 000 condensed
atoms.

As a next step, we will load a condensate into the ring-shaped potential.
This will entail lots of interesting physics, among other things the crossover
from a 1D BEC into a Tonks-Girardeau gas. The ring can be used as a
Sagnac atom interferometer. Loading the BEC into the potential created by
illuminating the ring-lens with a line-shaped laser beam enables us to split
the BEC and recombine it by moving the laser beam across the ring. Re-
combining the BEC in the trap leads to nonlinear effects which can generate
solitons. Solitons can also be made in the Tonks-Girardeau gas by phase im-
printing the gas, or by piercing the Tonks-Girardeau gas with a blue detuned
laser beam.

Since the experimental setup for generating Bose-Einstein condensates
has been built anew at the ”Technische Universität Darmstadt”, there are
a few things that we can improve. Among other things, we can ”recycle”
the dipole trap beam: Instead of splitting the beam in two, we can use one
beam and send its transmission through the vacuum chamber back through
another chamber window, so that it can cross under 90◦ with itself. This
doubles the intensity and thus the optical trap depth. A downfall of this
system is that we cannot control the intensity of the two beams creating the
crossed dipole trap separately.

A second absorption detection setup has been implemented in the ex-
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periment, which images the BEC from the side and can thus detect atoms
under the influence of gravity. This will improve the detection of quantum
degeneracy, since we will be able to see thermal clouds leaving the dipole
trap early separate from the condensed cloud (section 4.5).

We can neutralize the effect that gravity has on the dipole potential by
adding a magnetic field which precisely counteracts the gravitation. This will
improve our dipole trap at low intensities, so that the atoms do not disappear
through the gravitational sag.

As a concluding remark, I would like to mention that our condensates
will not only be transferred into the ring potential, but also into other po-
tentials created by microfabricated optical elements, such as the dipole trap
array or the cylindrical microlens array. The amount of possible dipole trap
configurations that we can create with the microlenses are extensive. The
huge range of differently shaped potentials allows us to investigate phenom-
ena, which before could only be investigated in solid states. For example, the
Mott insulator phase can be explored in dipole trap arrays, where the two-
dimensional periodic structure resembles the crystalline structure of a solid
state. In our specific case, each potential well will be individually addressable
and the individual well separation can be altered. In such a periodic struc-
ture, Bloch oscillations (another solid state phenomena) can appear when
the array is accelerated. A specific interest which we will investigate in the
near future is, what happens with the atoms of our condensate, when we
accelerate the condensate over a periodic potential.
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A. THE RUBIDIUM ATOM

The element rubidium 87 was chosen for the Bose-Einstein experiment, be-
cause the positive scattering length and the transition wavelengths of the D
lines lying in the infra-red make it an excellent candidate for laser cooling
and Bose-Einstein condensation. The transition wavelengths can be easily
reached with standard laser diodes. We use the D2 for cooling the Rubidium
atoms. The cooling transition of the rubidium atom is the 52S1/2, F = 2 →
52P3/2, F

′ = 3 transition. A small probability exists for atoms to excite to
the 52P3/2, F

′ = 2 level. Therefore, a repumping laser is needed to pump
them back into the cooling cycle. The repumping laser is resonant with the
52S1/2, F = 1 → 52P3/2, F

′ = 2 transition (Fig. A.2).
More information on the 87Rb D lines can be found in reference [103].
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Atomic number 37
Abundancy 87Rb 27.83%
Mass m 1.443 · 10−25 kg
Nuclear spin I 3/2
S-wave scattering length a 5.819 · 10−9 m

Tab. A.1: The rubidium 87 atom.

Lifetime 52P1/2 τlife 27.70 ns
Wavelength (in air) λD1 794.766 nm
Transition frequency ωD1 2π · 377.107 THz
Linewidth ΓD1/2π 5.7500 MHz
Recoil energy ER/~ = h/2mλ2 3.6325 kHz
Recoil temperature TR 348.66 nK
Recoil velocity vR 5.7754 mms−1

Tab. A.2: Parameters of the D1 line.

Lifetime 52P3/2 τlife 26.24 ns
Wavelength (in air) λD2 780.032 nm
Transition frequency ωD2 2π · 384.230 THz
Linewidth ΓD2/2π 6.0666 MHz
Recoil energy ER/~ = h/2mλ2 3.7710 kHz
Recoil temperature TR 361.96 nK
Recoil velocity vR 5.8845 mms−1

Doppler temperature TDoppler 145.57 µK
Saturation intensity Is 1.669 mWcm−2

Tab. A.3: Parameters of the D2 line.
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Fig. A.1: The D1 transition of the rubidium 87 atom.
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Fig. A.2: The D2 transition of the rubidium 87 atom.
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x
y

Fig. B.1: The crossed optical dipole trap.

1/e waist, beam in x-direction wx 49 µm
1/e waist, beam in y-direction wy 40 µm
Optical power P 8.2 W
Trap depth UDip/kB 430 µK
Scattering rate Γs 2 photons/s
Oscillation frequencies, x-direction ωx 2π · 1, 085 Hz
Oscillation frequencies, y-direction ωy 2π · 980 Hz
Oscillation frequencies, z-direction ωz 2π · 1, 460 Hz
Number of atoms N ∼ 350, 000 atoms
Density n 1.1 · 1012 atoms/cm3

Temperature T ∼ 30 µK
Initial phase space density ρpsd 4.4 · 10−5

Tab. B.1: Parameters of the optical dipole trap.
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