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Abstract
Arrays of optical tweezers provide a versatile environment to store neutral-atom quantum
systems with precise control over their internal and external degrees of freedom. These
configurations offer a wide range of applications in a variety of research fields including
quantum computation and simulation, quantummany-body physics, and quantum sensing. The
micro-optical platform presented in this work provides a large-scale tweezer array comprising
hundreds of focused-beam dipole potentials with diffraction-limited waists of 1.45(10)µm.
Exploiting light-assisted collisions allows for preparation of 191(17) individual laser-cooled
rubidium atoms into a typical number of 361 sites of a quadratic-grid array with trap depths
corresponding to temperatures in the millikelvin regime.
In the context of this thesis, a technique was implemented to transform an arbitrary distribution
of atoms within the array into a predefined pattern via sequential transport between sites.
Surpassing the stochastic loading process, this allows to commence experiments from a well-
defined initial configuration, compensate for atom loss during an experimental cycle, and
decrease the necessary number of time-consuming laser cooling phases. Based on this approach,
defect-free configurations consisting of up to 111 atoms could be demonstrated. This paved the
way to conduct experiments which have been impossible to carry out before within a reasonable
amount of time.
Significant progress has been made towards the realization of two-qubit operations in this
experimental platform. Site-selective coherent coupling from the 5S1/2 ground to a 82S1/2

Rydberg state via a two-photon process was implemented yielding Rabi frequencies of up to
2π · 0.78(5)MHz. Following this, Rydberg-blockade between atoms at neighboring array sites
separated by 7.0(2) µm was achieved using a sequential addressing scheme.
Additional advances were made regarding the coherent coupling between the hyperfine ground
states which led to sub-microsecond π-pulse durations in the large-scale array. On that basis,
the tweezer platform was turned into a two-dimensional site-resolved sensor array for magnetic
fields. Using a total of 270 individual-atom sensors covering an area of 119 µm× 98µm allows
for parallelized detection of external magnetic fields with a sensitivity of 100 nT and a spatial
resolution of 7 µm. Utilizing a single-atom probe in a movable optical tweezer, significantly
enhanced the spatial resolution while the sensitivity stayed in agreement with the result
obtained via parallelized detection.
Furthermore, novel concepts to extend the available tweezer configurations of the present
quantum platform have been evaluated. This includes the implementation of spatial light
modulation with digital micromirror devices (DMD) as well as 3D-printed microlens arrays.
Applying DMD-based addressing of microlenses, dynamic reconfiguration of tweezer geometries
could be demonstrated with individual-site control. In addition, 3D printing was found to
offer even further flexibility in the configuration of the microlens array itself. This led to the
development of a hybrid tweezer setup combining the stability involved with microlens-based
platforms, the short-term modification of the fundamental lens arrangement based on rapid
prototyping of user-definable microlens arrays, and the DMD-based reconfigurability with
real-time control for the creation of versatile tweezer geometries.
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Zusammenfassung
Register aus optischen Pinzetten bieten eine vielseitige Umgebung für die präzise Kontrolle
der internen und externen Freiheitsgrade von Quantensystemen aus neutralen Atomen. Dabei
ergibt sich eine Fülle von Anwendungsmöglichkeiten in einer Vielzahl an Forschungsfeldern
einschließlich Quanteninformationsverarbeitung und -simulation, Vielteilchenphysik sowie
Quantensensorik. Die mikrooptische Plattform, welche in dieser Arbeit vorgestellt wird, resul-
tiert in einem großflächigen Dipolfallenregister, das durch einzeln fokussierte Laserstrahlen
mit einer Strahltaille von 1.45(10)µm erzeugt wird. Unter Ausnutzung lichtinduzierter Stöße
werden in einem typischen Arbeitsbereich von 361 Fallenplätzen 191(17) lasergekühlte Atome
räumlich getrennt voneinander bei Fallentiefen im Bereich von kB· Millikelvin präpariert.
Im Rahmen dieser Arbeit wurde eine Technik implementiert, welche den Transport von Ato-
men zwischen Fallen erlaubt, womit eine stochastisch gegebene Anfangsverteilung in eine
vorgegebene Zielstruktur überführt werden kann. Dies erlaubt nicht nur die Durchführung
von Experimenten ausgehend von einem wohldefinierten Anfangszustand, sondern auch die
Kompensation von Atomverlusten innerhalb eines Messzyklus und damit die Reduktion der
Notwendigkeit von zeitaufwendigen Phasen der Laserkühlung. Basierend auf diesem Ansatz
konnten fehlstellenfreie Strukturen aus bis zu 111 Atomen erzeugt und der Weg für Experi-
mente bereitet werden, welche vorher nicht in sinnvoller Zeitdauer durchführbar waren.
Entscheidende Fortschritte wurden hinsichtlich der Realisierung von Zwei-Qubit-Operationen in
dieser experimentellen Plattform gemacht. Über einen Zwei-Photonen-Prozess wurde die kohä-
rente Kopplung zwischen einem Hyperfein-Grundzustand des 5S1/2-Grundzustandes und einem
82S1/2- Rydbergzustand unter Einzelplatzauflösung mit Rabifrequenzen von 2π · 0.78(5)MHz
realisiert. Dies ermöglichte den Nachweis der Rydberg-Blockade zwischen Atomen benachbar-
ter Fallenplätze in einem Abstand von 7.0(2) µm unter sequentieller Adressierung.
Hinsichtlich der kohärenten Kopplung innerhalb von Hyperfein-Grundzuständen konnten
π-Pulszeiten unterhalb von einer Mikrosekunde realisiert werden. Daran anknüpfend wurde
die vorliegende Plattform als zweidimensionaler Magnetfeldsensor genutzt. Dieser bietet 270
Einzelatom-Sensoren für parallelisierte Detektion, welche bei einer Sensitivität von 100nT
eine Fläche von 119µm× 98µm mit einer räumlichen Auflösung von 7µm abdecken. Weiter-
hin konnte die Detektion mit einem unabhängigen Einzelatom-Sensor in einer beweglichen
optischen Pinzette gezeigt werden, welche die Erhöhung der räumlichen Auflösung ermöglicht
und ein zur parallelisierten Messung übereinstimmendes Ergebnis liefert.
Schlussendlich wurden neuartige Konzepte entwickelt, welche einen erheblich höheren Grad
an Flexibilität hinsichtlich der im Experiment konfigurierbaren Fallengeometrien bieten. Diese
beinhalten räumliche Intensitätsmodulation mit digitalen Mikrospiegeleinheiten (DMD) ebenso
wie 3D-gedruckte Mikrolinsenregister. DMD-basierte Adressierung von Mikrolinsen erlaubte die
dynamische Anpassung von Fallengeometrien mit Einzelplatzkontrolle. Außerdem erwies sich
3D-Druck als weitere Möglichkeit zur flexiblen Konfiguration von Mikrolinsenregistern. Damit
konnte ein hybrider Aufbau optischer Pinzetten entwickelt werden, welcher die Stabilität einer
Mikrolinsen-basierten Plattform mit kurzfristiger Anpassbarkeit der Linsengeometrie beruhend
auf schneller Prototypenentwicklung von benutzerdefinierten Registern und Echtzeitkontrolle
für vielseitige Fallengeometrien kombiniert.
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1. Introduction
With the words ”For those who are not shocked when they first come across quantum theory
cannot possibly have understood it. Probably I spoke so badly that no one knew what I was talking
about.” Niels Bohr recapitulates the impressions after an introduction to quantum mechanics
he has given at a conference meeting wondering why no one ”raised any objections or asked any
embarrassing questions” [1]. Raising the right question can not only yield astonishing insights
on the road to an answer but also has the potential for ground-breaking inventions to shift
whole industries albeit possibly many decades later.
More than 100 years after the emergence of quantum theory at the beginning of the last
century [2] the list of open questions in this field of research is still long. In contrast, solutions
to quantum theory related problems are immanent in today’s technologies which heavily
rely on a profound understanding of light and matter on a single-quantum level. From the
experimental point of view that requires precise control over the internal and external degrees
of freedom of a well-isolated system under test [3, 4] while otherwise decoherence can obscure
the quantum properties [5]. In the last decades, tremendous progress has been made with
respect to control quantum systems. Based on laser cooling techniques [6–8] clouds of neutral
atoms approaching the point of absolute zero temperature have been realized which allowed
to accomplish quantum phase transitions and investigate theoretical models from condensed
matter physics [9, 10]. These systems are closely related to the highly topical phenomenon
of superconductivity and can be tuned with experimental parameters to reproduce the tran-
sition from conducting to insulating solids [11]. The principal idea connected to this is the
integration of properties of one quantum system within another and goes back to a proposal
for quantum simulators by Richard Feynman [12] from 1982. This approach is especially vital
if a theoretical model of the original object is available which would in principle allow for
a classical computer-based simulation in order to compare theoretical predictions with the
outcome of a factual experiment but a realization is infeasible due to limited computational
resources facing the high complexity of the involved dynamics or system size.
Three years later this is taken up by D. Deutsch who presents the concept of a universal
quantum computer which relies on qubits instead of conventional bits as the fundamental
unit of information and exhibits the capability to perform certain probabilistic tasks faster
than its classical pendent due to exploitation of quantum parallelism [13]. In this context, the
algorithm by Grover for inverse search within an unsorted database [14] and Shor’s protocol
for prime factorization in polynomial run time [15] are prominent examples while the latter
questions the security of typical public-key cryptography algorithms used today. Moreover,
these devices could also act as a universal quantum simulator [16] while simulating a different
system would correspond to executing an adapted algorithm without the necessity to modify
the underlying platform. First algorithms have already been successfully implemented in
nuclear magnetic resonance (NMR) setups more than twenty years ago [17, 18] and a large
variety of candidates, among them trapped-ion platforms [19, 20], superconducting circuits
[21–23] and ultracold quantum gases [24, 25] are currently evaluated. However, there is still
a long way to achieve a truly universal system [26] which eventually outperforms its classical
counterpart. Present approaches have either restricted applicability or are tailor-made to solve
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specific problems while crucial challenges are scalability and error correction [27].
Platforms based on individually trapped neutral atoms provide well-isolated quantum systems
which are extendable from one [28] to two [29–32] and three dimensions [33–35] with tunable
interactions [36, 37] that allow for creation of entanglement [38–40] and the implementation
of high fidelity two [41, 42] and three [42] qubit gates. This makes them ideally suited to
work in the intersection between quantum simulation, quantum computation and quantum
metrology in a versatile manner. As a consequence, progress in a specific platform working
in one of these fields, for instance with respect to quantum control, has a high chance to
incorporate direct benefit if applied to the others. This continuously triggers progress and
results in a rapidly evolving field.
Especially, utilizing excitation into Rydberg states which is applied in a variety of different
setups providing sensitive on demand coupling to external fields or among otherwise isolated
atoms [3, 43–45] can be adapted to these platforms with well-defined spatial separation of
atoms [46]. In this fashion, simulations on quantum magnetism using the XY-spin Hamilto-
nian model [47] and Ising-type interactions [48–50] as well as topological phases of matter
have been conducted [51]. The latter ones are highly topical in view of topological quantum
computation as proposed by A. Kitaev [52] in 1997 as a possible scheme to implement error
correction.
Scalability to large systems of neutral atom configurations with still well-defined initialization,
individually addressable qubits, and flexibility in their alignment for precise interaction control
is essential in propelling this field to the next major breakthrough.
The micro-optical platform presented in this thesis and the related concepts are designed
to tackle exactly these challenges. Single focused beam tweezers are created in the spirit
of the idea realized by A. Ashkin [53], yet in a massively parallelized fashion. This results
in configurations which are intrinsically highly scalable in a straightforward way while al-
lowing for site-selective addressability to execute coherent operations [54] and parallelized
coherence-preserving transport [55]. Providing individual neutral atoms in a well-defined
spatial separation [31] the experimental setup allows for controlled Rydberg-mediated interac-
tions with parallelized excitation into Rydberg states [56].
In the course of this thesis, significant progress with respect to scaling up the system size and
preparation of a well-defined initial situation for experiments has been made. Furthermore,
the control over Rydberg interactions has been enhanced which now allows for individual qubit
access. Moreover, the applicability of the neutral atom platform could extended to the field of
quantum metrology providing further evidence of its versatility. In order to find still untapped
optimization possibilities of the experimental apparatus emerging technologies have been
evaluated with respect to their applicability in the setup. All of these topics will be detailed in
this thesis and a separate chapter is dedicated to each one.
In Chapter 2 the experimental apparatus is presented and its relevant fundamental aspects
are covered. It will be outlined how laser cooling techniques allow for preparation of individual
atoms in the tweezer array at random positions using a stochastic loading mechanism. Further-
more, the concept for implementation of interatomic coupling in the setup will be discussed.
Chapter 3 directly connects to this stage and deals with a new implementation of an extended
tweezer setup with the capability to turn the initial stochastic occupation in the array into
defect-free clusters of more than 100 atoms. This work has been conducted in close cooperation
with D. Ohl de Mello and is discussed in detail also in [57] and in our related publication [31].
Consequently, this chapter will focus on the essential characteristics and achievements of the
setup.
Chapter 4 demonstrates an extension to the experimental apparatus which enables site-selective
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coherent Rydberg excitations as well as site-selective Rydberg blockade. This is an essential
step for implementation of Rydberg-mediated interactions with individual-atom control and
the realization of two-qubit gates in the experimental setup.
Chapter 5 depicts an unprecedented quantum metrological application for the tweezer plat-
form. Turning the atom array into a magnetic-field sensitive two-dimensional plane allows for
gradient-field sensing with single-site resolution. As a test case this will be used to map the
field gradient of the magneto-optical trap.
Chapter 6 discusses concepts for further extensions of the experimental platform using state-
of-the-art technologies such as 3D-printed micro-optics and digital micromirror devices (DMD).
Additionally, DMD-based microlens array addressing will be introduced which allows for fast
on-demand modification of fundamental trap geometry given by the lens pattern. Moreover,
both technologies will be finally combined to enable even more flexibility.
Chapter 7 compiles the key results and prospects for possible future work are outlined.
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2. Scalable quantum platform based on
micro-fabricated optical elements

2.1. Large-scale optical tweezer arrays of focused laser beam traps

2.1.1. Trapping atoms with light

The use of light to control the external degrees of particles reaches back to the first experiments
by A. Ashkin1 in 1970s [53, 58, 59] and has developed into an indispensable tool in a plethora
of research fields, including physics, chemistry, biology, and medical research [59–62]. Thanks
to the high level of dynamic range in the interaction strength between light and matter, optical
tweezers are extremely versatile and can be used in order to monitor and control the external
degrees of freedom of a large variety of target objects ranging from single atoms to living
organisms.
With regard to trapping of atomic particles as well as atom-light interaction in general, there
exists a profound theoretical basis which is comprehensively discussed in literature [63, 64].
The theoretical treatment of that topic in this chapter follows the detailed derivations presented
in [64].
The Hamilton operator of the system comprising an atom interacting with a light field is given
by

Ĥ = ĤA + ĤL + Ĥ I (2.1)
where ĤA denotes the Hamilton operator of the atom, ĤL the Hamiltonian of the light field,
and Ĥ I covers the interaction between both.
The analysis can be simplified significantly by assuming that the atom does only exhibit two
energy levels, a ground state |g⟩ and an excited state |e⟩, separated by an energy h̄ω0 as
indicated in Fig. 2.1 (a). Even though this is a considerable simplification it provides strong
insight and serves as a good approximation as long as the interaction is dominated by coupling
to one atomic transition. Then, the Hamilton operator of a two-level atom can be written in
terms of the resonance frequency ω0 and the atomic lowering operator σ = |g⟩ ⟨e| as

ĤA = h̄ω0σ
†σ. (2.2)

Similarly the Hamiltonian of a monochromatic light field of frequency ωL can be written using
the ladder operators a† and a, respectively, as

ĤL = h̄ωL

(︃
a†a+

1

2

)︃
. (2.3)

In a semiclassical approach using a classical electric field with amplitude E the interaction
Hamilton operator in the dipole approximation is given by

Ĥ I = −d̂E (2.4)

where d̂ = −er̂e denotes the dipole operator for an atom having a single electron2 at the
1Nobel Prize in Physics 2018 ”for the optical tweezers and their application to biological systems.”
2For alkali atoms with only one electron in the outer shell this assumption is reasonable.
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Figure 2.1.: Dipole potential in the dressed states picture. (a) In an idealized two-level system
a light field detuned by ∆ < 0 couples with the bare atomic states. (b) This leads
to new eigenstates with intensity-dependent energy eigenvalues.

position r̂e.
Under the long-wavelength approximation3 an incident light field with a frequency ωL can be
written as

E(t) = ϵE0 cos (ωLt)

= E(+)(t) +E(−)(t)
(2.5)

where the field is decomposed into positive- and negative-rotating components E(±)(t) ∝
e−i(∓ωL)t.
Similarly, this can be done for the dipole operator

d̂ = −er̂e

= ⟨g| d̂ |e⟩
(︂
σ + σ†

)︂
= d̂

(+)
+ d̂

(−)

(2.6)

defining positive- and negative rotation components d̂(±) ∝ e−i(∓ωL)t.
Discarding the fast rotating terms4 under the assumption |ωL − ω0| << ωL + ω0 and using the
expressions for E and d̂ the interaction Hamilton operator can be written as

Ĥ I = −d̂
(+)

E(−) − d̂
(−)

E(+)

=
h̄Ω0
2

(︂
σeiωLt + σ†e−iωLt

)︂ (2.7)

with the Rabi frequency

Ω0 = −⟨g| ϵd̂ |e⟩
h̄

E0. (2.8)

3This neglects the spatial dependence of the electric field amplitude. However, as optical wavelengths are on the
order of several hundreds of nm compared to the single Å scale of atoms the assumption can be justified.

4This is known as the rotating-wave approximation (RWA).

6



Transforming into the rotating frame of the laser field simplifies the expressions for the atom
Ĥ

′
A = −h̄∆σ†σ and the interaction Hamilton operator Ĥ ′

I =
h̄Ω0
2

(︁
σ + σ†

)︁
further. Here, ∆

denotes the detuning ∆ = ωL − ω0 of the laser frequency to the resonance. This renders the
full Hamilton operator time independent. As the effect of stimulated absorption and emission
of single photons on a classical light field can be neglected ĤL is not considered any further.
Diagonalization of the rotating-frame Hamilton operator Ĥ ′ with

Ĥ
′
= Ĥ

′
A + Ĥ

′
I = h̄

(︃
−∆ Ω0/2
Ω0/2 0

)︃
(2.9)

in the uncoupled energy basis yields the new eigenvectors |+⟩ and |−⟩ while it turns out that
they can be expressed through rotation of the uncoupled states

|+⟩ = sin θ |g⟩+ cos θ |e⟩
|−⟩ = cos θ |g⟩ − sin θ |e⟩

(2.10)

when defining the Stückelberg angle θ as:

tan 2θ = −Ω0
∆

(︂
0 ≤ θ ≤ π

2

)︂
(2.11)

The corresponding eigenvalues evaluate to

E± = − h̄∆
2

± h̄Ω̃

2
(2.12)

using the generalized Rabi frequency Ω̃ =
√︂
Ω2
0 +∆2. The alternation of the eigenenergies

due to the light field is called the ac Stark shift. This leads to a spatially dependent potential in
case of a spatial variation of the intensity of the light field I(r) = 1

2cϵ0 |E0(r)|2 ∝ |Ω0(r)|2 and
is illustrated in Figure 2.1 (b) for the case of red-detuned light, i.e. ∆ < 0. As the parameters
of dipole traps are typically chosen in a way that the atoms are predominantly in the ground
state this configuration acts as an attractive potential. Finally, expanding equation 2.12 to the
lowest order in Ω0

∆ yields the expression for the dipole potential

UD ≈ h̄ |Ω0|2

4∆
=

3πc2

2ω3
0

Γ

∆
I(r). (2.13)

Complementarily, the spontaneous emission rate

Γ =
ω3
0

3πϵ0h̄c3

⃓⃓⃓
⟨g| d̂ |e⟩

⃓⃓⃓2
(2.14)

describes the coupling of the excited level to the vacuum field according to the approach by
Weisskopf and Wigner [65]. The expansion in equation 2.12 is appropriate as for the dipole
traps the detunings are typically kept large, i.e. |∆| >> Γ,Ω0. The reason for this becomes
obvious when treating the evolution of states in the formalism of density operators which
includes spontaneous emission using the optical Bloch equations yielding a rate for incoherent
scattering processes of

ΓSC =
3πc2

2h̄ω3
0

(︃
Γ

∆

)︃2

I(r). (2.15)
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10.3 µm

(b) (c)(a)

Figure 2.2.: Using microlens arrays to create large arrays of dipole potentials. (a) Microscope
image of a 10 × 10 subsection of a refractive microlens array with a pitch of
30µm. (b) Reimaged focal plane of a microlens array with a pitch of 110 µm.
More than 1000 traps are shown out of a region comprising more than 2500
spots each separated by 10.3(3) µm due to the magnification ofM = 0.094(3).

Due to the scaling of UD ∝ I/∆ and ΓSC ∝ I/∆2 it is vital to work at the highest possible
detuning permitted by the available intensity in order to minimize the rate of scattering
processes which lead to loss of coherence and reduce the lifetime of the atoms in the trap due
to heating.
Even though the analysis above provides a qualitative insight into the aspects relevant for
trapping neutral 85Rb atoms by light it does not cover two crucial aspects: the polarization of
the laser light and the factual multilevel character of the atom (see Fig. A.1). As discussed in
[66] a more comprehensive treatment yields the dipole potential for an atom in the hyperfine
ground state with a magnetic quantum number mF coupling to both D-transitions in a far
detuned laser field

UD =
πc2Γ

2ω3
0

(︃
2 + PgFmF

∆2
+

1− PgFmF
∆1

I(r)

)︃
(2.16)

while P accounts for the polarization of the laser field being P = ±1 for circular polarized
light (σ±) and P = 0 for linear polarization (π) and ∆1 and ∆2 cover the detuning to D1

and D2 line, respectively. This shows that for circular polarized light the dipole potential
becomes dependent on mF raising additional complications. This effect is not intended for the
experiments conducted during this work and a linear polarization is chosen in the experimental
implementation. Further analysis on this topic with special regard to the present setup can be
found in [67].
The large detuning that is desired in face of equation 2.15 which in turn demands highly
intense light fields for sufficiently deep traps can be accomplished by creating tightly focused
laser beams, a concept, which will be covered in the subsequent section.

2.1.2. Scalable arrays of focused beam traps

Single-beam optical dipole trap

According to equation 2.13, red-detuned light leads to an attractive potential for ground state
atoms UD(r) ∝ I(r). Consequently, a laser beam focused through a lens with focal length f can
serve as a three-dimensional trapping potential which is commonly treated in the approximation
of a Gaussian beam. Using cylindrical coordinates (r, z) the intensity distribution of a beam
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with power P propagating along the z-axis is given by

I(r, z) =
2P

πw2(z)
e
− 2r2

w2(z) (2.17)

where the coordinate system is defined such that the focus is at (0,0). Here,

w(z) = w0

√︄
1 +

z2

z2R
(2.18)

is the z-dependent 1/e2-radius, i.e. the radial distance until the intensity is reduced to 1/e2 of
the value for r = 0 for a given axial position z. The dependence of w(z) on z is governed by
the Rayleigh range

zR =
π

λ
w2
0. (2.19)

The minimal radius, i.e. the waist
w0 =

λf

πw(f)
(2.20)

is obtained in the focus of a lens with a focal length f while zR denotes the axial distance until
the radius of a beam with a wavelength λ has increased by a factor

√
2.

With respect to trapping of laser cooled neutral ground state atoms the resulting potential
can be approximated harmonically due to the fact that the wave function of an atom with
mass m is small compared to the spatial dimensions of the trapping potential along w0 and zR,
respectively. This yields the radial

2πνr =

√︄
4U0

mw2
0

(2.21)

and axial

2πνz =

√︄
2U0

mz2R
(2.22)

trap frequencies for a potential depth of U0 ∝ I(0, 0). As elaborated in [55] the intensity
distribution of a plane wave focused by a lens having a limited circular aperture can also be
approximated by a Gaussian intensity distribution in the focal plane. For an aperture radius a
this yields

w0 =

√
2λf

πa
=

√
2λ

πNA
(2.23)

with the numerical aperture NA = a/f. This is of special relevance in this work due to the fact
how the dipole trap array is generated.

Large-scale parallelized dipole trap generation

Inspired by the idea to create trapping potentials via focusing a laser beam this concept is
massively parallelized using a microlens array illuminated by a laser beam with a radius w
much larger then the diameter of each microlens. The microscope image in Fig. 2.2 (a) shows
a 10× 10 section of a microlens array with a pitch of d = 30µm. Each lens is clearly visible
and illuminated with a large beam produces a corresponding focus in the focal plane of the
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p 2/ z 2/T

z
x

T-1 T-1/2 T0 T1/2T-3/4 T-1/4 T1/4
Figure 2.3.: Talbot carpet simulation for a reimaged focal plane of a microlens array with

a characteristic tweezer pitch of 14.1µm. Microlens array based setups create
intrinsically three-dimensional trapping potentials due to the self-imaging proper-
ties when illuminated with coherent laser light. This leads to additional planes at
distance z⋆T = zT

2 exhibiting the same trap pitch as the focal plane. Taken from
[68].

array. However, the available array size is by no means limited to the order of hundred lenslets.
In contrast, due to the lithographic production process the structures are heavily scalable and
arrays comprising a million lenses have already been produced. Using additional optics the
focal plane of a microlens array can be reimaged which allows for flexible rescaling of the
spot pattern. Figure 2.2 (b) shows the reimaged focal plane of a 110µm-pitch array yielding
well-defined spots with a separation of p = 10.3(3)µm as indicated in the detail (Fig. 2.2 (c)).
This demonstrates the excellent scalability of the approach of microlens array based focused
beam dipole trap arrays.
The experiments in this work rely on a set of different commercially available and a custom-
made microlens array. While the latter is comprehensively characterized in Chapter 6 the
specifications of the former are given in Table 2.1. Due to large variety of commercially
available microlens arrays one can easily adapt the tweezer parameters via selection the array
and appropriate reimaging optics. This allows for instance to easily reduce the tweezer pitch
simply via replacement of MLA1 with MLA2. As illustrated in the example of MLA3 this is
not necessarily restricted to a quadratic grid. Chapter 6 will demonstrate that hexgonal-grid
microlens arrays can be used in the same way to create large-scale optical tweezer arrays.

Talbot effect

As illustrated in Fig. 2.3 and analyzed in detail in [67, 68], these systems are intrinsically three-
dimensional. Using coherent light for illumination of the microlens array leads to additional
planes along the optical axis (z) which can be used as trapping potentials for atoms. This
self-imaging feature is called the Talbot effect and the Talbot length zT is the distance between
two Talbot planes. In addition there exist intermediate planes which exhibit the same distance
of the trapping potentials p with comparable depth while they appear laterally displaced by
p/2 in both dimensions and intermediate planes with different parameters. Considering only
the ones which have the same characteristics as the focal plane the axial distance z⋆T between
layers is given by

z⋆T =
zT
2

=
p2

λ
. (2.24)

For instance, using a dipole trap array pitch of p = 10.3 µm as for the configuration shown
in Fig. 2.2 (b, c) this amounts to z⋆T = 133µm. Further analysis and a detailed theoretical
treatment of the Talbot effect can be found in [69].
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Label Serial number Type Rc d NA p

MLA1 11-1401-101-111 quad 0.86mm 110µm 0.03 10.3(3) µm
MLA2 19-00021 quad 500µm 75µm 0.03 7.0(2) µm
MLA3 APH-Q-P161.5-R2.05 hex 2.05mm 161.5 µm 0.02∗ 7.4(2) µm

Table 2.1.: Overview of the commercially available microlens arrays used in the context of this
thesis. Rc denotes the microlens radius of curvature, d the microlens pitch and
NA the numerical aperture. (*) The value for MLA3 is a calculated approximation
from the clear aperture due to the non-circular lens pattern. Each microlens array
is used in combination with reimaging optics leading to a demagnified tweezer
pitch p.

2.2. Laser systems

The experiments presented in this thesis rely on optical techniques and lasers play a central role
for cooling, trapping and fluorescence imaging of atoms as well as state preparation, detection,
and coherent control to name only a few applications. For these purposes, a double-digit
number of individual laser systems need to be precisely stabilized with respect to frequency
but also concerning intensity [70]. Therefore, in general each laser system that provides light
which is directed to the experimental apparatus is fiber-coupled and intensity stabilized via a
feedback-loop controlling an acousto-optic modulator (AOM) before the fiber. For frequency
stabilization at λ = 780nm a master laser which is locked via modulation transfer spectroscopy
(MTS) serves as a reference [71, 72]. Relative to this laser other systems that are running
at the D2-line can be stabilized via a beat frequency measurement using an offset locking
technique. Concerning the D1-transition a similar configuration is available [73]. All lasers
except for the one proving the light for the optical tweezers and the blue Rydberg laser system
are external-cavity diode lasers (ECDL). When stabilized they exhibit a long-term linewidth
which is typically below 0.5MHz and an output power of up to 100mW. The light for the
tweezers is supplied by a Ti:sapphire laser (899-01, Coherent) which is pumped by a frequency-
doubled Nd:YVO4 laser (Verdi V18, Coherent) at a wavelength of 532 nm. This system can be
tuned within a range of 760nm and 850nm, though for the measurements conducted in the
course of this thesis it is used at about 797nm where it provides typically about 2.5W output
power. The specifics of the Rydberg laser system will become relevant in Chapter 4 and be
detailed in that context.

2.3. Vacuum apparatus

In order to create a well isolated environment where quantum dynamics of individual atoms can
be analyzed an ultra-high vacuum apparatus is used that has been built and put into operation
during the work of [74] while a detailed description is also available in [75]. Figure 2.4
shows a computer-generated image of the chamber which has a spherical basic shape but is
flattened on the front and back side. This allows for large optical view ports and access by
high numerical aperture optics. These windows as well as the additional eight ports on the
spherical surface are coated with double-sided anti-reflection layers for light between 700nm
and 1100nm within an acceptance angle of up to about 45°. The horizontal side ports are
also used as ports for the delivery of rubidium into the chamber via dispensers located in the
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Figure 2.4.: Rendered image showing the vacuum apparatus. The computer generated image
depicts the central section of the experimental setup where the experiments with
laser cooled rubidium atoms are conducted. The laser beams for the MOT are
indicated as well as the coils which are used for compensation of the earth’s
magnetic field and allow the application of homogeneous fields at the location
of the trapped atoms. The anti-Helmholtz coils of the MOT gradient field are
invisible within the plane of the green-colored coils. The image is taken from [67].

right tube and as ports to the vacuum pumps. The vacuum which typically measures below
3× 10−9mbar is permanently maintained by an ion getter pump (Starcell, Varian) (right
connector) and can be additionally optimized using an Titanium sublimation pump (SB-1020,
Hositrad) (left connector). As the coupling of neutral atoms to magnetic fields has significant
impact on their energy level structure there exists the necessity for precise control not only for
state-of-the-art laser cooling techniques but also through the subsequent experimental phase.
Therefore, three pairs of coils are attached to the apparatus (mountings indicated in red, blue
and green, respectively) which enable compensation of the earth’s magnetic field as well as
the application of homogeneous fields to create a well-defined quantization axis. Regarding
the compensation a residual magnetic field of |Bres| = 2.1(1)µT has been spectroscopically
measured in [76] while quantization fields of typically Bx,q = 283(1)µT are applied in the
work detailed in this thesis. Moreover, another pair of coils lies within the fixtures for the front
and back window that are used in anti-Helmholtz configuration for generation of a magnetic
gradient field during laser cooling using a magneto-optical trap (MOT) which is the basic
starting point for each experimental cycle and will be discussed in the following section.
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2.4. Magneto-optical trap and optical molasses

Since the ground-breaking experiments and theoretical analysis documented in [6–8] laser
cooling has become an indispensable tool for cold and ultracold neutral atom experiments.
A magneto-optical trap (MOT) relies on this concept and allows for cooling and trapping of
an atom cloud which can be used in a subsequent experimental stage. Utilizing laser light
red-detuned to an atomic transition leads to a velocity dependent force on the atoms due to
photon scattering resulting in a deceleration, and consequently, reduction of temperature. In
order to account for all atomic degrees of freedom crossed laser beams are typically used as
indicated in Fig. 2.4. Additionally, a magnetic gradient field adds a spatial dependence and
prevents diffusion of atoms from the trap region. Based on a simplified model of two-level
atoms being in a steady state of absorbing and emitting photons the minimum temperature
achievable amounts to the so-called Doppler temperature

TD =
h̄Γ

2kB
. (2.25)

In the present setup, laser cooling of rubidium atoms is done via the hyperfine transition
|5S1/2,F = 3⟩→|5P3/2,F = 4⟩. The natural linewidth of the excited state Γ = 2π · 6.067MHz
yields TD = 146µK. However, already in [77] it was observed that the actual temperature of
an laser-cooled ensemble can fall short of the Doppler limit and the polarization of the light
has to be taken into account as well as the existence of Zeeman sublevels. This brings up a
new limitation, the recoil temperature TR which is defined as the temperature of an ensemble
that exhibits a one-dimensional rms-momentum of h̄k, i.e. one photon recoil:

TR =
h̄2k2

mkB
(2.26)

Using the absolute value of the wavevector k = |k| = 2π
λ and the atomic massm = 85u of 85Rb

this amounts to TR = 370nK. In this experiment, typical temperatures of the atom ensemble
after MOT and molasses lie on the order of 5 µK. Applying sophisticated laser cooling schemes
this limitation can be surpassed, too, which is however beyond the scope of this thesis [78].
The fact that the assumption of a two-level system is only an approximation has certainly
an important second consequence: As atoms can escape the cooling cycle via excitation to
|5P3/2,F = 3⟩ and a subsequent spontaneous emission process into |5S1/2,F = 2⟩ an additional
repump laser is necessary that provides near resonant light to |5S1/2,F = 2⟩→|5P3/2,F = 3⟩
which successively transfers these atoms back to |5S1/2,F = 3⟩. The specifics about the im-
plementation of the MOT in the experimental apparatus will be treated at the beginning of
the following section which deals with the preparation of individual laser-cooled atoms in the
dipole trap array.

2.5. Loading and trapping of single Rb atoms in dipole trap arrays

Figure 2.5 outlines the concept for preparation of the neutral-atom quantum array and the
specific implementation used in this work. As indicated in the fluorescence images in Fig. 2.5 (a)
atoms from the laser cooled cloud (left) shall be loaded into the two-dimensional trap pattern
generated by a microlens array (right). Figure 2.5 (b) shows a simplified on-top-view of the
optical setup essential for laser cooling, loading, and trapping of individual atoms in a two-
dimensional dipole trap array as well as their detection while Fig. 2.5 (c) provides the front
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Figure 2.5.: Laser cooling, preparation and detection of individual atoms in the tweezer array.
(a) At the beginning of each experimental cycle is a loading phase in which
atoms from the laser cooled cloud (left) are loaded into the tweezer array and
detected via fluorescence imaging (right). (b) The tweezer array is created using
a microlens array (MLA) illuminated with a collimated laser beam whose focal
plane is demagnified and reimaged into the vacuum chamber using an achromatic
doublet (L1) and amicroscope objective (LS1). Fluorescence detection is possible
using the light at a wavelength of 780 nm which passes (LS1) in the inverse
direction and is deflected off a dichroic mirror (DM) using an achromatic doublet
(L2) for mapping the atom plane on the sensor of the EMCCD camera. The optical
filters F1 and F2 are used to block disturbing light from other sources. (c) In the
front perspective the other four MOT beams are indicated. An additional CCD
camera is used for permanent monitoring of the laser cooled cloud. The ports
(1)...(3) allow for additional incident beams. For the sake of clarity, only the pair
of coils creating the MOT field with the coil axis along the z-direction and the pair
of coils necessary for creation of the quantization axis along the x-direction are
indicated.

perspective, respectively.
In order to prepare atoms that are sufficiently cold to be loaded into dipole traps each ex-
perimental cycle starts with a MOT phase in which the six pairwise orthogonally circular
polarized beams indicated in Fig. 2.5 as ”MOT” are turned on together with the gradient field.
The two pairs of counterpropagating beams within the x-y-plane cross orthogonally and are
composed of cooling and repumping light while the two beams parallel to the x-z-plane consist
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of cooling light only. The latter have an incident angle with respect to the z-axis of about
42°. During this phase of typically one to a few seconds the detuning of the cooling laser is
chosen to be ∆ = 2π · (−9.6MHz). Thereafter, the magnetic field is turned off which leads
to the expansion of the atom cloud and further cooling below the Doppler limit due to the
effect of polarization gradients during a time of about 20ms. In this period, the detuning is
increased to ∆ = 2π · (−52MHz) which is the experimentally determined optimum leading to
a temperature of the atomic ensemble after the optical molasses of typically 5 µK [67]. This is
sufficiently low to initiate the loading process into the dipole traps.
As indicated in Fig. 2.5 the trap array is created by a laser beam illuminating the microlens
array whose focal plane is reimaged into the vacuum chamber onto the position of the atom
cloud using an achromatic doublet L1 and a microscope objective LS1. Due to the high density
of the thermal atom cloud the dipole force continuously attracts atoms into the traps. As
comprehensively discussed in [67] light-induced collisions can be exploited in the present
experimental setup leading to sub-poissonian occupation statistics due to collisional blockade
[79, 80]. In this case, loading of more than one atom per site is suppressed. With the MOT
laser field still turned on the number of atoms N in one dipole trap during the loading phase is
guided by the differential equation

d

dt
N = R− γN − β′1

N(N − 1)

2
− 2β′2

N(N − 1)

2
(2.27)

as detailed in [81]. Assuming a loading rate of R and a loss rate of γ due to photon scattering
and scattering of atoms with the background gas this equation also considers losses due to light
assisted collisions of one (β′1) or both (β′2) atoms. Following the analysis in [82] the volume of
the effective trap potential

Veff = πw2
0zR ln

(︃
1

1− η

)︃√︃
η

1− η
=
π2

λ
w4
0 ln

(︃
1

1− η

)︃√︃
η

1− η
(2.28)

can be approximated via an cylindrical shape having the radius of one beam waist w0 and a
width of the Rayleigh range zR while η = kBT

|U0| denotes the ratio between atom temperature and
trap depth. According to [80, 82] the total atom loss rate β′ = β′1+β

′
2 scales as β′ ∝ 1/Veff ∝ 1/w4

0.
Monte Carlo simulations of the dynamics described by equation 2.27 can be used to show that
high values of β′ are key in reaching the limit of collisional blockade [67, 80] where finally
either one or no atom remains in the dipole trap after the loading process. In the present setup
with a wavelength of the trapping laser λ = 797nm and a typical trap waist w0 = 1.45 µm
the two-body loss rate of β′2 ≈ 610 s−1 can be calculated leading to β′ being well within the
loading regime governed by collisional blockade [57, 67].
In the interest of obtaining these waists on the order of a single micrometer within the chamber
the microscope objective (LS) has a high numerical aperture of NA = 0.25(2) and an effective
focal length of fLS1 = 37.5(10)mm. Together with the effective focal length fL1 = 400mm of
the achromatic doublet (L1) this results in a magnification of the focal plane of the microlens
array byM = fLS1/fL1 = 0.094(3).

Talbot-plane selection

As discussed in Section 2.1.2 the periodic alignment of commercially available standard mi-
crolens arrays leads to the formation of a Talbot carpet due to interference when using coherent
light for illumination. The self-acting loading of atoms in more than one plane in this multi-layer
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structure is beneficial when aiming for creation of three-dimensional trapping geometries but
is a source of disturbing light during fluorescence detection without a proper plane-selective
implementation. This work focuses on large-scale two-dimensional configurations and, as a
consequence, makes use of a mechanism for plane selection which discards atoms loaded in
unused trap layers. That is why the loading sequence is succeeded by a laser pulse of roughly
1ms resonant to the cooling transition |5S1/2,F = 3⟩→|5P3/2,F = 4⟩ as indicated in Fig. 2.5 (b).
In order to prevent heating and subsequent loss of atoms in the layer selected to work with
that one is covered by a shadow from a thin wire within the beam that is mapped into the
respective plane. In order to include atoms in the |5S1/2,F = 2⟩ ground state into the selection
process the repumping light at |5S1/2,F = 2⟩→|5P3/2,F = 3⟩ is illuminated synchronously.

Fluorescence detection of individual atoms

In addition to producing tightly focused dipole traps the high numerical aperture of LS1 also
enables site-resolved detection of single-atom fluorescence. In the same fashion as LS1 and L1
reimage the focal plane of the microlens array into the vacuum chamber LS1 an achromatic
doublet (L2) with an effective focal length of fL2 = 750mm maps the array plane onto the
sensor of an EMCCD camera (iXon DV887DCS-BV, Andor). Considering the solid angle covered
by the numerical aperture of the microscope objective about 2% of the light emitted isotropically
by the atoms during fluorescence detection is collected. As depicted in Fig. 2.5 (b), a dichroic
mirror (DM) (FDi03-R785, Semrock) is utilized which reflects fluorescence light at 780 nm to
more than 95% while being transmissive for counterpropagating dipole trap light at 797 nm.
Additional filters (F1 and F2) account for the suppression of light that differs from the detection
wavelength. While fluorescence is continuously created during the MOT phase (Fig. 2.5 (a, left))
the same laser beams are switched on for a typical exposure time of 50ms to 75ms in order to
obtain a site-resolved image as Fig. 2.5 (a, right) with a detection fidelity better than 99%.

State preparation

Dependent on the specific experiment different basis states for quantum operations are involved
in the measurements presented in this thesis. In order to reach a profound starting point optical
pumping can be utilized to prepare the atoms in a well-defined initial state. A level scheme
which gives an overview of the involved hyperfine states is depicted in Fig. A.1. Initialization into
|5S1/2,F = 2⟩ can be achieved by using the cooling laser which successively excites atoms in the
|5S1/2,F = 3⟩-level to provoke spontaneous emission into |5S1/2,F = 2⟩. In turn, preparation
into |5S1/2,F = 3⟩ results from illumination by the repumping light. Utilizing appropriately
polarized light initialization to different Zeeman sublevels is also at hand. In combination
with the repumping light circular polarization (σ±) resonant to |5S1/2,F = 3⟩→|5P3/2,F = 3⟩
leads to occupation of |5S1/2,F = 3,mF = ±3⟩ while linearly polarized (π) light populates
|5S1/2,F = 3,mF = 0⟩ due to the selection rule for dipole transitions.

State-selective detection

The detection of the internal atomic state is implemented via a state-selective removal scheme.
For this purpose, a laser beam with resonant light to the |5S1/2,F = 3⟩→|5P3/2,F = 4⟩ cooling
transition from direction (3) in Fig. 2.5 (c) is utilized. This discards atoms in state |5S1/2,F = 3⟩

16



so that the remaining population in |5S1/2,F = 2⟩ can be determined in a subsequent fluores-
cence detection stage.

Quantization axis

For experiments relying on coherent operations, clearly-specified and energetically resolvable
basis states are necessary in order to reach a profound initial situation. This requires a well-
defined quantization axis which is provided in the present setup through coils in Helmholtz
configuration as indicated in Fig. 2.5 (b). For a typical current of Iq = 2A they create a field of
Bx = 283µT along the x-direction. This breaks the degeneracy of the Zeeman sublevels in the
hyperfine structure due to the interaction of the interatomic spins with the external magnetic
field. As discussed in [83], the Hamilton operator describing this effect can be written in terms
of the electron spin Ŝx, the electron orbital angular momentum L̂x, the spin of the nucleus Îx
as well as the respective Landé factors (gS, gL, gI) and is given by

ĤB =
µB
h̄

(︂
gSŜx + gLL̂x + gIÎx

)︂
Bx (2.29)

for a magnetic field along the x-axis where µB denotes the Bohr magneton.
In case of a weak magnetic field Bx, i.e. gJµBBx < AJ, the nuclear spin I and the electronic
angular momentum J remain strongly coupled and the hyperfine splitting characterized by
the magnetic hyperfine structure constant AJ is the dominant effect. In this regime, the energy
shift ∆EmF of each Zeeman sublevel mF due to the magnetic field can be well approximated
[84] via

∆EmF = gFµBmFBx (2.30)

with the hyperfine Landé g-factor gF that is easily calculated via

gF = gJ ·
F · (F + 1)− I · (I + 1) + J · (J + 1)

2 · F · (F + 1)
(2.31)

gJ =
3

2
+

(S + 1) · S − L · (L+ 1)

2J · (J + 1)
(2.32)

using the approximation gS ≈ 2 and gL ≈ 1. For an intermediate field strength and higher
accuracy, calculations are far more difficult except in the case J = 1/2 which applies to the
hyperfine ground states F = I ± 1/2. In this situation, the Breit-Rabi formula

∆EJ=1/2,mF = − ∆Ehfs
2(2I + 1)

+ gIµBmFBx ±
∆Ehfs

2

(︃
1 +

4mFx

2I + 1
+ x2

)︃1/2

(2.33)

holds which also considers second-order corrections for the shift ∆EJ=1/2,mF of the hyperfine
level mF with respect to the fine structure [83, 85] using the sign, respectively, and x defined
as

x =
(gJ − gI)µBBx

∆Ehfs
. (2.34)

The ground state energy splitting in zero magnetic field∆Ehfs = h̄∆hfs can be taken from Table
A.1 together with more accurate values for the Landé g-factors retrieved from measurements.
For the typical quantization field strength of Bx = 283µT equation 2.33 yields −1.316MHz ·h
for |5S1/2,F = 3,mF = −1⟩ and 5.2 kHz ·h for |5S1/2,F = 3,mF = 0⟩ while for the latter equa-
tion 2.30 calculates to zero.
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2.6. Rydberg interactions

Excitation into Rydberg states turns ground state alkali atoms which are typically on the order
of subnanometer in size into comparably giant entities that can reach radii on the micrometer
scale. In this case, the probability density of the valence electron is far off the positively
charged core and the fully filled electron shells. Due to this drastic increase, Rydberg atoms
obtain exaggerated state-dependent properties making them extraordinary interesting study
objects and, at the same time, versatile tools in research. Additionally, simply via selection of
the Rydberg state one has already a wide range of possible settings to tune the experimental
parameters. This flexibility leads to many applications in the field of quantum information and
quantum metrology.
With respect to quantum simulation and quantum computation, especially the strong interaction
between Rydberg atoms is highly regarded [30, 46, 86–88]. They can be exploited in large
ensembles comprising more than hundred atoms which form a single ”superatom” [89] as
well as on an individual atom level. In recent experiments on quantum magnetism it was
already possible to study dynamics of up to 51 atoms in 1D [90] and 49 atoms in 2D using
an Ising-type implementation in tweezer arrays which becomes infeasible to simulate on a
classical computer [91]. In addition, this allows for analysis of antiferromagnetic interaction
[49] and critical dynamics of quantum phase transitions [51].
Moreover, Rydberg interactions enable the implementation of two-qubit gates by now. This has
been shown as a logical operation between two atomic qubits [41] but also in the realization
of a photon-photon gate [92], recently, which finds its application in quantum communication
and networking.
Another feature that is characteristic for Rydberg atoms is their large polarizability. This makes
them strongly sensitive to external electric fields and can not only be exploited in order to tune
the interaction strength [93] via applying a field on purpose but also allows for characterization
of the field itself [94, 95]. It is natural that many more possible applications based on Rydberg
atoms exist in quantum science. A detailed review on a multitude of topical ones is given in
[45].
Rydberg physics and its basics are treated in great detail in literature and the reference
work [96] provides a profound introduction. The following sections discuss the fundamental
properties of Rydberg atoms and relates them to the topic of this work. It is inspired by [97]
and [98] while the calculations of the Rydberg atom wavefunctions and interaction potentials
use the ARC library which is freely accessible [99].

2.6.1. Properties of Rydberg atoms

As alkali atoms only have one electron in the outer-most shell they can be regarded hydrogen-
like to good approximation. Therefore, the potential energy EnLJ follows the same scaling
with the principal quantum number n as for this easier accessible system

EnLJ = − hcRy∗

(n− δnLJ)2
. (2.35)

In order to account for the difference, however, necessitates the introduction of a modified
Rydberg constant

Ry∗ =
Ry∞

1 +me/mc
(2.36)
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Figure 2.6.: Probability density of the valence electron in scaled units. The distribution for
different states reflects typical quadratic scaling of the electron orbit radius with n
and the enormous increase in size of Rydberg-excited atoms. While the excitation
along the D2 line (inset) only has a small impact on the atomic size Rydberg-
excited atoms are several orders of magnitude larger as shown in the example of
|57D5/2⟩ and |82S1/2⟩.

which considers the electron-core mass ratio and a quantum defect

δnLJ = δ0 +
δ2

(n− δ0)2
+

δ4
(n− δ0)4

+
δ6

(n− δ0)6
+ . . . (2.37)

with experimentally obtained polynomial coefficients δ0,2,4... compared to the standard Rydberg
formula. These modifications regard the discrepancies between the Coulomb potential of a
hydrogen-core and the factual field felt by the Rydberg electron that results from the interaction
between the valence electron and all the other electrons closer to the core. This interaction
has a minor effect for large angular momenta L, however, should be considered for the low
angular momentum states L ≤ 3 as used in the context of this work.
One of the characteristic properties Rydberg atoms inherit from the hydrogen atom is the
quadratic scaling of the electron orbit radius. This results in a massively increasing atom size
for large n leading to all the interesting properties which makes them attractive objects of
study. This scaling is illustrated in Fig. 2.6 which depicts the electron probability density for
a selection of Rydberg states covered in this thesis. The inset shows this distribution for the
ground and excited state of the D2 transition. While for the lower lying states the electron
radius is constrained to a few Bohr radii a0 this increases to several thousands for the Rydberg-
excited electrons. The scalings of some other characteristics with n are given in Table 2.2. One
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Property Notation Scaling
Binding energy En n−2

Neighboring level spacing En+1 − En n−3

Electron orbit radius ⟨r⟩ n2

Radiative lifetime τ n3 . . . n5

Transition dipole matrix element ⟨5P | d̂ |r⟩ n−3/2

Polarizability α n7

Resonant dipole-dipole interaction C3 n4

van der Waals interaction coefficient C6 n11

Table 2.2.: Scaling of selected properties of Rydberg atoms with the principal quantum num-
ber n.

of these quantities is the lifetime which will be discussed in the following section in more detail.

Lifetime of Rydberg-excited states

One of the many special properties of Rydberg atoms is the comparably long lifetime of the
exited state. The main decay channels are spontaneous radiative decay and transitions induced
by black-body radiation (BBR). Therefore, the effective lifetime τeff can be written in terms of
both contributions:

τeff = (Γ0 + ΓBBR)
−1 (2.38)

with the rate for radiative decay Γ0 to lower lying states and the black-body decay ΓBBR. The
former is given via

Γ0 =
∑︂

n′L′,En′L′<EnL

A(nL→ n′L′) (2.39)

with the Einstein-A coefficients A(nL → n′L′) for transitions from a state with quantum
numbers nL to an n′L′ state while the latter can be written similarly

ΓBBR =
∑︂
n′

A(nL→ n′L′)
1

exp(ωnn′/kBT )− 1
(2.40)

using the Planck temperature T for the mode at the transition frequency ωnn′ . As the Einstein
coefficients depend on the radial matrix elements of the electric dipole transition this reduces
the lifetime calculation to the evaluation of these.
For the 82S1/2 state this calculation yields τeff = 217µs which is more than 8000 times the life-
time of the excited state 5P3/2 (see Table A.1) which is used for instance during the fluorescence
imaging. This long lifetime is essential for the detection method used to determine Rydberg
excitation in this thesis as will be discussed in Chapter 4. Further details on the calculation of
the lifetime including values for other alkali-metal species can be found in [100].

2.6.2. Rydberg atom interactions

A key motivation to work with Rydberg states in the present experimental platform is their
strong interactions at micrometer length scale where ground-state atoms can be seen as
independent systems. Due to the large separation between the positively charged core and
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Figure 2.7.: Interacting Rydberg atoms via dipole-dipole coupling. (a) When two atoms sepa-
rated by R in an angle θ relative to the quantization axis z (b) are excited into a
Rydberg state |r⟩ their states couple via dipole-dipole interaction with the state-
dependent detuning ∆. (c) In the pair state basis one can easily identify the state
which has the lowest energy difference to |rr⟩ constituting the most significant
coupling channel.

the single electron in the outer shell, a pair of Rydberg-excited atoms can be regarded as two
interacting dipoles with an interaction potential given by

Vint(R) =
1

4πϵ0

(︄
d1̂ · d2̂

R3
− 3(d1̂ ·R)(d2̂ ·R)

R5

)︄
(2.41)

using the electric dipole moment operators d1̂ and d2̂ for both atoms and their distance vector
R with length R = |R|. This is illustrated in Fig. 2.7 (a) for two atoms separated by R in a
configuration with the quantization axis defined along z. Assuming the two Rydberg atoms in
the same initial state |r⟩ as indicated in Fig. 2.7 (b) this situation can also be treated in the
pair basis |rr⟩ = |r⟩ ⊗ |r⟩ (Fig. 2.7 (c)). In principle, all dipole-dipole coupled Rydberg states
need to be included in a comprehensive treatment diagonalizing the full Hamilton operator of
the system.
For a qualitative understanding one can consider a simplified situation with Θ = 0 and where
only a single transition channel to the level |r′r′′⟩ which is energetically closest with an energy
difference of ∆ = Er′ + Er′′ − 2Er to the pair state |rr⟩ is taken into account. The interaction
Hamilton operator in the basis {|rr⟩ , |r′r′′⟩} can be written as

Ĥ =

(︃
0 C3/R

3

C3/R
3 ∆

)︃
(2.42)

with the interaction coefficient C3 ∝ n4. Obtaining the eigenvalues

E± =
∆±

√︁
∆2 + 4C2

3/R
6

2
(2.43)

through diagonalization one finds the two different regimes resulting from the strong depen-
dence on the interatomic distance R:
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Figure 2.8.: Angular dependence of the van der Waals dispersion coefficient for two selected
Rydberg states given in units of h · GHzµm6. (a) While the |57D5/2,mJ = −3/2⟩ ⊗
|57D5/2,mJ = −3/2⟩ pair state shows a strong angular dependence on the angleΘ
betweenR and the quantization axis (b) this is negligible for |82S1/2,mJ = −1/2⟩⊗
|82S1/2,mJ = −1/2⟩ with zero orbital angular momentum.

• Resonant dipole-dipole interaction (C3/R
3 ≫ ∆)

In case of ∆ being negligible the eigenenergies scale as E± ∝ ±C3/R
3. This is typically

the case for atoms which are close to each other but can also result from vanishing ∆ at
a Förster resonance [93, 101] or in the case of excitation transfer [47].

• Van der Waals type interaction (C3/R
3 ≪ ∆)

If ∆ dominates, the interaction only accounts for a perturbation on the bare states and
the eigenvalues in equation 2.43 exhibit a van der Waals type interaction potential E± ∝
±C6/R

6 with the dispersion coefficient C6 defined as C6 = C2
3/∆. This is characteristic

for a situation of large interatomic distance R. As a result from the n4-scaling of C3 and
the additional dependence of the energy difference between the states on the principal
quantum number ∆ ∝ n−3, the dispersion coefficient shows the very strong scaling
C6 ∝ n11.

The transition point from van der Waals type to dipole-dipole interaction is defined as RvdW =
|C6/∆|1/6.
For the long-range case where R > RvdW one can use second-order perturbation theory to
account for all dipole-coupled pair states and obtain an approximation for the dispersion
coefficient R > RvdW including the angular dependence on Θ [102]. This has the advantage
that it can be calculated comparably fast in contrast to a diagonalization of the pair state
interaction matrix. Figure 2.8 depicts calculations considering two pair states. Regarding
states with L > 0 the interaction is highly anisotropic as illustrated in Figure 2.8 (a) for the
example of |57D5/2,mJ = −3/2⟩ ⊗ |57D5/2,mJ = −3/2⟩ where C6/h ranges from 154GHzµm6

for Θ = 0°, 180° to 67GHzµm6 for Θ = 90°, 270°.
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Figure 2.9.: Rydberg blockade and protocol for a controlled phase gate CZ. (a) For large
interatomic distance R, the double excited pair state energy equals the energy
necessary to excite two atoms. (b) Illustration of a protocol for a phase gate
which is taken from [46] with modifications. Depending on the internal state of
the control atom the target atom accumulates a relative phase or not. This can
be transferred into a CNOT gate using additional one quibit operations providing
a full set of quantum gates.

In contrast, the pair state |82S1/2,mJ = −1/2⟩ ⊗ |82S1/2,mJ = −1/2⟩ with zero orbital angular
momentum exhibits isotropic interaction to good approximation as shown in Fig. 2.8 (b).
Moreover, due to the larger n the interaction potential (C6/h = 5559GHzµm6) is more than
30 times stronger compared to the 57D5/2 state. An alternative calculation via diagonalization
of the pair-state Hamilton matrix which takes all pair states in the vicinity into consideration
allows to determineRvdW = 5.2 µm and yieldsC3/h = 63GHzµm3 andC6/h = 5283GHzµm6

for Θ = 0° which is slightly below the perturbative calculation for the dispersion coefficient
C6/h = 5559GHzµm6.

Rydberg blockade

The interaction potential induced by the coupling between two atoms has interesting conse-
quences when trying to excite two nearby atoms into the same Rydberg state |r⟩ since the pair
state energy depends on the interatomic distance R. This is illustrated in Fig. 2.9 together
with one possible application exploiting this effect to implement a two-qubit gate. As shown
in Fig. 2.9 (a) for two ground state atoms which are far apart, the same laser with frequency
ωL can excite both successively into the Rydberg state. On the contrary, if R falls below a
distinct value, the shift of the double-excited state is too large in order to induce a second
transition after one of the atoms has been excited. This characteristic distance is quantified by
the blockade radius Rb which is defined as

Rb =
6

√︃
C6

h̄Ω
(2.44)

and depends on the transition Rabi frequency Ω. Assuming Ω = 2π · 1MHz and C6/h =
5283GHzµm6 as calculated for the 82S1/2 pair state yields Rb = 13.2 µm which is significantly
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above the tweezer pitch obtained for each of the microlens arrays used during this work.
Consequently, all the presented setups allow for nearest neighbor blockaded interactions using
this state.
As illustrated in Fig. 2.9 (b), the Rydberg blockade mechanism allows for implementation of
a conditional logic consisting of three laser pulses with the light field coupling ground and
Rydberg states. In this sequence, a control atom defines the outcome of an operation on a
target atom. With respect to the present setup one can define the 85Rb hyperfine ground states
as qubit states |0⟩ = |5S1/2,F = 2⟩ and |1⟩ = |5S1/2,F = 3⟩ while both atoms carry one bit
of information. If the control atom is in state |0⟩ (left) it is not excited to the Rydberg state
through the first pulse. As a result, the target atom accumulates a phase π during the execution
of a full 2π rotation between |1⟩ and |r⟩ before the control atom is transferred back to the
ground state. This state rotation is suppressed in case of blockade as the interaction energy
∆E shifts |r⟩ out of resonance for the target (right). This represents a controlled phase gate
and can be converted into a CNOT using additional one qubit operations. Consequently, this
allows to implement a full set of quantum gates in the present setup.

2.7. Conclusion

In this chapter, an intrinsically scalable optical tweezer platform storing neutral rubidium atoms
was presented and the key characteristics of the experimental apparatus were introduced. Based
on the dipole force induced by appropriately far-detuned laser light, focused laser beams offer
an ideal tool to trap atoms in an well-isolated environment.
Microlens arrays offer a straightforward way to adapt this approach in a greatly parallelized
manner. Since arrays comprising hundreds of thousands of lenslets are already commercially
available using lithographic fabrication, this technology is also highly scalable. Due to the fact
that each tweezer spot is produced by focused light through a single lenslet this approach
promises a high degree of stability. At the same time there is a large variety of adjustment
possibilities providing short-term flexibility since all optics are outside the vacuum chamber and
can be easily accessed. This allows for fast modification of the trap geometry via a replacement
of the microlens array or adaption of the reimaging optics. That also includes fundamental
changes in the symmetry of the tweezer pattern which is ultimately defined by the lenslet
geometry and therefore provides the possibility to change for instance from quadratic to a
hexagonal grid just via a replacement of the microlens array.
Using lasers which are precisely stabilized with respect to frequency as well as intensity enables
laser cooling below the Doppler limit, loading of individual atoms in the tweezers using light
assisted collisions, site-resolved fluorescence detection, initialization into a well-defined qubit
state, and subsequent coherent operations. Thanks to the tweezer separation of typically a few
micrometer, sites can be selectively addressed [54, 67] which is essential for implementation
of quantum algorithms.
Essential for execution of computational logic as well as implementation of quantum simulations
are controlled interactions. In the experiment, Rydberg excitations were chosen for this purpose
as they provide extensive control over the coupling strength and long-range interactions. As
detailed in [41], they are routinely used at interatomic distances of about 10 µm to reach
Rydberg blockade. This regime is easily accessible by the present experimental platform and
can be substantially undercut without considerable effort.
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3. Preparation of defect-free clusters of more
than 100 individually allocated atoms

Figure 3.1.: Typical initial atom dis-
tribution after stochas-
tic loading of the 19 ×
19 workspace.

Forefront experiments in quantum information, quan-
tum simulation, or quantum metrology have the essen-
tial requirement to commence from a well-defined initial
situation [26]. Naturally, this depends on the character-
istics of the experimental platform which should provide
precisely controlled ambient conditions with specific cou-
pling to the environment when needed whilst ensuring
optimal isolation from disturbing external influences. Ad-
ditionally, this includes the preparation of the internal
qubit states into a known status. Furthermore, one of
the main factors is to provide a sufficiently large number
of qubits at the location where they are needed whether
it be for gate operations or location specific sensing. Fig-
ure 3.1 shows a typical fluorescence image obtained after
loading of the array with individual atoms in this platform
using light assisted collisions as discussed in Section 2.5.
Due to the stochastic nature of this process the atoms are
randomly distributed within the array. As a consequence,
each realization yields a different initial situation for sub-
sequent operations in every experimental cycle.
Regarding quantum computation experiments this variation is undesired in many respects.
Algorithms, for instance, rely on the execution of quantum gates on a distinct set of qubits
and they need to be available on demand. Additionally, using the Rydberg-blockade technique
to realize a two-qubit gate requires that only the respective qubits are within the interaction
region. Otherwise collective effects occur as shown in [56] which would be undefined due to
cycle-by-cycle variations. The implementation of topological phases which is a promising route
towards realization of a quantum error correction scheme [52, 103] in this setup also requires
deterministic qubit supply. This approach creates a fault tolerant storage of information based
on distribution of data within a certain group of atoms making the system immune to local
disturbances. As a consequence, the atoms need to be allocated in a predefined shape within
the array. That requirement also holds with respect to analog quantum simulators as they are
designed to exactly mimic a specific system which is not as easy to access as the simulator.
Consequently, the implementation needs to match the original in the best possible way.
Even for simple characterization and optimization measurements the possibility to allocate
atoms in a specific pattern at a distinct location is highly beneficial. As each loading cycle into
the array requires about 1 s this is clearly a bottleneck during data recording. Therefore, a
technique which allows to allocate the atoms at a predefined area which is relevant for the
current measurement and overcome the statistic loading presents a clear time benefit. That is
why in the course of this thesis a technique has been realized to overcome the statistic loading
[31].
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Figure 3.2 illustrates schematically the implementation in the experimental platform and
already shows some of the results. The principal concept of the experimental setup is depicted
in Fig. 3.2 (a). After creating an array of focused-beam dipole traps from the focal spot pattern
of the microlens array (MLA) the foci are reimaged into the vacuum chamber. Using an inde-
pendent movable optical tweezer which is superimposed with the array beam utilizing a beam
splitter allows for controlled rearrangement of the initial atom distribution created by loading
from the MOT. This is realized via capturing an atom from a reservoir trap and relocate it to a
different site. Repeated multiple times this transforms the initially random distribution into a
predefined geometry.
In this way, assembling of arbitrary, defect-free patterns is possible as shown in Fig. 3.2 (b-d).
The 10× 10 cluster depicted in Fig. 3.2 (b) could eventually form one error-corrected logical
qubit in a quantum-error corrected system while the ring pattern shown in Figure 3.2 (c) allows
for realization of color-code schemes [104]. Based on the rearrangement of atoms, defect-free
clusters comprising up to 111 atoms (Fig. 3.2 (c)) can be constructed in this setup.
In a similar way as for the present experimental platform the requirement for a deterministic
qubit supply affects all neutral atom experiments working in the field of quantum information
with individual atoms and there are different approaches to cope with imperfections. There-
fore, the following section will first review the state of the art in preparing configurations of
single atom quantum systems without defects before revealing the details of the experimental
setup developed during this work. Then, the performance when synthesizing atomic clusters
comprising different numbers of atoms is evaluated. As a next step, possibilities for more
complex repositioning sequences are discussed before an extension to the tweezer system is
presented. This makes use of the single-site addressability through the tweezer beam path and
outlines options for site-selective fluorescence detection schemes. Finally, applications of the
system within and beyond the scope of this thesis will be analyzed and possible improvements
are outlined which can further scale up the available defect-free cluster size.
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Figure 3.2.: Defect-free clusters of up to 111 atoms and experimental setup. (a) Simplified
schematic of the experimental setup. Illuminating an microlens array with the
trapping light and reimaging its focal plane into the vacuum chamber creates an
array of optical dipole traps which is loaded with individual atoms from aMOT. An
additional steerable laser beam is superposed with the light of the dipole traps on
a beam splitter which creates a movable optical tweezer. The fluorescence light
of trapped atoms at 780 nm which is collected with the microscope objective,
separated with a dichroic mirror and imaged onto the EMCCD camera enables to
determine the occupation of the trap array. From this the necessary sequence of
rearrangement moves is calculated to reach the predefined pattern. This allows
for construction of flexible geometries of large (b) quadratic or (c) ring-shaped
patterns (d) consisting of up to 111 atoms.
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3.1. State of the art in techniques to prepare defect-free configura-
tions of individual atoms

Preparing single atoms in predefined large-scale configurations is a highly topical field of
research. For setups with sub-micron spaced two-dimensional periodic potentials central areas
with filling close to unity have been reported in quantum gas microscopes [30, 89, 105–109].
However, in these platforms single-site access remains challenging and rearranging of atoms
has only been shown in a one-dimensional array with four atoms.
In setups with a pitch on the order of micrometers using focused laser beams for the creation of
optical trapping potentials, tremendous progress in scaling the system size has been made since
the first demonstration of sub-poissonian loading in an optical dipole trap at the beginning of
this century [79]. Without advanced loading mechanisms the single-site preparation efficiency
using light induced collisions remains typically at about 50% [79, 80, 110–112]. In contrast,
optimized schemes based on blue-detuned light during the loading sequence [32, 113, 114]
reach up to 90% filling. While this significantly raises the number of available atoms there is
still demand for subsequent rearrangement in order to reach a perfectly defined initial situation
for experiments.
Depending on the approach used for the generation of the tweezer arrays, this is realized in
different ways: Either the successfully loaded traps are repositioned [28, 32, 35, 115] which
then form the predefined pattern or an additional independent optical tweezer is used to
reconfigure the distribution of the atoms within the array [29, 34].
At the point when the experiments documented in this chapter were performed (2019) the
largest defect-free atom-by-atom assembled array consisted of 72 individual atoms within a
two-dimensional geometry [34]. This limit could be significantly exceeded in the frame of this
work which constitutes the subject of the following section.

3.2. Pathway from stochastic loading to unity filling in predefined ge-
ometries

3.2.1. Experimental setup

Figure 3.3 shows the details of the developed experimental setup. A collimated laser beam
deployed by a single-mode optical fiber illuminates a microlens array with a pitch of 110µm
(MLA1, Table 2.1) whose focal plane is demagnified into the vacuum chamber using an
achromatic doublet L1 with a focal length of fL1 = 400mm and a microscope objective
LS1 with an effective focal length of fLS1 = 37.5(10)mm that has a numerical aperture of
NA = 0.25(2). This results in a 10.3(3)µm-pitch quadratic array of traps with beam waists
of 1.45(10)µm. The trapping light is obtained from the Ti:Sa laser which is running at a
wavelength of λ = 797.3 nm. This yields trap depths of U0/kB = 0.21(3)mK ... 1.7(2)mK
within the area of a 361-site workspace of a 19× 19 grid due to the Gaussian intensity profile
of the beam illuminating the MLA.
The transport of atoms within the array is realized by the moving optical tweezer which is
steered by a 2D acousto-optic deflector (AOD) (DTSXY-400-780.800, AA Opto Electronic). This
light is slightly offset in frequency to avoid interference effects. An achromatic doublet L3 with
a focal length of fL3 = 80mm is used to focus the collimated laser beam while converting the
angular deflection by the AOD into a displacement within the focal plane. This spot is reimaged
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Figure 3.3.: Simplified optical setup for defect-free atom-assembly. The focal plane of a
microlens array (MLA) is reimaged into the vacuum chamber using a combina-
tion of an achromatic doublet L1 and a microscope objective LS1. The initial
atom distribution within the array after loading from the MOT is determined via
fluorescence imaging employing LS1 and L2 which map the atom plane onto the
EMCCD camera. On that basis, the tweezer control system calculates a sequence
of moves to reach the target pattern. These are executed utilizing a 2D AOD to
steer a laser beam which is overlapped with the array light on a polarizing beam
sampler (PBS). A second microscope objective LS2 allows for monitoring the
tweezer and array intensity distribution using a CCD camera.

using an achromatic doublet L4 with focal length fL4 = 400mm and the same microscope
objective as for the microlens generated foci after superposition with the array light via a
polarizing beam sampler (PBS). The movable tweezer has a focal waist of 2.0(1)µm and can
be overlapped with every dipole trap in the array simply by supplying the appropriate radio
frequency (RF) to the deflector. The diffraction efficiency of the AOD was measured to be
> 60% for a frequency span of about 40MHz [116] which corresponds to an addressable region
of 400µm× 400µm covering more than 1500 sites in the 10.3 µm-pitch configuration. This
is significantly larger than the currently addressed workspace and allows for straightforward
expansion of the grid size which is limited by the available laser power at present.

Tweezer control system

The tweezer control system indicated in Fig. 3.3 consists of different soft- and hardware
components which work hand in hand in order to enable the rearrangement of atoms within
the array on a millisecond timescale. First of all, a camera software developed in the master
thesis [116] allows for fast evaluation of the atom occupation in each trap of the array workspace.
Additionally, the software provides a network interface which communicates this data to a
controller server each time a rearrangement is requested.
In this case, the server program calculates the necessary moves that transfer the detected
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Figure 3.4.: Rearrangement sequence. (a) For each assembly cycle a target pattern (blue)
is defined which shall be occupied with unity filling. The other sites serve as
a reservoir with atoms to achieve this. The initial distribution of atoms in the
workspace is analyzed (top) and from this a sequence of moves is calculated to
fill the defects (bottom). (b) For the transport a sinusoidal position ramp is chosen
to minimize heating of the atoms. Before and after each move, the intensity of
the tweezer beam is linearly ramped to gently take the atom from the reservoir
site and release it at the target site.

distribution of atoms into the predefined geometry. After that, this list is sent to an FPGA
system (DE1-SoC, Terasic) via Ethernet. This module features general-purpose input/output
ports (GPIO) which are connected to the parallel interface of two direct digital synthesis (DDS)
evaluation boards (AD9915, Analog Devices) in order to set their output frequency. Each of
these DDS allows to define the frequency via setting a 32-bit frequency tuning word (FTW) over
the parallel port. Consequently, the FPGA system has direct control over the output frequency
of the two DDS. As these provide the RF for the 2D AOD, the FPGA system can steer the tweezer
beam and transport the atoms according to the calculated moves.

3.2.2. Creation of defect-free atom clusters

A typical experimental cycle starts with the MOT followed by the optical molasses phase from
which individual 85Rb atoms are stochastically loaded into the 361-site workspace grid utilizing
collisional blockade [79, 114, 117, 118]. This provides an average number of 191(17) trapped
individual atoms in every experimental run.
For each rearrangement cycle, the occupancy of the traps is determined by fluorescence imaging
before a sequence of tweezer moves is calculated applying a heuristic algorithm to fill all vacant
spots in a predefined target structure with reservoir atoms from the surrounding area. This
is illustrated in Fig. 3.4 (a) in the example of a 3 × 3 target cluster (blue) within a 5 × 5
workspace. As discussed in detail in [116] the algorithm moves the atoms along the grid lines
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preferring short moves over a long-distant atom transport. Usually, there are different ways to
reach perfect filling and the routing calculations do not necessarily find the optimal solution.
However, they are time efficient and always find a way to achieve the target pattern if there
are sufficient atoms available.
Prior to the assembly, the intensity of the array traps is linearly ramped down by typically a
factor of 4 resulting in U0/kB = 0.05(1)mK ... 0.43(5)mK and the rearrangement sequence
is initiated. Each move consists of three stages as illustrated in Fig. 3.4 (b): First the time-
dependent tweezer position s(t) = si is set to be superimposed with the source trap and kept
static while the tweezer intensity is linearly increased to the maximum level Im yielding a
typical trap depth of U ′

0/kB = 0.52mK. As a next step, s(t) is moved to the destination trap sf
following a sinusoidal shape s(t) = sf + (si − sf)

1+cos(πt/T )
2 with T = sf−si

v̄ being the transport
duration. The latter depends on the distance while the mean velocity v̄ is typically chosen to be
21µm/ms at maximum. This is favorable in order to preserve adiabaticity during the transport
and avoid heating [119]. Eventually, the tweezer intensity level is linearly decreased until it
reaches zero releasing the atom in its new location. In this manner all moves are executed
sequentially which gives an average probability for a successful atom transport of 75%. Finally,
the rearrangement cycle is completed by ramping the array light up again and taking another
image to analyze the resulting structure.
In case of defects due to imperfect transport or lifetime-related atom losses, a subsequent
rearrangement cycle attempts to eliminate them. This significantly enhances the probability of
reaching defect-free filling of the target structures. Additionally, exploiting up to 80 consecutive
rearrangement cycles a given configuration of atoms can be maintained over a course of up to
10 s continuously refilling defects that result from atom loss. In case of a 5×5 cluster 49(13) of
80 images contained a defect-free target structure. As discussed in more detail in [57] multiple
rearrangement sequences even have a stabilizing effect regarding the atom lifetime due to
laser cooling during the repetitive fluorescence imaging. An increase in the 1/e-lifetime τ from
a photon-scattering dominated value of 3(1) s to a value of 13(1) s can be observed which even
exceeds the vacuum-limited lifetime reported in [120] for significantly larger detuned trapping
light at a wavelength of 805nm in the present setup.

3.2.3. Multiple rearrangements for large-scale clusters

The increase of accessible cluster size resulting from the execution of multitudinous rearrange-
ments is presented in Fig. 3.5. By the example of assembling a target cluster comprising
10× 10 atoms, Fig. 3.5 (a) shows a sequence for the repetitive rearrangement. Starting with
an initially random atom distribution the images depict the full sequence of consecutive stages
of the assembly process. Between each image, the trap occupation is evaluated and a sequence
of moves is calculated and executed achieving defect-free filling after a total of five cycles. The
whole process until the final pattern is reached takes 1.3 s.
Figure 3.5 (b) depicts the dependence of the cumulative success rates for defect-free filling of
quadratic target clusters on the size of the final pattern over 15 rearrangement cylces. Up to a
cluster size of 5× 5 atoms, the cumulative success rate exceeds 99%. This decreases for larger
clusters due to atom losses during transport as well as atoms escaping the target structure
itself which prevents complete filling in every repetition of the experiment. Nevertheless, even
for the largest clusters, the cumulative success rate is still high, reaching values of 64% for
8× 8 atoms, 12% for 9× 9 atoms, and 3.1% for 10× 10 atoms. Comparing the final values
of the success rates to the ones after only one rearrangement cycle the advantage resulting
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Figure 3.5.: Multiple rearrangements leading to large clusters. (a) Atom distribution during a
sequence of rearrangement cycles for a 10× 10 target structure. Starting from
an unsorted atom array, a defect-free cluster is generated within a rearrangement
sequence of 5 cycles. (b) Measured cumulative success rates of achieving defect-
free quadratic clusters of different sizes. For most clusters, the final value is
reached after 10 to 15 rearrangement cycles. Measured success rates are 3.1% for
10× 10 clusters, 64% for clusters up to 64 atoms, and close to unity for clusters
up to 25 atoms. (c) Maximum filling fraction observed during rearrangement runs
for different cluster sizes. Error bars correspond to a 1σ interval. The thick line
at 0.55 represents an upper bound to the filling fraction obtained via collisional
blockade alone, i.e. the situation before the first rearrangement. (d) Various
defect-free clusters obtained after multiple rearrangement cycles.
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from multitudinous rearrangement cycles becomes evident: The majority of target clusters
reach the final success rate after more than 10 rearrangement cycles. In this fashion, the setup
provides geometries which are not accessible via stochastic loading in a practical way. When
comparing the final success rate of the 10 × 10 cluster to the one calculated for stochastic
loading of this structure through collisional blockade only, yields an enhancement of more than
1025. Consequently, this approach will allow for executing experiments which demand perfect
filling that would have been impossible to be realized within a feasible amount of time without
this technique.
In contrast to the probability for achieving a predefined pattern within one experimental run,
other publications often refer to the filling fraction [28, 29, 35]. This becomes relevant if
a certain amount of defects is tolerable when executing an experiment subsequent to the
rearrangement. The maximum filling fraction of the different quadratic target configurations
is given in Fig. 3.5 (c). For a 10× 10 atom cluster a fraction of 88(7)% is obtained while for
all structures up to 8× 8 atoms more than 95% of the sites are occupied.
Figure 3.5 (d) presents a gallery of defect-free clusters each having a system size where multiple
rearrangements are essential for successful assembly. With respect to quantum computation,
the 9 × 9 cluster (left) as well as the four 5 × 5 clusters (middle) can be regarded as fault
tolerant logical qubits each composed of many physical qubits [104].
So far, only multiple rearrangement sequences heading for creation of one specific target
pattern have been demonstrated. The next section deals with further possibilities to make use
of the gain in flexibility which results from the movable tweezer.

3.2.4. Extended rearrangement methods

In the previous section, multiple rearrangements have proven to be extremely vital for reaching
large-scale defect-free configurations within an imperfect environment that exhibits atom loss.
In this context, rearranging always aimed on the assembly of one specific predefined cluster
within an experimental cycle. However, the tweezer system provides much more flexibility
with respect to controlling the location of atoms within the array. The target structure, for
instance, does not necessarily need to be equal for all rearrangement cycles. Additionally, the
movable tweezer could also be used to clear the occupation within certain regions. Moreover,
if desired, the tweezer implementation in the experiment allows for moving selected atoms
from certain sites to arbitrary destination positions.
Figure 3.6 deals with these extended rearrangement procedures which have been performed
within a 11× 11 workspace. In Fig. 3.6 (a), the repeated reconstruction of a defect-free 3× 3
cluster after intentionally emptying the target area and reloading atoms from a spatially sep-
arated reservoir is shown. This removal can also be regarded to mimic significant atom loss
resulting from a measurement process as discussed in Section 2.5. Using the reservoir in this
case allows to replace the lost atoms and immediately proceed with the next measurement
sequence without the need for a time-consuming MOT loading phase.
Instead of rearranging the same target structure multiple times, a present configuration of
atoms can also serve as a starting point for a new repositioning and be transformed into a
different geometry within one experimental run. This is shown in Fig. 3.6 (b) in the example
of two inverted patterns.
Finally, deterministic atom transport enables the transfer of particular atoms to specific new
sites. If done adiabatically, the transfer preserves coherence as demonstrated in [55, 118]
and provides a means for the redistribution of entangled sub-arrays within atom clusters in
a large-scale tweezer array. In Fig. 3.6 (c) a rearrangement sequence comprising four pairs
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Figure 3.6.: Reloading and reordering schemes. (a) Multiple reconstruction cycles of a cen-
tral 3 × 3 cluster are realized after deliberate atom removal using the optical
tweezer. The number of feasible repetitions within one experimental run scales
with the size of the reservoir array. This demonstration is based on an 11× 11
workspace with 96 reservoir sites. (b) Example of the transformation (inversion)
of an atom arrangement within a single experimental run. Atoms which get lost
during this procedure are replaced by atoms from the surrounding reservoir. (c)
Demonstration of an atom exchange between two clusters: From a stochastic
initial atom distribution a defect-free structure of two 2× 2 clusters is created
(left). Next, the atoms are relocated so that two atoms from each of the clusters
are moved into the respective other cluster (center and right). The two colors
in the schematic correspond to the respective original clusters. This procedure
could find its application in the distribution of entanglement [121].

of atoms is demonstrated which can be used for the redistribution of entanglement [121]
between the two 2× 2 atom clusters.

3.2.5. Atom rearrangement in Talbot planes: On the way to defect-free 3D geometries

Due to the Talbot effect microlens-based dipole trap arrays are intrinsically three-dimensional
[68]. Even if only one plane is used there exist applications where working in a Talbot
layer is advantageous [122]. Consequently, well-defined initial preparation of atoms within
these planes should also be available. In order to demonstrate defect-free assembly for these
configurations the microlens array as well as L1 were moved a total of 15.2mm for the T−1/2

plane to reach the original position of the focal plane. This approach ensures that no other
optics for imaging or plane selection have to be adjusted, too. The results are depicted in
Fig. 3.7. Due to the pitch of the dipole trap array p = 10.3(3)µm the distance between half-
integer layers illustrated in Fig. 3.7 (a) evaluates to z⋆T = 133(8)µm following equation 2.24.
In this configuration, the assembly of defect-free clusters in the same fashion as implemented
in the focal plane T0 (Fig. 3.7 (b)) can the also be demonstrated within the Talbot plane T−1/2
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Figure 3.7.: Atom rearrangement in focal and Talbot planes. (a) Talbot carpet showing the
focal plane as well as the first half-integer planes. Using the optical tweezer
system allows for extension of the already routinely used defect-free cluster
assembly from the focal plane (b) to the T−1/2 Talbot plane (c) with the same
performance.

as shown in Fig. 3.7 (c).
While this demonstrated the applicability of the present tweezer system in the Talbot planes,
additional extensions are required to develop a fully featured three-dimensional architecture.
When it comes to fluorescence detection, atoms in different planes cause disturbing light as
discussed in [67]. Therefore, it would be necessary to implement a plane selective detection
scheme. This could be realized using a combination of spatial light modulation for the excitation
lasers and tunable lenses as utilized in [34]. Additionally, the tweezer beam focus needs to
be made tunable along the optical axis. Nevertheless, these extensions can be realized with
manageable effort. The following section will discuss a localized detection scheme which could
be extremely vital in this case of a further extended 3D system.
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3.3. Fluorescence detection on a single-site basis using themovable
tweezer

(a)

(b)

(c)

(d)

Figure 3.8.: Site-addressed fluores-
cence detection. See
text for details.

The implementation of the movable tweezer has cre-
ated entirely new possibilities to control the atom con-
figuration within the array. In addition, this light path
with dynamic position control at a single-microsecond
timescale allows for fast site-selective addressing. This
leads to a vast number of possible applications ranging
from state-selective removal of atoms or spin-selective
detection as demonstrated on a millisecond addressing
rate in [67] to state preparation and site-selective co-
herent quantum operations.
Moreover, it is possible to make use of the single-site
addressability with respect to fluorescence detection.
As this measurement technique relies on resonant scat-
tering processes which do not preserve the quantum
state of the atom, a scalable platform greatly benefits
from the capability to execute this in a localized fashion.
This is analyzed within a dipole trap array with a pitch
of p = 7.0(2)µm using the microlens array MLA2.
As discussed in Chapter 2, the standard detection
scheme involves continuous excitation of the atoms
during an exposure time of typically 60ms along the
cyclic cooling transition |5S1/2,F = 3⟩→|5P3/2,F = 4⟩
with simultaneous repumping. The latter takes care
of atoms which decayed into |5S1/2,F = 2⟩ after off-
resonant excitation and would otherwise not be excited
anymore. This, in turn, can be used in order to imple-
ment a site-selective fluorescence detection scheme.
For this purpose, the tweezer beam is superimposed
before the optical fiber with laser light at λ = 795nm
driving the excitation |5S1/2,F = 2⟩→|5P1/2,F = 3⟩
and thus serving as repump light. This laser is
offset locked to a second laser stabilized on the
|5S1/2,F = 3⟩→|5P1/2,F = 2⟩ transition running an
MTS stabilization [73]. The laser is intensity sta-
bilized at a power of approximately P ≈ 100nW
at the focus and detuned from the resonance about
∆ = 2π · 900MHz which allows for stabilization at a
higher power while keeping the coupling strength in an
acceptable regime. Otherwise increasing atom loss has
been observed. Figure 3.8 depicts a sequence of images
taken during one experimental cycle. First, atoms are
stochastically loaded from the MOT (Fig. 3.8 (a)) and
then rearranged into a 3× 3 cluster (Fig. 3.8 (b)). For
both of these images the standard detection scheme applying the cooler laser synchronously
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with the regular repump beam is used to generate fluorescence. As a next step, the atoms were
pumped into |5S1/2,F = 2⟩ applying the cooler beam for another 0.4ms. After this duration, a
local detection sequence is executed and yields Fig. 3.8 (c). During this exposure time only the
cooler laser in combination with the addressing beam were turned on. Consequently, solely
the atom at the addressed site is visible while the other atoms which are still present remain
hidden. When returning to the standard exposure scheme it becomes evident that all atoms
are still present in the array. This is demonstrated using a final exposure phase (Fig. 3.8 (d))
immediately after the site-selective detection with cooling and repumping light on the D2 line.
For this measurement 300 repetitions have been executed and in the addressed trap 77% of
the atoms detected in the second image are still observed in the last image. In contrast 93%
are retained in the 8 surrounding traps.
As a consequence, there is still demand for future characterization measurements in or-
der to identify the sources for additional atom loss. Moreover, as the present approach
is based on illumination of the entire array with near resonant light along the transition
|5S1/2,F = 3⟩→|5P3/2,F = 4⟩ atoms in state |5S1/2,F = 3⟩ would be affected by scattering in
the whole array. Therefore, in a next stage the present technique could be further developed
in order to allow for site-selective lossless state detection using excitation along the D2 line
by a steerable beam which has been realized in [123, 124] for a single dipole trap in a static
way. Fast state detection at a sub-millisecond timescale two orders of magnitude below the
coherence time demonstrated in [67] seems feasible in a straightforward fashion.

3.4. Conclusion

The micro-optical platform equipped with the rearrangement system detailed in this chapter
offers scaling capabilities for defect-free prepared initial configurations of individual neutral
atoms in an yet unprecedented fashion. Starting from a randomly loaded 19× 19 micro-trap
array with a filling fraction of about 50%, clusters comprising up to 111 atoms in predefined
locations can be assembled without imperfections.
The option to use multiple rearrangement cycles mitigates the impact of atom loss and is essen-
tial for reaching large-scale defect-free clusters. Furthermore, this offers additional flexibility
within one experimental cycle. Executing consecutive rearrangement and measurement phases
in one run reduces time-consuming MOT loading stages and can significantly increase the data
acquisition rate. Moreover, the possibility to remove atoms from a distinct area within the array
has been demonstrated. For instance, this allows to control the occupation within an interaction
zone which is especially relevant for parallelized Rydberg excitation as discussed in [56]. Even
more, as the tweezer system enables exact repositioning from a distinct site to a different
location, protocols for entanglement distribution can be implemented in a straightforward way
[121].
The movable optical tweezer has also demonstrated to work within Talbot planes of the intrin-
sically three dimensional dipole trap geometry created by the microlens array. This paves the
road to fully filled 3D clusters. Additionally, the tweezer beam path allows for applications apart
from atom transport. Offering a beam for individual addressing of sites which is movable on the
microsecond timescale, site-selective fluorescence detection of atoms has been demonstrated.
Nevertheless, there is also potential for improvement. Within the course of this thesis the
limitation regarding the transport efficiency of 75% has not been finally clarified in detail yet.
In reference [29] an efficiency of 99.3% for atom transfer has been reported for moving atoms
in a tweezer array with waists of 1 µm using a movable tweezer with a waist of 1.3 µm. Besides
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Figure 3.9.: Implementation of the tweezer assembly process into a typical measurement
cycle. Subsequent to the stochastic loading from theMOTvia collisional blockade
a rearrangement sequence is started. After the preparation of a well-defined
internal state of the atoms, a phase with coherent operations can be initiated.
The result is typically obtained in a loss-based measurement. The emerging
defects can either be repaired via rearrangement or a new experimental cycle
begins with loading the MOT.

slightly smaller waists, this is in a similar parameter regime as the present platform. Therefore,
it remains to be examined whether a reduction of the waists can lead to an improvement
in this setup. Based on the perspective of increased transport efficiency and Monte Carlo
simulations detailed in [57], defect-free clusters of several hundred atoms are accessible with
minor modifications on the experimental platform and up to 1000 atoms are within reach.
As schematically illustrated in Fig. 3.9 the rearrangement process can be included in a typical
experimental cycle in a flexible manner and is at hand for the measurements discussed in
the following chapters. A typical experimental cycle using the tweezer system includes a
rearrangement process directly after the stochastic loading. After the preparation of the atoms
into a well-defined internal state, coherent operations on the qubit states can be executed.
Typically, this induces atom loss which is detected in the subsequent measurement phase.
Given this situation, the residual occupation in the array can serve as a starting point for a new
rearrangement cycle or a new loading process from the MOT can be triggered which initiates
the next experimental run.
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4. Rydberg dynamics with coherent single-site
control

4.1. Status quo

As detailed in [56, 57], coherent coupling between the hyperfine ground states and differ-
ent Rydberg states has been made accessible for the present experimental platform using a
two-photon process. This allows for Rabi frequencies of up to Ω2Ph = 2π · 0.77(2)MHz as
demonstrated for coupling between |5S1/2,F = 3,mF = −3⟩ and the |57D5/2⟩ state applying
synchronous addressing of 5× 5 sites. Moreover, using the |87D5/2⟩ state, interactions between
Rydberg-excited atoms have been realized in a 7 µm-pitch array. These interatomic couplings
lead to collective enhancement of the Rabi frequency in the Rydberg blockaded regime.
In order to implement two-qubit gate operations as discussed in Section 2.6.2 in the example
of a CZ protocol it is necessary to obtain single-qubit control. Since the coupling between the
Rydberg laser fields and the atom is determined by the resonance frequency as well as the laser
intensity, both parameters can in principle be used to implement an addressing scheme. The
resonance frequency of a ground-to-Rydberg-state excitation can be shifted for selected atoms
via application of a local light shift on the ground state. This has been realized in [47, 125]
within an 1D alignment of up to 3 traps using an additional focused laser beam. In the present
setup this can be implemented utilizing the movable optical tweezer [57]. The light-shift
based method has the advantage that it does not require modifications to the optical setup and
preserves the ability for synchronous addressing of many atoms. However, this approach relies
on an out-of-resonance shift leading to a coupling of all atoms to the Rydberg laser light field
except for the addressed one. Therefore, this does not allow for fully independent site-selective
control. Additionally, residual coupling is observed for the present setup in this case [57].
As a possible alternative one could take into account shifting a specific atom into resonance
using the light shift from the movable tweezer. However, the principle to turn off the dipole
traps during the excitation pulse has turned out to be advantageous and is commonly prac-
ticed in order to reduce cycle-by-cycle fluctuations of the resonance frequency [47, 125, 126].
Therefore, implementing this approach is also not considered here.
Consequently, an extension featuring site-selective addressing which controls the Rydberg
laser light field intensity has been implemented in the experimental apparatus during the
course of this thesis. In the following sections this novel system will be presented. First of
all, the fundamental concept of Rydberg excitation with respect to the present setup will
be explained. This ranges from the two-photon process used for coupling between ground
and Rydberg states via the detection mechanism of successful excitation to a presentation of
typical measurement techniques used for characterization. As a next step, the Rydberg laser
system including frequency stabilization will be discussed which is essential for the following
experiments. Thereafter, the setup for site-selective addressing and the integration in the
experimental apparatus is detailed and individual-site control within the array is demonstrated.
Finally, blockaded interaction between atoms in the tweezer array using the newly integrated
system is characterized.
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4.2. Driving coherent Rydberg excitations from the ground state

4.2.1. Two-photon ground-Rydberg state coupling

Excitation of rubidium atoms from the ground state to a Rydberg state requires a photon energy
in the ultra-violet spectrum corresponding to a wavelength of about λ = 297nm. Such a direct
excitation scheme into a Rydberg state is utilized by various groups [109, 127, 128]. While this
way avoids spontaneous emission from an intermediate state when compared to using a multi-
photon transition it is in contrast far more difficult to implement in the experimental apparatus.
Consequently, it was decided to use a two-photon process as indicated in Fig. 4.1 (a). As
illustrated, a laser field at λR = 780nm couples the hyperfine ground state |5S1/2,F = 3⟩ to the
intermediate state |5P3/2⟩ off-resonantly at a detuning ∆i which enables two-photon excitation
into the Rydberg state |r⟩ using additional laser light at λB = 480nm. This configuration can
be treated as an effective two-level system comprising the ground and the Rydberg state as
long as ∆i ≫ ΩR,ΩB where ΩR and ΩB denote the Rabi frequency for the near-infrared and
the blue light field, respectively. That condition is fulfilled for all of the experiments presented
in this chapter. In this case, the coupling is determined by

Ω2Ph =
ΩRΩB
2∆i

δ = δ2Ph −
(︃

Ω2
R

4∆i
− Ω2

B
4∆i

)︃
(4.1)

with the two-photon Rabi frequency Ω2Ph and the effective detuning δ to the Rydberg state
which considers the light shifts resulting from both laser fields. As already discussed in Section
2.1.1 regarding equation 2.15, the photon scattering rate scales as ΓSC ∝ 1/∆2

i demanding
for maximum possible detuning in order to reduce spontaneous processes involving |5P3/2⟩.
However, due to the significantly lower coupling strength between the intermediate and the
Rydberg state compared to the ground and the intermediate state, the available power of blue
laser light poses the major limitation.

4.2.2. Detection of Rydberg-excited atoms

In addition to the possibility to excite atoms into Rydberg states it is essential that this excitation
can be detected. The fact that trapping of Rydberg atoms requires additional effort [129, 130]
allows to implement the detection of Rydberg excitation in a loss-based fashion. Ground state
atoms are continuously influenced by the dipole potential and are therefore trapped in the
tweezers. Even in case of an excitation via the D1 or D2 line there is only an insignificant time
on the order of tens of nanoseconds (Table A.1) without attractive coupling to the laser field
of the dipole traps due to the short lifetime of the excited states.
In contrast, as a result of the n3-scaling of the lifetime, already for a 57D5/2 state one obtains
about τ57 = 93µs while for 82S1/2 the lifetime calculates to τ87 = 217µs as discussed in
Section 2.6. During this period, the atoms do not experience the attractive force from the
tweezer potential and escape from the traps because of their residual velocity. There is even an
additional repulsive effect owing to the ponderomotive potential Vp experienced by the weakly
bound Rydberg electron [131] which can be written in terms of the dipole trap intensity I, the
electron mass me and the laser frequency ωL of the dipole trapping light as

Vp =
e2I

4meω2
L
. (4.2)
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Figure 4.1.: Rydberg spectroscopy and ground-Rydberg state coupling strength measurement.
(a) Using a two-photon process detuned by∆i from the intermediate state andwith
variable detuning δ2Ph to the excited state allows for excitation into the Rydberg
state and spectroscopy. (b) Resonance of |57D5/2⟩. The peak is found for an
effective detuning δ = 0 including light shifts and shows the excitation probability
into the Rydberg state for a pulse duration of τ = 1µs. (c) At resonance (δ = 0)
the coupling strength to the Rydberg state can be determined via measuring the
Rabi frequency.

This leads to the loss of atoms from the trap after being excited into the Rydberg state which can
be verified through fluorescence detection after the Rydberg excitation sequence. Consequently,
after multiple repetitions the observed probability Pr to excite an atom can be calculated
from the detected number of lost N− and retained N+ atoms via Pr =

N−
N++N−

. This does not
account for detection errors which will be discussed in Section 4.2.4 in the example of typical
characterization measurements.

4.2.3. Typical experimental cycle for Rydberg experiments

Rydberg measurements discussed in this thesis always start after the rearrangement phase
which typically consists of multiple rearrangement cycles as detailed in Chapter 3. After the
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last cycle, the occupation of the traps is determined via fluorescence detection in order to
retrieve the initial situation before the Rydberg measurement phase. Next, the magnetic field
which defines the quantization axis is turned on and the depth of the dipole traps is reduced by
about a factor of 5. In order to obtain a well-defined internal state of the atoms, preparation
via optical pumping according to Section 2.5 is executed which takes up to 800µs. During
all Rydberg experiments presented in this thesis the effective pulse length of the two-photon
coupling τ shall be determined by the width of the 780nm Rydberg laser pulse which is defined
using an AOM that allows for switching of the laser light below 100ns. This keeps spontaneous
processes involving the intermediate level at a minimum. Therefore, the blue light field is
always turned on prior to the 780nm laser beam and deactivated after the latter has been
switched off. During the short time of the 780nm laser pulse of only a few microseconds, the
dipole traps are fully turned off which avoids spatial dependence of the two-photon resonance
frequency due to inhomogeneous light shift on |5S1/2,F = 3⟩ over the array. Furthermore,
this avoids cycle-by-cycle variations in the resonance frequency resulting from atoms being at
different positions in the trapping potential. Finally, the dipole traps are ramped up again for
detection of the remaining atoms in the array via fluorescence imaging.

4.2.4. Measuring coupling strength for coherent Rydberg excitation

Figure 4.1 (b, c) shows single-atom Rydberg excitation signals obtained for typical charac-
terization measurements of the ground-Rydberg state coupling. In this case, the two-photon
transition |5S1/2,F = 3,mF = −3⟩→|57D5/2,mJ = −3/2⟩ is depicted and a detuning to the inter-
mediate state |5P3/2,F = 4⟩ of ∆i = 2π · 410MHz is chosen. Maintaining a constant duration
τ = 1µs of the excitation pulse and varying the detuning δ to the Rydberg state, one obtains the
spectroscopic signal of the resonance as shown in Figure 4.1 (b). Approximating the excitation
probability Pr with the Fourier transformation of a square pulse

Pr(δ) = A ·
Ω2
2Ph

Ω2
2Ph + δ2

sin2
(︃
τ̃

2

√︂
Ω2
2Ph + δ2

)︃
+B (4.3)

and leaving τ̃ as a free parameter yields the solid curve with τ̃ = 0.94(7)µs which matches the
configured pulse length of τ = 1µs. From these type of spectroscopic measurements, the exact
position of the two-photon resonance can be determined as a basis for subsequent experiments.
In order to retrieve a value for the coupling strength, the result of a spectroscopy can then be
used for recording Rabi oscillations on resonance as shown in Figure 4.1 (c). In this case, the
laser frequency is kept constant (δ = 0) and the pulse duration is varied. The time-dependent
two-photon coupling between ground and Rydberg state can then be written as

Pr(t) =
Ω2
2Ph

2Ω2
2Ph + γ2

[︃
1−

(︃
cos
(︂
Ω̃t
)︂
+

3γ

4Ω̃
sin
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Ω̃t
)︂)︃

e
−3γt/4

]︃
(4.4)

with an exponential damping factor and an effective frequency Ω̃ =
√︂
Ω2
2Ph + γ2/16 as derived

in [132]. The solid curve shows the approximation of the measured data with equation 4.4.
From this fit, the two-photon Rabi frequency can be determined to Ω2Ph = 2π · 0.64(5)MHz.
Apparently, the curves neither reach Pr = 0 excitation probability away from the resonance nor
Pr = 1 in case of resonant coupling. This is due to several reasons and has been thoroughly
analyzed in [57]. First, a finite recapture probability of typically 95% leads to a permanent
baseline in the excitation probability. Second, imperfect initial state preparation efficiency
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of 96% results in an upper bound. Third and mostly, according to a Monte Carlo simulation
based on a release and recapture measurement the probability to trap a Rydberg-excited atom
again after decay into the ground state is about 19% for 57D5/2 and therefore a significant
contribution. This could be overcome by increasing the wavelength of the trapping light leading
to a stronger ponderomotive potential but is beyond the scope of this thesis.

4.3. Fast tunable laser light for Rydberg excitation

In order to execute spectroscopic measurements or coherent quantum operations with Rydberg
atoms stable yet quickly adjustable laser fields are necessary. This requires, on the one hand,
a reliable intensity stabilization which is implemented using the control unit reported in
[70]. On the other hand, stable laser frequencies are indispensable to achieve high-fidelity
quantum control [126]. This section discusses the implementation of those prerequisites in
the experiment.

4.3.1. Laser frequency stabilization

Both Rydberg lasers are stabilized in frequency using a high finesse cavity (VH-6020-4, Stable
Laser Systems). The cavity is kept under a vacuum with a residual pressure of 4× 10−5mbar
and temperature stabilization near the experimentally determined zero crossing point of
302.61(7) K [57]. This renders the relaxation of the spacer material to be the dominant
contribution to the resonance drift which is specified by the manufacturer as 50 kHz per day.
The free spectral range FSR was measured to FSR = 1496.923(2)MHz and the finesse for light
at λ = 780nm and λ = 960nm has been determined via cavity ring-down time measurements
to F780 = 31500(100) and F960 = 46700(120), respectively. From an analysis of the cavity
transmission signal, a linewidth below 11 kHz for the 780nm laser and smaller than 9 kHz for
the frequency doubled light at 480 nm can be estimated [57].

Near-infrared Rydberg laser setup

The near-infrared Rydberg laser is an interference filter based ECDL providing the light for
coupling to the intermediate level during Rydberg excitation at λR = 780nm. The frequency
stabilization to the high finesse cavity relies on the Pound-Drever-Hall (PDH) technique [133,
134] which enables locking to the narrow cavity resonances. This requires the modulation of
sidebands on the probe light fed into the cavity which is realized using an AOM in double-pass
configuration driven at a carrier frequency of 110MHz and a modulation frequency of 10MHz
based on a multi-channel DDS (AD9959, Analog Devices). The slow feedback loop to the piezo
actuator which steers the resonator length and the fast feedback circuit that acts on the diode
current via a field-effect transistor (FET) are closed by a control unit (VP-D2-125, Vescent).

Blue Rydberg laser system

The laser light at λB = 480nm is produced by a commercial laser system (TA-FHG 110, Toptica)
consisting of a tapered amplifier (TA) which is seeded by a grating-stabilized ECDL running at
λ = 960nm and fed into a frequency doubling stage. After the second harmonic generation
(SHG) light at λ = 480nm is coupled into a single-mode optical fiber which delivers it to the
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experimental apparatus. Frequency stabilization to the high finesse cavity is realized using the
PDH method with a feedback loop involving a fast laser locking module (FALC 110, Toptica).
For this purpose, the laser current is modulated at 24MHz in order to produce the sidebands.
The laser frequency is stabilized via control of the external cavity length by a piezo element
and a FET for fast feedback to the diode. In addition, a second PDH control loop optimizes the
SHG efficiency.

Implementations for dynamic frequency variation

Dynamic laser frequency control of the Rydberg lasers is not only important for spectroscopical
identification of a transition but also allows for application of excitation schemes in the future
which are based on rapid adiabatic passage [135, 136] enabling high-fidelity qubit gates.
During this thesis means for dynamic frequency control of the Rydberg laser system have
been implemented. This includes frequency change on a cycle-by-cycle basis as well as in
real-time if necessary. With regard to the blue Rydberg laser system, the 960nm light used for
stabilization is directed through an AOM in double-pass configuration before being coupled
into the cavity. As a consequence, changes in the frequency set point of the blue laser light
always involve the feedback loop for stabilization to the reference cavity, too. Even though
this limits the bandwidth for frequency adaption that implementation is chosen in order avoid
additional losses of blue laser light power. Therefore, this method of frequency control is used
on a cycle-by-cycle basis only.
In contrast, the beam path of the 780nm Rydberg laser includes an AOM in double-pass
configuration before the fiber coupling to the experimental apparatus which enables fast
frequency adaption in a span of several tens of megahertz. This is especially vital in the scope
of fast single-site addressing with a steerable beam controlled via acousto-optic deflection that
is presented in the following section.

4.4. Site-selective coherent Rydberg dynamics in predefined config-
urations

4.4.1. Experimental setup

Optical setup

Figure 4.2 depicts the optical setup for Rydberg excitation on a site-selective basis. The
measurements in this chapter are based on the microlens array MLA2 (Table 2.1) for the
creation of a 7 µm-pitch tweezer array. After exiting a single single-mode optical fiber, the
780nm Rydberg laser beam is σ−-polarized and enters the chamber along the x-direction. For
the beam radius a value of wR = 550(50)µm has been measured. The linearly polarized blue
Rydberg laser beam is also delivered by a single-mode fiber and passes a 2D acousto-optic
deflection system composed of two AOD (CT4105, Crystal Technology) that are mounted with
their deflection plane oriented orthogonally against each other. An achromatic doubled L6
with a focal length of fL6 = 40mm is positioned so that the AOD pivot center of rotation lies in
the focal plane of L6. The beam passes another achromatic doublet L7 with a focal length of
fL7 = 500mm before being focused onto the array plane within the vacuum chamber. As the
microscope objective LS2 is used for monitoring the intensity distribution of the dipole trap
array and the movable tweezer as well as for focusing the blue laser beam the latter is kept
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Figure 4.2.: Simplified schematic of the setup for Rydberg excitations with single-site ad-
dressing. Using the 2D beam steering system composed of two AODs with
orthogonally oriented deflection planes allows for individual addressing of atoms
in the tweezer array with the blue Rydberg laser. For this purpose, two achromatic
doublets L6 and L7 are used in combination with the microscope objective LS2
to turn the collimated laser beam deflected by the AODs into a movable spot
in the atom plane. The beam positioning is executed by the addressing control
system which supplies the RF for the AODs and also takes care of the frequency
compensation to maintain the two-photon resonance via shifting the 780 nm
Rydberg laser frequency accordingly. The deflected light off the polarizing beam
sampler is utilized for continuous monitoring of the blue spot with a CCD camera.
Entering the chamber along the x-direction the σ−-polarized 780 nmRydberg laser
illuminates the full array due to its large radius.

slightly diverging after L7 in order to compensate for the chromatic axial shift of the focal spot
which calculates to about 900µm. The light which is deflected at the polarizing beam sampler
before LS2 is used for spatial monitoring of the blue beam. In the inset an image of the beam
focus taken with the CCD camera is shown from which the beam waist could be determined
to w0,B = 2.1(2)µm. The spot position is moved through the RF connected to the AODs and
generated by the addressing control system which can also alter the frequency of the 780nm
Rydberg laser beam via the AOM in double-pass configuration in the beam path before the fiber
coupling to the experiment. Based on a diffraction efficiency of more than 50% measured for
the 2D deflector over a frequency span of 40MHz this allows for addressing of an area larger
than 100µm× 100µm corresponding to 14× 14 sites with the blue Rydberg laser beam.
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Figure 4.3.: Determining the blue beamalignment using resonant excitation to a Rydberg state.
The signal distribution in the averaged fluorescence images can be associated
with the mean occupation in the assembled 3× 3 cluster before (left) and after
(right) the excitation phase of the blue beam in combination with the MOT lasers.
The horizontal and vertical cross sections through the image centers show the
normalized fluorescence signal, respectively. As a result from focusing the blue
beam onto the central trap in the cluster, this exhibits a significant reduction in the
signal when comparing the second with the first image which allows for a clear
localization of the spot within the array. The slightly lower signal in the central
trap before the addressing can be associated with imperfect preparation of this
site during the measurement.

Integration of the module in the experimental control system.

In order to guarantee fast frequency switching, the RF source for the AODs was chosen to
be two DDS evaluation boards (AD9910, Analog Devices) which grant direct access to the
frequency via parallel ports. This DDS allows for defining the output frequency via a 16-bit
frequency tuning word (FTW) attached to its parallel input port at a rate of 250MHz using a
system clock running at 1GHz. From these settings a frequency resolution of 954Hz can be
achieved. The FTWs are provided by an FPGA module (DE1-SoC, Terasic) identical to the one
used for the movable tweezer but with an adapted circuit synthesized in the FPGA fabric. Using
a system clock of 50MHz the circuit takes 40 ns for a single channel frequency change. For
the purpose of achieving this rate, a FIFO (first-in, first-out) buffer has been implemented in
the system which can store up to 1000 predefined frequencies. This allows for a change of the
DDS frequency in-sync with the main experimental control system well below the limit given
by the switching time of the AOD which is about 1 µs. While the addressing of neighboring
array sites necessitates frequency changes of 2.7(1)MHz for both dimensions this demands for
a compensation mechanism in order to maintain the two-photon resonance when addressing
different sites. This is realized using a third DDS (”frequency compensation”) of the same type
which is controlled synchronously by the FPGA system and supplies the radio frequency for the
double-pass AOM in the 780nm Rydberg laser beam.
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4.4.2. Beam alignment

Due to the small radius of the blue Rydberg laser beam, the initial alignment has been executed
via loss detection on resonance. For this purpose, the blue Rydberg laser is stabilized to
the transition |5P3/2,F = 4⟩→|84D5/2⟩ which allows in combination with the MOT lasers to
resonantly excite atoms into the Rydberg state. Figure 4.3 shows the result of a measurement
consisting of 50 experimental runs to determine the alignment. After an assembly sequence for a
3×3 cluster utilizing the optical tweezer a fluorescence image is taken. This is followed directly
by a phase of 5ms in which the MOT lasers are activated together with the blue Rydberg laser
beam. A second image is then used to determine the occupation within the cluster afterwards.
Figure 4.3 (left) shows the averaged fluorescence images before and Figure 4.3 (right) after the
excitation phase. The horizontal and vertical cross sections depict the normalized fluorescence
signal through the image center, respectively. Using about 200µW blue laser power is sufficient
to see a clearly localized effect and verify good overlap with the central trap in the cluster.

4.4.3. Demonstration of site-selective ground-to-Rydberg state excitation

Energy

∆i

|5S1/2, F = 3, mF = 0〉

|82S1/2, mJ = −1/2〉

|5P3/2, F = 4〉

ΩB 480 nm, π

ΩR 780 nm, σ−

Figure 4.4.: Excitation scheme for
site-selective ground-
Rydberg state coupling.
Using a two-photon
process detuned by
∆i = 2π · 550MHz.

As shown in Fig. 4.4, for the followingmeasurement the
|82S1/2⟩ Rydberg state has been selected to demonstrate
site-selective addressability. This is a suitable candi-
date on the way to an implementation of entangled
atom clusters within the present platform as illustrated
in Figure 3.6 (c) since the van der Waals interaction is
isotropical for |nS⟩ states to very good approximation.
Furthermore, the |5S1/2,F = 3,mF = 0⟩ is chosen as
initial state due to its magnetic field insensitivity which
has shown coherence times on the order of 100ms [55,
67, 122]. The efficiency of initial state preparation via
optical pumping has been measured to 80(5)% using
ground state stimulated Raman transitions as discussed
in Chapter 5. For the two-photon transition the detun-
ing to the intermediate state is set to ∆i = 550MHz.
The 780nm Rydberg laser power in the atom plane
amounts to PR = 1mW while the power of the blue
laser is PB = 10mW. This yields theoretical Rabi fre-
quencies ofΩR = 2π·28.8MHz andΩB = 2π·29.4MHz,
respectively, resulting in a two-photon Rabi frequency
Ω2Ph = 2π · 0.74MHz. Figure 4.5 demonstrates the ca-
pability of the addressing system to create site-selective
coherent ground-Rydberg state coupling in predefined
atom-by-atom assembled configurations. As depicted
in the inset (left), a target geometry for rearrangement
consisting of 10 atoms is selected for this measurement while in each experimental realization
one of the five colored traps (right) is addressed randomly using a variable pulse length. Ad-
dressing a specific trap within a cycle is reflected by the same color of the respective data points
of all the curves visible for the various sites. Each of the addressed traps exhibit clear Rabi
oscillations between the Rydberg and the ground state solely in case the blue beam is steered
on their position during the 780nm Rydberg laser pulse while in all other sites no coherent
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coupling is observed for the respective group of cycles. It becomes evident that only in the
traps which are addressed atom loss exceeding the baseline loss discussed in Section 4.2.2 is
detected. The solid curves are the results from a fit of equation 4.4 to the measured data. This
yield two-photon Rabi frequencies ranging from 2π · 0.57(5)MHz (green) to 2π · 0.78(5)MHz
(purple) corresponding to sub-microsecond π-pulse times.

4.4.4. Site-selective Rydberg blockade

A crucial next step for the implementation of a two-qubit gate is the evidence of Rydberg
blockaded interactions in the novel site-selectively addressable setup. This can be demonstrated
in the configuration shown in Fig. 4.6 (a) where two atoms are positioned near each other
and are sequentially addressed by the blue Rydberg laser beam. One of them is defined as the
control atom (left) the other as the target atom (right) in analogy to Fig. 2.9 in Section 2.6.2.
During the addressing sequence each excitation pulse width is always defined by the 780nm
Rydberg laser beam which illuminates both atoms simultaneously and can be switched quickly.
As shown in Fig. 4.6 (b), this is implemented in the experiment using atom rearrangement
into two central sites of the array through the movable optical tweezer. After the assembly
phase and a state preparation into |5S1/2,F = 3,mF = 0⟩ the experimental runs alternate in
a pseudo-random fashion between two realizations. Either the control atom is addressed
with a π-pulse of 1.4 µs followed by addressing the target atom for a variable time t or the
former step is omitted. For this addressing sequence a 780nm laser power of PR = 0.5mW
and a blue laser power of PB = 8mW is employed for which the Rabi frequencies calculate to
ΩR = 2π · 20.4MHz and ΩB = 2π · 26.7MHz, respectively, yielding a theoretical two-photon
Rabi frequency of Ω2Ph = 2π · 0.47MHz. The measured π-pulse duration of τπ,exp = 1.33(4)µs
is therefore below the calculated value of τπ = 1.06 µs which can be related to a radial
displacement of the blue beam focus relative to the addressed site of 1 µm. Figure 4.6 (c)
depicts the probability to lose the target atom when the control atom has been successfully
excited after the pulse (|c⟩ = |r⟩) or is preserved in the array (|c⟩ = |g⟩) having left out the
control pulse. Apparently, Rydberg excitation of the control atom prevents the target atom
from getting excited which demonstrates Rydberg blockade.
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Figure 4.5.: Site-selective Rydberg excitations. Using the 2D beam steering system enables
individual addressing of arbitrary sites in assembled geometries. The arrange-
ment of the data panels reflects the target configuration of the arranged atoms.
See main text for details.
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Figure 4.6.: Blockaded Rydberg interaction of atom pair. (a) Schematic illustration of the
addressing. While the 780 nm Rydberg laser field illuminates the whole array
moving the blue Rydberg laser focus allows for site-selective control. Interaction
can be demonstrated when analyzing the excitation probability into the Rydberg
state of a target atom depending on whether a nearby control atom has been
excited before or not. (b) This alignment is implemented in the array for two
neighboring sites in the 7 µm-pitch array as shown in the averaged fluorescence
image after rearrangement using the movable optical tweezer. (c) Excitation
probability for the target atom without excitation pulse on the control atom (|c⟩ =
|g⟩) and after successful excitation of control atom (|c⟩ = |r⟩).

4.5. Conclusion

In this chapter, a novel setup for coherent ground-Rydberg state coupling with single-site
addressability in the optical tweezer platform has been presented which was realized in the
course of this thesis. Based on a two-dimensional beam steering system, individual atom
addressability via a two-photon transition is available yielding Rabi frequencies of up to
Ω2Ph = 2π · 0.78(5)MHz limited by the available laser power. The reduced beam radius which
goes along with the site-selective control enables to achieve the same coupling strength for
the |87D5/2⟩ state as for the |57D5/2⟩ state [56, 57] in the experimental platform despite the
increased detuning to the intermediate state of the two-photon process. Using an upgraded,
readily commercially available blue laser system will now easily allow for pushing the coupling
strength into the megahertz regime for high-lying Rydberg states just via increasing the laser
power. This is beneficial in order to decrease sensitivity to spontaneous emission processes
from the intermediate state, reduce atom loss resulting from the fact that Rydberg atoms are
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not trapped anymore, and minimize dephasing due to the finite velocity of the atoms during
the interaction period [47]. Additionally, as practiced in [126] counterpropagating alignment
of the Rydberg laser beams can be applied as a next step to reduce the Doppler effect which
significantly contributes to dephasing as simulated in [57] for the present experimental setup.
Even further improvement can then be expected using filtering techniques for the Rydberg
laser light as employed in [126] in order to reduce phase noise.
Moreover, the initial ground state preparation efficiency into |5S1/2,F = 3,mF = 0⟩ needs to
be addressed in future work. While the value of 80(5)% is in agreement with the reported
efficiency in [67] it, nevertheless, significantly reduces the Rydberg excitation probability and
will substantially impair the fidelity of gate operations. However, this can be tackled using
an optimized initial state preparation scheme via optical pumping involving the D1 line. For
instance, 99% efficiency has been reported for 87Rb in [137].
Using the site-selective control system, Rydberg-blockaded atom interaction has been suc-
cessfully demonstrated after sequentially addressing a pair of atoms. This can now serve as
a starting point for future work towards implementation of gate operations in the manner
detailed in [41], analysis of entanglement distribution using the optical tweezer [121] and
implementation of spin-dynamics for simulation of quantum magnetism [49, 90, 91]. Based
on the approach for tweezer array generation detailed in [28, 90] a multi-tone configuration
will allow for parallelized addressing of many sites in the future and pave the way for the
implementation of multiqubit gates in the present experimental platform [42].
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5. Magnetic-field sensing within an
individual-atom quantum array

5.1. Quantum sensing

Using quantum technology for the purpose of measuring physical quantities has evolved into
an highly topical field of research. The principal objective is to exploit quantum properties as
entanglement or superposition in order to develop sensors with higher accuracy and/or smaller
form factor than conventional instruments. Prominent examples are atomic clocks which have
reached one record-breaking result in precision after the other within recent years [138–140].
Besides defining the time standard, they have versatile additional applications. Among them
are tests for variations of fundamental constants, further examination of Einstein’s theory of
relativity as well as geodetic methods [141]. Other technologies based on superconducting
devices (SQUIDs) can be used in the context of magnetometry and reach sensitivities that
allow for detection of weak magnetic fields. They already find their application in the anal-
ysis of the brain’s electrical activity which produces fields on the order of femtotesla [142].
Nitrogen-vacancy defects in diamond [143] as well as optically pumped magnetometers [144]
also constitute highly sensitive systems with comparable performance each one with specific
advantages and requirements.
The universal quantum platform presented in this work is also capable of sensing magnetic
fields based on individual atoms in the two-dimensional tweezer plane as sensor elements.
This enables flexible configuration of the spatial resolution or sensing position via moving
the tweezers [55] as well as changing the microlens array or reimaging optics. Using atomic
systems for sensing has the advantage of working with stable quantum entities with identical
properties for each individual in contrast to manufactured devices. Consequently, the mea-
surements depend mainly on fundamental constants and can rely on their precise knowledge.
With respect to rubidium, for instance, there exists a profound data situation [83].
The technique for sensing is based on the intrinsic sensitivity of the rubidium hyperfine levels
on external magnetic fields (Fig. A.1). These levels will be spectroscopically analyzed and
shifts in their separation will be traced back to the magnetic field strength experienced by
atoms at a specific site in the array.

5.2. Experimental setup

Figure 5.1 illustrates the details of the experimental apparatus which are of special relevance for
the measurements discussed in the following sections. Based on the microlens array MLA2 they
have all been conducted in a quadratic-grid tweezer configuration with a pitch of p = 7.0(2)µm
within a 19× 19 workspace comprising 361 sites as detailed for the Rydberg measurements in
the previous chapter. In order to use the 2D atom array as a magnetic field sensor plane, a
static homogeneous magnetic field Bx,q = 283(1)µT is applied along the x-axis during each
measurement phase. It is induced by the pair of coils marked green in Fig. 5.1 (a). This field lifts
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Figure 5.1.: (a) Simplified experimental setup. A 361-site individual-atom array is generated
by a microlens array whose focal plane is reimaged into the vacuum chamber.
This beam is superimposed with the single movable optical tweezer. The trapped
atoms can be addressed via circular polarized spectroscopy beams from the
negative x-direction which allows to drive two-photon transitions between the
hyperfine ground states of the atoms. (b) Level scheme of the D2-line of 85Rb
restricted to the two-photon transitions used for characterization measurements
and magnetic field sensing (not to scale). The state energy of mF ̸= 0 states
depends strongly on the magnetic field experienced by the atom while states
withmF = 0 exhibit several orders magnitude less sensitivity. For clarity, only the
two-photon transition for the case ofmF = −1 states is indicated.

the degeneracy of the magnetic hyperfine levels and creates a well-defined quantization axis.
In addition, the gradient field generated by the pair of coils in anti-Helmholtz configuration
(colored yellow in Fig. 5.1 (a)) also used for the MOT serves as a test field for sensing. This is
realized using the two-photon Raman process that will be detailed in Section 5.3.1 to determine
the resonance frequency of states that are sensitive to external magnetic fields and trace this
back to a magnetic field strength. The respective spectroscopy beam consisting of the two
circular polarized Raman laser beams is delivered by a single-mode fiber and aligned along
the quantization axis in the negative x-direction resulting in a Doppler-free configuration.
Figure 5.1 (b) shows the hyperfine ground states which are used for the initial characterization
measurements as well as for the purpose of magnetic field sensing. As indicated schematically,
the dependence of the states with mF = 0 on the magnetic field strength B is very weak and
amounts to a shift of ±2π · 5.18(4) kHz for B = Bx,q using the Breit-Rabi formula (equation
2.33) where the plus sign corresponds to F = 3 and the minus sign to F = 2. Consequently,
these states are optimally suited to obtain characteristic values only weakly dependent on
external magnetic fields. In contrast, states with mF = −1 show a by far stronger dependence
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that can be calculated to −2π · 1.316(5)MHz for F = 3 and 2π · 1.319(5)MHz for F = 2.
Therefore, these states will be utilized afterwards in order to map the magnetic test field.

5.2.1. Phase-stabilized diode laser system

During the course of this work, a new laser system for two-photon stimulated Raman transitions
and spectroscopy has been implemented in the experimental apparatus. The setup and
characterization is detailed in the master theses [76, 145]. It embodies two ECDL with
laser diodes (M9-785-0150-S50, Axcel Photonics) operated at a wavelength of 780nm which
are red-detuned to the D2 line. The Raman master laser is locked via an offset lock relative to
the spectroscopy master laser of the experiment with a detuning of ∆i = −2π · 9GHz. The
Raman slave laser is superimposed with the Raman master laser and a beat signal is generated
using a fast photodiode (G5176-03, Hamamatsu). Stabilization of the slave laser is realized via
a phase-locked loop (PLL) based on an ADF4007 chip from Analog Devices which is connected
to a reference oscillator that can be tuned in frequency via the experimental control system.
Changing the reference frequency allows to precisely set the relative frequency between both
Raman lasers to match either the two-photon resonance or include a defined detuning to the
transition for spectroscopic measurements. The mean phase noise of the stabilized system has
been determined to

√︁
⟨φ2(t)⟩ = 125(13)mrad [76].

5.3. Raman process for ground-state coupling

5.3.1. Two-photon ground-state transitions

In order to couple the hyperfine ground states |5S1/2,F = 2,mF ⟩ and |5S1/2,F = 3,mF ⟩ coher-
ently a two-photon process is utilized as depicted in Fig. 5.2 for mF = 0 states. Following the
level diagram shown in Figure 5.2 (a) two σ−-polarized laser fields with Rabi frequencies Ω1
and Ω2 which are stabilized close to the frequency difference of the ground states ∆̃hfs with
an effective detuning δeff = ω1 − ω2 − ∆̃hfs can be used to drive stimulated Raman transitions
between |0⟩ = |5S1/2,F = 2,mF = 0⟩ and |1⟩ = |5S1/2,F = 3,mF = 0⟩ in the depicted case.
The detuning ∆i to the intermediate states |5P3/2,F ′ ∈ {2, 3},m′

F = −1⟩ is usually chosen as
large as possible with regard to equation 2.15 of Section 2.1.1 in order to minimize spontaneous
scattering processes while maintaining a sufficiently high two-photon Rabi frequency

Ω2P =
Ω1Ω2
2∆i

(5.1)

at the same time. Therefore, the limitation is typically given by the available laser power. In
the present case ∆i = −2π · 9GHz was found to be a good compromise and chosen for the
measurements presented in this chapter.
The frequency difference between the ground states ∆̃hfs depends on coupling to external
fields and can be written in terms of the literature value for an unperturbed atom ∆hfs =
2π · 3035.732 439 0(60)MHz (Table A.1) and the respective shifts as

∆̃hfs = ∆hfs − δdiff − δC − δB (5.2)

which includes the differential light shift of the tweezers δdiff and the Raman laser beams δC
as well as any shift due to external magnetic fields δB. Using a measurement in which the

55



Energy

~∆i = −2π · 9GHz · ~

~δeff

~∆̃hfs

|0〉 = |5S1/2, F = 2, mF = 0〉

|1〉 = |5S1/2, F = 3, mF = 0〉

|5P3/2, F ′ ∈ {2, 3}, m′
F = −1〉

Ω2
~ω2

Ω1
~ω1

200 0 200
eff/(2 ) / kHz

0.0

0.2

0.4

0.6

0.8

1.0

Po
pu

la
tio

n 
in

 |0

(a) (b)

Figure 5.2.: Ground state Raman spectroscopy. Based on a two-photon Raman process
the hyperfine ground states |5S1/2,F = 3,mF = 0⟩ and |5S1/2,F = 2,mF = 0⟩ are
off-resonantly coupled at a detuning ∆i = −2π · 9GHz to the intermediate state
5P3/2 (details of the hyperfine structure omitted for clarity). (b) This allows for
spectroscopic analysis of the transition and determination of the resonance
location (δeff = 0) including all energy shifts resulting from magnetic field or light
shifts.

atoms are initially prepared in state |5S1/2,F = 3,mF = 0⟩ one can spectroscopically analyze
the two-photon transition via application of a π-pulse to state |5S1/2,F = 2,mF = 0⟩ before
state-selective detection that gives the ratio of atoms that were transferred which works best
at resonance. Figure 5.2 (b) shows the resulting signal for one central trap in the array at
different detunings where δeff denotes the effective detuning with the resonance frequency
at δeff = 0. The solid curve is a fit to equation 4.3 yielding an amplitude of A = 0.80(3) and
τ̃ = 5.3(2)µs that is consistent with the configured pulse length of τ = 5.4 µs. In the light
of knowing the location of the resonance frequency further analysis regarding the achievable
coupling strength can be conducted.

5.3.2. Ground state Rabi oscillations

Based on the new Raman laser system and optimization of the beam path of the spectroscopy
laser which results in an experimentally determined radius of w = 170(20)µm at the location
of the atoms, the two-photon ground-state coupling strength has been significantly increased.
That allows to achieve sub-microsecond π-pulse times in the large-scale array for the typical
laser intensity of I = 5W/cm2. This is demonstrated in a measurement where atoms stochas-
tically loaded from the MOT are prepared into |5S1/2,F = 3,mF = 0⟩ before illumination over
a variable duration t with the Raman laser beam. In this period they execute Rabi oscillations
between |5S1/2,F = 3,mF = 0⟩ and |5S1/2,F = 2,mF = 0⟩. Eventually, the final state is deter-
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Figure 5.3.: Rabi oscillations between the hyperfine ground states |0⟩ and |1⟩ with sub-
microsecond π-pulse duration of individual atoms loaded into a central trap.
From the fit to equation 4.4 a Rabi frequency of Ω2P = 2π · 692(12) kHz with
corresponding τπ = 722(13) ns is obtained.

mined by using fluorescence detection after removing all atoms in the |5S1/2,F = 3,mF = 0⟩
state via a pushout laser beam. Figure 5.3 depicts the resulting signal obtained from a central
trap in the array. Using equation 4.4 in analogy to the analysis for the Rydberg coupling
measurement one obtains a two-photon Rabi frequency of Ω2P = 2π · 692(12) kHz from a fit
as indicated by the solid curve. This corresponds to a π-pulse time of τπ = 722(13)ns. A
similar timing is observed in the whole array with respect to the Gaussian intensity distribution
along the y-axis in the experimental setup (Fig. 5.1 (a)). In Fig. 5.4 a central 9× 9 section of
the 361-site array is shown. Within this region the measured Rabi frequencies vary between
Ω2P/2π = 633(10) kHz and 741(15) kHz. The whole measurement consists of 780 experimen-
tal cycles equally distributed over the different pulse durations. Even though there are still
variations in the signals between the traps, the statistics is already sufficient to determine the
coupling strength to atoms at every site.
Based on this configuration, a spectroscopy technique can be implemented which has several
advantages over the way depicted in Fig. 5.2. Using the Ramsey spectroscopy enables to
significantly extend the effective measurement time which immediately results in a higher
accuracy and has the advantage that the resulting frequency is independent of differential light
shifts of the Raman beams which are a source of dephasing in the Rabi scheme. The Ramsey
method does only require to apply two π

2 -pulses which substantially reduces the probability
for spontaneous processes involving the |5P3/2⟩ intermediate state. The resulting precision is
required for the sensing application presented in the following section as implemented in the
experimental platform.
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Figure 5.4.: Rabi oscillations between |0⟩ and |1⟩ in the large-scale individual-atom array.
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5.4. Ramsey spectroscopy

As demonstrated for atomic ensembles in [74] and for individual atoms in [67], Ramsey
spectroscopy [146] finds a wide range of applications in the experimental platform. Characteri-
zation measurements for instance allow to measure the differential light shifts of the dipole traps
and implement a compensation mechanism or they can be applied to determine the coherence
time using the spin echo method [147]. A Ramsey sequence consists of two π/2-pulses with a
variable time of free evolution T in between. This leads to an oscillating probability to find the
atom in one of the ground states |0⟩ = |5S1/2,F = 2,mF = 0⟩ or |1⟩ = |5S1/2,F = 3,mF = 0⟩
afterwards depending on T . The internal atomic state can be written in terms of the basis
states as |ψ⟩ = a |0⟩+ b |1⟩ with the complex coefficients a and b. Assuming an atom initially
prepared in |1⟩ one obtains

|a(T )|2 = 1

2
(1 + cos (ωRT )) (5.3)

for the probability tomeasure the state |0⟩ after the second π/2-pulse with the Ramsey frequency
ωR = |δeff| = |δ2Ph + δdiff + δB| which is equal to the factual detuning δeff experienced by the
atom during the time of free evolution. This includes the detuning δ2Ph = ω1 − ω2 −∆hfs of
the laser field to the transition of the free atom and the differential light shift of the tweezers
δdiff as well as any shift resulting from an external magnetic field δB. On the one hand, this
offers the possibility to measure the respective physical quantity using the Ramsey technique.
Since experiments always consist of multiple realizations to obtain proper statistics these
dependencies are, on the other hand, also a source of dephasing in case of cycle-by-cycle
fluctuations. The velocity distribution of the atoms loaded into the tweezers from the thermal
laser-cooled cloud leads to variations in how deep an atom is finally trapped in the dipole
potential between different experimental runs. This results in an inhomogeneous dephasing as
discussed in [148] and can be applied with regard to the single-atom quantum array according
to the measurements and analysis conducted in [67]. In this case, equation 5.3 can be adapted
accordingly

|a (T )|2 = C +
A

2
Λ (T ,T ∗

2 ) cos (ωRT + Ξ(T ,T ∗
2 ) + κ) (5.4)

which includes a time-dependent amplitude

Λ (T ,T ∗
2 ) =

(︄
1 +

(︂
e
2/3 − 1

)︂(︃ T

T ∗
2

)︃2
)︄−2/3

(5.5)

and a time-dependent phase factor

Ξ (T ,T ∗
2 ) = −3 arctan

(︃
T

T ∗
2

√︁
e2/3 − 1

)︃
(5.6)

based on a constant for defining the time scale for inhomogeneous dephasing T ∗
2 . Additionally,

equation 5.4 comprises an amplitude scaling A, an offset C as well as a constant phase shift κ.
Figure 5.5 shows the result of a Ramsey measurement averaged over the central 3× 3 traps.
The detuning of the spectroscopy lasers to the hyperfine transition frequency ∆hfs has been set
to δ2Ph = 2π · 50.00(2) kHz and a duration of the π/2-pulses of τπ/2 = 0.37 µs is chosen. A fit of
equation 5.4 yields ωR = 2π · 46.02(4) kHz and a time constant for inhomogeneous dephasing
T ∗
2 = 317(23)µs. The discrepancy results from the differential light shift in the tweezers δdiff

and magnetic field shift which calculates to δB = −2π ·10.36(8) kHz according to equation 2.33
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Figure 5.5.: Ramsey measurement averaged over the central 3× 3 traps. Using a piece wise
sampling in the time domain allows to reduce the amount of experimental cycles
necessary to determine the Ramsey frequency ωR = 2π · 46.02(4) kHz and the
dephasing time constant T ∗

2 = 317(23)µs.

using a quantization field of Bx,q = 283(1)µT. This yields a value of δdiff = 2π ·6.38(9) kHz for
the differential light shift. The demonstrated Ramsey measurement already clearly suggests the
applicability of the present quantum platform for field metrology. Based on a sensing time of
several hundreds of microseconds the differential Stark shift of the atoms in the tweezers could
be determined using the information about the strength and impact of the external magnetic
field of the quantization axis on the atomic energy levels. In the same way, a magnetic field
could be characterized if all the other contributions to energy shifts are known. However, this
relies on the precise knowledge of all possible parameters to extract the result due to their
interconnection. In the following section, a new technique for magnetic field sensing of a
test field will be presented which features a self-calibrating mechanism in order to decouple
experimental parameters of the measurement apparatus from the test field.

5.5. 2D magnetic-field sensing with individual atoms

For magnetic-field sensing in the two-dimensional tweezer array the hyperfine ground states
withmF = 0 are not appropriate due to their insensitivity to external magnetic fields as discussed
in the context of Fig. 5.1 (b). While the stretched states

(︁
|5S1/2,F = 3,mF = ±3⟩

)︁
exhibit the

strongest energy dependence on the magnetic field strength they cannot be used in the current
configuration with circular polarized Raman lasers without modifications of the experimental
apparatus. However, in the present setup the probability distribution of the occupation of the
internal atomic states without initial preparation after loading of the atoms in the dipole trap
array and the subsequent fluorescence detection phase shows a strong bias towards states with
mF < 0. This can be exploited via optical pumping with π-polarized light along the +y-axis
similar to the concept for initialization into |5S1/2,F = 3,mF = 0⟩ but for a reduced duration
of 300µs. In this manner, a state preparation efficiency into |1′⟩ = |5S1/2,F = 3,mF = −1⟩
of about 30% is achieved. This state can be easily coupled to |0′⟩ = |5S1/2,F = 2,mF = −1⟩
through the two-photon process using the Raman laser configuration at present. According to
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Figure 5.6.: Schematic of a typical measurement cycle. First the magnetic field of the quan-
tization axis as well as the gradient test field is activated while the trap depth
of the tweezer array is ramped down by a factor of 6.4. After state prepara-
tion to |1′⟩ = |5S1/2,F = 3,mF = −1⟩ is achieved via optical pumping, a Ram-
sey sequence with variable time of free precession T in the basis |1′⟩ and
|0′⟩ = |5S1/2,F = 2,mF = −1⟩ is conducted. After removing the atoms in |1′⟩
from the tweezer array the magnetic fields are switched off while the tweezers
are ramped up again. Finally, the remaining atoms in |0′⟩ are detected using
fluorescence detection.

equation 2.33 the dependence of the two-photon resonance on the magnetic field strength at
Bx,q = 283(1)µT is ∂δeff

∂B |Bx,q=283 µT = 2π · 9.2777(3) kHz/µT. Based on this ratio, changes of
the magnetic field directly convert into a modification of the effective detuning which can be
detected using a Ramsey measurement.

5.5.1. Magnetic-field gradient detection in the tweezer array

As a demonstration of the sensing capability of the tweezer setup, the gradient of the field
utilized for magneto-optical trapping is characterized using a workspace of 18× 15 sites. This
amounts to a size of 119µm × 98µm which is sampled at the 7 µm resolution given by the
tweezer pitch. This rectangular area has been selected based on an evaluation of the observed
loading efficiency in the 19× 19.
Figure 5.6 illustrates the time sequence of a typical measurement cycle. After atom loading and
detection of the trap occupation via fluorescence imaging, the magnetic field of the quantization
axis is activated while the trap depth of the tweezer array is ramped down by a factor of 6.4.
Depending on the respective measurement cycle the test field is either turned on simultaneously
or kept deactivated in order to obtain a reference for calibration. After ground state preparation
to |1′⟩, a Ramsey sequence with variable time T of free precession with the frequency ωR in
the basis |0′⟩ and |1′⟩ is initiated. In this case, a duration of τπ/2 = 0.42 µs for both π/2-pulses is
chosen. After removing the atoms in |1′⟩ from the dipole trap array using the state-selective
removal laser, the magnetic fields are switched off while the array traps are being ramped up
again. Finally, the remaining atoms in |0′⟩ are identified using fluorescence detection.
Figure 5.7 depicts the results of the field measurement consisting of 14000 cycles with T varied
between 2µs and 110µs in steps of ∆T = 2µs. The order of executing the measurement
cycles has been shuffled using a pseudo-random algorithm. As demonstrated in Fig. 5.7 (a)
in the example of a central trap of the array at x = 63µm and y = 49µm the measurement
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Figure 5.7.: Magnetic field sensing in a two-dimensional array of individual atoms. (a) Using
an effective detuning δeff = 40.0(7) kHz measured at the central area of the
sensor plane, parallelized individual-atom Ramsey measurements are performed
within the large-scale tweezer array as shown in the example of the trap at x =
63µm, y = 49µm in the sensor plane. Randomly switching between deactivated
(top) and activated (bottom) test field allows to determine the change of the
Ramsey frequency caused by the test field due to modification of the effective
magnetic field and the resulting shifts of the energy levels connected via the
two-photon transition. Based on an approximation of equation 5.7, Ramsey
frequencies for the deactivated field ofωR,ref = 40.3(5) kHz andωR = 67.1(7) kHz
for active test field can be determined in this case. (b) Evaluation of the whole
array yields the frequency distribution for both situations in the sensor plane. An
active test field shows a gradient along the x-direction while in the deactivated
case only minor deviations from a perfectly parallel plane resulting from local
variations of the light shift can be detected. These results can be used (c) to
create a two-dimensional map of the difference of the magnetic field strength∆B
in both situations (d) fromwhich themagnetic field gradient can be determined via
approximation of a linear function. This yields 77.3(4) nT/µm for a cross section
along the dashed line indicated in (c) which includes the position analyzed in (a).
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yields two Ramsey signals for each site. In case of deactivated test field (top) the reference
frequency ωR,ref can be obtained from a fit which corresponds to the effective detuning δeff. For
activated test field (bottom), a different value for δeff is determined as the additional magnetic
field shifts the energy of the levels depending on the effective magnetic fieldBeff = Bx,q+Btest
where Btest denotes the test field. In these measurements, a significantly stronger dephasing is
observed in contrast to the measurement detailed in Section 5.4 for the magnetically insensitive
mF = 0 states which limits the effectively usable time of free evolution to T ≤ 110µs. Therefore,
using equation 5.4 to describe the time dependence cannot be justified in the present case as
there is a more dominant dephasing mechanism. Instead

|a(T )|2 = A

(︃
1 + e−

σ2(T−T0)
2

2 cos (ωR(T − T0))

)︃
+ C (5.7)

is used as function for the probability to detect an atom in state |0′⟩ after the end of the Ramsey
sequence. Assuming that the resonance frequency is perturbed by noise which follows a normal
distribution with standard deviation σ a Gaussian damping factor is motivated in this case. A
fit of equation 5.7 to the data depicted in Fig. 5.7 (a) yields the solid curves with frequencies
ωR,ref = 40.3(5) kHz for solely activated quantization field and ωR = 67.1(7) kHz in case of
additionally enabled test field. When all traps in the workspace are evaluated according to the
procedure executed for Fig. 5.7 (a) a detailed map of the frequencies for the calibration as well
as the test cycles is obtained which are both shown in Fig. 5.7 (b). While for a deactivated test
field a nearly constant Ramsey frequency with an average value of ωR,ref = 2π · 38.7(13) kHz
for the whole sensor plane is measured showing only slight variations due to the differential
light shift of the tweezers, an activated test field leads to a frequency distribution with a
positive gradient along the quantization axis. Additionally, there is an intersection of the
two planes next to x = 28µm indicating almost no additional contribution of the test field
to the level shift of |5S1/2,F = 2,mF = −1⟩ and |5S1/2,F = 3,mF = −1⟩. For these traps at
x = 28µm the difference between the measured Ramsey frequencies for calibration and cycles
with activated test field averages to ωR − ωR,ref = 1.0(9) kHz where the uncertainty gives the
standard deviation of the mean value. Then, a Ramsey frequency ωR < ωR,ref indicates that the
test field reduces the effective magnetic field with respect to the reference measurement. Based
on the difference between the Ramsey frequencies ωR − ωR,ref the modification of the effective
magnetic field strength ∆B = |Beff| − |Btest| resulting from the test field can be calculated for
the whole sensor plane using equation 2.30. The mean uncertainty of the frequency differences
over the full area amounts to 2π · 0.91(27) kHz which calculates to a typical magnetic field
resolution of 98(29)nT. As shown in Fig. 5.7 (c), the values for ∆B vary over the sensor plane
in analogy to the Ramsey frequencies while the central position analyzed in the context of
Fig. 5.7 (a) is indicated by the dot. According to this map, the gradient can be evaluated via
approximation of a linear function as shown Fig. 5.7 (d) for the cross section along the dashed
line. Based on the values ranging from −2.1(1)µT at x = 0µm to 7.2(1)µT at x = 119µm a
gradient of 77.3(4)nT/µm is retrieved. Averaging each column in the sensor area one obtains
a mean gradient of 76.9(28)nT/µm.
Due to the strong contribution of the quantization field to Beff this measurement directly
gives the relative values of Btest along the quantization axis within the sensor plane under
the assumption of only a weak component B⊥,test orthogonal to Bx,q. For B⊥,test ≤ 42µT the
contribution ofB⊥,test to∆B is below 100nT and therefore negligible. In this case, the gradient
determined in Fig. 5.7 (d) directly represents the test-field gradient along the quantization
axis.
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Figure 5.8.: Steerable single-atom probe using the movable optical tweezer. (a) Fluorescence
image of an atom in the movable optical tweezer at the sensing location taken
prior to the Ramsey detection phase. (b) In analogy to the measurements in the
array this is used as the reference image to detect the phase evolution of the
superposition state together with the second fluorescence image after the end of
the time of free evolution. Based on the same method as used for magnetic field
detection in the tweezer array, a signal for calibration with deactivated test field
(top) and for the case of activated test field (bottom) is obtained. From these
signals, the respective Ramsey frequencies can be extracted via a fit to equation
5.7. This yields ωR,ref = 47.2(19) kHz for the calibration and ωR = 73.5(13) kHz
when the test field is active. From these values, a difference in the magnetic field
strength between both situations of ∆B = 2.8(3)µT can be calculated.

5.5.2. Single-atom probe in an independently steerable optical tweezer

So far, spatial sensing has been limited to the geometric constraints of the array. While that
enables parallelized detection in all sites of the sensing area and allows for creation of a
detailed map of the field distribution at equidistant points, finer control of the specific positions
is vital to enhance the spatial resolution. Using the movable optical tweezer, the restriction
to a specific geometry can be surpassed. Based on this system, preparation of a single-atom
probe at an arbitrary position within or even outside the area of 19× 19 sites can be realized.
As discussed in Section 3.2.1 the addressable region of 400µm× 400µm which is covered by
the tweezer setup can significantly exceed the selected sensor workspace of the dipole trap
array of currently 119µm× 98µm.
In order to realize single-atom sensing within the tweezer, a trap depth of U ′

0 = 1.0(1)mK is
used during a direct loading process from the optical molasses into the tweezer potential and
the subsequent fluorescence imaging before a measurement cycle according to the sequence
for detection using the sensor array (Fig. 5.6) is applied, respectively. The trap depth during
the measurement comprising state preparation, Ramsey sequence, and state detection is tuned
to U ′

0 = 200(20)µK before it is increased again to the initial value for the final fluorescence
detection phase. During these experiments the array is kept deactivated and only loading into
the tweezer is executed.
Figure 5.8 (a) shows a fluorescence image of one atom detected within the tweezer which
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is obtained in the same fashion as done for the atoms in the array. In the context of this
measurement, the tweezer is localized at a position displaced along the quantization axis
by ∆x = −0.64(62)µm relative to the array site at x = y = 63µm. This value for the
displacement is extracted from an averaged fluorescence image of the single atom probe
compared to the mean image obtained in case of loading into the array. For this position, a
value for the contribution of the test field of strength of ∆B = 2.8(1)µT is obtained from the
previous measurement within the tweezer array. Figure 5.8 (b) shows the resulting Ramsey
oscillations for the calibration (top) cycles in which the test field is not activated and the
experimental runs in which both are active (bottom). In this measurement, the time of free
evolution is varied between 0µs and 100µs in a step size of ∆T = 2µs while all cycles are
executed in random order. For both situations, an average value of about 40 atoms has been
detected for each setting in the first imaging phase therefore contributing to the respective data
point while on average only 6 atoms are retained after the Ramsey sequence. This is a result
from the comparably low efficiency for initial state preparation into |5S1/2,F = 3,mF = −1⟩.
Nevertheless, the signals for both situations can be clearly identified and using equation 5.7
allows to extract the respective Ramsey frequencies ωR,ref = 47.2(19) kHz for the calibration
and ωR = 73.5(13) kHz during sensing with activated test field. Using the same evaluation
procedure as for the measurement within the array yields∆B = 2.8(3)µT from the single-atom
probe which matches the expectation according to the measurement within the tweezer array.
In order to estimate the spatial resolution of the single-atom sensor a localization of the
individual atom within the region with dipole potential UD ≥ 0.8(1) ·U0 of a trapping potential
with depth U0 is assumed [57, 149]. Given a tweezer waist of 2.0(1)µm, this results in a
resolution of 1.3(4) µm. This could be easily enhanced into the sub-micrometer regime via
decreasing the waist to 1.45 µm which is obtained for the tweezer array.

5.6. Conclusion

In this chapter, a new application for the quantum platform of this thesis has been presented:
single-site resolved magnetic field sensing based on individual-atom probes within a large-scale
two-dimensional tweezer array. Featuring a detection workspace of 18× 15 sites which covers
an area of 119 µm×98µm the present configuration provides a spatial resolution of 7 µm and a
sensitivity of 100 nT. Based on the Ramsey technique the impact of external magnetic fields on
the internal atomic states could be traced back to a frequency measurement by optical means
which can be executed with high precision and is easily accessible in the experimental setup.
This approach found its immediate application in the characterization of the gradient field
used in the experimental apparatus for magneto-optical trapping. Applying a self-calibrating
technique allowed for ruling out dependencies on external parameters such as light shifts of the
internal states due to the trapping potentials as well as environmental conditions, e.g. weak
additional static magnetic fields. Furthermore, this renders the measurement result insensitive
to the absolute value of the magnetic field strength of the quantization axis over a wide range.
Using the movable optical tweezer, sensing of the gradient field independent of the atom
array has been demonstrated which is in perfect agreement with the measurement executed
via parallelized detection using the tweezer array. Based on the large addressable region of
more than 400µm× 400µm this enables to significantly extend the detection area in future
measurements. Additionally, as the movable tweezer can be positioned at arbitrary locations
within the addressable area this provides extended flexibility in choosing the spot of interest.
Furthermore, using the array traps as a reservoir for loading into the movable tweezer in
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combination with selective detection of the single-atom probe offers an additional perspective
for optimization which would directly result in a significant speed up of the measurements.
Based on Ramsey spectroscopy, the sensitivity of the magnetic field measurements strongly
depends on the duration of free precession used to determine the Ramsey frequency. In the
present setup a maximum available time span of 110µs has been used due to the stronger
dephasing observed for the coupling of hyperfine states with magnetic quantum number
mF = −1 in contrast to the magnetically insensitive mF = 0 states. Additional analysis and
characterization measurements are required in order to determine the cause for this and
find ways to extend the sensing duration. The present platform offers a great potential for
further exploration. Starting with an improved state preparation should immediately allow for
increasing the signal amplitude by at least a factor of 3 based on the currently observed initial
state preparation efficiency of about 30%. As this has direct impact on the signal-to-noise ratio
a significantly increased detection period can be expected. Additionally, the spin echo method
[147] provides a tool for compensation for inhomogeneous dephasing mechanisms. In [67]
this technique allowed for a substantial extension of the dephasing time in the experimental
platform. Enhanced sensitivity can also be expected from changing to basis states with higher
mF quantum number which are intrinsically more sensitive to magnetic fields leading to
stronger frequency shifts. Using a pair of Raman laser beams with π- and σ-polarized light
would allow for driving |5S1/2,F = 2,mF = −2⟩→|5S1/2,F = 2,mF = −3⟩ transitions with 2.5
times higher response to changes in the magnetic field strength.
Due to the principal technique, the current setup only shows significant sensitivity along the
quantization axis which has the strong benefit that the component of the magnetic test field
along the direction of the quantization axis can be determined if the orthogonal components
are not too strong. In order to obtain comprehensive three-dimensional sensitivity yielding
the magnetic field vector in case of an arbitrary orientation in space, additional measurements
for differently aligned quantization axis can be executed utilizing the readily available coils
at the vacuum apparatus (Fig. 2.4) and respectively directed spectroscopic beams through
the various optical ports. Combined with the versatile features of the present platform this
provides potential for even further extension. Parallelized gradient measurement in a steerable
array in the fashion demonstrated in [55, 118], smaller tweezer waists using a microscope
objective with a higher numerical aperture in combination with interleaved arrays [118] and the
application of movable tweezer sensing offer potential for detection with massively increased
spatial resolution. Even more, exploiting the Talbot planes after extension of the setup to 3D
prepares the ground for a fully featured three dimensional magnetic field sensor.
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6. Novel concepts: Digital micromirror devices
and 3D printing

The presented micro-optical tweezer platform can be utilized on a broad basis and in each of
the previous chapters various novel developments have been demonstrated which already found
immediate applications. While a variety of possible optimization measures have been discussed
in the respective contexts, this chapter deals with new concepts that can be integrated in the
near future and will allow for an yet unprecedented flexibility in the experimental apparatus.
In particular, with respect to applications in quantum computation and quantum simulation,
versatile tweezer geometries with individual-site control are essential for obtaining the neces-
sary degree of flexibility for the envisaged experiments. This includes the implementation of
recently developed protocols for error correction based on topological color codes [104] or the
dynamic adaption of the tweezer configuration which is crucial to mimic a certain different
quantum system during a simulation experiment. This results in the requirement for precise
mapping of features, such as domain boundaries but also includes artificial imperfections that
make it possible to analyze the impact of defects as they can significantly alter the properties
of a quantum system [150, 151].
Off-the-shelf microlens arrays manufactured via lithographic etching are perfectly suited for
the setup of large-scale systems as discussed in Chapter 2 and are available in different variants
including lenses arranged in a quadratic grid or exhibiting hexagonal packing. Currently
reaching an order of 106 lenslets, this technique renders the present tweezer platform massively
scalable while providing a stable configuration with high-quality focused beam dipole traps. At
the same time, this reduces the flexibility regarding short-term modifications of the tweezer
arrangement without additional effort.
In this chapter, methods for extended flexibility in the creation of tweezer geometries for the
present micro-optical platform are evaluated. Due to the direct correspondence between a
microlens and the respective diffraction limited focus, controlling the illumination of each
microlens individually allows to alter the tweezer structure based on the fundamental array
geometry. This has been realized based on a liquid-crystal (LC) spatial light modulator (SLM)
for atomic ensembles in a previous setup [54]. While LC-based phase modulators are more
power efficient in the creation of tweezer arrays [152] SLMs based on individually switchable
micromirrors offer typically at least an order of magnitude higher update rate [153].
Therefore, one of the key aspects demonstrated in this chapter is the utilization of DMD-based
addressing for enhanced site-selective control of microlens-based tweezer arrays. This will be
introduced at first before precise individual-site addressing is demonstrated. While this method
alone, however, still restricts the available tweezer arrangements and fundamental changes of
the pattern can require a replacement of the microlens array, a novel development based on a
combination with the emergent technology of 3D printing is presented. This hybrid approach
exhibits unprecedented flexibility for the tweezer platform as it enables fast replacement of a
microlens array based on rapid-prototyping.
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6.1. Parallelized single-site addressability based on spatial light
modulation

6.1.1. Site-selective illumination of microlenses using digital micromirror devices

Quantum information experiments based on individual-atom array platforms rely on precise
control of the internal and external degrees of freedom of each atom at every site. As coher-
ence in these systems is a precious resource, rapid response time is required and operations
should preferably be implemented in a parallelized fashion. The unique microlens-array-based
platform presented in this thesis profits from the stability involved with the ultimate corre-
spondence between each tweezer site and its respective microlens. This connection provides
a comprehensive channel of control to the atom-light-interaction via spatial modulation of
the light fields passing the individual microlenses. As illustrated in Fig. 6.1(a), a digital
micromirror device (DMD) can serve as an SLM to independently control the illumination of
every microlens. This technique can be utilized to dynamically alter the geometry of a tweezer
array based on the microlens-generated foci between or even within experimental cycles. The
DMD system used in this thesis is the Lightcrafter EVM module by Texas Instruments which is
a micro projector with an embedded Linux system controllable over Ethernet via USB. After
removing the LED light engine, the DMD unit can be integrated into custom optical setups. The
area of the micromirror array measures 6.57mm x 3.70mm and features 608 x 684 quadratic
mirrors. As depicted in Fig. 6.1(b) their pitch amounts to D = 7.64 µm along mirror edges and
they can be individually tilted between two distinct orientations of ±12°. Consequently, the
state of each micromirror can be simply encoded in one binary value and the configuration of a
whole array is saved in a standard 1-bit image format which is used for upload to the DMD unit
via the USB interface. This module provides an on-board storage for 96 of those patterns in
the native resolution of the device which allows for sequential pattern change that is specified
at a rate of up to 4 kHz. As analyzed in detail in [155], this rate is dependent on the number
of patterns and was measured to vary between 4.6 kHz for up to 24 stored configurations and
2.7 kHz if, for instance, the maximum of 96 is stored. Therefore, even for the lower rate far
more than two hundred switching operations can be executed during the coherence time of
about 100ms which is measured for the present setup [57].

6.1.2. Versatile tweezer geometries using DMD-based addressing

The aforementioned technique for single-site control can be adapted for usage in the current
experimental apparatus. This will be analyzed in detail in this section based on the setup of
a module which can be integrated into the experiment and has been realized in the context
of this work and built in the course of the master thesis in ref. [156]. In order to investigate
new geometries in the experimental platform, a microlens array with a hexagonal symmetry
(MLA3, see Table 2.1) is selected, featuring lenses with a pitch of d = 161.5 µm and a radius
of curvature of Rc = 2.05mm. Figure 6.2 (a) shows the details of the setup for the implemen-
tation of DMD-enhanced tweezer control. A laser beam with a wavelength of λ = 796.7 nm is
deployed by a single-mode optical fiber using an air-spaced triplet (TC12APC-780, Thorlabs)
which results in a beam radius of w = 1.2mm. After passing a combination of λ/2-plate and
polarizing beam splitter to ensure proper linear polarization and an additional beam sampler
for the purpose of intensity stabilization, the DMD system is illuminated under an incident
angle of α = 26° to the DMD surface normal. This leads to the third order of diffraction being
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D

D +12° tilt −12° tilt

Pair of micromirrorsMicromirror plane

DMDRelay opticsMicrolens array

Figure 6.1.: Principles of microlens array addressing using DMD-based spatial light modu-
lation. (a) The Gaussian intensity distribution of a laser beam is modified by a
DMD in order to selectively control the illumination of each microlens. Due to the
mapping of the DMD plane onto the microlens array via relay optics, the light field
amplitude passing each microlens is directly associated with a distinct circular
region on the DMD which comprises typically many hundreds of micromirrors. (b)
The quadratic mirrors have a pitch of D = 7.64µm along the edges and can be
individually oriented into two distinct directions (±12°). Consequently, foci can be
switched on and off in a straightforward fashion via flipping the corresponding
mirrors. The schematic illustration of the two mirrors in (b, right) is adapted from
[154].

deflected orthogonally to the DMD surface parallel to the optical axis of the subsequent optical
setup while all other diffraction orders are blocked using an aperture stop. The efficiency
of the DMD section amounts to η = 33% where the losses are attributed to the deviation of
the diffraction angle from the direction of specular reflection off a single mirror (24°), light
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Figure 6.2.: Experimental setup for DMD-based microlens addressing. A laser beam delivered
by an optical fiber is defined to linear polarization using a waveplate and a polar-
izing beam sampler (PBS) before a small fraction of light is taken with a pick-off
for power monitoring and implementation of a intensity stabilization. The DMD
is then illuminated under an incident angle of 26° which leads to the first order
of diffraction being deflected orthogonally to the DMD surface along the optical
axis of the subsequent part of the setup. All other diffraction orders are blocked
by an aperture stop. Using a combination of achromatic doublets L1 and L2 the
DMD surface is mapped onto the microlens array which leads to the association
of a certain area on the DMD with a specific microlens in the array whose focal
plane is reimaged using an achromatic doublet L3 and a microscope objective
comparable to the one implemented in the experimental apparatus LS. Due to
the additional PBS before the microscope objective a movable optical tweezer
can be included in a straightforward way.

distributed into other orders of diffraction as well as finite window or mirror reflectivity and
filling fraction. A confocal telescope composed of two achromatic doublets L1 and L2 with
focal lengths of fL1 = 50mm and fL2 = 30mm is employed to map the DMD mirror surface
onto the microlens array. The focal plane of the array is demagnified using an achromatic
doublet L3 with focal length fL3 = 750mm and a microscope objective LS with the effective
focal length fLS = 37.5(10)mm and a numerical aperture of NA = 0.25(2). The latter is
similar to the one implemented in the experimental apparatus but optimized for operation
without the window of the vacuum chamber. Two polarizing beam splitter cubes allow for a
straightforward superposition of the array beam with a movable optical tweezer (not shown)
in the same fashion as demonstrated in Chapter 3. The inset shows an image of the demag-
nified focal plane with activated illumination of all lenses in the central region. This results
in typically 876(7) mirrors being associated with each lenslet. This number is not equal for
all lenses since the hexagonal array symmetry differs from the rectangular alignment of the
micromirrors. The tweezer pitch is determined to p = 7.4(2)µm and the spots measure an
average 1/e2-waist of w0 = 1.33(3)µm. These small waists are well-suited to serve as optical
tweezers for trapping of individual atoms after collisional loading as discussed in Section 2.5
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(a) (b) (c)

7.4µm 7.4µm 7.4µm

Figure 6.3.: Versatile tweezer geometries. Utilizing the DMD-based site-selective addressabil-
ity, a wide range of tweezer patterns can be configured without modifications on
the optical setup. This includes the arrangement of (a) graphene-like structures,
(b) constrained sub-arrays, and (c) star-shaped geometries.

and the spatial separations are ideal to analyze Rydberg interactions in the experimental setup
within the blockaded regime (Section 2.6).
Based on the mapping between each focus and the light directed by a certain group of DMDmir-
rors through the respective lenslet, the native pattern presented in Fig. 6.2 can be reconfigured
in a straightforward way just via flipping the associated groups of micromirrors. Activating only
the illumination of selected lenses, versatile trap geometries can be created as shown in Fig. 6.3.
This grants access to graphene-like patterns (a) as well as compact clusters with clearly defined
boundary (b) or star-shaped structures which provide an interesting arrangement for analysis
of coherent excitation transfer based on XY spin exchange [47] (c).

6.1.3. Site-selective tweezer intensity optimization

The benefit resulting from spatial light modulation is not only based on binary control over
the tweezer spots. This technique also allows for fine tuning of the light field amplitude
illuminating each lenslet. As demonstrated in Fig. 6.4 in the example of the central focus,
the tweezer intensity of each site can be dynamically controlled through flipping a pseudo-
randomly chosen subset of mirrors for every spot such that they deflect the incident light
away from the optical path that leads to the microlens array. For convenience, these mirrors
are defined as ”deactivated” in the following while the others are termed as being ”active”
since they contribute light to the trapping geometry. This enables to tune the intensity from
the value obtained in case of activation of all micromirrors associated with this spot down to
4.9(1)% without impairing the quality of the focus where only 20% of the respective mirrors
need to be activated. Combined with the large number of 876(7) micromirrors per lens this
approach of random selection ensures that the effective numerical aperture is maintained and,
consequently, the waist of the tweezer spots is kept unaffected. In order to quantitatively
understand the intensity dependence on the number of activated mirrors, a simulation using
wavefront propagation has been executed which matches the measured values to better than
6% over the full span of possible values of intensity.
This can also be understood qualitatively. In general, the intensity distribution g(x, y) within
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Figure 6.4.: Intensity adaption in the example of the central focus of the region depicted in
Fig. 6.3 (b). Flexible control of the focus intensity can be realized via flipping
a random set of mirrors such that they do not contribute to the illumination of
the respective microlens. Due to the high number of 876(7) mirrors per lens
tuning can be achieved on a 0.1% level within a ratio of activated mirrors ranging
from 20% to 100% without impeding the quality of the tweezer foci leaving the
waist unchanged. The scaling between active mirrors and relative intensity is in
good agreement with the expected quadratic dependency (equation 6.2) and is
confirmed by a simulation of a two-dimensional analysis of a plane with random
wave propagating through a lens with the experimental parameters.

the focal plane of a lens illuminated by a plane wave propagating along the z-axis can be
described in terms of the point spread function (PSF)

g(x, y) = A2
0

⃓⃓⃓⃓∫︂∫︂
p(s, t)e−i sx+ty

f dsdt

⃓⃓⃓⃓2
(6.1)

with the focal length f of the lens, an amplitude A0 and the optical axis at (0, 0). In case of a
circular lens with radius r the pupil function p(s, t) defines the field amplitude illuminating
the lens being 1 for s2 + t2 ≤ r2 and 0 otherwise. For the intensity in the focus, i.e. x = y = 0,
one immediately finds

g(0, 0) = A2
0

⃓⃓⃓⃓∫︂∫︂
p(s, t)dsdt

⃓⃓⃓⃓2
≈ A2

0

⃓⃓⃓⃓
⃓⃓Nx,Ny∑︂

i,j
Pij

⃓⃓⃓⃓
⃓⃓
2

(6.2)

when dividing the lens plane into an Nx × Ny quadratic grid with elements each assigned
to a mirror which can be chosen to contribute to illumination of the microlens (Pij = 1) or
not (Pij = 0). Consequently, g(0, 0) has a quadratic scaling with the number of activated
mirrors that is shown to very good approximation for the data in Fig. 6.4. This technique can
be immediately used to compensate for uneven intensity distributions on the microlens array
which are typical for Gaussian beams delivered by standard single-mode optical fibers.
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Figure 6.5.: Balancing of the tweezer intensities based on site-selective trap depth control.
(a) Resulting intensity distribution in the tweezer plane after adjustment within a
19-site structure in the central region of the array. The cross section indicated
through the dashed line given by the blue curve in (b) shows the balanced depths
of the diffraction limited tweezer spots. Without individual setting of the ratio
of active mirrors per lens, the focus intensities vary due to the Gaussian profile
of the beam illuminating the microlens array. This is reflected by the red curve
depicting the situation in which 50% of mirrors associated to each lenslet are
activated.

Balancing of non-uniform tweezer intensities in the dipole trap array

Along with a Gaussian intensity distribution on the microlens array there are intensity variations
of the foci in the tweezer plane which result in uneven trap depths. As a consequence, the
resonance frequencies to transitions connected to the ground states do not shift equally for
all sites which needs to be considered during addressing with external laser fields depending
on the respective use case. For instance, taking the configuration depicted in Fig. 6.3 (b)
into account and assuming P = 500mW available laser power after the optical fiber the trap
depths which can be calculated from the intensity distributions vary from U0 = 3mK · kB in
the center to U0 = 1.5mK · kB regarding the shallowest trap in the boundary of the compact
tweezer geometry. In Fig. 6.5 flexible site-selective intensity control is demonstrated by means
of this pattern comprising the 19 central traps. As detailed in the master thesis [156], an
automatic optimization routine can be executed which adapts the intensity of the tweezers
to a certain depth based on the values retrieved from an image taken with a monitoring
camera. After the ratio of active mirrors per lens is individually adjusted, one obtains the
final configuration shown in Fig. 6.5 (a). The standard deviation of all 19 traps to their mean
intensity is below 2% while 66% of the mirrors which are assigned to the central trap are left
activated. Figure 6.5 (b) depicts the cross section through the tweezer plane indicated by the
dashed line in Fig. 6.5 (a) for the situation without optimization in which the ratio of active
mirrors is set to 50% for all lenses associated to the pattern (red) and after the equalization
process (blue). This demonstrates the high level of site-selective control resulting from the
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DMD-based spatial light modulation while maintaining the quality of the well-defined focal
spots.

6.2. Freely definable geometries using 3D printing and DMD-based
spatial light modulation

As demonstrated in the prior chapters, microlens arrays with a lens diameter on the order
of 100µm are ideally suited to fit into the current experimental apparatus, yielding typical
tweezer separations of about 10 µm or below after demagnification through the reimaging
optics. Additionally, a combination with the DMD technology enables parallelized single-site
addressability at a kilohertz rate and grants access to versatile geometries based on themicrolens
array in use. While commercially available microlens arrays typically feature quadratic or
hexagonal grid symmetries, there are applications where extended control over the exact
geometry is desired. Even though the flexible implementation in the experimental apparatus
allows for an easy modification of the fundamental trap geometry via replacement of the
microlens array, the standard manufacturing process lacks short-term availability and involves
the production of expensive lithographic masks. In order to overcome these constraints, two
powerful state-of-the art technologies are combined in the present section: rapid prototyping
of user-defined microlens arrays using 3D dip-in direct laser writing [157, 158] and the DMD-
based single-site addressability introduced in the previous section [155, 156]. This hybrid
approach profits from the intrinsic stability of the microlens-generated foci while obtaining
the additional flexibility for dynamic in-situ modifications of the tweezer pattern. In order to
propel this technological symbiosis towards implementation in the experimental apparatus, a
novel setup has been developed which features a 3D-printed microlens array with an innovative
geometry combining hexagonal and quadratic grid packing.
The results presented in this section emerged from a cooperation with Professor Harald Gießen’s
group at the University of Stuttgart and have been published in OpticsExpress [159].

6.2.1. Creation of micro-fabricated optical elements using direct laser writing

The typical production process of large-scale microlens arrays used in the experimental setup is
based on lithographic etching which allows for scalable manufacturing of hundreds of thousands
of lenslets. This is perfectly suited if the lens pattern is precisely known in advance such that
the investment into expensive lithographic masks are kept within limits. Consequently, for
rapid prototyping and more flexibility in defining the lens shape, the emergent technology
of 3D printing offers a tremendous potential. Based on femtosecond direct laser writing,
versatile dielectric structures can be created with a typical resolution of 100nm [160, 161].
Due to this precision, creation of diffractive optical elements [162] is possible and imprinting of
free-form optics can be realized on glass substrates and optical fibers [158] as well as directly
on light emitting diodes [163]. As it can take only a few hours from design to production
and verification until a component is ready to use, this technology provides the possibility for
short-term installation of new optics in the experimental setup and is ideally suited for rapid
prototyping.
The principle process of 3D laser writing used for the manufacturing of the microlens array
presented in this work is shown in Fig. 6.6 and is based on light-induced polymerization of a
photoresist due to illumination of a focused laser beam. While the photoresist is transparent
for a single photon from light at a wavelength λ = 780nm a two-photon process can induce
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Laser beam

Photoresist
Printed structure

Figure 6.6.: Schematic illustration of the principle of direct laser writing. A focused laser
beam is moved withing the photoresist and is absorbed via a two-photon process
which is strongly intensity-dependent. This leads to the exposure of the resist in
a distinct region (voxel) and its polymerization which allows for printing complex
structures with high accuracy.

transitions from a ground to an excited state by simultaneous absorption of two photons from
the incident light field resulting in the exposure and polymerization of the resist. The rate R
at which these events occur is given by [164]

R ∝ ℑ
[︂
χ(3)

]︂
· I2 (6.3)

and depends on the imaginary part of the complex third-order susceptibility χ(3) of the specific
material, i.e. the photoresist, as well as on the square of the light field intensity I. Therefore,
using a tightly focused laser beam allows for well localized excitation within a volume element,
a so-called voxel. Printing on a substrate can then be realized by a thin layer of photoresist
between the substrate and the objective lens. Using a beam steering system in combination
with movement of the substrate itself parallel to the optical axis utilizing a piezo-stage provides
the flexibility for three-dimensional adjustment of the voxel within the printing region.

6.2.2. Design parameters and manufacturing process

The microlens array is designed to be tailor-made for a next-generation Rydberg quantum
simulation architecture. Due to anisotropic interaction potential Vint of Rydberg states with
orbital angular momentum L > 0 and strong dependence on the interatomic distance R, the
array is designed to feature a region with a quadratic grid as well as a region with a purely
hexagonal symmetry and a transition between them. This geometry can serve as an ideal testbed
to investigate van der Waals type

(︁
Vint ∝ R−6

)︁
or resonant dipole-dipole coupling

(︁
Vint ∝ R−3

)︁
in domain boundaries with areas of blocked and unblocked dynamics. Figure 6.7 (a) shows the
design schematic for the 3D-printed microlens array comprising 97 circular shaped spherical
lenslets. As illustrated, a lens pitch and diameter of d = 110µm has been chosen. The array
is manufactured using a commercially available two-photon femtosecond lithography system
(Photonic Professional GT, Nanoscribe) and the microlenses are sequentially imprinted on a
fused silica substrate with a thickness of 700 µm at a resolution of 100 nm normal to the surface
of the substrate. Due to the writing speed of 10 lenses per hour this manufacturing process
is ideally suited for rapid prototyping of systems comprising up to about 100 microlenses
while parallelized writing techniques can be applied in order to force the pace of processing
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Figure 6.7.: Layout and characterization of the 3D-printed microlens array. (a) Based on a
fundamental pitch of d = 110µm the array consists of 97 spherical lenslets and
is designed to feature a domain with quadratic and another one with hexagonal
packing of the lenses as well as a transition area in between. (b) Inspection via
white-light microscopy approves the successful manufacturing process and pro-
vides a detailed view on the element. (c) Using a confocal microscope allows for
mapping the surface of the microlens array. (d) Profile of one of the microlenses
and fit to determine the quality of the spherical surface and the radius of curvature
Rc. The inset provides a more detailed view on the central region of the lenslet.

significantly [165].
As the height of each lenslet is typically in the regime of only a few micrometers, it is of
vital importance to keep the surface roughness at a minimum. Consequently, the photoresist
Nanoscribe IP-S which is optimized for the production of optical surfaces with smooth texture
has been selected. In [166] an index of refraction n = 1.505 at a wavelength λ = 796nm has
been reported.

6.2.3. Verification of the manufacturing process

Before the microlens array is used for the generation of dipole traps, the results of fabrication are
analyzed by optical means in order to verify a successful manufacturing process. Figure 6.7 (b)
shows a white light image of the array taken with a standard optical microscope (Eclipse
LV100, Nikon). The 97 lenslets are clearly visible and no defects are detected. Furthermore, a
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commercial confocal microscope (µsurf expert, NanoFocus) is used to inspect the microlens
array and retrieve a detailed three-dimensional profile of each lenslet (Fig. 6.7 (c)). From this,
a cross section of a typical lens is depicted in Fig. 6.7 (d) from which a radius of curvature of
Rc = 580(2)µm of the spherical surface can be determined. Within 90% of the diameter, an
rms-deviation of 0.03 µm from a perfect sphere is calculated which yields an effective numerical
aperture of NA = 0.045(2). The inset in Fig. 6.7 (d) details the central region of the lens profile
and the irregularities are in good agreement with the printing accuracy of the lithography
system orthogonal to the substrate surface. Subsequently, the focal plane of the microlens array
is examined via illumination of the lenses using a laser beam at a wavelength of λ = 796.7 nm
with a diameter being much larger than the aperture of a microlens. Approximating a two-
dimensional Gaussian beam at the foci yields 1/e2-waists of wq = 6.5(3)µm in the quadratic and
wh = 6.4(3)µm in the region with hexagonal packing. This result is in excellent agreement
with a wavefront simulation using Fresnel propagation as implemented in the package originally
reported in [167] which returns a Gaussian waist of wsim = 6.3 µm for a transmission through
a lens having a radius of curvature Rc and a diameter of 110 µm.
For the ensuing use of the microlens generated foci for the purpose of trapping single atoms
the waist has to be reduced significantly and reimaging optics similar to the implementation
in the main experimental apparatus is required. Moreover, combination with DMD-based
addressing is desirable for enhanced flexibility with respect to trap geometries and site-selective
adjustability. This is demonstrated in the subsequent section.

6.2.4. Extended flexibility through combination of 3D printing and SLM

After the successful verification of the 3D-printedmicrolens array, the system is finally integrated
in a setup featuring DMD-based addressability to reach full site-selective control in the manner
detailed in Section 6.1.2. Figure 6.8 gives an overview of the essential constituents of this
configuration. As illustrated in the simplified schematic in Fig. 6.8 (a) a laser beam with a
wavelength of λ = 796.7 nm and a 1/e2-waist of w = 1.2mm illuminates the DMD under an
incident angle of α = 26° to reach the orthogonal reflection of the third diffraction order with
respect to the DMD plane. Due to the smaller microlens diameter, the magnification of the
mapping optics is adapted compared to the setup presented in the previous section in order to
maintain a high number of mirrors per lenslet. Using a confocal telescope composed of two
achromatic doublets L1 and L2 with focal lengths of f1 = 100mm and f2 = 45mm to map
the DMD surface onto the microlens array, typically 730(8) mirrors within a circular region
are associated with every lenslet (Fig. 6.8 (b)). This results in an effective aperture with a
diameter of 109(1) µm illuminating the individual lenses while avoiding the irradiation of
interstices. Thereby, stray light is impeded. Depending on the respective region within the
array, 71% (quadratic) and 82% (hexagonal) of the mirrors contribute to the illumination
of the microlenses, respectively. According to the specific geometry of the microlens array,
arbitrary addressing patterns can be chosen as shown in Fig. 6.8 (c). In order to demagnify the
focal plane of the microlens array, an achromatic doublet L3 with focal length f3 = 400mm and
the microscope objective L4 with the effective focal length f4 = 37.5(10)mm (NA = 0.25(2))
are employed. Using the illumination configuration depicted in Fig. 6.8 (c) yields the intensity
distribution after reimaging that is depicted in Fig. 6.8 (d). From approximation of two-
dimensional Gaussian functions, a trap separation (pitch) of p = 10.2(3)µm and waists of
wq = 1.36(5)µm in the quadratic andwh = 1.29(6)µm in the hexagonal region are determined.
Figure 6.9 demonstrates the capability of the fully featured setup. While in Fig. 6.9 (a) the
completely enabled array comprising 97 tweezers is depicted a large number of spots have been

77



Tweezer arrayMirror mapping
(not to scale)

(a)

(b) (d)

Tweezer
plane

Focal
plane

Laser beam

Mapping optics Relay optics

10.2µm

Microlens addressing

(c)

Micromirror in
on-state (+12° tilt)

Associated micro-
lens boundary

Micromirror in
off-state (-12° tilt)

L1 L2 L3 L4

Spatial
filter

MLADMD

Microscope
objective

α = 26°

Figure 6.8.: (a) Simplified experimental setup for the DMD-based addressing of the 3D-printed
microlens array. A Gaussian laser beam impinges on the DMD under an inci-
dent angle of α = 26° resulting in the third order of diffraction to be deflected
orthogonally to the DMD surface. The micromirror plane is mapped onto the
microlens array employing a confocal telescope. The resulting focal plane is
reimaged and demagnified using an achromatic doublet in combination with
a microscope objective. (b) This setup ensures that the illumination of each
microlens is controlled by mirrors within a distinct circular region on the DMD
and (c) allows for individual addressing of the lenses and exact control over (d)
the resulting tweezer pattern.

deactivated in Fig. 6.9 (b). The cross sections in Fig. 6.9 (a, right) and Fig. 6.9 (b, right) along
the marked paths indicated by the dashed lines in the images at left underpin the well-defined
shape of the tweezers visible in the intensity distributions and the high contrast that is observed
when deactivating individual tweezers. The Gaussian envelope is consistent with the shape of
the beam which is incident on the DMD. However, if a uniform intensity distribution is desired
[168, 169] either a beam with a flat top profile or site-selective optimization as demonstrated
in Section 6.1.2 can be employed. The large number of 730(8) micromirrors associated with
every lenslet allows for intensity adjustment on a 0.2% scale in the range from 20% to 100%
without impairing the quality of the tweezers in the same fashion as employed in Section 6.1.3.
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Figure 6.9.: Versatile tweezer geometries through combination of 3D printing and spatial
light modulation. (a) Image of the fully activated tweezer array comprising 97
foci in a structure which reflects the fundamental geometry of the manufactured
microlens system (left) and a cross section along the dashed line (right) showing
the intensity distribution of the diffraction-limited tweezer spots. (b) Deactivation
of certain subset foci allows for creation of new arrangements based on the
underlying microlens pattern (left) and demonstrates the high contrast resulting
from the DMD-based site-selective control (right). This approach provides in-situ
flexibility to alter the tweezer geometry and enables the implementation of (c)
single defects as well as (d) configurations with completely new symmetry.

6.3. Perspectives for further applications of DMD-based addressing
techniques

As demonstrated in the previous sections, the technology of DMD-based spatial light modulation
substantially enhances the flexibility in microlens-generated focused-beam tweezer platforms.
It allows for exploration of new geometries via on-demand adaption of the tweezer pattern
without necessity for modifications on the optical setup of the experimental apparatus when
implemented in the beam path utilized for dipole trapping. Besides, there is a wide range of
other potential applications where the present experimental platform, in specific, can benefit
from this additional degree of adjustability.
Using a more or less identical optical setup, yet optimized for blue laser light, individual
microlens addressing could be utilized to parallelize the site-selective Rydberg excitation
employed in Chapter 4. Superimposing the tweezer arrays with the focused beams of such a
counter-propagating DMD-controlled light field of the blue Rydberg laser excitations could be
driven in parallel at various locations within the array with individually tunable interaction
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strengths.
Moreover, using an additional tweezer array in combination with conical refraction can be
used for the creation of two-dimensional bottle beam traps as detailed in [170]. This could be
utilized for storage of Rydberg-excited atoms [130] exploiting the ponderomotive potential
which leads to atom loss otherwise as discussed in Section 4.2.2. For future experiments,
however, it will be essential to keep atoms spatially confined even after Rydberg excitation
in order to increase the gate fidelity [86] or investigate coherent dynamics [47] beyond a
time scale of about 10 µs after which we observe falling recapture probability [57] in the
experimental setup.
On the way to a fully featured three-dimensional platform, DMD-based spatial light modulation
will find immediate application in addressing of the present multi-layer geometry, yet in a
modified implementation. Following the demonstration in [155], direct DMD surface mapping
can be used to create high-contrast intensity distributions which could be utilized for flexible
Talbot plane selection instead of the currently implemented static method discussed in Section
2.5. In the sameway, layer-selective addressing and fluorescence imaging could be implemented
on the basis of a spatially-modulated excitation light field from a lateral direction with respect
to the optical axis of the dipole traps in combination with electrically tunable focusing optics
as demonstrated in [34].

6.4. Conclusion

In this chapter, two state-of-the art technologies have been characterized with respect to
their applicability in the experimental apparatus, adapted, and developed into a ready-to-use
stage: DMD-based spatial light modulation and 3D printing of microlens arrays as well as the
combination of both techniques. Extended with lens-selective illumination control by a DMD,
the focused-beam tweezer array is equipped with parallelized site-specific addressability. This
enables the modification of the tweezer geometry and individual trap depth adjustment on a
kilohertz timescale. Relying on the straightforward relation of the light field amplitude passing
each microlens and the corresponding tweezer focus this setup maintains the high degree of
stability and precision of microlens-array-based platforms while being tunable due to the direct
association between a microlens aperture and the respective group of DMD mirrors which
control the illumination.
As the available range of tweezer geometries is eventually determined by the structure of
the microlens array in use, this restricts the set of accessible patterns and can require its
replacement which is easily achievable in the experimental setup. However, depending on the
specific configuration the requested array may not be readily commercially available or require
the development from the ground up which involves the manufacturing of a lithographic
mask leading to expensive investments and long-lasting turn-around times. Using fabrication
methods based on 3D direct laser writing as detailed in this chapter, these limitations have
been overcome. Additionally, the combination of both technologies provides a yet unprece-
dented flexibility for the experimental setup making this approach ideally suited for realizing
on-demand implementation of new configurations in the experimental platform.
Nevertheless, there are also several possibilities for optimization and extensions which can
be addressed for even further enhancement. The measured DMD efficiency of η = 33%
could be increased using a specially configured unit with anti-reflection coating of the DMD
window for near-infrared light and optimized mirror pitch or tilt angle which better fulfills the
blazed-grating condition. In [171] a value of 55% has been reported for the DMD unit of a
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disassembled commercial projector which, however, does not offer the necessary control over
the mirror switching. In addition, the rate for pattern update of the present system could be
potentially increased to several tens of kilohertz using a more advanced DMD system.
Regarding applications of the 3D-printing technology in the experimental setup, there is a
vast range of possibilities offering new options which need to be further evaluated. While
imprinting individual lenses with different focal lengths provides a straightforward way for
implementation of versatile three-dimensional geometries with site-selective addressability,
even more complicated optics such as multi-focal lenses seem accessible and deserve further
analysis especially in combination with DMD-based spatial light modulation [172].
Integrated in the experimental apparatus, these technologies will allow to study Rydberg-
interacting systems in versatile geometries with site-selective addressability. This includes the
realization of exchange interactions [47] and the synthesis of spin Hamiltonians for simulation
of quantum magnets and analysis of phase transitions [49, 90, 91] in an artificial and precisely
controlled environment in which the influence of defects can be characterized as well as the
response of the quantum system to domain boundaries.
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7. Conclusion and Outlook
In this work, a scalable architecture exhibiting an extensive range of applications in the field of
quantum technology has been presented. Based on the principle of focused-beam dipole traps,
large-scale two-dimensional tweezer arrays are created using micro-fabricated optical elements.
Comprising hundreds of diffraction limited foci, the introduced micro-optical platform is
ideally suited to prepare extensive configurations of individual laser-cooled neutral atoms in
an environment with accurate control over their internal and external degrees of freedom. The
precisely defined spatial separation of the tweezers, on the one hand, allows to clearly resolve
each site which is exploited during fluorescence imaging in order to determine the occupancy
in the array. On the other hand, this is essential for site-resolved state detection, addressing of
certain traps to drive coherent operations and vital when it comes to the implementation of
interactions between specific atoms.
The capability of site-selective control has been directly utilized in a novel implementation of a
movable optical tweezer system in the experimental apparatus that allows for rearrangement
of arbitrary atom distributions in the array into predefined configurations. In this fashion,
the initially random occupation of atoms which is a result of stochastic loading from the
magneto-optical trap can be turned into defect-free clusters of up to 111 individual atoms via
sequentially moving specific atoms between sites following the outcome of a real-time analysis
using a heuristic algorithm. On the basis of multiple rearrangement cycles, the previously
reported number of 72 atom-by-atom assembled configurations could be significantly exceeded
[34] in the course of this work. The developed technique provides the necessary means to
commence experiments from well-defined initial situations, furnishes a tool for compensation
of atom losses during experimental cycles, and offers the possibility to reduce the required
amount of time-consuming MOT-loading phases. The novel movable tweezer system found
immediate application during the whole course of this thesis providing predefined initial
situations as well as an enhanced filling fraction in a certain region of the tweezer array in
order to accelerate characterization measurements. At the same time, it offers a new port for
additional site-selective atom-light coupling via the steerable focus as shown in the context
of Rydberg excitation in [57] and could also demonstrate its versatility in the example of
site-selective fluorescence detection as detailed in this thesis.
An indispensable element for quantum computing is the ability for fast execution of one-qubit
operations. During the course of this work, the coupling strength between the hyperfine ground
states as demonstrated in [67] could be substantially increased achieving sub-microsecond
π-pulse durations with Rabi frequencies above 2π · 600 kHz in the central region of the array.
Based on this, the presented platform was also employed for magnetic field sensing offering
parallelized two-dimensional detection with a spatial resolution of 7 µm and sensitivity of
100 nT in a sensor plane comprising at total of 270 individual sensors in an area of 119µm×
98µm. This novel approach was utilized to characterize the magnetic gradient field used for
magneto-optical trapping while the implementation of a single-atom probe within the movable
optical tweezer demonstrated additional flexibility in defining a sensing location independent
of the array grid with single-micrometer resolution.
Following the successful realization of Rydberg excitation based on a two-photon process
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and Rydberg-mediated interactions in the present platform [56, 57], site-selective ground-
to-Rydberg-state coupling was achieved during this work which is of immanent importance
for the implementation of first quantum algorithms. Realizing an approach comparable to
the movable tweezer setup, coherent excitations from the magnetically insensitive hyperfine
ground state |5S1/2,F = 3,mF = 0⟩ to the 82S1/2-state were accomplished with individual-site
addressability and sub-microsecond π-pulse duration using a steerable focused laser beam.
This was directly applied to demonstrate Rydberg blockade for pairs of atoms at neighboring
sites in the tweezer array with an interatomic distance of 7 µm which constitutes an essential
step towards the realization of two-qubit gate operations in the present setup. [41, 46].
Experiments in quantum computation and quantum simulation necessitate a reliable and stable
platform yet providing a high degree of flexibility in specific situations for the implementation
of algorithms and the adaption of the configuration to conduct simulations. The introduced
micro-optical architecture offers a robust system due to the direct correspondence between the
illumination of a lenslet and the respective tweezer focus. During this work, novel concepts for
enhanced flexibility in defining tweezer configurations have been demonstrated relying on
DMD-based spatial light modulation and microlens-array manufacturing through femtosecond
direct laser writing. Due to the short production time, 3D printing allows for near-term
change of the microlens array in use and thereby adapt a present tweezer geometry to the
preconditions for an intended experiment. Using a DMD in order to control the light field
amplitude passing the microlenses enables dynamical reconfiguration of the tweezer pattern at
a kilohertz timescale with precise adjustment possibilities while maintaining the high quality of
the microlens-based tweezer foci. In this work, a hybrid system has been presented combining
both technologies which provides a new level of flexibility for the present quantum platform.
Offering completely novel configurations which have not been accessible to this platform before,
the system will find direct application in exploring Rydberg-mediated quantum interactions in
domain boundaries or in the presence of defects after implementation into the experimental
apparatus.
In each of the previous chapters, a specific challenge on the way towards a fully-featured
quantum computation and simulation platform has been tackled. While this led to a significant
leap forward in each of the addressed topics, it is natural that there are many perspectives
for next steps in propelling the experimental architecture. Based on the available Rydberg-
mediated interactions, the demonstration of entanglement can be regarded as a next milestone
in the present platform. Starting with the demonstration of a CNOT gate [41], it will be
possible to analyze techniques for distribution of entanglement within the array using the
movable optical tweezer [121]. Additionally, implemented in the experimental setup, the
newly achieved flexibility in trapping geometries will offer a testbed, for the investigation
of spin-exchange interactions [47] with flexibly tunable configurations and environmental
conditions. For both applications, boosting the two-photon Rabi frequency would be vital
to mitigate atom loss in the context of Rydberg excitation. Implementation of an enhanced
480nm laser system will provide enough laser power to reach megahertz coupling strength
in a straightforward way. In this context, the realization of trapping techniques for Rydberg
atoms [129, 130] provides an additional approach for optimization.
A next major challenge will be to scale up the system size to several thousands of atoms. This
is essential to assemble a sufficiently high number of error-corrected logical qubits consisting
of physical ones [103, 104]. Using the technique of interleaved arrays presented in [55, 173]
will allow to overcome the present power limitations using several arrays driven by different
laser sources and superimposed in a loss-free fashion. This can be complemented with an
upgrade of the currently used microscope objective in order to achieve sub-micrometer tweezer
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waists which will immediately increase the power efficiency. Combined with enhanced loading
techniques [32] and parallelized rearrangement using multi-tone addressing via the movable
tweezer [90] this will allow to massively expand the system size within a single tweezer plane
already. Moreover, the intrinsically three-dimensional trapping geometry in the presented
platform which results from the additional Talbot layers will offer an unprecedented range of
further possibilities in future experiments.
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A. Properties of 85Rb
Detailed information regarding the properties of 85Rb and the D1 and D2 transitions can be
found in [83]. Some of the most important characteristics that are especially relevant in the
context of this work are compiled in Table A.1. Additionally, in Fig. A.1 an energy level scheme
of the D lines is depicted.

Atomic properties
Atomic number Z 37
Mass number A 85
Atomic mass m 1.409993 199(70)× 10−25 kg
Nuclear spin I 5/2

Nuclear g-factor gI −2.936400(6)× 10−4

5S1/2 ground state
Fine structure g-factor gJ 2.002331 13(20)
Ground state splitting ∆hfs 2π · 3035.7324390(60)MHz

D1 transition (5S1/2 → 5P1/2)

Wavelength λ 794.979014 933(96) nm
Transition frequency ω0 2π·377.107 385690(46) THz
Excited-state lifetime τ 27.679(27) ns

Natural linewidth Γ 2π·5.7500(56)MHz

D2 transition (5S1/2 → 5P3/2)

Wavelength λ 780.241 368 271(27) nm
Transition frequency ω0 2π·384.230406373(14) THz
Excited-state lifetime τ 26.2348(77) ns

Natural linewidth Γ 2π·6.0666(18)MHz
Doppler temperature TD 145.57 µK
Recoil temperature TR 370.47 nK

Table A.1.: Physical properties of 85Rb and the respective D1 and D2 transitions. The data is
taken from [83].
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Figure A.1.: Energy level scheme of the 85Rb hyperfine structure regarding the D1 and D2
transitions. The values for the splittings are given in megahertz. In addition to the
hyperfine Landé g-factor gF, the Zeeman shift of themF levels is provided. While
the shifts within each hyperfine manifold are drawn to scale the spacings should
not be compared between manifolds. The values are taken from [83].
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