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Abstract

Neutral atoms trapped and manipulated by laser light provide experimentally well accessible
quantum systems allowing for a high degree of control over external and internal degrees of
freedom. Arrays of dipole traps in which the atoms are confined individually in a configurable
geometry constitute a versatile platform for quantum simulation and information applications.
By exciting these atoms into Rydberg states, interactions of variable strength and range can be
introduced into the system, allowing for the implementation of entangling gate operations or
spin Hamiltonians. A crucial requirement for these schemes to function in a reliable way is the
ability to create defect-free arrays of single atoms. This is generally a challenge in these types of
systems, as common atom loading schemes are limited to roughly 50% probability of filling each
site.
In this work, a technique for the rearrangement of atoms within a scalable architecture based on
micro-optical lens arrays was developed and implemented, resulting in the creation of uniformly
filled regions containing more than 100 atoms, which represent the largest defect-free structures
realized so far in systems of this kind. This was accomplished by filling the empty traps in a
pre-defined pattern with an atom one by one using an optical tweezer. Thus, structures with up
to 5×5 atoms could be rendered defect-free in more than 99% of attempts. Although the success
rate drops below unity for larger clusters, a value of 3.1% for a 100-atom structure is still viable
for experiments working with post-selection methods. The filling fraction of even the largest
examined structures was observed to be higher than 88%, surpassing common loading schemes
by a significant margin. The measurements presented in this thesis build on a region of the array
containing 361 sites, being limited by available laser power. In contrast, the addressable range
of the optical tweezer includes more than 1500 sites and microlens arrays with up to a million
lenses are commercially available.
By implementing coherent Rydberg excitation of this assembled atom array, significant progress
toward a universal quantum computer or flexible quantum simulator has been made. Using a
two-photon excitation scheme, coherent dynamics between the ground and Rydberg state could
be observed simultaneously in a 5× 5 region of the array, with two-photon Rabi frequencies on
the order of Ω= 2π× 500 kHz measured for a Rydberg laser beam waist of w̄0,B = 18.7(10)µm.
The choice of an appropriate Rydberg state and interatomic spacing led to the presence of strong
nearest-neighbor interactions and allowed for the demonstration of the Rydberg blockade effect
by observing a collective enhancement of the Rabi frequency consistent with the expected scal-
ing ∝

p
N as well as the suppression of multiple excitations. This mechanism represents the

fundamental constituent of a two-qubit gate operation.
The architecture introduced in this work offers a scalability unique among quantum simulation
platforms and the presented results underpin its potential to propel the atom-optical approach
for quantum information processing beyond the threshold of quantum supremacy. Different ap-
proaches for scaling up the system have been explored, indicating that defect-free structures of
more than 1000 atoms are within range with feasible experimental improvements. Through a
detailed analysis of the factors limiting the coherence of the observed dynamics, strategies for
future experimental improvements have been developed. Among these, increasing the coupling
strength to the Rydberg state into the megahertz regime by increasing laser power and imple-
menting single-site addressing represents the most straight-forward and promising approach.
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Zusammenfassung

Neutrale Atome, die mithilfe von Laserlicht gefangen und manipuliert werden können, stellen
experimentell gut zugängliche Quantensysteme dar, die ein hohes Maß an Kontrolle über ex-
terne und interne Freiheitsgrade erlauben. Optische Dipolfallenregister, in denen die Atome
innerhalb einer konfigurierbaren Geometrie individuell gespeichert werden, bilden eine viel-
seitige Plattform für Quantensimulations- und -informationsanwendungen. Durch Anregung
dieser Atome in Rydbergzustände können Wechselwirkungen variabler Stärke und Reichweite in
das System eingebracht werden, was die Implementierung von Verschränkungsoperationen und
Spin-Hamiltonians erlaubt. Eine wesentliche Vorraussetzung für die zuverlässige Realisierung
dieser Anwendungen ist die Möglichkeit, fehlstellenfreie Register zu erzeugen. Dies stellt eine
allgemeine Herausforderung für Systeme dieser Art dar, da übliche Atomladetechniken auf eine
Besetzungswahrscheinlichkeit von etwa 50% pro Falle limitiert sind.
Innerhalb dieser Arbeit wurde ein Verfahren zur Umsortierung von Atomen innerhalb einer
skalierbaren, auf mikrooptischen Linsenregistern basierenden Architektur entwickelt und umge-
setzt. Dieses ermöglichte die Erzeugung von einheitlich gefüllten Regionen mit mehr als 100
Atomen, welche den größten bisher realisierten Strukturen in Systemen dieser Art entsprechen.
Umgesetzt wurde dies durch das Auffüllen von Fehlstellen in einer vordefinierten Struktur
mithilfe einer optischen Pinzette. So konnten Strukturen mit bis zu 5×5 Atomen in mehr als 99%
der Versuche fehlstellenfrei aufgebaut werden. Obwohl die Erfolgsrate für größere Strukturen
abnimmt, erlaubt ein Wert von 3.1% für eine 100-Atom-Struktur die Durchführung von Experi-
menten, bei welchen die Auswertung auf Postselektionsmethoden zurückgreift. Die Füllfaktoren
sogar der größten untersuchten Strukturen überschritten 88%, deutlich mehr als mit herkömm-
lichen Ladetechniken erreichbar ist. Die in dieser Thesis vorgestellten Messungen basieren auf
einer Region aus 361 Registerstellen, welche nur durch vorhandene Laserleistung limitiert ist,
während der adressierbare Bereich der optischen Pinzette mehr als 1500 Stellen beinhaltet und
Mikrolinsenregister mit bis zu einer Million Einzellinsen kommerziell erhältlich sind.
Durch die Implementierung kohärenter Rydberganregungen der Atome in einem so zusam-
mengesetzten Register konnte ein signifikanter Fortschritt in Richtung eines universellen Quan-
tencomputers oder eines flexiblen Quantensimulators gemacht werden. Mit einem Zwei-
Photonen-Anregungsschema konnte die kohärente Dynamik zwischen dem Grund- und Ryd-
bergzustand von Atomen in einem 5×5-Bereich des Registers simultan beobachtet werden, wobei
Zwei-Photonen-Rabifrequenzen im Bereich von Ω = 2π× 500 kHz bei einer Strahltaille des Ry-
dberglasers von w̄0,B = 18.7(10)µm gemessen wurden. Die Wahl sowohl eines geeigneten Ryd-
bergzustands als auch eine Anpassung des Atomabstands des Registers führte zum Auftreten von
starken Nächste-Nachbarn-Wechselwirkungen und erlaubte den Nachweis des Rydberg-Blockade-
Effekts durch Beobachtung einer kollektiv erhöhten Rabifrequenz im Einklang mit der erwarteten
Skalierung∝

p
N , sowie der Unterdrückung von Mehrfachanregungen.

Die in dieser Arbeit vorgestellte Architektur bietet eine für Quantensimulatoren einzigartige
Skalierbarkeit und die hier dokumentierten Ergebnisse untermauern ihr Potential, den atom-
optischen Ansatz für die Quanteninformationsverarbeitung über die Schwelle der Quantenüber-
legenheit zu treiben. Die Untersuchung verschiedener Ansätze zur Skalierung der Sortiermeth-
ode ergab, dass fehlstellenfreie Strukturen aus mehr als 1000 Atomen mit gangbaren experi-
mentellen Verbesserungen möglich sind. Durch eine ausführliche Analyse der Faktoren, die die
Kohärenz der beobachteten Rydberg-Dynamik limitieren, wurden Strategien für zukünftige ex-
perimentelle Verbesserungen entwickelt. Unter diesen ist die Erhöhung der Kopplungsstärke
an den Rydbergzustand ins Megahertz-Regime durch Steigerung der Laserleistung und der Im-
plementierung von Einzeladdressierbarkeit der naheliegendste und vielversprechendste Ansatz.
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1 Introduction
At the time the founders of quantum mechanics formulated their revolutionary theory in the
early 20th century, neither of them could envision that one day we would be able to directly
observe these strange laws acting at the single particle level. Still in 1952 Erwin Schrödinger
wrote [1]:

...we never experiment with just one electron or atom or (small) molecule. In thought
experiments, we sometimes assume that we do; this invariably entails ridiculous conse-
quences....

It seems likely that if he could visit a modern laboratory, E. Schrödinger would be more than a
little surprised at the progress that has been made in the recent 70 years. The research on cold
atoms and quantum optics, kickstarted by the invention of the laser, have long enabled scientists
to study and manipulate single particle systems in myriad ways. The development of laser cool-
ing and trapping techniques [2–4] allowed to advance into a regime where the laws of quantum
mechanics cause transitions to previously unobserved phases of matter, such as Bose-Einstein
condensates [5, 6], where a cloud of N atoms essentially behaves as a single quantum mechan-
ical N -particle state. Enabled by tremendous progress in decoupling the studied systems from
the environment, a regime could be reached where the entanglement between single particles,
a uniquely quantum mechanical property, could be observed, while keeping the fragile quantum
state intact. This was demonstrated in groundbreaking work both for single photons trapped in
a cavity interacting with passing Rydberg atoms [7, 8] and for single trapped ions [9]. These
advancements have since established atomic physics as a rich testbed for quantum mechanics
and sprouted countless experiments that exploit the controlled entanglement of individual par-
ticles to explore exotic phases of matter, engineer radically new technologies and increase our
understanding of the fundamental laws that govern nature.
The outstanding level of control over both external and internal degrees of freedom of these par-
ticles led to the emergence of a particularly exciting field of research: The simulation of quantum
physical systems. This idea, first proposed by Richard Feynman almost 40 years ago [10], builds
on the insight that the amount of information that needs to be stored and processed on a clas-
sical computer to solve a quantum mechanical problem scales exponentially with the number of
particles. This makes the exact simulation of the behaviour of strongly interacting many-body
systems, such as in condensed matter, unfeasible as soon as the system size exceeds a few tens
of particles. At the same time, the small length scales present in these systems prevent the direct
experimental observation of the behaviour at a microscopic level.
Quantum simulation offers an alternative approach for the study of these systems, namely their
emulation on a well-controlled model system, designed to be governed by the same Hamiltonian
as the simulated system. The quantum superposition of states in such a system results in its abil-
ity to contain an exponentially large amount of information without using an exponentially large
amount of physical resources, thus outperforming classical simulations on a fundamental level
[11]. Besides applications ranging from high-energy physics, nuclear physics and cosmology all
the way to quantum chemistry and even biology, condensed matter problems such as quantum
phase transitions, quantum magnetism and high-Tc superconductivity pose ideal candidates for
this kind of simulation. Some of these systems can be efficiently modelled using spin Hamil-
tonians, which led to the first realizations of this approach being made using nuclear magnetic
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resonance (NMR) techniques at the end of the previous century [12]. Since then, remarkable
progress in quantum simulation has been made with ultracold atoms in optical lattices [13],
among others.
Going one step further, it has been shown that the quantum properties of such systems can be
exploited to build a generalized quantum simulator [14], on which an arbitrary quantum system
can be emulated. By implementing a set of universal quantum gates, even abstract computa-
tional problems can be solved on such a machine [15]. Compared to a classical computer, where
N classical bits can store N bits of information, N qubits on a quantum computer can store 2N

bits, illustrating the tremendous potential of these systems. Exploiting the fundamentally quan-
tum properties of superposition, interference of quantum amplitudes and unitary quantum-state
evolution, arithmetic operations then correspond to the coherent propagation of the initial in-
put states. This quantum parallelism epitomizes the intrinsic supremacy of a quantum computer
compared to a classical machine for a certain set of mathematical problems. Famous examples
are Grover’s algorithm for searching an unsorted database [16] and Shor’s algorithm for prime
factorization [17], which has the potential to void the security of the RSA cryptography method
once universal quantum computers have grown to a sufficient size. This threshold, beyond which
a quantum computer starts to outperform a classical one in these specific applications, is often
termed as quantum supremacy and is estimated to lie around 50 qubits [18].
In the last two decades, the realization of a universal quantum computer has been progressed on
numerous experimental platforms [19–22], while it is safe to say that systems using supercon-
ducting qubits [22], backed by the gigantic semiconducter industry, have demonstrated the most
notable progress in recent years, including the first demonstration of quantum supremacy for a
specifically tailored problem on a 53-qubit chip [23]. There is still a long way to go, however,
before supremacy can be achieved on a truly universal quantum computer for a problem like
prime facorization. This is mainly due to the fact that every quantum gate operation necessarily
incorporates a finite amount of decoherence and thus introduces computation errors into the
system. In order to perform complex algorithms, it is thus indispensable to implement a method
to correct for these errors. This quantum error correction can be implemented by ancillary qubits
protecting the state of the logical qubit through entanglement [24, 25]. The number of ancil-
lary qubits needed to encode one logical qubit in a fault-tolerant quantum computer varies with
different error correction codes, with the smallest possible code consisting of 5 physical qubits
[26]. Factoring RSA-768, the largest number that has been factored on a classical computer so far
[27], via Shor’s algorithm on a quantum computer, requires 1154 logical qubits [28]. Empirically
demonstrating capabilites beyond what is classically possible in this benchmark application will
thus require thousands of physical qubits. Much advancement will be needed to scale exisiting
platforms to this size.

This criterion of scalability presents a challenge for which cold atom system might prove to pro-
vide superior solutions. A quantum computer built of individual atoms trapped in potentials of
light separated by only a few micrometers can host thousands of qubits within a cubic millimeter
of space. The sophisticated atom-optical techniques developed in the past decades allow for the
comprehensive fulfillment of the five criteria formulated by DiVincenzo [29], which have come
to be generally recognized as the fundamental requirements for a quantum computer. They can
be summarized as follows:

1. A scalable physical system with well characterized qubits

2. The ability to initialize the state of the qubits to a simple fiducial state

3. Long relevant decoherence times, much longer than the gate operation time
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4. A "universal" set of quantum gates

5. A qubit-specific measurement capability

Neutral-atom arrays fulfil most of these criteria in a straightforward fashion [20, 30, 31]. Trapped
in the well-separated potentials of an optical lattice or tweezer array, internal electronic states
are typically used as a qubit basis. Optical methods allow for both the preparation and read-
out of these states in an efficient manner and the ability for confinement in vacuum cells far
away from any surface, enabled by optical traps, leads to long coherence times. The only thing
that does not come naturally for neutral atoms is the entanglement of qubits that is entailed in
the fourth criterion, as a universal set of quantum gates must necessarily contain at least one
two-qubit operation, typically in the form of a controlled NOT (CNOT) gate. Such a two-qubit
gate was proposed in the form of a blockade interaction between atoms excited into high-lying
Rydberg states [32, 33], whose large dipole moments introduce a significant interaction at the
typical interatomic distance in these systems of otherwise non-interacting atoms. The first real-
izations of a two-qubit gate based on this method attested to the suitability of these systems for
quantum computation and simulation [34, 35]. Apart from enabling universal quantum com-
puters, harnessing the properties of Rydberg atoms also allows for the efficient simulation of the
above-mentioned spin Hamiltonians in neutral atom quantum simulators [36, 37]. Both of these
approaches have experienced rapid progress within the last years, such as a significant increase
in scale and gate fidelities [38, 39] and the implementation of Ising and XY Hamiltonians in
Rydberg atom simulators [13, 40, 41] up to the observation of quantum phase transitions [42]
and topologically protected edge states [43].
Further progress is crucially dependent on the ability to scale up the system size even further,
as well as on the reliable realization of defect-free structures in these systems. Since the initial
loading of array sites always relies on more or less stochastic processes, assembly techniques
have to be progressed in conjunction with growing system sizes.
The topic of this thesis is an inherently scalable architecture based on the massive parallelization
of optical dipole traps enabled by micro-fabricated structures. Focusing a laser beam through
an array of microlenses creates a homogeneous and stable potential surface containing thou-
sands of sites ideally suited for the trapping of single atoms. The parallelized application of
laser-based methods for qubit manipulation and detection makes this system an ideal plat-
form for scaling quantum computation and simulation schemes to hundreds or thousands of
atoms. Using the clock states of the 85Rb ground state hyperfine splitting as qubit basis states
|0〉 := |5S1/2, F = 2, mF = 0〉 and |1〉 := |5S1/2, F = 3, mF = 0〉, efficient single-qubit manipula-
tion with coherence times on the order of 100 ms have been demonstrated [44–46], comple-
mented by efficient state initialization and detection [45, 47]. This allows for thousands of
operations before the system decoheres.
This thesis documents the advancement of the experimental setup in two areas: The creation of
large defect-free structures of individual atoms is reported, as well as progress toward the real-
ization of two-qubit gates or spin Hamiltonians through the first realization of Rydberg blockade
in this setup. It is structured as follows:
Chapter 2 gives an overview of the atom-optical principles and techniques relevant for the work
presented in this thesis. The first part reviews the fundamentals of optical trapping of neutral
atoms and introduces the experimental setup, explaining the procedures necessary to provide
an array of individually occupied sites. The second part gives an overview of the properties of
Rydberg atoms, illustrating their appeal for quantum information applications and motivating
the advancement of the experiment in this direction.
Chapter 3 describes the development of a technique for atom rearrangement, using an optical
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tweezer to reorder initially half-filled atom arrays into pre-defined defect-free subarrays, demon-
strates structures containing more than 100 atoms and analyzes the future scalability of this
method.
Chapter 4 documents the implementation and detection of coherent Rydberg dynamics in the
dipole trap array. The theoretical and experimental background of Rydberg excitation is dis-
cussed and the simultaneous excitation of an assembled array of atoms is demonstrated.
Chapter 5 is dedicated to the description and analysis of observed imperfections in the Rydberg
excitation of atoms in the array. By assessing and characterizing the major sources of noise and
errors individually, a deeper knowledge of the limiting factors present in the experiment is de-
rived and strategies for improvement are developed, while the validity of the analysis is verified
by Monte-Carlo simulations of the dynamics.
Chapter 6 presents an analysis of Rydberg interactions in the dipole trap array, demonstrating
the presence of Rydberg blockade via the observation of collective enhancement of Rabi frequen-
cies and the suppression of multiple excitations.
Chapter 7 then summarizes and discusses the obtained results and findings and gives an outlook
on possible improvements and future developments of the experiment.
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2 Enabling technologies for quantum
simulation and computation in
neutral-atom arrays

Experimental platforms for quantum simulation with individually trapped neutral atoms can be
divided mainly into two categories: Ultracold atoms in optical lattices and arrays of individual
dipole traps, often called tweezer arrays. While the physical effect confining the atoms in both of
these geometries is the same, the interatomic spacing differs by roughly an order of magnitude,
which has led to different experimental techniques and applications being developed in either of
these approaches.
In both of these systems, sites can be made to be occupied by single atoms [13]. The challenge
of providing a defect-free structure within these systems has been successfully tackled in optical
lattices either by exploiting a superfluid-to-Mott insulator transition of a Bose Einstein conden-
sate [48–50] or creating a strongly spin-imbalanced degenerate Fermi gas [51], and in tweezer
arrays by reordering atoms one by one into the desired pattern [52–55].
The key features setting these two systems apart arise directly from their difference in geometric
scale. Optical lattices, where the interatomic distance is typically in the sub-micrometer regime,
allow trapping hundreds or thousands of atoms within a very small region, which, for example,
allows the simultaneous coupling of a large number of atoms with excitation laser fields, as well
as the study of many-body effects in large systems. Notable examples, among many others, are
the observation of large Rydberg "superatoms" corresponding to a Rydberg excitation shared by
more than 100 ground-state atoms [56] and the study of antiferromagnetic correlations by intro-
ducing short-range interactions via excitation into a low Rydberg state in a system of similar size
[41]. Besides offering these obvious advantages, however, the close proximity of the atoms also
has a drawback. For one thing, it makes single-site addressing extremely challenging, rendering
the design unsuitable for universal gate operations. Secondly, restricting the interactions to short
distances, as is necessary for studying most spin Hamiltonians, involves low-lying Rydberg states
with short lifetimes. These short lifetimes can lead to strong dissipation and a quick relaxation
of the system to the equilibrium [57, 58], preventing the observation of correlations on longer
timescales.
Tweezer arrays offer an alternative approach that faces these limitations to a much lesser de-
gree. Sacrificing to some extent the easily attainable system size and the homogeneous loading
mechanism of optical lattices, they however allow for highly flexible geometries, where a model
system can literally be assembled atom by atom and interatomic distances between a few and
tens of micrometers can be easily accommodated [30, 37]. This allows for efficient single-site
addressing of atoms, as well as the introduction of interactions between particles with exquisite
control. The ability to use high-lying Rydberg states with long lifetimes for nearest-neighbor in-
teractions, as well as technical improvements in reducing sources of noise [38, 59] have led to
tremendous progress in the creation of entanglement between many qubits [39] and the study of
topological phases [42, 43]. At the same time, these systems hold potential for the parallelization
of universal gate operations en route to large-scale quantum computers [60].
This high degree of flexibility with regard to potential applications is what motivates the pur-
suit of the tweezer-array approach in the experiment on which this thesis was conducted. The
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trapping geometry presented here, based on micro-fabricated arrays of refractive lenses, surren-
ders some of the complete flexibility present in similar setups [54, 61] by restricting itself to a
periodic base pattern, for the benefit of a uniquely scalable and homogeneous architecture with
the ability to provide hundreds and thousands of qubits, only being limited by available laser
power. Through a choice of various available lens arrays and reimaging parameters, the range of
available interatomic distances is equal to comparable setups.

This chapter will provide a discussion of the fundamental techniques common among atom-
optical experiments, with an emphasis on the presented architecture. The first section contains a
brief review of basic theoretical concepts relevant for the trapping of atoms with laser fields and
introduces the experimental setup, discussing the preparation and detection of single atoms in a
dipole trap array. The second section attempts to illustrate the appeal of highly-excited Rydberg
states for quantum computation and simulation purposes.

2.1 Optical traps for neutral atoms

The trapping and storage of neutral atoms in one- or multidimensional arrays of optical potentials
is an efficient and scalable way of providing a set of qubits for encoding, storing and retrieving
quantum information in a single-site fashion. This section discusses the common way of creating
such systems of individually stored atoms using common laser cooling and trapping techniques.
As the experimental apparatus is already described in detail in [45], only a brief summary of the
relevant experimental properties and procedures is given.

2.1.1 Atom-light interaction

The interaction between an atom and a light field is comprehensively discussed in various publi-
cations, such as [62–65]. This subsection will only give a brief summary of important relations
and quantities relevant for this thesis. The following desciption is based on [64]. In a fully
quantum-mechanical description, the Hamilton operator of the coupled system of atom and light
field is given by

HAL = HA+HL +HInt . (2.1)

In a simplified description of the atom as a two-level system consisting of a ground state |g〉 and
excited state |e〉 with an energy separation of ħhω0, the atomic term is given by HA = ħhω0σ

†σ
when neglecting the kinetic energy, with the two-level ladder operators (σ†,σ) = (|e〉 〈g| , |g〉 〈e|).
The light field is assumed single-mode and monochromatic with frequency ωL and is simi-
larly given by HL = ħhωL(a†a + 1

2). The energy scheme of this simple system is shown in
Fig. 2.1 (a).

The most important term for the following considerations, however, is the atom-light interac-
tion Hamiltonian HInt. In the electric dipole approximation - which is valid as long as the
wavelength of the light is much larger than the atomic charge distribution - it can be written
as

HInt = −d · E , (2.2)
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where E denotes the electric field of the light and d is the dipole operator. It is useful to decom-
pose the field into positive- and negative-rotating components

E(t) = ε
E0

2
(e−iωL t + eiωL t) =: E(+)0 e−iωL t + E(−)0 eiωL t

=: E(+)(t) + E(−)(t) , (2.3)

where ε is the unit vector of the polarization. Similarly, the dipole operator can be written
as

d= 〈g|d|e〉 (|g〉 〈e|+ |e〉 〈g|) = 〈g|d|e〉 (σ+σ†)

= d(+) + d(−) , (2.4)

where the first identity corresponds to the decomposition into the atomic basis and d(+) ∝ σ,
d(−)∝ σ†. Thus, the interaction Hamiltionian is given by

HInt = −d(+) · E(+) − d(−) · E(−) − d(+) · E(−) − d(−) · E(+) . (2.5)

Given the relations E(±) ∝ e∓iωL t and d(±) ∝ e∓iω0 t 1, one can identify two terms oscillating
rapidly as e±i(ωL+ω0)t , while the last two terms oscillate slowly as e±i∆t , with ∆=ωL −ω0 being
the detuning of the light field relative to the atomic resonance. For detunings |∆| � ωL +ω0,
applying the Rotating Wave Approximation is valid, which corresponds to neglecting the fast os-
cillating terms, as they do not contribute significantly to the dynamics on the relevant timescale.
Furthermore, transforming into the rotating frame of the light field, corresponding to changing
into the interaction picture, allows to neglect HL and eliminate an explicit time dependence in
the problem. The resulting effective Hamiltonians can then be written as

H̃A = −ħh∆ |e〉 〈e| (2.6)

and

H̃Int =
1
2
ħhΩ0(σ+σ

†) , (2.7)

introducing the Rabi frequency

Ω0 = −
1
ħh
〈g|ε · d|e〉 · E0 , (2.8)

which is a measure of the coupling strength of the laser mode to the atomic transition and is
proportional to the amplitude of the electric field E0.

1 As σ corresponds to the time evolution of |e〉 under the free atomic Hamiltionian, it has the unperturbed time
dependence e−iω0 t .
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Figure 2.1.: Dipole force in the dressed atom picture. (a) Relevant properties in the uncoupled
two-level system of the atom. The ground state |g〉 and excited state |e〉 are separated
by an energy ħhω0 and the photons of the incident laser field have an energy ħhωL ,
corresponding to a detuning of ħh∆ = ħh(ωL −ω0). (b) Light shifting of the energy
levels in the coupled basis. In the interaction picture, the atomic states |g〉 and |e〉
are merely separated by an energy ħh∆ in the case of negligible coupling. In the
presence of coupling by a position-dependent light field, the dressed eigenstates |+〉
and |−〉 experience an energy shift ħhΩ(r)/2. For the typical Gaussian profile of a
focused laser beam, this corresponds to an approximately harmonic potential near
the intensity maximum.

Dressed States

In this interaction picture, the eigenstates |g〉 and |e〉 of HA are no longer eigenstates of the
coupled system. Switching to the basis of the perturbed states corresponds to diagonalizing
H̃ = H̃A+ H̃Int, represented by the matrix

H̃ = ħh
�

−∆ Ω0/2
Ω0/2 0

�

(2.9)

in the uncoupled energy basis. The new eigenvalues after diagonalization are

E+ = −
ħh∆
2
+
ħhΩ
2

(2.10)

E− = −
ħh∆
2
−
ħhΩ
2

, (2.11)

where Ω :=
q

Ω2
0 +∆2 is the generalized Rabi frequency.

The corresponding dressed eigenstates are given by an effective rotation of the original eigen-
states

|+〉= cosθ |e〉+ sinθ |g〉
|−〉= cosθ |g〉 − sinθ |e〉 (2.12)

by the mixing angle

tan2θ = −
Ω

∆
(0≤ θ <

π

2
) . (2.13)
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In order to use this effect to create an attractive potential for the atom, also known as a dipole
potential, one typically uses a focused laser beam with detuning ∆ < 0. This introduces a
spatial dependence of the electric field amplitude E0(r). Because of the proportionality of the
Rabi frequency to the field amplitude mentioned above, the energy shift of the dressed states is
maximized at the location of highest laser beam intensity. This is illustrated in Fig. 2.1 (b). For
negative detuning ∆ < 0, the ground state evolves into the state |−〉 and is lowered in energy,
which creates an attractive potential for the atom in the presence of the focused laser beam,
which usually exhibits a Gaussian profile. This potential can be written as

Udip(r) = −
ħh∆
2
−
ħhΩ(r)

2
≈
ħhΩ2

0(r)

4∆
=

3πc2Γ

2ω3
0

·
I(r)
∆

, (2.14)

where Γ is the natural linewidth of the |g〉↔ |e〉 transition and the approximation made holds for
large detunings |∆| � Γ ,Ω0. Taking into account the dissipative process of spontaneous emission,
one arrives at a set of equations known as Optical Bloch equations (OBEs), the solutions of which
yield an incoherent scattering rate. For large detunings and neglecting saturation effects, this
can be written as

Γsc =
3πc2Γ 2

ħhω3
0

·
I(r)
∆2

. (2.15)

The dissipation associated with this scattering rate causes heating of the atom and should be
aimed to be kept low. It is important to note the different scaling of Udip and Γsc with the detun-
ing ∆, meaning that a large detuning is preferable, as the scattering rate decreases quadratically
with ∆, in contrast to the antiproportional scaling of the depth of the potential.

The relations and quantities introduced here provide a qualitative understanding of the interac-
tion between the atomic system and a laser field. However, for a full quantitative description, the
treatment of the atom as an idealized two-level system is not sufficient. Real alkali atoms, such
as 85Rb that is used in the presented experiment, exhibit a hydrogen-like level structure with fine
structure and hyperfine structure, giving rise to a multitude of sublevels that can be populated
by the valence electron. In order to perform accurate calculations of the potential depths, light
shifts and scattering rates present in the experiment, one has to take into account all of the rele-
vant states in HA. For 85Rb atoms, this has been done in [45] and will not be presented in detail
here. One important result that should be noted here, however, is that in order to calculate the
effective detuning of a far-off-resonance laser field trapping the 85Rb ground state, one has to
take into account contributions of both Rubidium D lines:

1
∆eff

=
1
3

�

2
∆D2

+
1
∆D1

�

. (2.16)

2.1.2 Creation of two-dimensional potential structures using microlens arrays

Gaussian beam traps

As explained above, a focused laser beam with negative detuning constitutes a dipole trap for
an atom, where the geometry of the trap is determined by the three-dimensional distribution of
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light intensity around the focal point. The intensity distribution of a focused Gaussian laser beam
of total power P is given by

I(r, z) =
2P

πw(z)2
e
− 2r2

w(z)2 , (2.17)

with the beam radius

w(z) = w0

√

√

√

1+
z2

z2
R

, w0 =
p

2λ
πNA

. (2.18)

It is defined as the radial distance from the beam axis at which the intensity has dropped to 1/e2

times its central value. It reaches its minimal value, called beam waist w0, at the focal point. The
Rayleigh range zR = πw2

0/λ defines the axial distance after which the beam radius has increased
by a factor of

p
2 and is a measure for the axial confinement of the dipole trap. The beam

waist depends reciprocally on the numerical aperture of the focusing optics, given by NA= a/ f ,
where a is the radius of the illuminated aperture and f the focal length. The relations introduced
above are only strictly valid for a plane wave Gaussian beam of an incident size much smaller
than a. In the case of micro-optical structures illuminated by a large beam, as is the case in the
presented experiment, the second condition is not met, and the intensity distribution at the focus
is modified by diffraction effects and exhibits a ring structure described with the use of Bessel
functions (see [45, 66]). The central maximum, however, is well approximated by a Gaussian
profile, with negligible deviations. In the scope of this thesis, it will thus be treated as being of
Gaussian form (for a detailed discussion see [66]).
As can be seen from equation 2.14, the trap potential is proportional to I(r, z). For cold atoms,
whose wave function is significantly smaller than zR and w0, it can be approximated as being
harmonic. The corresponding axial and radial trap frequencies read

ω‖ =

√

√

√
2U0

mz2
R

, ω⊥ =

√

√

√

4U0

mw2
0

. (2.19)

Parallelization and scalability using micro-optics

In order to create potential geometries for the trapping of multiple individual atoms, different
approaches can be pursued, with each having its own advantages and drawbacks. Using a mi-
crolens array allows the simultaneous creation of hundreds or thousands of spatially separated
traps with the parameters introduced above. These micro-fabricated elements exist with varying
geometries, numerical apertures and lens spacings. As the topology of the lens array is conserved
by reimaging into the vacuum chamber, those parameters directly determine the waists and sep-
aration (pitch) of the dipole traps.
Table 2.1.2 lists parameters of the two microlens arrays and corresponding dipole trap arrays

used within this thesis. The lens separation (pitch) d0 is given by the manufacturer, as well as
the lens diameter DML and radius of curvature, from which both fML and NAML are calculated.
The other values denote parameters of the dipole trap array inside the vacuum chamber, created
by a demagnifying reimaging (M = 0.094(3)) of the MLA’s focal plane with a telescope consist-
ing of a f = 400mm achromatic lens and a f = 37.5(10)mm lens system (see Fig. 2.4). This
creates an array of diffraction limited spots of waist w0,exp with a pitch of dexp, both measured
experimentally by reimaging the trap array with known magnification onto a calibrated CCD
camera.
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10.3 µm

(a) (b)

Figure 2.2.: Creating periodic potentials with a microlens array. (a) Microscopic image of a refrac-
tive MLA with a pitch of 30µm. (b) Reimaged focal plane created with a 110µm-pitch
array. Here, a 1500-site sub-region out of the total array containing more than 2500
focal spots is shown.

Talbot effect

When coherent laser light of wavelength λ is diffracted at a periodic object, self-images of the
diffracting structure are created in the near field, called Talbot planes [67, 68]. These self-images
are separated by the axial Talbot distance

zT =
2d2

λ
, (2.20)

where d is the spatial period of the structure. In the case of a microlens array, this corresponds
to the pitch of the array. In between these self-images, additional image planes (fractional Talbot
planes) can be observed, exhibiting periodic structures with reduced spacing and varying inten-
sity. For a more detailed analysis of this three-dimensional Talbot carpet, see [45, 69]. Most
notably, this structure exhibits Talbot planes at half the Talbot distance which are self-images

Table 2.1.: Parameters of the microlens arrays (MLAs) used in this thesis (upper row). Both are
manufactured by SÜSS MicroOptics. The bottom row lists the measured or calculated
paramerers of the dipole trap array (for details, see text). Calculated values assume a
wavelength of λ= 797 nm.

Name Type dML DML fML NAML

ML1 11-1401-101-111 110µm 106µm 1.894 mm 0.028
ML2 19-00021 75µm 72µm 1.101 mm 0.033

Name dexp w0,exp zR,exp z∗T
ML1 10.3(3)µm 1.45(10)µm 8.3(12)µm 133(8)µm
ML2 7.0(2)µm 1.45(10)µm 8.3(12)µm 61(4)µm
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of the focal plane shifted by d/2 in each dimension. Integer as well as fractional Talbot planes
can be harnessed for atom trapping, as will be shown in Section 3.3.4, yielding a sequence of
experimentally relevant planes with a distance of

z∗T =
zT

2
=

d2

λ
. (2.21)

Unless otherwise indicated, however, all measurements presented in this thesis were made using
only the original focal plane for atom trapping.

2.1.3 Preparation of single atoms

In order to prepare an atomic cloud cold enough to be trapped in the dipole trap ar-
ray, a number of prior steps have to be made, as will be briefly discussed in the follow-
ing.

Vacuum chamber

The central element and essential ingredient of the experimental setup is the vacuum apparatus.
An ultra-high vacuum (UHV) is necessary to get the atoms sufficiently cold to be trapped in
optical potentials, and provides a sufficient decoupling from the environment, which is crucial
for quantum information processing. An insufficiently low pressure inside the chamber would
lead to a significant amount of background collisions, causing a heating of the atoms and leading
to their loss from the traps as well as causing decoherence on a timescale shorter than the time
needed for the intended quantum operations. In the setup presented here, a pressure of around
2× 10−9 mbar 2 is typically achieved, which is sufficiently low to not be the bottle-neck in terms
of atom and coherence loss. A more detailed description of the chamber setup is given in [45,
47, 70]. Trapping and imaging single atoms requires tightly focussed traps and a high spatial
resolution of the imaging system, which in turn requires an optical system with a high numerical
aperture (NA). This has to be considered when designing the optical ports into the chamber.
Figure 2.3 shows a computer-generated view depicting the vacuum apparatus and the coils used
for magnetic field compensation (taken from [45]).

Magneto-optical trap and optical molasses

Since its first experimental demonstration [71, 72], the magneto-optical trap (MOT) has become
a staple for the majority of cold atom experiments. It relies on the radiative force of three pairs of
counter-propagating laser beams (nearly) orthogonal to each other, combined with a magnetic
quadrupole field, in order to cool as well as spatially confine the atom cloud at the region of
overlap of the beams. The typical minimum temperature which can be achieved in a MOT is
given by the equilibrium between cooling and heating via spontaneous emission and is called
Doppler limit:

TD =
ħhΓ
2kB

(2.22)

2 This is assumed to be an upper bound given by the base level of the vacuum gauge being reached.
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Figure 2.3.: Computer-generated image of the vacuum apparatus, magnetic field compensation
coils and arrangement of the MOT beams through the chamber. Taken from [45]

Given the natural linewidth of Γ = 2π × 6.067MHz for the 5P3/2 level, the Doppler limit for
cooling via the 85Rb D2 line calculates to TD = 146µK. This signifies the usual temperature
that can be reached in a MOT. However, in the absence of the quadrupole MOT magnetic field,
and taking into account the polarization of the laser beams as well as the magnetically sensitive
Zeeman sublevels of the hyperfine splitting, it is possible to cool the atomic cloud below this
temperature. This technique is called polarization gradient (or Sisyphus) cooling [73] and allows
to reach the temperature corresponding to the momentum gained by the emission of a single
photon, also called recoil temperature:

TR =
(ħhk)2

mkB
(2.23)

With k = 2π/λ and the atomic mass m, this yields a theoretical limit of TR = 370 nK for the 85Rb
D2 line. An overview over the atomic properties of Rubidium relevant in this thesis, as well as a
detailed level scheme, are given in Appendix A.
Figure 2.4 depicts a schematic image of the vacuum apparatus where the six MOT beams

are shown. Each of the beams consists of cooling light red-detuned to the |5S1/2, F = 3〉 ↔
|5P3/2, F ′ = 4〉 transition and repumping light slightly red-detuned to the |5S1/2, F = 2〉 ↔
|5P3/2, F ′ = 3〉 transition, with the exception of the two diagonal beams, which consist only of
cooling light. Also shown is the dipole trap beam, which propagates through the MLA coming
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Figure 2.4.: Top view schematic (simplified and not to scale) of the vacuum chamber and relevant
beam paths. The collimated dipole trap beam passes through the microlens array
(MLA) from the right side, creating a focal pattern that is reimaged into the chamber
by a demagnifying telescope consisting of a f = 400 mm achromatic lens as well as a
f = 37.5(10)mm objective. This same objective is used in conjunction with a dichroic
mirror (DM) to image the fluorescence light onto the EMCCD camera, where filters
F1 and F2 are used to suppress stray light from other sources. Inset: Front view of
the chamber against the propagation of the dipole trap beam. The four MOT beams
(as well as the two diagonal beams shown in the top view) are used for atom cooling
and fluorescence imaging and are aligned to intersect at the position of the dipole
trap array. Numbers (1) to (3) denote the available beam paths into the chamber for
subsequent manipulation of the atoms, where (1) is used for the blow-away beam
(see text). The CCD camera on top is used for additional monitoring of the MOT
alignment.

from the right side and is aligned so that the reimaged focal plane coincides with the center of
the MOT. The laser providing this light is a titanium-sapphire (Ti:Sa) ring laser (Coherent 899-
01) optically pumped by a frequency-doubled Nd:YAG laser (Coherent Verdi V18) at 532nm. The
wavelength of the Ti:Sa can be tuned between 760 nm and 850 nm, which allows for a wide
range of detunings to choose from. Since the goal for most of the measurements in this thesis
was to trap as many atoms as possible, the wavelength was mostly chosen to be close to the D1
transition, with a value typically around 797 nm (for more details see Section 3.2.1). All other
lasers used for atom cooling and manipulation, unless otherwise indicated, are external-cavity
diode lasers (ECDL) with an interference filter as the frequency selective element [74]. They can
be tuned via a piezo-electric element in the Gigahertz regime, and a modulation of the diode cur-
rent allows for fast feedback-loop control. Via offset locks, the lasers are stabilized with tunable
frequency offsets onto a master laser locked on a rubidium transition via Modulation Transfer
Spectroscopy (MTS) [75]. The stabilized lasers exhibit a long-term linewidth below 500 kHz and
an output power of up to 100 mW. After a MOT stage of typically 1 to 3 seconds, the MOT
magnetic field is switched off and the detuning of the cooling light is changed from −9.6MHz
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(−1Γ ) to −52MHz (−4Γ ), cooling the atoms below the Doppler limit and allowing the cloud
to expand in an optical molasses [71]. While letting the cloud expand to a size slightly larger
than the dipole trap array, the latter is switched on. At this point, the typical temperature of the
molasses is 5µK, which is cold enough for the atoms to be trapped by the potential wells of the
array, which typically have a depth of U0/kB = 0.2 mK to 1.7mK.

Single-atom preparation via collisional blockade

The atom density in the molasses leads to a large number of atoms occupying the volume of a
single dipole trap at any given time during this loading process. Thus, this process can ideally
be considered as a statistical series of capturing and loss events with constant loading rate R and
molasses loss rate γ. In equilibrium, the atom number follows a Poissonian distribution with an
average of N̄ = R/γ, with R and γ in general being experimentally accessible parameters [76].
In this model, the maximum rate of one-atom trap occupation events occurs at N̄ = 1 and lies at
36.8%.

In the case of small volume dipole traps, however, the statistics can deviate significantly from
a Poisson distribution. It is modified by loss processes corresponding to light-induced two-body
collisions, after which one or both impact partners have enough kinetic energy to leave the
trap [77]. The collisional interaction couples the states of the colliding atom pair, leading to a
modification of the two-atom eigenenergy according to the short range Van-der-Waals potential
UVdW ∝ 1/r6. In the presence of the light field of the optical molasses, the two approaching
ground state atoms can be excited into a molecular state with a long-range dipole-dipole potential
UDD ∝ ±1/r3. If the involved photon is red-detuned, the atom pair experiences an attractive
potential and gains kinetic energy while approaching each other, until the short-lived molecular
state decays and the atomic interaction is again governed by the Van-der-Waals potential. The
resulting energy gain is usually higher than twice the trap depth and both atoms can leave the
trap. The temporal development of the atom number, taking into account the light-assisted loss
processes, is given by the differential equation [78]

dN
dt
= R− γN − β ′N(N − 1) . (2.24)

The loss rate γ takes into account collisions with the background gas as well as heating loss
due to photon scattering; β ′ denotes the loss rate caused by two-body collisions. Again, the
loading process leads to an equilibrium between atom capture and loss events. For small loading
rates, the two-body collisions play a minor role and the average atom number corresponds to
N̄ ∼ R/γ. In the regime of high loading rates, the lifetime losses are negligible and one obtains
N̄ ∼

p

R/β ′. The transition between those two regimes is characterized by a critical atom number
Nc = γ/β ′ and the corresponding critical loading rate Rc = γ2/β ′. For loading rates higher than
Rc, the increase of the atom number gets damped by two-body losses. The ideal regime for the
preparation of single atoms lies at Nc � 1, where two-body losses dominate even at low atom
numbers N̄ < 1, causing a plateau with N̄ = 0.5, which covers multiple orders of magnitude of
the loading rate. Because the light-induced collisions lead to an almost immediate loss of atom
pairs for atom numbers greater than one, in this case the trap is always populated by either one
or zero atoms. This process is called collisional blockade [78].
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For blue-detuned light the collisional potential is repulsive and the maximum energy gain is
determined by the effective detuning of the light, making it easily controllable. If the detun-
ing is less than half the trap depth, only one atom can be lost in the process. Taking into
account collisions resulting in one-atom loss, the differential equation is modified by an addi-
tional term

dN
dt
= R− γN − β ′1N(N − 1)/2− β ′2N(N − 1)/2 , (2.25)

with the total loss rate β ′ = β ′1 + β
′
2 now consisting of the one and two atom loss rates β ′1 and

β ′2 [79, 80], respectively. By modifying the parameters of the light used to catalyze the collisions
such that the single-atom loss rate β ′1 begins to dominate the total loss rate, the average atom
number can be pushed towards N̄ = 1. Experiments have shown that the loading efficiency of
an atom in a single microtrap can be increased to 91 % [81]. An approximation of the loss
rates present in an experimental implementation can be made via the effective trap volume
[45, 76]

Veff =
π2

λ
w4

0 · ln
�

1
1−η

�

√

√ η

1−η
. (2.26)

The factor η = kBT/|U0| denotes the ratio between atom temperature and trap depth. For
the typical parameters present in the experiment, it amounts to η ≈ 1/5 [82, 83], after the
loaded atom has thermalized. The collision-induced loss rates in Eq. (2.24) follow the relation
β ′ ∝ 1/Veff ∝ 1/w4

0, causing a strong increase of loss rates when reducing the trap size. For
the typical trap waists in this thesis of w0 = 1.45(10)µm, the effective trap volume evaluates
to Veff ≈ 6.1µm3 for a wavelength of 797 nm. Following the approximations made in [45, 76],
the two-body loss rate evaluates to β ′2 ' 610 s−1, leading to a fast attainment of the collisional
blockade. A detailed analysis of the occurring one- and two-body loss rates and the arising
occupation dynamics for different trap sizes has been made in [45]. For all dipole trap arrays
used in this experiment, the loading process is dominated heavily by two-body collisions induced
by red-detuned light, resulting in a typical single-atom occupation probability of only slightly
above 50%. While it is possible to increase the occurrence of single-atom loss events even for
tight microtraps with waists of 1µm or below [84, 85], thus allowing for single-atom occupations
of around 80%, these techniques are challenging to scale up to large arrays. Thus, in order to
achieve deterministic filling in a pre-defined region of the array, a different approach was chosen,
which will be the topic of Chapter 3. Please note, however, that the technique introduced in
[85], which uses Λ-enhanced gray-molasses to increase the loading efficiency, has the potential
to provide a significantly better starting point for atom assembly and may become essential at
some point.

Selection of the Talbot plane

As already mentioned above, atoms can not only be trapped in the focal plane, but also in
other planes within the potential landscape created by the Talbot effect. Generally, this effect
is undesired, as the fluorescence light emanating from these atoms during detection can not
be sharply imaged due to the finite depth of field of the imaging system and appears as blurry
background light on the camera, reducing detection contrast. A simple solution employed in this
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Figure 2.5.: Fluorescence signal from a single atom for two consecutive images. The histograms
correspond to the sum signal in the trap region, for the first (top) and second (right)
image. Well separated peaks ensure a near-unity detection fidelity. The scatter plot
illustrates the correlation between an atom detection in the two images. The lower
left and upper right quadrants correspond to zero or one atoms observed in both
detections, respectively. Signal in the lower right quadrant corresponds to atom loss
between the detections, while atom capture after the first image (upper left quad-
rant) is typically negligible. The probabilities of these respective events is given in the
top right graph. By fitting a Gaussian to the signal distribution (blue curves or bright
shaded regions), a threshold value for optimal detection fidelity can be obtained (for
details, see [45, 86]).

experiment is to use a "blow-away" laser beam resonant to the cooling transition in combination
with the shadow of a wire projected onto the focal plane, shielding only the atoms in this plane
from the light. As the light only comes from one direction (beam path (1) in Fig. 2.4), the other
atoms experience a strong directed force, ejecting them from the trap potentials and allowing for
high-contrast imaging of the selected plane.

Site-resolved detection and loading statistics

As indicated in Fig. 2.4, the same objective used for reimaging the dipole trap array into the
chamber is also used for fluorescence detection. For the excitation of the atoms, the cooling
and repumping beams are used with similar power and detuning as in the molasses. Part of
the scattered light thus emanating from the atoms is gathered by the NA = 0.25(1) objective,
corresponding to 2.2% of the isotropely emitted photons. A dichroic mirror (Semrock FDi03-
R785) reflects the λ= 780 nm fluorescence light - while transmitting the trapping light from the
opposite direction - after which a f = 750mm lens focuses the light onto an EMCCD camera
(Andor iXon DV887DCS-BV), creating an image of the atom plane magnified by a factor of 20.
This allows for the clear spatial separation of the atoms and, due to the use of the dichroic mirror
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Figure 2.6.: Screenshot of the camera control software [86]. Having received the latest fluores-
cence image from the EMCCD, it is displayed with an overlay corresponding to the
regions in which the signal pertaining to a particular trap is to be evaluated (black
squares). Here, a 15× 15-site region of interest is used. At the same time, a boolean
occupation array of the trap is generated (see text) based on an adjustable global
threshold, displayed in the top right corner. As the software is implemented as a
server, this array is then made available to other processes requiring the information.

reflecting more than 95% of the light instead of 50% using a polarizing beam splitter as in earlier
work [45], an integration time of 50 to 75 ms is enough to ensure a detection fidelity well above
99%.
Figure 2.5 shows a histogram of the signal obtained from such an integration for a single trap
after many repetitions of an experimental cycle, with the peaks corresponding to either no atom
or one atom present in the trap, for two consecutive images. Figure 2.6 depicts a screenshot
of the camera program developed in [86]. In any experimental repetition, the latest obtained
fluorescence image is displayed in the left part of the window. This adjustable region, to which
the analysis is restricted, is dubbed as "workspace" in the context of this thesis, as only atoms
within this region are detected and manipulated in the scope of an experimental cycle. Here,
the workspace contains 15 × 15 sites. The camera sensor’s region of interest (ROI) is set so it
only outputs the part of any image containing this workspace, speeding up image acquisition and
further analysis.
An algorithm analyzes the histogram of the signal obtained from every trap in the ROI and
determines a threshold which is then used to determine the atom occupation of the traps in each
single image. This is illustrated in Fig. 2.5. For details on this procedure, see [45, 46, 86].
As there are experimental procedures requiring an in-shot analysis of the images (see Chapter 3),
a simplified version of this algorithm calculates a boolean array containing the trap occupations
as soon as the image is received from the camera and makes it available for other processes
running on the computer. This is depicted in the top right corner of Fig. 2.6. Currently, it uses
the same global threshold value for each trap, but more accurate methods can be implemented.
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The stochastic loading discussed above leads to a random distribution of atoms in the array,
which is an inadequate starting point for any quantum computation or simulation purpose, where
the initial multi-particle state needs to be well-defined. Chapter 3 will tackle this problem and
introduce a novel way of circumventing this limitation.

2.2 Rydberg atoms for quantum information and technology

Rydberg atoms have been the topic of extensive research throughout the twentieth century, due
to their remarkable properties, which can be studied in vapor cell or atomic beam experiments
and have been thoroughly mapped and charted over the course of several decades [87]. It is safe
to say that the last 20 years have brought along a major resurge of interest in these highly excited
atomic states. The reseach areas that study and exploit Rydberg states now range from ultracold
atoms in Bose-Einstein condensates [58, 88, 89], individually trapped Rydberg ions [90, 91] or
exotic Rydberg excitons in cuprous oxide [92], through to experiments probing the interaction
between a single photon and a Rydberg superatom [93] up to the observation of photonic bound
states mediated by Rydberg blockade [94, 95]. A topical review of the potential of advancing
quantum technologies enabled by the use of Rydberg atoms is given in [96].
A particular focus, motivating the research documented in this thesis as discussed in the intro-
duction, is the utilization of Rydberg atoms to build a neutral-atom quantum computer [20, 30].
This section aims at providing an overview over the above-mentioned exceptional properties
of Rydberg atoms and illustrating their enormous attractiveness for modern quantum-optical
research.

2.2.1 Properties of Rydberg atoms

A comprehensive introduction to the topic of Rydberg atoms can be found in [87]. This section
will provide a brief summary of important results obtained from the theoretical description of
the Rydberg atom and important properties arising from it.

Alkali atoms are widely used in most cold atom experiments for their similarity to the hy-
drogen atom and the associated simplicity of the level scheme, with most relevant transition
energies corresponding to convenient optical wavelengths. This is due to the fact that all elec-
trons except the outermost one form closed shells effectively shielding that electron from all but
a single nuclear charge. This similarity increases when the atom is excited into a Rydberg state,
where the electron spends most of its time at a large distance from the core and the inner elec-
trons, where it only experiences the net charge. For this reason, the formula for the binding
energy

En = −
Ry
n2

, (2.27)

found by J. R. Rydberg for the hydrogen atom in 1890 [97], is a fair approximation for an alkali
Rydberg atom. In this equation, n is the principal quantum number and the Rydberg energy is
given by

Ry =
e4me

32π2ε2
0ħh

2 , (2.28)

where me and e are the mass and charge of the electron, ε0 the vacuum permittivity and ħh the
reduced Planck constant. In the semi-classical Bohr model, the radius of an electron orbit around
the proton constituting a hydrogen core is given by

r =
n2h2ε0

πµe2
= n2 · a0 , (2.29)
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Figure 2.7.: Radial probability densities for the states relevant in this work. Values given in atomic
units (a.u.)

with the reduced mass µ ≈ me and the Bohr radius a0 = 4πε0ħh
2m−1

e e−2 = 52.9 pm. This already
illustrates the quadratic scaling of the atom size with the principal quantum number.
For Alkali atoms in Rydberg states of high orbital momentum, the differences to the correspond-
ing hydrogen state are negligible. For low orbital angular momentum states (l ≤ 3), however,
the orbital of the Rydberg electron can penetrate the finite volume of the ionic core. This causes
an exposure to the full nuclear charge and a polarization of the core, both increasing the bind-
ing energy of low-l Rydberg states, which is equivalent to a decrease in energy compared to the
hydrogenic states. This difference can be modelled by introducing the quantum defects δnl j into
the formula

En∗ = −
Ry

(n−δnl j)2
= −

Ry
(n∗)2

, (2.30)

which are given by the Rydberg-Ritz formula

δnl j = δ0 +
δ2

(n−δ0)2
+

δ4

(n−δ0)4
+

δ6

(n−δ0)6
+ ... (2.31)

The coefficients δi depend on the element and can be determined from spectroscopic measure-
ments. For Rubidium, they can be found in [98–100]. The properties of alkali Rydberg atoms are
thus dependent on the effective principal quantum number n∗ = n−δnl j.
The scaling of many important properties with n∗ is what makes Rydberg atoms such an inter-
esting field of study and renders them ideal candidates for quantum information and simulation
purposes. One example is the aforementioned scaling of the orbital radius 〈r〉 ∝ (n∗)2, which
is already evident from a semi-classical approach. Figure 2.7 illustrates this quadratic scaling. A
Rubidium atom in the Rydberg state 57D5/2 already has an orbital radius of almost 5000 Bohr
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Table 2.2.: Scaling laws (n∗)x of some important properties of Rydberg atoms adapted from [87].
The corresponding values for the 5 P3/2, 57 D5/2 and 87 D5/2 states, which are relevant
for the experiments presented in this work, can be found in [101] or calculated with
formulas presented in this section.

Property Expression Scaling Law Value for

5P3/2 57D5/2 87D5/2

Binding energy En∗ (n∗)−2 2.59 eV 4.39meV 1.85meV

Level spacing 3 E(n+1)∗ − En∗ (n∗)−3 32.9THz 37.2 GHz 10.3 GHz

Orbit radius 〈r〉 (n∗)2 7 a0 4600 a0 11000 a0

Eff. lifetime τeff (n∗)3 26.4 ns 95.4µs 267µs

Trans. dip. moment 4 〈5P|d|nL〉 (n∗)−3/2 4.227 ea0 0.02 ea0 0.01 ea0

vdW coefficient C6 (n∗)11 — 153 GHz ·µm3 14.1THz ·µm3

radii, which grows to 11000 Bohr radii for the 87D5/2 state, or≈ 0.6µm. This huge orbital radius
corresponds to a strong electric dipole moment, which can cause significant interaction between
Rydberg atoms on a length scale of several micrometers, lying in the regime of interatomic dis-
tances that can be achieved in a microtrap array.
Table 2.2 gives an overview over some of the most relevant properties of Rydberg atoms and
their scaling with effective principal quantum number, along with specific values for the excited
states used throughout this thesis.

2.2.2 Lifetime of Rydberg states

The lifetime of Rydberg atoms is determined by radiative decay to lower-lying leves (Γ0), as well
as transitions to neighboring states (higher and lower in energy) induced by blackbody radiation
(ΓBBR). The effective lifetime of a Rydberg state is thus given by

1
τeff
= Γ0 + ΓBBR =

1
τ0
+

1
τBBR

. (2.32)

The spontaenous decay rate is determined by summing over the spontaneous transition rates
from the Rydberg state nL (L ∈ {S, P, D, ...}) with energy EnL to all lower-lying states n′L′

[102]:

Γ0 =
∑

(n′L′):EnL>En′ L′

A(nL→ n′L′) (2.33)

The rate of BBR-induced depopulation is calculated by summing over all nL → n′L′ transi-
tions, where the transition rates are given by the Einstein coefficients multiplied by the num-
ber of BBR photons in the corresponding mode, given by the Planck distribution at temperature
T ,

ΓBBR =
∑

n′
A(nL→ n′L′) ·

1

e(ħhωnn′/kB T ) − 1
, (2.34)

3 Calculated for nLJ ↔ (n+ 1)LJ transitions
4 For the 5P3/2 state, the 5S1/2 ↔ 5P3/2 transition is given. For all transitions, the beam polarization and sub-

states with the maximum coupling strength are assumed.
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Figure 2.8.: (a) Transition rates from 57 D5/2 to n P3/2, D5/2,3/2, F7/2,5/2 states, divided into spon-
taneous emission (red) and BBR-induced decay (green) at 300K. The lifetime of the
57D5/2 state is reduced from τ0 = 187.7µs to τeff = 93.9µs due to BBR. (b) Scaling
of Rydberg state lifetimes with principal quantum number n (including BBR).

where kB is the Boltzmann constant and ωnn′ the transition frequency between the states n
and n′. Figure 2.8 (a) shows the transition rates caused by these two effects into all possible
channels for the 57D5/2 Rydberg state 5. Spontaneous decay is dominated by transitions with
large ωnn′ , whereas BBR-induced transitions mainly occur between neighboring Rydberg states.
Figure 2.8 (b) illustrates the scaling of Rydberg state lifetimes with n for different orbital quantum
numbers. As coherent dynamics and the study of interactions between Rydberg atoms typically
takes place on a timescale of a few microseconds with Rabi frequencies in the MHz regime,
lifetimes of tens of microseconds or longer provide enough time for several of these operations.
Significantly higher lifetimes without changing the principal quantum number can be achieved
by preparing the atom in a circular Rydberg state (l = n−1). The lifetime of atoms in these states
scales with (n∗)5 and due to their large magnetic moments, they can be magnetically trapped, as
has been demonstrated in [104], where a trapping time of several milliseconds for circular-state
Rb atoms has been reported.

2.2.3 Excitation schemes

The Rydberg excitation of an atom initially in the ground state can be accomplished in different
ways, each having distinct advantages and disadvantages. Figure 2.9 gives an overview over
the possible excitation schemes for Rubidium atoms. While a direct single-photon excitation
(Fig. 2.9 (a)) seems to be the straight-forward choice, the involved ultraviolet wavelength makes
it challenging and resource-intensive to construct the required laser system. If implemented,
however, it offers the advantage of eliminating an intermediate state, avoiding decoherence
channels such as laser phase noise and photon scattering [105], making this scheme particu-
larly relevant for systems using Rydberg-dressed atoms [57].
A coherent two-photon transition via an intermediate state offers the advantage of more conve-
nient optical wavelengths that can be provided by commonly used EDCL systems. The schemes

5 Calculated using the ARC library [103].
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Figure 2.9.: Possible schemes for the Rydberg excitation of Rb atoms. While a direct single-photon
excitation (a) avoids decoherence channels by eliminating the need for an interme-
diate state [41, 57, 105], the required ultraviolet wavelength makes it technically
challenging to implement. Thus, most Rydberg experiments rely on a two-photon
excitation scheme (b-d).

shown in Fig. 2.9 (b and c) are thus the ones most commonly applied in Rubidium Rydberg ex-
periments. As the transition dipole matrix element decreases rapidly with increasing principal
quantum number, the transition from the intermediate state to the Rydberg state couples much
weaker than the lower transition, requiring a relatively large blue laser power to achieve simi-
lar Rabi frequencies for both transitions. As the blue light in this scheme is typically generated
by a frequency-doubled ECDL system, this usually corresponds to a limitation of the maximally
achievable Rabi frequency.
The scheme shown in Fig. 2.9 (d) mitigates this limitation to some extent by using the shorter
wavelength for the strongly coupled transition and exciting to the Rydberg state with infrared
light, where high laser powers are much easier to provide. Details on the excitation scheme cho-
sen for the work presented in this thesis (Fig. 2.9 (c)) and the reasons for this choice are given in
Chapter 4.

2.2.4 Interactions between Rydberg atoms

As already mentioned in the introduction, Rydberg atoms are prime candidates for studying
quantum many body physics, as well as for the implementation of quantum information and
computation schemes [20], due to their strong dipole-dipole interaction. As this interaction
has an extremely strong dependence on principal quantum number and interatomic distance,
varying these parameters enables the experimenter to tune its strength over several orders of
magnitude. Together with a method for precisely exciting and de-exciting the atoms to and
from Rydberg states, this allows for a comprehensive control of the dynamics of the quantum
system, which is essential for applications such as two-qubit gates for quantum computation
[20, 32, 34, 38, 106, 107] or the implementation of quantum Ising models [41, 108] and XY
magnets [109, 110], to name just a few. In the following, a short qualitative introduction to
the dipole-dipole interaction between Rydberg atoms is given, with a more detailed analysis
performed in Chapter 6.
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Figure 2.10.: Dipole-dipole interactions between two Rydberg atoms. (a) The dipole moments
d1,2 of two atoms separated by a distance R interact via Vdd. (b) Transformation
from atomic to pair state basis reveals multiple pair states coupled by the interaction.
In this case, the original pair state |r r〉 couples most strongly to the state |r ′r ′′〉, with
an energy defect of∆.

Dipole-dipole interactions

Consider two atoms that are both prepared in a Rydberg state |r〉 initially, separated by a distance
R, as is illustrated in Fig. 2.10 (a). Due to the large dipole moment of a Rydberg atom, the
dominant electrostatic interaction in this system for distances |R| � n2a0 is the dipole-dipole
interaction. Its corresponding interaction operator can be written as

Vdd(R) =
1

4πε0

�

d1 · d2

|R|3
−

3(d1 ·R)(d2 ·R)
|R|5

�

, (2.35)

where d1,2 denote the electric dipole moment operators and the vector R corresponds to the
interatomic distance. As long as the Rydberg wavefunctions of the atoms do not overlap, which
is always the case for the atom distances employed in this thesis, the Hamiltonian of this system
can be written as

H = H1 ⊗ 1+ 1⊗H2 + Vdd(R) , (2.36)

with the free-atom Hamiltonians H1,2. To calculate the energy shift caused by this interaction, a
transformation from the atomic basis to a pair basis is necessary. The dipole-dipole interaction
then couples the pair state |r r〉 to a state |r ′r ′′〉, as is illustrated in Fig. 2.10 (b) 6. For simplic-
ity, only the case where R is parallel to the quantization axis shall be considered, making the
problem one-dimensional. In the pair basis {|r r〉 , |r ′r ′′〉}, the system Hamiltonian can be written
as

H =

�

0 V (R)
V (R) ∆

�

, (2.37)

with ∆ = Er′ + Er′′ − 2Er being the energy difference and V (R) = 〈r r|Vdd(R)|r ′r ′′〉 =:
V0/R

3 the coupling strength between the two states. The eigenvalues of this Hamiltonian
are

λ± =
∆±

q

∆2 + 4V 2
0 /R6

2
, (2.38)

6 For an accurate calculation, the coupling to all nearby pair states has to be taken into account. As only a
qualitative understanding is sought here, however, this is omitted.
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illustrating the strong dependence of the pair state energy on the separation of the atoms. This
leads to the emergence of two distinct limits of the spatial dependence:

i) Long range (V/R3�∆):
In this limit, also known as van der Waals (vdW) regime, the pair-state energy is shifted by

∆E = −
V (R)2

∆
=: −

C6

R6
. (2.39)

The sign of the interaction is determined by ∆ and the interaction strength scales as C6 =
V0/∆∝ (n∗)11 (see Table 2.2 for a comparison between Rydberg states used in this thesis).
This regime gives rise to the so-called Rydberg blockade mechanism [32, 111], as for the
right choice of parameters, the interaction strength can become far larger than the coupling
Ω of the laser fields to the Rydberg states. For the set of parameters (atomic distance
and principal quantum number) typically employed within this thesis, the strength of this
interaction ranges within four orders of magnitude (a few kHz to more than 20 MHz),
allowing the study of both blockaded and unblockaded Rydberg physics.

ii) Short range (V/R3�∆):
This regime is known as the resonant dipole-dipole regime, as ∆ is negligible compared to
the interaction strength. The corresponding energy shift is given by

∆E = ±V (R) = ±
C3

R3
, (2.40)

with C3 := V0 ∝ (n∗)4, exhibiting the typical R−3 scaling associated with a pair of static
dipoles. As getting into this regime typically requires interatomic distances smaller than
what can feasibly be achieved in a tweezer array without cross-talk between traps, this
prohibits its utilization for most Rydberg states, which is the reason why all experiments
performed so far in this experiment work in the long-range van der Waals regime. For the
sake of completeness, however, two ways of observing resonant dipole-dipole dynamics in
a tweezer array shall be noted.

1. For some specific Rydberg states, the inital pair state |r r〉 is near-degenerate with
another |r ′r ′′〉 state, which is known as a Förster resonance. Applying an external
electric field can tune the two pair states exactly into resonance, allowing the obser-
vation of resonant dipole-dipole type interactions even for large interatomic spacings
[112, 113]. This has been experimentally demonstrated for two atoms in optical
tweezers in [114, 115].

2. Even in the absence of a Förster resonance, for a pair of atoms prepared in different
Rydberg states corresponding to the pair state |r r ′〉, this state is coupled to the degen-
erate state |r ′r〉, resulting in a coherent excitation transfer between the two pair states
mediated via the resonant dipole-dipole interaction. This has been demonstrated in
[109].

The transition between these two regimes is characterized by the van der Waals radius, where
V (RvdW) =∆, given by RvdW =

6
p

C6/|∆| ∝ (n∗)7/3.
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Figure 2.11.: Rydberg blockade in the van der Waals regime. (a) Blockade effect between two
atoms. For small interatomic distances, the doubly excited state |r r〉 is shifted by
|∆E| = C6/R

6. When this shift becomes much larger than the Rabi frequency Ω
driving the |g〉↔ |r〉 transition, the simultaneous excitation of the two atoms gets
suppressed. The critical distance for this effect is known as blockade radius Rb. (b)
For isotropic interactions, the blockade can be visualized as a sphere of radius Rb
around a Rydberg atom, within which no other atom can be excited into the same
Rydberg state. Given the discrete distances in a periodic array, the radius can be
tuned to affect only neighboring atoms, for example. Adapted from [116].

Rydberg blockade

As mentioned above, the van der Waals interaction can lead to a blockade of Rydberg excitations
for distances on the order of typical trap spacings in a tweezer array. To picture this, one can
consider the two-atom system introduced above, with each atom having a ground state |g〉 and
a Rydberg state |r〉. Both are driven by a laser field Ω coupling to the |g〉 ↔ |r〉 transition.
Figure 2.11 (a) illustrates this system in the pair state basis. For large distances R, the two atoms
can be considered as independent particles and they can both be simultaneously excited to the
Rydberg state. For small distances, however, the interaction between the Rydberg states becomes
noticeable and leads to an energy shift of the doubly excited state |r r〉. If this shift becomes
much larger than the coupling strength Ω, the excitation of |r r〉 is suppressed, in other words,
only one atom can be excited at the same time. This effect is known as Rydberg blockade. The
characteristic blockade radius associated with the threshold ∆E = ħhΩ is given for the case of van
der Waals interaction as

Rb =
6
√

√ C6

ħhΩ
. (2.41)

It scales proportional to (n∗)11/6 and typically lies in the range of 5µm to 20µm for the experi-
mental parameters in this thesis. For isotropic interactions 7, the blockade can be visualized as
a sphere with radius Rb. In the example of a tweezer array, choosing an appropriate combina-
tion of array spacing and Rydberg state allows the experimenter to control the number of atoms

7 Isotropy of the interaction is generally only a good approximation for |nS〉 states. For the |nD〉 states mostly
considered in this thesis, C6 has a significant angular dependence, which is discussed in Chapter 6.
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Figure 2.12.: Typical experimental cycle. A cloud of cold atoms created during a MOT and op-
tical molasses phase is transferred into the dipole trap array, where the collisional
blockade effect is exploited to ensure the presence of either zero or one atom in
the traps. In the next step, the assembly technique developed during the course of
this thesis is applied to rearrange the atoms into a predefined, defect-free structure
within the array, documented in Chapter 3. This assembled array serves as a starting
point for the measurements presented in the subsequent chapters, with the tech-
nique allowing for multiple measurement cycles within a single experiment enabled
by a reloading of the initial array.

inside the blockade sphere, ranging from one (no blockade) up to tens or hundreds of atoms. Fig-
ure 2.11 (b) depicts a situation where only nearest neighbors of the Rydberg atom are blockaded,
corresponding to the regime typically considered within this thesis.

2.3 Conclusion

This chapter discussed two main technologies necessary for building a large-scale, neutral-
atom quantum computer or simulator: A method for providing a large array of individually
trapped atoms that can be individually addressed and detected, as well as the implementation
of a controllable interaction mechanism between atoms in the array via Rydberg-state excita-
tion. Reviewing the fundamental techniques for atom cooling and trapping, the application of
these techniques to create a laser power efficient, inherently scalable architecture for individu-
ally trapped neutral atoms was presented. Rydberg-state mediated interactions will enable the
implementation of quantum computation and simulation schemes in the presented architecture
with unique prospects for qubit scaling. The following chapters document the progress towards
this goal made on the experiment during the last years, namely the rearrangement of atoms into
large defect-free structures, the implementation of coherent Rydberg excitation of the atomic
array and the demonstration of Rydberg blockade. Figure 2.12 illustrates a typical experimen-
tal measurement cycle, illustrating the steps on which the individual chapters place their focus.
While the experimental part of this chapter illustrated the steps leading to a stochastically occu-
pied array of single atoms, the following chapter introduces a technique for creating fully-filled
subarrays, which is then utilized for the measurements with Rydberg atoms documented in the
subsequent chapters.
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3 Defect-free assembly of individual atoms
in pre-defined structures

When creating a large system of individual neutral atoms for quantum simulation or computation
applications, most experiments aim at providing some form of periodic pattern in which the
atoms are arranged. In the simulation of an interacting system of many particles, emulating for
example the crystalline structure of a solid-state object, many emergent properties arise from
the fundamental topology of the system [117], which makes it necessary to map this topology
onto the experimental configuration. For quantum computation purposes, it is also convenient
to rely on a periodic structure, be it a square lattice [118] or of other geometric shape [30]. In
all of those cases, the initial configuration of the system for any set of operations one wishes to
perform needs to be well-defined. In other words, each site of the initial structure needs to be
deterministically filled with an atom, as defects can lead to the interacting system behaving in
a fundamentally different way (in the case of a quantum simulator) or lead to quantum errors
(in the case of a quantum computer). This chapter will give an overview of the techniques used
for providing a system that meets these requirements, illustrating the state of the art for current
experiments as well as fundamental considerations regarding atom rearrangement in Section
3.1. Subsequently, the method employed in the present experiment to achieve a defect-free array
of more than 100 atoms will be presented, while analyzing its performance and discussing its
scalability.

3.1 Introduction to atom assembly

3.1.1 State of the art in preparing defect-free single atom quantum systems

In recent years, many experimental efforts have been pursued to achieve defect-free filling in
pre-defined target structures of neutral atoms. For the sub-micron spaced periodic potentials
of optical lattices, the preparation of a central region with near-unity filling has been demon-
strated in two-dimensional quantum gas microscopes [13, 41, 49, 50, 56, 119, 120]. Accurate
repositioning of individual atoms has been implemented for four atoms in a one-dimensional
polarization-synthesized optical lattice [121], but unrestricted individual atom transport remains
a challenge in these lattices for higher atom numbers and dimensionality.
In focused beam micro-trap arrays with spacings in the micrometer regime, the preparation of in-
dividual atoms via collisional blockade, as described in the previous chapter, is the starting point
for every experiment. Efficiencies can reach 90 %, as demonstrated for up to four traps [81, 122],
but this enhanced blue-detuned loading requires trap depths roughly three times larger than stan-
dard red-detuned loading, making it more demanding to scale and typically imposing a limit to
about 50 % filling on systems of larger size. Only recently, a novel loading scheme has been
reported, using Λ-enhanced gray-molasses to cool the atoms into the traps and drive single-atom
losses using the same blue-detuned light [85]. Thus, a 10×10 array with 80% loading efficiency
could be demonstrated, requiring trap depths of not more than U/kB = 630µK.
While significantly enhancing the starting situation, this technique still fails to ensure defect-
free filling in a large array. It is thus indispensable to implement some form of real-time atom
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rearrangement procedure to eliminate defects. A 51-atom quantum simulator has been demon-
strated based on a linear optical tweezer array generated by a multi-tone acousto-optic deflector
(AOD) and atom-sorting through muting unoccupied sites and compressing the occupied ones
[53, 123]. A similar technique has been used in [85] as a second stage after enhanced loading.
A different approach is based on configuring a desired light field by the use of a 2D liquid-crystal
spatial light modulator (SLM) [52, 54, 124]. This leads to holographically created trap arrays
with adaptable geometries. Atom relocation has been demonstrated either by rearrangement of
the traps themselves through the sequential altering of the pixel-based phase pattern [54] or
by using a superposed moving optical tweezer [52]. The extension of this approach to pattern
formation in three dimensions with up to 72 atoms [124] and the application of a large-spacing
three-dimensional optical lattice for the creation of defect-free regions containing up to 50 atoms
[55] have been reported recently.

All prospect applications of assembled-atom platforms in quantum science and technology will
strongly benefit from scaling the system size to larger atom numbers. This section will introduce
a method of atom sorting via an optical tweezer similar to [52]. Combined with the excellent
scalability of the microlens approach, which is not limited by size restrictions due to the finite
frequency spectrum of AODs and constraints in pixelation and laser power resistance of SLMs,
this allowed for the creation of the largest defect-free structures demonstrated at the time of
writing this thesis. The results presented in this chapter have been published in [125] and
[69]. The following subsections will provide a thorough analysis of the challenges associated
with atom sorting, the experimental implementation in the presented experiment and further
scalability.

3.1.2 Basic considerations regarding atom rearrangement

As described in the previous chapter, the starting point in the present setup after loading the
atoms from a molasses is a randomly occupied quadratic array of configurable size, depending
on power and diameter of the dipole trap beam, with an average loading efficiency of about 50%.
The latter also depends on available laser power and the size of the subarray one chooses to work
with, as well as the alignment of the MOT and optical molasses. It is thus subject to fluctuations
on a daily basis, which has to be taken into account when designing a sorting scheme.
Out of the techniques for atom rearrangement introduced in the previous subsection, using two
perpendicularly oriented AODs, thereby implementing a movable optical tweezer able to address
every point in the atom plane, is the obvious choice, as the rigidity of the microlens platform
does not allow muting and compression of traps as applied in [53, 123].
Over the last years, there has been preliminary work done in this group exploring the possibility
of using an optical tweezer for such a purpose [126, 127], as well as earlier measurements char-
acterizing atom transport by shifting whole arrays of atoms using a galvo mirror [44, 128, 129]
or an AOD [46, 130] to tune the angle of light incident on the MLA.
The first successful implementation of a two-dimensional atom-sorting scheme using an AOD
[52] impressively demonstrated the viability of this approach, further motivating its implemen-
tation within the presented experiment.

Atom transport using an optical tweezer

In contrast to the above-mentioned preliminary work as well as the multi-tone tweezers ap-
proach, where the atoms stay in the same trap during the whole transport process, using a single
optical tweezer for atom rearrangement within a static array requires the extraction of the atom
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from a source trap, the transport in the movable tweezer and the subsequent deposition into a
static target trap. For this method to work, that is, for the atom to smoothly transition from a
shallow array trap into the tweezer and back, the tweezer trap depth needs to be ramped steadily
from zero to a depth much larger than the array depth (a factor of 10 has been reported in [52])
and vice versa for the transition back into the target trap. This gives an estimate for the optical
power requirement of the tweezer and induces the need for a synchronization of the tweezer’s
position and amplitude (see also [130]).
By using an AOD for the transfer of the atoms, timescales on the order of the inverse trap fre-
quency can easily be reached. A lower limit for the transport speed is thus given by the require-
ment of adiabaticity. Non-adiabatic transport causes a non-negligible displacement of the atom
wavefunction away from trap center at the end of the transport sequence, which induces an in-
crease of the average vibrational quantum number 〈ν〉 (i.e. heating), eventually leading to atom
loss. In a harmonic approximation of the trap potential and assuming an optimal sine shaped
transport function x(t), the average number of added vibrational quanta for a transport time T
and transport distance S is given by [131]

〈ν(T )〉+ =
mRbS2π4ωT cos2(ωT t/2)
ħh(π2 −ω2

T T 2)2
, (3.1)

with mRb being the mass of a 85Rb atom. Given a transport in lateral direction, the trap frequency
ωT equals the radial trap frequency ω⊥ of the dipole potential.

Scalability of the approach

When estimating the temporal requirement for a series of atom rearrangements, Eq. 3.1 yields
a lower bound for the time needed for a single atom move. Given the adiabaticity criterion
〈ν(T )〉+ ≤ 1, it can be written as

T =
π

ω⊥

Ç

1+ S
Æ

mω⊥/ħh . (3.2)

With a typical radial trap frequency of ω⊥ ≈ 2π ·100kHz (which corresponds to a tweezer depth
of U0/kB ≈ 2mK according to Eq. (2.19)), the minimum time needed for a displacement of one
pitch (≈ 10µm) is less than 50µs. As T only scales with

p
S, even for a transport over the whole

array an allotted time of T = 1ms is a conservative estimate. This means that even hundreds of
moves can be performed in a time significantly smaller than the lifetime of an atom in the array
(on the order of 10s), which is sufficient for the current size of the array.
Please note that all considerations on atom transport in this section are concerned with single-
atom moves, which means that a single optical tweezer is used to move one atom at a time.
A parallelization of atom transport is much more challenging to implement in the given setup
while its yield is limited for small to medium sized arrays. However, it may become crucial once
the target array is scaled beyond a certain size, and will thus be discussed as a potential future
improvement in Section 3.3.
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Outlining the atom sorting scheme

Having asserted the basic feasibility of moving the atoms around within an acceptable timeframe,
a scheme for the rearrangement of the atoms has to be defined. The basic principle of this scheme
is quite simple. It generally involves three steps:

(1) Choose a desired sub-grid within the array and define it as the target to be uniformly filled,
as well as a second grid acting as a reservoir, from which atoms are to be taken.

(2) Identify a set of trap pairs, each consisting of a filled reservoir trap and an empty target
trap, so that a unique reservoir atom is mapped to each empty target site.

(3) Perform a series of rearrangements so that each of the selected reservoir atoms is trans-
ported to its designated target site, thereby achieving a uniform filling of the target sub-
grid.

Figure 3.1.: Illustration of a generalized atom sorting scheme in a two-dimensional array.
Adapted from [86].

An illustration of this scheme is given in Fig. 3.1. The blue area indicates the target sub-grid,
while the white squares correspond to a reservoir grid. In the second step, two pairs of reservoir
atoms and empty target sites are matched, before the rearrangement is performed in the third
step.

Defining target and reservoir structures

The first step involves the decision whether a target structure should be pre-defined before the
atoms are loaded, or whether it is to be chosen dynamically, favoring regions within the array ex-
hibiting the highest occupation ratio, for any given experimental realization. The latter approach
is more likely to find an optimal region in terms of the initial atom number contained within, but
requires additional computational overhead. In [126, p. 35-40], different applicable algorithms
for this purpose are explored. For the current experiment, the utilization of a static target grid
was chosen, for two reasons: (1) For quantum computation and simulation purposes relying on
single-site addressability, a pre-defined structure allows applying a hard-coded set of laser pulses
without having to adjust the location of the beams in real-time for every experimental cycle,
significantly reducing experimental complexity. (2) Because of the Gaussian distribution of trap
depths within the array, the average atom loading efficiency also peaks in the center of the ar-
ray, as atoms are more likely to be loaded and remain trapped in deeper potentials. Defining
the target structure to be near the center thus is expected to provide a sufficiently good starting
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situation, with the slight decrease in atom occupation rate being compensated by the increase in
time efficiency gained by avoiding the additional algorithmic complexity.

Probability of success versus grid size

Given an initial array with each site randomly filled with a probability p, an estimate can
be made regarding the ideal size and shape of the reservoir as well as the maximally feasi-
ble size of the target structure. For a first rough assessment, two simplifying assumptions are
made:

• The loading probability p is the same for every trap in the array.

• Atom transport is performed with perfect efficiency and no atom is lost during the rear-
rangement (neither transported, nor static atoms).

Obviously these assumptions will not hold in a real experiment, but the simple estimate that can
be made using them provides a good starting point for further considerations.
Given the first assumption, the number X of occupied traps in any experimental realization fol-
lows a binomial distribution. Under the second assumption, the probability of successfully filling
a target structure of size M in a total array of size N is thus given by

PM ,p(X ≥ N) =
M
∑

x=N

PM ,p(X = x)

=
M
∑

x=N

�

M
x

�

px(1− p)M−x

= SM ,p(N − 1) , (3.3)

where SM ,p is the survival function of a binomial distribution.

In this simplified model, the success probability for an idealized rearrangement is therefore equiv-
alent to the probability of having loaded at least M atoms in any single experimental realization.
Given a uniform loading rate of p = 0.5, the probability for successfully filling a target struc-
ture containing N = 100 atoms thus scales with M according to equation 3.3, as plotted in
Fig. 3.2.

For the creation of defect-free structures of size N , the corresponding reservoir size M required
for > 99% probability of success in this graph is to be seen as an absolute lower bound. For
real experimental parameters, including various sources of atom loss, M will have to be signif-
icantly higher to achieve these results, as will be demonstrated in the following section. In the
present experimental setup, there are in principle two approaches for providing a reservoir of
atoms, given a finite amount of laser power to create traps. The first approach is to define any
atoms in the array not included in the target structure as the reservoir and try to make the trap
array as large as possible. The second approach is to use multiple interleaved reservoir arrays by
illuminating the MLA with additional beams. This would significantly reduce the average trans-
port distance of an atom and thus the average time needed for a move and might thus become
essential at some point when scaling up the system. Given a fixed total beam power, this would,
however, not appreciably increase the number of reservoir traps and thus the success probabil-
ity, compared to the single grid approach (see [86, p. 42] for a comparison), while requiring a
considerably more complex experimental setup. Therefore, the first approach was chosen for the
work presented here, although the latter may significantly gain in appeal once different trap laser
sources will be available for the respective sub-grids (see Section 3.3.2).
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Figure 3.2.: Probability of creating a defect-free structure with total atom number M for vari-
ous target structure sizes with N atoms, under the assumption of perfect transport
efficiency and no atom loss.

3.2 Deterministic assembly of defect-free structures

With the viability of the approach asserted, the next step is to implement a system for atom
rearrangement in the presented experiment. This section describes how this was achieved during
the course of this thesis.

3.2.1 Experimental setup

For moving atoms from one trap to another, a single dipole trap beam passing through a 2D
AOD is focused onto the atomic plane. This is most easily done by superposing it with the array
beam before the objective focusing into the chamber. Thus, the beam position in the atomic
plane can be controlled by altering the RF frequencies sent to the AOD. Figure 3.3 (a) shows a
simplified schematic of this superposition. The AOD used in this setup (DTSXY-400-780.800 by
AA Opto-Electronics) actually consists of two deflectors joined to form one unit, with their planes
of deflection aligned exactly perpendicular to each other. They will thus be treated as a single
unit in the further description, accepting two frequencies νh and νv for horizontal and vertical
displacement, respectively. When designing the complete optical setup to be integrated into the
existing experiment, a number of constraints and experimental parameters have to be consid-
ered. These include, among others, the available space for the setup, power constraints given by
the laser source as well as the laser power requirements for rearranging an array of a certain size,
and the tweezer waist and addressable region one wishes to achieve. Considerations regarding
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Figure 3.3.: A steerable, two-dimensional optical tweezer. (a) Simplified schematic of the ex-
perimental setup illustrating the superposition of array and tweezer beam and the
reimaging of both into the vacuum chamber. (b) Top view of the optical setup and
schematic of relevant electronical components. The tweezer beam is superposed
with the array beam on a polarizing beam splitter cube (PBS). Beam samplers (BS)
are used to pick off a small portion of the light for intensity stabilization. The light
passing through the chamber is used to image the atom plane on a second CCD cam-
era for alignment and calibration purposes. Fluorescence images obtained with the
EMCCD are processed in the control computer, on which an algorithm calculates the
frequency ramps corresponding to the rearrangement of atoms into a specified pat-
tern. An FPGA converts these into DDS instructions. The RF frequencies output by
the two DDS boards are amplified and sent to the AOD steering the tweezer beam.
The modular design of the setup is indicated by the grey shaded area corresponding
to a breadboard containing the array and tweezer beam paths. (c) 34× 26 site sec-
tion from the addressable region of the tweezer, obtained by reimaging the tweezer
spot onto a CCD while stepwise tuning the AOD frequencies to overlap the tweezer
spot with each array site in the region (array was turned off here). This illustrates the
excellent homogeneity of the tweezer spots over the whole array.
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tweezer waist versus addressable region, a detailed analysis of the power requirements taking
into account losses on all of the optical elements, and a characterization of the setup is given in
the Master thesis of Jan Werkmann [86], during the course of which this setup was designed and
built. Figure 3.3 (b) displays a schematic drawing of the setup, showing array and tweezer beam
paths, as well as a sketch of the electronic interconnection. The array beam path is equal to the
one introduced in Fig. 2.4. The tweezer beam passes the AOD, where most of its power (≈ 80%)
is diffracted into the (1,1) order (horizontally and vertically), after which it is magnified using
two achromatic lenses. The first f = 80 mm lens is placed such that its focal point corresponds to
the pivot point of the diffraction, thus turning the diffraction angle into a lateral displacement.
This displacement of the spot in the second focal plane of the lens is then reimaged with the
second f = 400mm lens and the f = 37.5mm lens system into the atom plane. Scanning the
AOD from 80 to 120 MHz, which corresponds to a range of nearly uniform diffraction efficiency
> 60% [86], yields an addressable region exceeding 400µm × 400µm. This is equivalent to
more than 1500 sites for a 10.3µm pitch array and more than 3200 sites for a pitch of 7µm. A
section of 34× 26 sites from this addressable region is shown in Fig. 3.3 (c), indicating excellent
homogeneity of the beam parameters over a large lateral area.
The light for both the array and tweezer beams is generated by the same Ti:Sa laser (see Section
2.1) at a wavelength of 797.3nm. To avoid interference effects, they need to be slightly offset in
frequency. Combining the AOD with the two AOMs used for fast intensity control, this shift is set
to approximately 400 MHz by choosing the appropriate diffraction orders. Using a separate AOM
for intensity control also allows to drive the AOD with a constant RF load, avoiding instabilities
of the beam position due to thermal effects.
Moving an atom with the tweezer requires the ability to dynamically tune the AOD frequencies
with a high update rate. This can be achieved, for example, by using a voltage controlled os-
cillator (VCO) and rapidly changing the reference voltage (as can be done with a fast DAC card
integrated in the control computers). However, as the VCOs initially used in this setup proved
insufficient for this purpose (causing atom loss because of frequency jitter, see [86]), a different
approach was chosen, namely using direct digital synthesis (DDS) to create the frequencies. The
two DDS systems used (Analog Devices AD9915 evaluation boards) are able to execute frequency
ramps with an update rate of 77MHz [132] and are controlled by a field-programmable gate
array (FPGA, Terasic DE1-SoC), which translates the frequency tuning words (FTWs) calculated
on the control computer into DDS instructions. Thus, the tweezer can be integrated into the
experimental control system and thus be synchronized with the rest of the experiment.
On the far side of the vacuum chamber, a magnifying telescope is set up to reimage the focal
plane of the array and the tweezer onto a separate CCD camera. This allows a measurement of
the beam waists (see below) and the calibration between AOD frequencies and array sites needed
for atom rearrangement.

3.2.2 Moving a single atom

Before being able to assemble large arrays, a single atom move has to be implemented in order
to characterize the efficiency and optimize parameters. This elementary atom move is outlined
in Fig. 3.4 (a,b): The tweezer position is aligned with an array trap containing an atom and the
tweezer depth is ramped up to its maximum value UT . As the tweezer’s potential is much deeper
than that of the array trap, the atom is captured by the tweezer and extracted from the array
trap. It is then moved in a sinusoidal trajectory to its destination, ensuring a smooth acceleration
and deceleration. Finally, the amplitude ramp is reversed, thereby depositing the atom in the
target trap. For rearranging large arrays, sequences of tens or hundreds of these single atom

36 3. Defect-free assembly of individual atoms in pre-defined structures



(a)

(b)

(c) (d)

Time

0
1.43 µm / 1.28 µm

1.91 µm / 2.03 µm

Figure 3.4.: Illustration and characterization of a single atom move.(a) Sketch of the tweezer cap-
turing an atom from a source trap and transferring it to a target trap. (b) Corre-
sponding ramps of tweezer amplitude and position during an atom move. (c) Typical
measured beam waists of a central array trap and the tweezer obtained by reimaging
(see text). (d) Transport and extraction efficiency versus tweezer depth UT in units
of the central array depth U0. Error bars correspond to the standard deviation when
averaging over 11 rows in the array.

moves are needed, and time becomes a limiting factor as the total duration reaches a significant
fraction of the atom lifetime. Therefore, it is paramount to keep the single atom move as short
as possible without causing atom loss. Ramp times found to be optimal are trise = tfall = 200µs
and the fastest viable acceleration was determined to be amax ≈ 400µm/(ms)2, corresponding to
a transport speed of v̄ ' 21µm/ms averaged over the sinusoidal ramp.
Figure 3.4 (c) shows a measurement of the waists of the tweezer and a central array trap in the
atom plane, obtained by reimaging the focal plane with a magnifying telescope on a CCD camera
on the far side of the vacuum chamber. Knowing the magnification (M = f2/ f1 = 13.3(4)) and
pixel size of the camera allows the extraction of an average tweezer beam waists of 2.0(1)µm
and an average array waist of 1.45(10)µm. Measuring the efficiency of atom extraction and
transport as a function of the tweezer depth (see Fig. 3.4 (d)) yields an optimal tweezer to array
depth ratio of UT/U0 ' 3, typically corresponding to a tweezer depth of UT = 0.52(5)mK,
and suggests that the observed limitation of the transport efficiency to roughly η = 0.75 stems
mainly from atom loss when depositing the atom into the target trap (the movement itself does
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Figure 3.5.: Flow diagram of the assembly scheme. The steps highlighted by a red background
constitute a single rearrangement cycle. This cycle is typically repeated multiple times
to achieve a higher success rate.

not induce significant loss, as was verified in independent measurements). While the reason
for this atom loss is not entirely clear, the most probable cause is the difference in waists of
tweezer and array trap. As the tweezer waist is larger by a factor of approximately 40%, the
atom occupies a larger volume, which can plausibly lead to the atom getting lost in some cases
when trying to transfer it back into the smaller volume. In [52] however, where a quasi-perfect
transport efficiency of 99.3% was reported, the tweezer waist is specified as 30% larger than the
array traps. This suggests that, if this mismatch constitutes a significant limitation, it is likely
not the only one. Other possible causes remain a subject of future investigation at the point of
writing this thesis.
Thus, even though the waist mismatch could be corrected by modifying the optical setup, this
would require a significant amount of time and does not guarantee a perfect efficiency. It was
rather chosen to find a way to circumnavigate the rearrangement limitation associated with this
imperfect transport, as will be discussed in Section 3.2.4.

3.2.3 Implementation of pattern assembly

The next step is to string together the single atom moves to rearrange larger structures and
create defect-free arrays. The individual steps in this process are sketched in Fig. 3.5 and will be
discussed in the following.

Analysis of the initial occupation

The experimental cycle starts with stochastic loading of atoms and a fluorescence imaging with
the EMCCD camera. As described in Section 2.1.3, the camera software analyses this image
as soon as it receives it and provides a boolean array corresponding to the trap occupations
(0=empty, 1=occupied). As the program is implemented as a server, it can subsequently be
queried by other processes needing this information. This analysis constitutes the first step in a
rearrangement cycle, as illustrated in Fig. 3.5. The left arrow in Fig. 3.6 illustrates this abstrac-
tion. The corresponding boolean array serves as an input parameter for the algorithm calculating
the atom moves.

Path-finding algorithm

For efficient rearrangement of atoms, an algorithm is needed to calculate a set of single-atom
moves that lead to an ordered target structure. When designing such an algorithm, one can asso-
ciate a cost with certain types of movements, distance travelled, and time needed, corresponding
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Figure 3.6.: Illustration of the abstraction from a fluorescence image of the atoms to a boolean
occupation grid, with dark squares corresponding to an empty site (0) and white
squares to an occupied site (1). This occupation grid is used by the algorithm to
classify sites into overoccupied (reservoir sites containing an atom, colored green),
underoccupied (empty target sites, colored red) and correctly occupied sites (white),
shown in the image on the right. In this depiction, dots represent occupied traps for
better visualization.

to the associated probability of atom loss. Different types of algorithms applicable to this prob-
lem are investigated in [126], all being variants of an A∗ search, that, in its general form, uses a
heuristic to efficiently find an optimal solution. All of these algorithms are tree-based, meaning
they have to traverse a search tree that generally grows exponentially with the number of empty
target traps, as the problem is similar to a travelling salesman problem in terms of complexity.
Let Ms0 be the initial number of empty traps in the target structure and b the number of different
source traps the algorithm considers for filling any given target trap. The time needed to execute
the algorithm is proportional to the number of expanded nodes in the search tree. For an A∗

search, the total number of nodes is then given by [126]

NNodes, A∗ =
Ms0
∑

i=0

Ms0!
(Ms0 − i)!

· bi , (3.4)

which would all have to be visited in the worst case. This becomes unfeasible very quickly, as
even for a reasonably small target array with Ms0 = 10 and b = 3, Eq. 3.4 yields approximately
3·1011 nodes. Assuming the expansion of one node takes on the order of a microsecond, it would
thus already take more than 80 hours to traverse the whole search tree.
The modified A∗ search, setting a strict order in which traps are to be filled, sacrifices optimality
in favor of significantly reduced processing time. Thus, the number of maximally visited nodes
shrinks to

NNodes, Mod. A∗ =
Ms0
∑

i=0

bi = b
bMs0 − 1

b− 1
c . (3.5)

For the same parameters as above, the processing time would now be less than 100 ms. As the
number of nodes still grows exponentially with Ms0, however, this algorithm is generally still not
viable for larger arrays.
In order to achieve an execution time well below the atom lifetime, the criterion of finding an
optimal solution has to be given up. The only case where this algorithm becomes feasible even
for very large arrays, is if the number of considered source traps is limited to b = 1. This turns
the modified A∗ into a greedy algorithm with a linear time complexity of O (Ms0), as the search
tree then only consists of a single branch of length Ms0.
Ideally, this algorithm applies a shortest-move heuristic, meaning that it always chooses the
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Figure 3.7.: Schematic of the algorithm matching overoccupied and underoccupied traps to form
pairs. This is done employing a shortest-move heuristic, meaning that each empty
target site is paired with the occupied reservoir site closest to it that has not been
assigned yet.

nearest available source trap to fill any empty target trap. As it does so without considering con-
secutive options, this can lead to very long moves being forced later on in the sequence, which
can yield solutions that take significantly longer to execute than the global optimum. It is, how-
ever, extremely fast (typically on the order of 1ms) and, implemented correctly, very versatile
with regard to target structure geometry. In pioneering work presented in [52], the group of An-
toine Browaeys have demonstrated that this simple greedy-type algorithm is well-suited for the
reordering of atoms, which is why this approach was also pursued within the work documented
in this thesis. Its implementation was realized in [86].

In the first step, the process running this algorithm queries the camera server and receives
the occupation grid. It then compares this grid with a pre-defined, target grid. Based on this
comparison, a trap in the array can be either underoccupied (i.e. empty when it should contain
an atom), overoccupied (i.e. occupied, but part of the reservoir), or correctly occupied. This is
illustrated in Fig. 3.6. The goal now is to calculate paths from overoccupied traps to all underoc-
cupied traps. Clearly, a successful rearranging is only possible when the number of overoccupied
traps is equal to or larger than the number of underoccupied traps. However, even if this is not
the case, the algorithm attempts to assemble the largest connected structure possible.
The coordinates of both over- and underoccupied traps are each stored in a list. The list of un-
deroccupied traps is then ordered by their distance to the target structure’s center of mass. This
sets a strict order in which the algorithm tries to fill the structure, namely from the center out-
ward, greatly reducing algorithmic complexity and minimizing the probability of encountering
obstacles along the paths, which will be discussed later.
The next step is matching underoccupied with overoccupied traps, forming a new list of pairs.
This is where the shortest-move heuristic comes into play. For each underoccupied trap in the
list, starting from the top down, the algorithm calculates the euclidian distance to all traps in the
overoccupied list, and then matches the pair with the shortest distance, adding it to the new list
and removing it from the original lists. This is repeated until either of the lists is empty. This
process is illustrated in Fig. 3.7.
Having matched all the traps, a route between each source and target trap has to be found. Here,
complications arise from the fact that moving the loaded tweezer too close to an occupied array
trap can lead to the loss of one or both atoms and therefore has to be avoided. There are two
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Figure 3.8.: Partitioning of paths to avoid atom collisions. For a given match between a source
and target trap, there are two paths that contain only one turn. The algorithm
chooses the one with fewer obstacles and, in the presence of obstacle atoms, di-
vides the paths into segments until an obstacle-free set of moves is obtained.

types of path-finding that have been implemented and take this constraint into account. The first
corresponds to moving the atoms between grid lines, displaced by half a pitch from any traps
along the way. This ensures the absence of obstacles, but only works for arrays with a pitch large
enough to allow the undisturbed passage of the tweezer. Another drawback is that this route
includes two additional ninety degree turns of the tweezer with each requiring the deceleration
and acceleration of the atom, resulting in longer move times. The other type of path avoids this
problem by moving the tweezer directly along the grid lines. For this type of move, however,
paths can include obstacles in the form of occupied traps along the way. The atoms in these
traps will then have to be moved away first, requiring additional moves. As the latter type is
more generally applicable and the overhead of extra moves manageable, it was chosen for all
measurements presented in this work 1.
The way the algorithm finds the optimal path and deals with obstacle atoms is sketched in
Fig. 3.8. As it is advantageous to minimize the number of 90◦ turns, atoms are first moved
in one dimension until they reach the target row or column, and then in the other dimension.
This, in general, results in two possible paths the atom can take. For each pair in the matched
list, the algorithm calculates the number of occupied traps along both of these paths and chooses
the one with fewer obstacles. If it contains no obstacles, it is appended to a list of final paths
and the next pair is processed. If it does, the path is segmented so that first the obstacle atom is
moved to the target trap (again dealing in the same way with additional obstacles) and then the
source atom is moved to the now empty obstacle trap. This recursive procedure continues until
the list of pairs is empty and results in a list of all paths needed to assemble the target structure,
each being obstacle-free.
The source code of this algorithm as well as an animation illustrating the procedure can be found
in [133].

1 Moving atoms along the grid lines obviously means that the tweezer can cross empty array traps while doing
so. The temporary deepening of the potential experienced by the atoms in this case could cause some heating.
A corresponding increase in atom loss could, however, not be observed in the experiment.
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Assembly of the target structure

Once the path-finding algorithm returns the final list of paths, the process controlling the tweezer
translates them into hardware instructions. Grid coordinates are converted into frequencies ac-
cording to a calibration made using the reimaging system (see [86] for details), which are then
passed to the FPGA as frequency tuning words (FTWs). The FPGA subsequently calculates corre-
sponding sinusoidal frequency ramps that it passes on to the DDS, synchronizing their execution
with tweezer amplitude ramps by simultaneously triggering an analog output card with pre-
programmed ramp instructions. As this card has to be programmed at the beginning of an
experimental run, at that instance the exact number of required ramps is not yet known. This
is solved by just programming a much larger number of ramps than needed and aborting the
execution once the rearrangement is completed. As a single atom move can consist of multiple
paths, the first trigger, corresponding to a rising ramp, is sent when extracting the atom, and the
second trigger for a falling ramp is sent when the tweezer has reached the target trap. Before the
rearrangement starts, the array depth is ramped down by a factor of 4 to 5, facilitating extraction
by the tweezer and rearrangement. Once all atom moves are executed, the array is ramped up
again and a second image is taken to assess the result of the rearrangement. This concludes one
rearrangement cycle, as indicated in Fig. 3.5.
Because of experimental limitations such as lifetime-related atom loss and imperfect transport,
the larger the target structure is, the less likely it becomes that a defect-free filling is achieved
after a single reordering. As long as there are still reservoir atoms present, however, this process
can be repeated, significantly enhancing the probability of a successful filling, as will be charac-
terized in Section 3.2.4.
Currently, the number of rearrangement cycles, like the rest of the experimental cycle, is pre-
programmed and can not be changed dynamically, as all the hardware instructions would need
to be reprogrammed, which takes hundreds of millisecond. In a future extension, this could be
solved by outsourcing all hardware instructions pertaining to atom assembly to separate devices
and switching the control back and forth. This would allow to react in real-time to the array
occupation and to abort the rearrangement and continue with the rest of the experimental cycle
as soon as a defect-free target structure is achieved.

Duration of the rearrangement

As a single atom move takes roughly 1 ms, the duration of a complete rearrangement obviously
depends on the size of the target structure, scaling more or less linearly with the number of
empty target traps. Typical durations for the structures shown in this chapter are on the order of
50 to 100 ms. Factoring in the integration time of a fluorescence image, the readout time of the
camera and the ramping times of the array, the duration of one complete rearrangement cycle
(box in Fig. 3.5) adds up to an average of about 120 ms.

3.2.4 Evaluation of performance

In the following, the results that could so far be achieved with the current experimental setup
are documented. These results have been published in [125].
The MLA used in this chapter has a pitch of 110µm (ML1, see Table 2.1.2). For the measure-
ments presented here, a workspace of 361 atoms in a 19× 19 grid was utilized. The trap depths
of the array range from U0/kB = 0.21(3)mK to 1.7(2)mK (grid corner to center), due to the
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Figure 3.9.: Effect of multiple rearrangements on the filling fraction of a 5 × 5 cluster based on
500 experimental realizations. Error bars correspond to the standard deviation of the
mean. The inset shows a histogram of the atom number in the target structure for
two selected points in the sequence of rearrangements.

Gaussian profile of the beam illuminating the MLA. On average, 191(17) single atoms are ini-
tially loaded within this workspace. This corresponds to a loading efficiency of 53(5)%.
Figure 3.9 illustrates the effect of a sequence of attempted assemblies of a 5×5 target cluster. Be-
cause of the limited transport efficiency and lifetime-related atom losses, a single rearrangement
cycle is not enough to achieve a defect-free filling in any of the 500 experimental realizations.
However, the repeated application of the rearrangement procedure quickly drives the filling frac-
tion close to unity and yields a probability > 60% of detecting a defect-free cluster after 12
repetitions, as is shown by the histogram in the inset.

Scaling to larger arrays

With this procedure showing promising results for a medium-sized target cluster, this raises the
question of the largest structure that can be assembled in the present experimental conditions. At
the point of performing the experiments documented here, the largest structures demonstrated
elsewhere so far contained 72 atoms [52].
In Fig. 3.10, results are presented that break this record by a significant margin. Figure 3.10 (a)
shows a sequence of images corresponding to subsequent rearrangement cycles, resulting in a
defect-free target structure containing 100 atoms. This is achieved after five cycles, taking 1.3 s
in total. Especially for larger structures, the execution of multiple repetitions is vital for a suc-
cessful assembly of the pattern, as is illustrated in Fig. 3.10 (b), where the cumulative success
rate is plotted against the number of rearrangement cycles. Even as the probability to achieve a
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Figure 3.10.: Results of multiple rearrangements. (a) Atom distribution during a sequence of
rearrangement cycles for a 10×10 target structure. Starting from an unsorted atom
array, a defect-free cluster is generated within 5 cycles. (b) Measured cumulative
success rates of achieving defect-free quadratic clusters of different sizes. For most
clusters, the final value is reached after 10-15 rearrangement cycles. (c) Maximum
filling fraction observed during rearrangement runs for different cluster sizes, which
is typically reached after 7-9 cycles. Error bars correspond to a 1σ interval. The thick
continuous line at 0.55 represents an upper bound to the filling fraction obtained
via collisional blockade alone, i.e., the situation before the first rearrangement cycle.
(d) Gallery of differently shaped defect-free clusters.

defect-free structure drops below 100% for clusters of more than 5×5 atoms, for measurements
where a defect-free pattern is critical this would just mean that shots where the assembly did not
succeed will have to be discarded in post-selection, which is still somewhat feasible for the 100
atom cluster with a 3.1% success rate. This number corresponds to the probability of creating a
defect-free structure after any one of the rearrangement cycles and not necessarily after the last
one, as atoms can get lost over time, creating new defects. In order to efficiently work with these
large clusters, a method for aborting the rearrangement process once the structure is filled will
have to be implemented.
For measurements that do not necessarily require a total absence of defects, but simply a near-
unity occupation of a structure, the filling fraction is perhaps the more relevant number. It is
shown in Fig. 3.10 (c) for the same clusters and exceeds 95% for all target clusters up to 8× 8
atoms. Even the 10× 10 cluster still exhibits a filling fraction of 88(7)%, which is significantly
higher than the initial loading rate of ≈ 55%, drawn as a grey bar at the bottom of the graph.
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Table 3.1.: Success rates and filling fractions for different structure sizes. The data in this table
are plotted in Fig. 3.10 (b and c). For details, see text.

Structure size Max. cumulative success rate Max. filling fraction

3× 3 100% 98(5)%
4× 4 100% 98(5)%
5× 5 99.8% 99(3)%
6× 6 85.5% 96(5)%
8× 8 63.5% 96(4)%
9× 9 11.8% 89(8)%

10× 10 3.1% 88(7)%

The maximum filling fraction plotted here corresponds to the highest observed value within each
respective series of rearrangements. It typically peaks at around 7 rearrangements for the mea-
surements presented here. For any given structure, it does not reach 100% in every repetition of
the experiment, as during any specifc rearrangement cycle, there is a finite probability of atom
loss 2.
Table 3.1 lists the maximal cumulative success rates and filling fractions that could be achieved
for the respective structures.
Figure 3.10 (d) depicts a gallery of differently shaped target structures, including the largest
structure that could be assembled so far, containing 111 atoms. This illustrates the flexibil-
ity to create various topologies, which is essential in some quantum error correction schemes
[134, 135] as well as for the observation of topological effects in a Rydberg quantum simulator
[43, 136].

Reloading and reordering

The larger the target structure gets, the more the success of its assembly is limited by lifetime-
related atom loss. But even for smaller clusters, it sets a boundary on the cluster lifetime after
its successful assembly. Another source of atom loss in the cluster can be intentional, such as
a destructive state detection, as will be utilized for the Rydberg measurements introduced in
Chapter 4. In both of these cases, the reloading of atoms into the cluster would mean that
the experimental cycle would not have to be started over, that is, with the loading of the MOT.
Instead, the experimental segment requiring a defect-free cluster can be executed as many times
within one cycle as there are enough reservoir atoms to reload the cluster.
Figure 3.11 (a) demonstrates this scheme for a 3 × 3 cluster. In between rearrangements, the
target traps are depleted by extracting the atoms with the tweezer and depositing them in a
region without a trapping potential, ensuring that for the subsequent assembly the atoms have
to be taken again from the reservoir, as would be the case in the situations described above. The
number of times this can be repeated obviously depends on target structure and reservoir size
(here, only a 11 × 11 workspace was used), as well as transport efficiency, atom lifetime and

2 This is to be seen in contrast to the cumulative success rate, which represents the probability of achieving
defect-free filling in any one of the evaluated rearrangement cycles.
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Figure 3.11.: Demonstration of reloading and reordering schemes. (a) Multiple reconstruction
of a central 3 × 3 cluster after deliberate atom removal. The number of feasible
repetitions within one experimental run scales with the size of the reservoir array.
This demonstration is based on an 11 × 11 workspace with 96 reservoir sites. (b)
Example of the transformation (inversion) of an atom arrangement within a single
experimental run. Atoms lost during this procedure are replaced by atoms from
the surrounding reservoir. (c) Demonstration of an atom exchange between two
clusters: Left, An initial defect-free structure of two 2× 2 clusters is created. Middle
and Right, The atoms are relocated so that two atoms of each cluster are moved
into the respective other cluster. The two colors in the schematic correspond to
the respective original clusters. This procedure can be used for the distribution of
entanglement [137].

initial loading rate. Especially the latter can fluctuate on a daily basis, so that the attempted
number of reloadings has to be assessed and adapted routinely. This method was used for the
measurements presented in Chapter 6.
Apart from reloading the same target structure multiple times, atoms can also be configured
into different patterns within the same experimental run. Figure 3.11 (b) shows the inversion
of a pattern. In that particular case, the transport efficiency is insufficient to allow a perfect
reordering, so atoms lost during rearrangement were replaced by atoms from the reservoir. In a
smaller arrangement, as shown in Fig. 3.11 (c), the efficiency is high enough to deterministically
exchange particular atoms between clusters, as sketched in the schematic. Done adiabatically,
this procedure preserves coherence [44, 130] and thus allows for the redistribution of quantum-
correlated or entangled subarrays [137].

Extension of atom lifetime and perpetuation of structures

Because of the limitation in trapping laser power, the wavelength for the measurements pre-
sented here was chosen to be only 2 nm red-detuned from the D1 line (i.e. 797.3 nm). This close
to the resonance, photon scattering plays a major role in limiting the atom lifetime in the trap,
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Figure 3.12.: Extension of the lifetime by repeated imaging and perpetuation of a cluster. (a)
Periodically illuminating an unsorted atom distribution with detection light exerts a
cooling effect counter-acting scattering-induced heating by the trapping laser. This
significantly prolongs the lifetime of the atoms in the trap compared to a measure-
ment without detection light. (b) Making use of this lifetime extension as well as
reloading from the reservoir, a 5× 5 cluster can be kept defect-free for up to 80 cy-
cles, or approximately 10 s. Error bars correspond to the standard deviation of the
mean.

which is expected to be significantly lower than the value of τ805 nm = 10.3(14) s measured for a
Ti:Sa wavelength of 805 nm and trap depth of U0 = 3.2 mK [138], which was shown to be lim-
ited by collisions with background atoms. Indeed, a similar measurement for λTi:Sa = 797.3 nm
yields a lifetime of only τ797nm = 3(1) s, as is shown in Fig. 3.12 (a) (orange data points). Based
on this lifetime, the assembly of defect-free structures of 100 atoms or more should not have
been possible. However, during the repeated assembly attempts, the atoms seem to experience
a boost in trap lifetime. This can be explained by the repeated illumination with the detection
light, which periodically cools the atoms in the traps, analogous to an optical molasses stage.
This effect becomes expecially noticeable the larger the number of repetitions get. In a measure-
ment consisting of 80 repetitions, with 120 ms between each image, the extension of the atom
lifetime to a value exceeding the vacuum lifetime reported in [138] can be observed. The blue
data points in Fig. 3.12 (a) illustrate this lifetime extension. For this measurement, the tweezer
was disabled, so no rearrangement happens, isolating the effect of the imaging on a central 5×5
region of the array. The extended lifetime was measured to be τext = 13(1) s.
Switching on the tweezer to assemble a defect-free 5×5 cluster in the same region demonstrates
the combined effect of extended atom lifetime and reloading from a reservoir on the cluster
lifetime. Figure 3.12 (b) illustrates how this allows to keep the cluster defect-free for several
seconds. In an average of 49(13) of the 80 images taken in this series, the target structure
was determined to be without defect, perpetuating the cluster for up to 10 s. This can be es-
pecially interesting for quantum sensing and metrology applications benefiting from long-lived
atomic arrays. We infer that the lifetime of the target structure is limited by the lack of suffi-
cient reservoir atoms for long rearrangement cycles and it could be further extended in a larger
workspace.
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3.3 Future scalability

The results presented in the previous section are to be seen as a current status quo, with nu-
merous ways of expanding this procedure to even larger structures within reach, given the
intrinsic scalability of the microlens platform. In this section, the potential for further scaling
up the system will be evaluated. First, it will be explored how the currently implemented
tweezer setup could perform with a feasible improvement of parameters such as transport
efficiency or atom lifetime. After that, different possible extensions of the setup will be dis-
cussed.

3.3.1 Scaling with improved experimental parameters

Modelling the rearrangement procedure described in the previous section with a Monte-Carlo
simulation allows to assess the effect of various experimental parameters on its performance.
A finite transport efficiency and atom lifetime are easily modelled by introducing a stochastic
loss after every rearrangement. For each repetition of the simulation, a randomly filled initial
grid is created and the path-finding algorithm is applied to find a rearrangement sequence. The
timings, which are relevant for simulating lifetime losses, are matched closely to the experi-
mental values. The source code for this simulation can be found in Appendix B. To assert its
validity, first a simulation with experimentally measured parameters is done. These parameters
are:

• A single move transport efficiency of η= 0.75(5)

• An atom lifetime of τ= 6(6) s

• A site-specific loading rate with an average of p = 0.53(5)

• A workspace of 19× 19 sites

The lifetime was obtained from the same measurement as plotted in Fig. 3.12 (a), but evaluated
over the whole 19× 19 workspace and only taking into account the initial 10 repetitions, as the
atom loss tends to be slightly higher during these compared to later repetitions. The large error
is due to significant variations over the whole workspace 3.
Simulating 5000 experimental repetitions this way yields the result shown in Fig. 3.13 (red cir-
cles and shaded region), which agrees well with the experimental data.
Having a reliable method to simulate the outcome of a rearrangement attempt allows an extrap-
olation to improved experimental parameters. In the following, two sets of improved parameters
will be analyzed.

1. η= 0.95, τ= 13 s, p = 0.5, 19× 19 site workspace:
These parameters represent experimental improvements that can feasibly be achieved in
the existing setup without having to invest in a more potent laser or vacuum system. Since
a transport efficiency of 99.3% has already been reported in [52], a value of 95% should
be achievable with an improved optical setup, reducing the tweezer waist to match that of
the array. To reach the vacuum-limited lifetime of 13s over the whole array, the photon
scattering of the array beam needs to be reduced by detuning the laser slightly further
from resonance. The array trap depth lost this way can be compensated for by supplying

3 This would be more correctly modelled by introducing a site-specific lifetime in the simulation. As the corre-
sponding modification of the simulation yielded no appreciable difference to using a global lifetime, the latter
was chosen for all simulations presented here. This also facilitates extrapolations to improved parameters.
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Figure 3.13.: Results of Monte-Carlo simulations of the rearrangement procedure. The graphs
shows Monte-Carlo simulations of the cumulative success probability after 25 rear-
rangements for different parameter sets. The experimental data correspond to the
maximum values of the curves in Fig. 3.10 (b) and is matched well by the simula-
tion using experimentally obtained parameters. Shaded regions correspond to a 1σ
confidence interval.

the tweezer beam from a different laser, so that all of the available Ti:Sa power can be used
for the array (the amount of power needed for the tweezer can be provided by a diode
laser). The result of the simulation for these parameters is represented by the blue curve in
Fig. 3.13.

2. η= 0.99, τ= 60 s, p = 0.8, 50× 50 site workspace:
This simulation is still based on the same experimental methods, but with significant im-
provements of the setup. The parameters correspond to the best that have been demon-
strated in comparable experiments so far. A lifetime close to a minute can be reached in
alkali metal atoms setups with vacuum pressures an order of magnitude lower than in the
current setup presented here [139] 4, and an inital filling fraction of 80% in an array of 100
traps has recently been demonstrated [85]. Ensuring sufficient trap depths for a 50 × 50
array, while staying far-detuned enough to allow for the aforementioned parameters to be
met, admittedly, requires significantly more laser power than is available in the current
setup (by roughly a factor of 10), which is also more than can be provided by a single
commercially available Ti:Sa laser. However, as each site in the trap array corresponds to a
separate lenslet in the MLA, a microtrap array could be composed of multiple laser sources,
thereby overcoming this limitation. The green curve in Fig. 3.13 shows that given these

4 Using a much narrower cooling transition in the alkaline earth metal Strontium, longer lifetimes under constant
application of Sisyphus cooling have been reported [140, 141].
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Figure 3.14.: Interleaved arrays with different geometries created by varying the relative angle of
the illuminating beams on the MLA. The fundamental pitch here is 14.1µm. The
pictures represent averaged fluorescence images. Taken from [69].

parameters, structures containing more than 1000 atoms could be assembled with high
probability.

These simulations serve to illustrate the robustness and intrinsic scalability of the microlens ap-
proach combined with a single optical tweezer, the major limitation merely being optical power.
These extrapolations were made based on the same rigid geometry as is currently in use in
the setup, using a single trap array. Modifications of this geometry, such as interleaved grids,
parallelization of transport and an expansion into the third dimension, are discussed in the fol-
lowing.

3.3.2 Interleaved reservoir grids

Due to the direct mapping of microlenses to focal spots, it is possible to create multiple trap
arrays in the same focal plane by superposing two illuminating beams on the MLA in an angle.
Trapping of atoms in these interleaved arrays has been demonstrated in [130] for atomic ensem-
bles and in [46] for single atoms. Given a fundamental pitch of 10µm, an additional array in
each dimension, shifted by half a pitch in horizontal and vertical directions, is feasible without
noticeable cross-talk between the traps [46], thereby quadrupling the density of traps compared
to the current setup. As each of the arrays could be sourced from a different laser, available laser
power would not be a major limitation (the light for the additional arrays could be provided
by Master Oscillator Power Amplifier (MOPA) systems, which are being actively developed and
widely used in the group, and are relatively inexpensive to build). Averaged fluorescence images
of an interleaved array created with two beams on the MLA are depicted in Fig. 3.14 (in this ex-
ample, the fundamental pitch is 14.1µm). By changing the relative angle of the incident beams,
various geometries can be created.

Using these additional arrays as a reservoir should yield similar results to increasing beam
size and power in a single array, in terms of creating defect-free structures of larger sizes. This
approach has the additonal advantage, however, that the reservoir would not lie outside the
target structure, as is typically the case in the current setup, but would be interleaved with it,
yielding very short moving distances and significantly reducing the occurrence of obstacles in a
path. An adaptation of the path-finding algorithm catering to this modified setup has already
been implemented during the work reported in [86] and can thus be used to simulate the perfor-
mance of this method. Figure 3.15 shows the result of a simulation using interleaved reservoir
arrays, as illustrated schematically in the top part of the figure. All simulations are based on
a 19 × 19 workspace, a loading rate of p = 0.5 and a transport efficiency of η = 0.75(5), as
measured in the experiment, as well as a global lifetime of τ= 13(1) s, which corresponds to the
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Figure 3.15.: Monte-Carlo simulations of the probability for generating large defect-free struc-
tures using interleaved reservoir arrays. All simulations are based on experimen-
tal parameters, but assume a vacuum-limited lifetime over the whole workspace.
Adding interleaved arrays offset by half a pitch in horizontal, vertical, or both di-
rections, respectively, would lead to an appreciable increase in feasible cluster size.
Shaded regions correspond to a 1σ confidence interval. Lines are used to guide the
eye.

vacuum-limted value measured in the central 5 × 5 traps under repeated cooling. Given these
parameters, the graph shows that using two or three additional interleaved arrays, with similar
laser power as the fundamental array, would allow for a complete filling of the workspace with a
finite probability.

3.3.3 Parallelization of atom transport

As the atom lifetime in the presence of repeated cooling cycles is significantly longer than a
sequence of movements, the use of a single optical tweezer for rearrangement is sufficient given
the current array sizes. However, as one scales up the system according to the above-mentioned
approaches, the time needed for a sequence of rearrangements grows rapidly as well. Improving
the atom lifetime in the traps can somewhat mitigate the associated atom loss, but at some
point this will nevertheless constitute a limitation when reaching a critical system size. In order
to drastically cut back on the rearrangement time, one would have to implement some sort of
parallelization. A promising approach for this is the use of multitone generation as introduced
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Figure 3.16.: Three-dimensional Talbot optical lattice created by reimaging the periodic pattern
in the focal plane of the MLA. Top : Cut along the optical axis showing a 2D
projection of the Talbot carpet with parameters similar to the current experiment
(λ = 798.6nm, d = 14.1µm, w0 = 1.45µm). Bottom : Averaged fluorescence im-
age of single atoms trapped in the potential structure corresponding to fractional
and integer Talbot planes [69].

in [53], with the obvious benefit that the current tweezer setup could still be used, but instead
of a single spot, a hundred could be feasibly generated in a real-time fashion. Implemented
appropriately, this would enable the transport of complete rows and columns at a time, thus
significantly speeding up the rearrangement.

3.3.4 3D array via trapping in Talbot planes

In most of the experiments performed in the presented setup so far, the Talbot effect (introduced
in Section 2.1.2) was treated as an undesirable side effect and atoms trapped in the self-images of
the focal plane are usually removed by a resonant laser at the end of the initial loading process.
However, the ability to control the axial spacing of the 3D Talbot carpet by tuning the array
pitch, and the fact that all the additional trapping planes generated by this self-imaging come
at no additional cost in laser power, makes the deliberate utilization of these planes for atom
trapping a promising approach for extending atom assembly into the third dimension.
The implementation of a 3D assembled Talbot optical lattice faces two major challenges. The

first is eliminating interference from unwanted fractional Talbot planes. While the integer and
half-valued planes are typically spaced far enough from each other so that they do not cause a
major reduction of contrast when imaging one of the planes while atoms are trapped in the other
planes, the rest of the Talbot carpet constitutes a disrupting source of background light that can
significantly impede the fidelity of atom detection. This can be seen in the axial plot of such a
Talbot carpet illustrated in Fig. 3.16 (top). Figure 3.16 (bottom) illustrates how atoms can be
trapped in planes of different geometries within the Talbot carpet. When working with multiple
planes, the blow-away scheme using a string of wire is not applicable anymore, as it removes
atoms from all but a single plane. Thus, a more sophisticated removal scheme will have to be
implemented, for example by reimaging a periodic line structure on the atoms, whose periodicity
can ideally be adapted to accommodate different Talbot lengths. This could be accomplished with
a digital micromirror device (DMD), using the technique reported in [142] and illuminating the
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Figure 3.17.: Assembly of a defect-free 9 × 9 cluster in two adjacent half-integer Talbot planes
separated by 133(8)µm [69].

Talbot carpet laterally. The second challenge is implementing a method for variable addressing
and detection of atoms in multiple Talbot planes. So far, both of these are realized in a static
fashion, so that changing the Talbot plane to be assembled involves manually displacing the
array and tweezer in the axial direction by tuning the position of a lens, which can obviously
not be done within a single experimental run. A solution for this problem has recently been
demonstrated in [124], where electrically tunable lenses were used to dynamically adjust the
tweezer and imaging plane, allowing for the sequential rearrangement of atoms in multiple
trapping planes generated holographically with an SLM. Using these lenses, whose focal length
can be tuned over a large range by controlling the curvature of a liquid-filled membrane with a
driving current, adaptive addressing and imaging of various Talbot planes could be achieved in
the current setup.
An analysis of the scalability gained by this approach, as well as first results of atom assembly
in separate Talbot planes, has been published in [69]. Figure 3.17 shows the expansion of the
atom sorting scheme presented in this thesis to an additional Talbot plane. Here, T0 denotes
the original focal plane of the array, while T1/2 is the first fractional Talbot plane going along
the optical axis. According to Eq. (2.21), their axial distance is z∗ = 133(8)µm. The observed
success probability for assembling a 9×9 cluster in the Talbot plane is comparable to the original
plane. This demonstrates the excellent optical quality of the Talbot planes and hints at their
potential for building large assembled 3D crystals.

3.4 Conclusion

The topic of this chapter was the experimental realization of an atom sorting scheme enabling the
creation of large defect-free structures within an array of single-atom quantum systems. Utilizing
an optical tweezer steered via a two-dimensional acousto-optical deflector, arbitrary atom trans-
port within the focal plane of the dipole trap array introduced in Chapter 2 could be achieved.
Combining the excellent homogeneity of both array and tweezer traps over a larger area with a
fast method to calculate and execute sequences of atom moves needed for the assembly of the
atoms into a predefined pattern, the formation of defect-free structures of more than 100 atoms
could be demonstrated. The application of multiple assembly cycles within a single experimental
realization was shown to both significantly boost the success probability for the initial assembly
of a large structure and serve as an efficient way to reload atoms after deliberate or unintentional
atom loss, while having the beneficial side effect of prolonging the atom lifetime in the traps. A
Monte-Carlo simulation of the assembly process, validated by a comparison with experimental
data, allows to access the scaling potential of this approach, indicating that defect-free structures
of more than 1000 atoms could be constructed with feasible experimental parameters. Further
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extensions of the technique enabled by intrinsic properties of microlens arrays, such as using
interleaved grids or extending the system into the third dimension using the Talbot carpet, have
been discussed and first results have been presented.
Large assembled arrays of neutral atoms have a multitude of potential applications, the most
notable and actively pursued being quantum computation and simulation schemes relying on
Rydberg-mediated interactions between the atoms [20, 30, 37], where remarkable progress
has been achieved in the last years [38, 39, 42, 43, 60, 108, 143] even with smaller systems.
Scaling up the atom number would allow the simulation of ever more complex systems, allow-
ing the exploration of exotic quantum phase transitions [42] and topological effects [40, 43],
as well as enabling the implementation of quantum error correction and topological quan-
tum computing schemes [134, 135]. The latter is essential for the efficient implementation
of quantum algorithms. The following chapters document progress towards these applications
by implementing Rydberg-mediated interactions in the given experiment. While the experiments
presented in this thesis were all conducted in a quadratic geometry, hexagonal microlens ar-
rays are readily available and even arrays with completely arbitrary geometry can be custom-
crafted, as has been reported in [142]. This gives full flexibility for the study of topological
effects.
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4 Spatially resolved Rydberg excitations in
assembled atom arrays

In Chapter 2, the utilization of Rydberg states for the development of quantum information
applications was motivated. A major part of the work documented in this thesis was the
implementation of a coherent Rydberg excitation scheme into the experimental setup. While
one-photon excitation to the Rydberg state has been realized in various experiments in the past
years [41, 57, 105], the setup of the corresponding laser system is a cumbersome and resource-
intensive task. For this reason, most of the experiments working with Rydberg atoms choose a
two-photon excitation scheme with a large detuning from the intermediate state. As a frequency-
doubled 960 nm laser system already existed in the experiment prior to the work conducted for
this thesis, the adaptation of the scheme depicted in Fig. 2.9 (c) in the experiment was an obvious
choice.
This chapter documents the implementation of spatially-resolved Rydberg excitations in an as-
sembled atom array prepared according to the technique presented in Chapter 3, as well as an
analysis of the dynamics arising from the coherent coupling to the Rydberg states.
In the first section, the theoretical background necessary to describe the coherent ground-to-
Rydberg-state coupling will be discussed briefly, after which the laser system and experimen-
tal setup will be presented. Section 4.3 will then illustrate the experimental procedure for
coupling the ground state to a desired Rydberg state and analyze the obtained Rabi oscilla-
tions.

4.1 Theoretical background

4.1.1 Three-Level System

In Chaper 2.1.1, the atom-light interaction in the Dressed Atom picture was discussed, where the
atom is treated as a two-level system driven by a single-mode monochromatic light field. For
a two-photon excitation scheme far-detuned from the intermediate level, the coherent drive of
the transition from ground to Rydberg state can be well understood in this simplified picture.
However, in order to describe effects such as electromagnetically induced transparency (EIT), as
well as to fully understand the dampening that can be observed in the coherent dynamics when
driving an atom to the Rydberg state via a two-photon transition, an intermediate state has to be
included in the picture.
This atomic three-level system in a ladder scheme is illustrated in Fig. 4.1. It consists of a ground

state |g〉, an intermediate excited state |e〉 and a Rydberg state |r〉 1. The transitions |g〉 ↔ |e〉
and |e〉 ↔ |r〉 are coupled by coherent laser fields E1,2(t) = E1,2 cos(ω1,2 t) 2. The atom-light
interaction can be described by the Hamiltonian

Hint = −d · (E1 + E2) , (4.1)

1 This nomenclature was chosen to reflect the given scenario of coupling a ground state to a Rydberg state. Other
types of three-level system are of course possible, but not relevant here.

2 A position dependency of E is neglected here, as for the systems considered in this chapter, the spatial distribu-
tion of the atom is small compared to the intensity gradient of the laser field.
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Figure 4.1.: (a) Three-level system in a ladder scheme. (b) EIT dispersion-like signal obtained by
scanning the coupling laser across the |5P3/2〉 ↔ |57DJ〉 resonances, resolving the
hyperfine structure of the intermediate state, as well as the fine structure of the
Rydberg state. Taken from [144].

where the dipole operator can be expressed in the atomic basis as

d= deg · (|e〉 〈g|+ |g〉 〈e|) + dre · (|r〉 〈e|+ |e〉 〈r|) (4.2)

with the matrix elements di j = 〈i|er| j〉. Applying the dipole and rotating wave ap-
proximations 3, the interaction Hamiltonian can be represented in the {|g〉 , |e〉 , |r〉} basis
as

Hint =
ħh
2
·





0 Ω1 0

Ω1 −2∆1 Ω2

0 Ω2 −2(∆1 −∆2)



 , (4.3)

with the Rabi frequencies Ω1 = −deg · E1/ħh and Ω2 = −dre · E2/ħh 4. The dynamics of the atomic
system are thus governed by the Schrödinger equation

iħh∂tψ= Hψ= (HAtom +HInt)ψ , (4.4)

where the state vector can be factored into external and internal components as

|ψ〉= |ψg〉 |g〉+ |ψe〉 |e〉+ |ψr〉 |r〉 . (4.5)

Effective two-level system

Even in the absence of light, the excited states |e〉 and |r〉 couple to the vacuum mode of the
radiation field, causing transitions to the ground state with rates Γe, Γr . This spontaneous emis-
sion occurs on a timescale of ∼ 1/Γi. As only cases where |r〉 is a high-n Rydberg state shall
3 see Section 2.1.1
4 Compare to Eq. (2.8).
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be considered here, Γr is typically at least three orders of magnitude smaller than Γe and small
compared to the relevant Rabi frequencies, and will thus be neglected.
For a near-resonant two-photon drive (∆1+∆2�∆1,2) far-detuned from the intermediate state
(∆1 ≈ −∆2� Ω1, Ω2, Γe), one can adiabatically eliminate the excited state |e〉 from the picture.
Specifically, if 1/Γe is fast compared to the relevant timescales governed by Ω1 and Ω2, a valid
approximation is that ψe damps to equilibrium instantaneously (∂tψe = 0). Thus, the explicit
dependence of ψe is removed from the equations of motion (Eq. (4.4)) describing ψg and ψr
and the time evolution of ground and Rydberg state is given by [64]

iħh∂tψg =
Ω2

1

4∆
ψg +

Ω1Ω2

2∆
ψr (4.6a)

iħh∂tψr =
Ω1Ω2

2∆
ψg +

Ω2
2

4∆
ψr , (4.6b)

where ∆ = (∆1 + ∆2)/2. These equations are equivalent to the Schrödinger equation of a
two-level system with an effective two-photon Rabi frequency

Ω2Ph :=
Ω1Ω2

2∆
(4.7)

and ac Stark shifts

ωAC, i :=
Ω2

i

4∆
. (4.8)

With these Stark shifts and the definition δ2Ph =∆1+∆2, the effective detuning of the light field
from this two-level system is given by

δ = δ2Ph −
�

Ω2
1

4∆
−
Ω2

2

4∆

�

. (4.9)

When working in this parameter regime, it is possible to transfer the population from the ground
to the Rydberg state without significantly populating the intermediate state. Ideally, the coher-
ence time of these dynamics would then only be limited by the decay rate Γr of the Rydberg
state.

Electromagnetically induced transparency

Another coherent phenomenon that can be observed in a three-level system coupled by two laser
fields is electromagnetically induced transparency (EIT). In the limit of a strong coupling and
weak probe field (Ωp := Ω1� Ω2 =: Ωc), the atom becomes transparent for the probe light if the
two-photon resonance condition is met (∆p = −∆c =∆).
For a comprehensive description of EIT, see [145]. A more Rydberg-specific treatment can be
found in [146]. Here, only a brief discussion for the special case of a ladder system (as illustrated
in Fig. 4.1 (a)) shall be given.
Diagonalizing the Hamiltonian (Eq. 4.3) for the resonance condition yields the eigenstates [145]

|+〉= sinθ sinφ |g〉+ cosφ |e〉+ cosθ sinφ |r〉 (4.10a)

|D〉= cosθ |g〉 − sinθ |r〉 (4.10b)

|−〉= sinθ cosφ |g〉 − sinφ |e〉+ cosθ cosφ |r〉 (4.10c)
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with mixing angles

tanθ =
Ωp

Ωc
tan2φ =

q

Ω2
p +Ω2

c

∆
. (4.11)

As the state |D〉 only has contributions from the long-lived states |g〉 and |r〉, an atom prepared
in |D〉 is unlikely to decay during the relevant timescales with the spontaneous emission of a
photon. Hence it is called a dark state.
Assuming a weak-probe limit, as mentioned above, and light fields on resonance (∆p =∆c = 0),
the mixing angles tend to θ → 0 and tanφ→∞ (or φ = π/2). The eigenstates (Eq. 4.10) can
then be expressed as

|+〉=
1
p

2
(|r〉+ |e〉) (4.12a)

|D〉= |g〉 (4.12b)

|−〉=
1
p

2
(|r〉 − |e〉) . (4.12c)

As the probe can only couple the ground state to the intermediate state, it now exhibits equal
coupling amplitude from the dark state |D〉 to either of the states |±〉. Because of the opposite
signs in the |e〉 terms, these two pathways interfere destructively, resulting in vanishing exci-
tation and photon absorption. In other words, the atom becomes transparent for the probe
light.

EIT is a powerful tool in Rydberg physics. For example, it can be used in cold atomic clouds
to map the dipolar interaction between Rydberg atoms onto an optical transition, allowing the
observation of a cooperative effect due to Rydberg blockade [146].
In the present experiment, a vapor cell setup for the detection of EIT signals is available and has
been used in previous work to calibrate the laser system and tune it to a specific Rydberg state
[144, 147]. The dispersion signal obtained from scanning the coupling laser across a Rydberg
resonance is shown in Fig. 4.1 (b), where the fine structure of the Rydberg state, as well as the
hyperfine structure of the intermediate state is resolved (taken from [144]). The inclusion of a
highly stable reference cavity and subsequent calibration with a high-resolution wavemeter, as
discussed in Section 4.2.1, removed the need for calibration with the EIT signal. As a tool for
quick double-checking of the calibration, especially when switching to a largely different Rydberg
state, it will however still be practical to have it available in the future.

4.1.2 Transition strengths and Rabi frequencies in Rb atoms

In order to accurately calculate the Rabi frequencies when coupling the atoms with the Ryd-
berg laser fields in the experiment, the fine and hyperfine structure of the respective states
have to be taken into account. The main interaction between different internal states is the
dipole interaction, and as seen before, the Rabi frequency of a transition between an initial
state |i〉 and a final state | f 〉 is proportional to the dipole matrix element corresponding to this
interaction

Ωi↔ f = −
〈 f |d · εE0|i〉
ħh

, (4.13)

with the unit vector of polarization ε. The dipole matrix element between two internal states
depends on the overlap of the wavefunctions of the two states, which intuitively explains why
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the coupling from the ground state to a Rydberg state decreases with growing n, as the over-
lap of their wavefunctions gets smaller and smaller. Calculating the dipole matrix element is
a nontrivial task, which however can be simplified by making use of rotational symmetries in
the system. A comprehensive treatise on this subject can be found in [148]. Here, only the
results of these derivations will be summarized. Transforming into a spherical basis exploits the
rotational symmetry of the problem and the Rabi frequency between the states |i〉 = |n jm〉 and
| f 〉= |n′ j′m′〉 is given by

Ωi↔ f =
eE0

ħh

1
∑

q=−1

εq 〈n′ j′m′|r̂C1
q |n jm〉 (4.14)

with spherical components εq∈{−1,0,1} of the polarization vector, the spherical tensor com-
ponents C1

q and the position operator r̂. The Wigner-Eckart theorem allows to split the
matrix element into a factor containing the angular dependencies and a reduced radial
part:

〈n′ j′m′|r̂C1
q |n jm〉= (−1) j

′−m′
�

j′ 1 j
−m′ q m

�

︸ ︷︷ ︸

angular

〈n′ j′‖r̂C(1)‖n j〉
︸ ︷︷ ︸

radial

(4.15)

with the irreducible first order tensor C(1). The angular part only contains a Wigner 3-j sym-
bol constituting geometric consideration arising from the conservation of angular momentum,
whereas the radial part describes the interaction between the states. It can be further broken
down to the calculation of the radial integral

Rnl
n′ l′ =

∫

R?n′ l′ rRnl r
2dr (4.16)

with the radial wavefunctions Rnl(r), which can be done numerically with the help of the Nu-
merov algorithm. A Python implementation of this algorithm was developed in the group of
Charles Adams [103]. This package, called Alkali-Rydberg-Calculator (ARC), provides methods
to solve the radial Schrödinger equation and calculate the above matrix elements, as well as
related properties, such as Rabi frequencies, transition probabilities, lifetimes, and simple inter-
action energies 5. Throughout this thesis, this package was used to calculate these properties and
make predictions for the experimental conditions. To calculate the expected Rabi frequencies,
the experimental parameters of the laser field have to be included in Eq. (4.14) via the electric
field amplitude

E0 =

√

√ 4P
πε0cw2

, (4.17)

where P denotes the total power of the beam and w the 1/e2 beam radius at the position of the
atoms. These can be measured or approximated experimentally.

4.2 The Rydberg laser system

The current Rydberg laser setup consists of an interference-filter-stabilized ECDL at 780nm and
a frequency-doubled Toptica TA-SHG 110 system with a fundamental wavelength of 960nm. The
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Figure 4.2.: Simplified schematic of the Rydberg beam paths into the vacuum chamber. The red
Rydberg laser beam at 780nm is superposed with the state preparation beam before
the optical fiber with perpendicular polarizations, such that their relative intensities
can be tuned with the half-wave plate (λ/2) and the polarizing beam splitter (PBS).
Afterwards, they are both circularly polarized (σ−) with a quarter-wave plate (λ/4)
and have a collimated 1/e2-radius of 550(50)µm, with the red Rydberg beam having
a power of up to ∼ 7mW at the position of the atoms. The 480 nm blue Rydbgerg
beam is linearly polarized, illuminating the atoms with∼ 45 mW of optical power over
a beam waist of wb ' 19µm. Beam samplers (BS) are used to direct a small portion
of the power of each beam onto a photodiode (PD) for intensity stabilization. Beam
paths are not drawn to scale.

light from the grating-stabilized ECDL passes a tapered amplifier and is subsequently frequency-
doubled to 480nm in an external doubling cavity. Figure 4.2 shows a top-down view of the
Rydberg laser beam paths on the experiment table. The beams are polarized such that they
excite the atoms to a Rydberg state via a σ−π scheme. This is not the ideal scheme for achieving
maximal coupling strength, as it does not allow to couple with the stretched |nD5/2, mJ = −5/2〉
state. However, driving a σ − σ-scheme neccessary for the stretched transition would require
the beams to be co- or counterpropagating, which is difficult to implement in the current optical
setup. An advantage of a σ-coupling to the intermediate state is the fact that spontaneous decay
can only occur back to the initially prepared ground state, and not to other hyperfine states.
The red Rydberg laser beam has a power of up to 7mW and the blue laser beam has maximum
value of 45mW, which is typically kept constant. Both are measured before entering the vacuum
chamber, with the values given here corrected for transmission losses on the windows, so they
correspond to the expected values at the position of the atoms. Please note that these values
are not given with an uncertainty here, as they are difficult to quantify in a general manner.
Estimated shot-to-shot fluctuations are on the order of 5% for the blue laser beam and 2% for
the red one. The effect of this fluctuation is analyzed in Chapter 5.
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Figure 4.3: Simplified schematic of
the Pound-Drever-Hall
lock of the Rydberg lasers
onto the ultra-stable
reference cavity. The
frequency generated by
a local oscillator is used
to modulate the laser
current and is mixed with
the signal obtained by
a fast photodiode moni-
toring the light reflected
on the cavity mirror,
thus generating the error
signal used for frequency
stabilization. The latter
is implemented in a slow
feedback loop acting on
the piezoelectric element
controlling the resonator
length of the laser and in
a fast loop acting on the
diode current via a FET
circuit. AOMs are used to
offset the laser frequency
with regard to the cavity
modes.

4.2.1 High-finesse cavity for frequency stabilization

During this thesis, the Rydberg laser system was modified to enable locking onto a new ultra-
stable reference cavity (SLS VH-6020-4). Previously, both lasers have been locked onto a transfer
cavity, which was itself indirectly locked onto a Rubidium spectroscopy (see [144, 147]). This
allowed for large frequency scans well suited for applications such as the spectroscopy of highly
charged ions and the cartography of molecular tellurium resonances in vapor cells [147]. Pre-
liminary results could be achieved with this cavity, such as a first verification of a two-photon
Rydberg excitation of atoms in the dipole trap array [83, 144]. For the observation of coherent
dynamics, however, the finesse of the transfer cavity (F = 55) proved insufficient, as it only
allowed for laser linewidths orders of magnitude larger than the natural linewidth of Rydberg
states. The new reference cavity was included to overcome this limitation. It is custom-coated
to achieve a finesse above 10000 for wavelength windows around 420 nm, 480nm, 780nm,

5 For a detailed documentation, see: https://arc-alkali-rydberg-calculator.readthedocs.io
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Figure 4.4.: Measurement of the zero crossing temperature of the reference cavity.

960nm, 1015nm and 1188nm (4 · 297 nm), which correspond to different Rydberg excitation
schemes (see Fig. 2.9). The lasers are locked onto the cavity using the Pound-Drever-Hall (PDH)
technique [149, 150]. The sidebands required for this method are created by modulating the
diode current of the lasers. The frequency stabilization consists of a fast feedback loop control-
ling the diode current and a slow loop to compensate for drifts controlling the resonator length
of the diode lasers with a piezo-electric actuator. Figure 4.3 shows a schematic illustration of this
locking scheme. In the case of the blue Rydberg laser, a second PDH loop locks the frequency
doubling cavity onto the laser to ensure maximum doubling efficiency (not drawn). The cavity
finesse for 780 nm and 960 nm was determined experimentally with a ring-down measurement
to be F780 = 31500(100) and F960 = 46700(120), given a measured free spectral range of
FSR= 1496.923(2)MHz. With the relation

Fλ =
FSR
∆νλ

, (4.18)

the full width at half maximum (FWHM) linewidths of the cavity fringes evaluate to ∆ν780 =
47.6(4)kHz and ∆ν960 = 32.1(1)kHz. Knowing the cavity linewidths and analyzing the trans-
mission signal when locking the lasers to the cavity, an upper bound on the laser linewidths can
be estimated. Thus, a linewidth of < 11 kHz for the 780 nm laser and < 4.5kHz for the 960 nm
laser (< 9kHz for 480 nm) on a timescale of milliseconds was obtained.

Temperature drift of the cavity

To minimize temperature effects, the cavity is housed in a vacuum chamber with a pressure of
4(1)× 10−5 mbar. This decouples the cavity from fast temperature fluctuations in the laboratory,
as the thermalization rate with the environment is on the order of days. Long-term drifts of the
temperature regulation, however, can still cause an expansion or contraction of the cavity, and
thus a drift in absolute frequency of the locked lasers. To keep this drift as low as possible, the
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cavity is designed so that its coefficient of thermal expansion has a zero-crossing at a certain
temperature. A respective temperature somewhere between 25 and 50◦C is specified by the
manufacturer. In order to find this working point and characterize the frequency drifts associated
with residual expansion, a series of measurements was performed, as shown in Fig. 4.4. For
each data point, the controller regulating the temperature of the cavity housing was set to a
new value, and the beat frequency of the 780nm Rydberg laser locked on the cavity with a
spectroscopy master was measured after a settling time of at least two days, to ensure a complete
thermalization. Thus, the zero crossing temperature was measured to be 302.61(7)K. Around
this point, a temperature drift of (1K, 0.1 K) would result in a shift of the cavity resonance
of (∼ 220 kHz, ∼ 2kHz). As the fluctuations of the temperature with the current controller
are estimated to be significantly less than 0.1K, this renders the residual frequency drift from
this source negligible, especially considering a resonance drift of up to 50kHz per day due to
relaxation of the spacer material, as specified by the manufacturer.

4.3 Coherent ground-to-Rydberg-state dynamics

4.3.1 Ground state preparation

In order to excite the atom into the selected Rydberg state with high efficiency, it has to be
prepared in a well-defined ground state. The σ− − π scheme used for Rydberg state excitation
for all measurements presented in this thesis is illustrated in Fig. 4.5. To ensure a well-defined
quantization axis, a |B| = 2.748(3)G magnetic field is applied along the x-axis, which lifts the
degeneracy of the Zeeman sublevels mF , m′F of the hyperfine structure of ground and interme-
diate state, as well as the fine structure sublevels m′′J of the Rydberg state 6. Maximal coupling,
and thus a maximal Rabi frequency, for the given beam polarization is then achieved for the
transition |g〉 = |5S1/2, F = 3, mF = −3〉 → |e〉 = |5P3/2, F ′ = 4, m′F = −4 =̂ m′J = −3/2〉 → |r〉 =
|nD5/2, m′′J = −3/2〉. The atoms thus have to be prepared in the |F = 3, mF = 3, mF = −3〉 ground
state, which is accomplished by a σ−-polarized laser beam near-resonant to the |5S1/2, F = 3〉↔
|5P3/2, F ′ = 3〉 transition in conjunction with weak MOT repumping light. This ensures that the
atomic population is optically pumped to the desired state and gets trapped in it, as there is no
coupling to any other states via these two laser fields. As shown in Fig. 4.2, the state preparation
beam is superimposed with the red Rydberg laser beam before being coupled into the fiber going
to the experiment, matching pointing and polarization of these two beams and facilitating the
alignment of the red Rydberg beam on the atoms.

4.3.2 Coherent two-photon excitation to Rydberg states

The coupling to a Rydberg state via the two-photon transition can be described with an effective
two-level system introduced in Section 4.1.1, with

Ωeff =
ΩRΩB

2∆
, δ = δ2Ph −

�

Ω2
R

4∆
−
Ω2

B

4∆

�

(4.19)

denoting the effective Rabi frequency and detuning of the coupling, the latter being modified by
the AC Stark shift caused by the laser beams. ΩR and ΩB represent the single-photon Rabi fre-

6 The large orbital radius of a Rydberg electron leads to a very weak coupling of its total orbital angular momen-
tum J with the nuclear spin I, which is why the hyperfine structure of a Rydberg state is not resolvable with
typical laser linewidths. For this reason, the Rydberg state manifold is expressed in the fine structure basis.
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Figure 4.5.: Level scheme for ground state preparation and Rydberg state excitation. Applying
an external magnetic field B lifts the degeneracy of the hyperfine manifold, shifting
the Zeeman levels in energy. The σ− − π-polarized optical pumping field (orange
arrows) and the repumping light having both circular polarizations (pink arrow) cause
a passage of the Zeeman population in the direction of negative mF states. Atoms
decaying into either of the ground states are kept in this cycle until they decay into
the |F = 3, mF = −3〉 state, which corresponds to a dark state in this scheme. This
is indicated by the grey arrows (decay channels to the F = 2 ground state are not
drawn for the sake of clarity). Once an atom is prepared in this ground state |g〉, it
is excited into an nD5/2 Rydberg state via the depicted two-photon transition. As F is
not a good quantum number for a Rydberg state, a switch to the J basis is made.

quencies of the red and blue laser fields, respectively. These quantities are illustrated in Fig. 4.5.
The scattering rate due to spontaneous emission from |e〉 is given by

Γsc,|e〉 = Γe ·
Ω2

R +Ω
2
B

4∆2
, (4.20)

with Γe = 6.07 MHz being the radiative decay rate of |e〉. Ideally, one would choose ∆ to be as
large as possible to minimize scattering on the intermediate state, but it has to be kept in mind
that larger detuning also reduces the available effective Rabi frequency. This can be compensated
by increasing the laser power, which is possible for the red laser. For the blue Rydberg laser,
however, the coupling between the intermediate and Rydberg states is so low that all available
laser power is applied typically. Only increasing ΩR also leads to increased scattering, as is
evident from the quadratic scaling in Eq. (4.20). Lacking a more powerful blue laser, this means
that a compromise has to be found between Rabi frequency and scattering. The latter results
in an expected damping of the Rabi oscillation amplitude, as the assumption of the far-detuned
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two-level system is not completely valid. Within this chapter, all observed damping effects will
be taken into account by introducing a phenomenological damping rate γ, while in Chapter 5 a
more thorough analysis of the underlying mechanisms will be provided.

Typical experimental parameters

The detuning ∆ from the intermediate state was chosen to be positive to minimize scattering
on lower lying hyperfine states. The light from the red Rydberg laser is shifted via AOMs by
a fixed value of 410MHz with regard to the cavity resonance, yielding a frequency of ν780 =
3.842 296 50(10)× 1014 Hz 7 for the light going to the experiment. This corresponds to a blue
detuning of ∆ = 410(10)MHz with regard to the |5S1/2, F = 3〉 ↔ |5P3/2, F ′ = 4〉 transition 8.
Given a beam waist of w0,R = 550(50)µm and using Eqs. (4.13) and (4.17), this results in a
calculated Rabi frequency of

ΩR

2π
=
| 〈g|d · ε|e〉 |
ħh

·

√

√

√

4PR

πε0cw2
0,R

' 48(5)

√

√ PR

1 mW
MHz , (4.21)

where the dipole moment 〈g|d · ε|e〉 ' 2.99ea0 for the cycling transition driven with σ-polarized
light is taken from [101]. For the measurements presented in this work, the power of the red
Rydberg beam, measured before the vacuum window, was varied between 175µW and 760µW.
Analogously, the Rabi frequency of the blue laser field is given by
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for a waist of w0,B = 20(5)µm. Here, the quantum defect δ57,2,5/2 ' 1.35 and the dipole el-
ement 〈e|d · ε|57D5/2, m′′J = −3/2〉 ' 0.0081ea0 for a π transition were calculated with the
ARC library and the known scaling with effective principal quantum number n∗ = n − δnl j al-
lows to extrapolate to different Rydberg states (see Table (2.2)). For the maximally available
beam power of PB = 45mW at the position of the atoms, the blue Rabi frequency evaluates to
ΩB = 2π× 24(5)MHz.
Although the frequency of the red Rydberg laser can be tuned dynamically with the AOM in a
double-pass configuration, it was kept constant for all measurements presented here. Frequency
tuning of δ is done with the double-pass AOM in the 960 nm beam path to the stabilization cav-
ity, as the subsequent frequency doubling allows for larger frequency ranges. For a given shift in
AOM frequency ∆νAOM, the shift in detuning is given by

∆δ = 2∆νAOM
ν480nm

ν960nm
= 4∆νAOM . (4.23)

As the AOM has an approximately uniform diffraction efficiency for a tuning range of ∼ 20MHz,
this allows for a variation in two-photon detuning of 80 MHz 9.
7 A frequency of 3.842 29648(2)× 1014 Hz was measured with a High Finesse WS02 wavemeter for a different

temperature setpoint of the cavity. Comparing the respective beats with the MTS master allows to calculate
the current frequency based on this reference measurement. Since the setpoint was varied slightly for different
measurements presented in this thesis, an uncertainty of 10MHz is assumed to cover this range of frequencies.

8 The fact that the cavity resonance exactly matches the frequency of this transition is purely coincidental.
9 Larger ranges are possible, but the associated drop in diffraction efficiency modifies the error signal of the cavity

lock and can thus hamper frequency stability, which is why this is typically avoided. However, for auxiliary
measurements and searching for resonances, larger ranges are routinely utilized.
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Since the FSR of the stabilization cavity is known to an accuracy of 2 kHz and the absolute
frequency was measured for one of the fringes with a single MHz accuracy (by measuring the
frequency of the 960 nm laser with a high-precision wavemeter), the position of any cavity fringe
within ∼ 500 FSRs can be estimated with a MHz accuracy, which corresponds to a frequency
range of ±750 GHz. For comparison, the transition frequency between the 57D5/2 state and the
87D5/2 state is only 614 GHz, equivalent to 307 GHz for the undoubled 960 nm light. Thus, the
sum frequency of the two Rydberg lasers required for exciting an atom into any desired Rydberg
state can be predicted to an accuracy far below the available scan range.

Alignment of the Rydberg beams

The red Rydberg beam is superposed with the laser beam used for optical pumping before the
respective transfer fiber, thus exactly matching size and alignment of the two beams. Since the
pumping laser is near-resonant to the |5S1/2, F = 3〉 ↔ |5P3/2, F ′ = 3〉 transition, alignment on
the atom array can be done with a "blow-away" measurement. In this scheme, the atoms are
removed from the traps via radiation pressure with an efficiency depending on the intensity of
the light and, thus, beam alignment. As more than 100 atoms are typically loaded into the array,
this procedure yields enough resolution to give immediate feedback after a single shot, making
the beam alignment simple.

Figure 4.6.: Illustration of
the alignment of
the blue beam.

Alignment of the blue Rydberg beam is not as straight-forward, as
it is not superposed on any resonant laser beam. The position of
the beam can be obtained via the distribution of Rabi frequencies
during a coherent two-photon drive, but as such a measurement
takes several hours, it is unfeasible to use for alignment.
Since the double-pass AOM in the 960 nm beam allows for flex-
ibility in the laser frequency, however, one can search for a Ryd-
berg state |nLJ〉, where the combination of an appropriate cavity
fringe and AOM frequencies yield a situation where the blue laser
is resonant to the |5P3/2, F ′ = 4〉 ↔ |nLJ〉 transition. If such a
state is found, an illumination of the atoms with the blue laser
beam and the MOT cooling beams causes significant atom loss
over the area of the blue beam 10, allowing for an alignment
procedure similar to the red beam. Since the cavity fringes are
known and the Rydberg transition frequencies can be calculated,

a simple algorithm can be used to find an appropriate state. Ideally, this state should be as near
as possible to the target state for coherent excitation, so that adjusting the driving current of the
laser diode is sufficient to reach it without having to manually tune the grating of the 960 nm
master laser.
In the case of the |57D5/2〉 state, there is such a state nearby, namely the |56D3/2〉 state. Tuning
the laser current and changing the frequency of the double-pass AOM by ∼ 20 MHz constitutes
a quick way to tune the laser to a resonance for an alignment on the atoms. Figure 4.6 shows
an averaged fluorescence image obtained after performing this alignment procedure. The blue
laser beam "shoots a hole" into the 7µm pitch array, illustrating the relative size of array and
laser spot. It is typically aligned such that the center of the beam approximately corresponds to
the central trap of the array.

10 This likely stems from a combination of radiation pressure, heating and anti-trapping of the Rydberg state by
the dipole trap.
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Figure 4.7.: Experimental sequence of a Rydberg excitation measurement.

Experimental sequence

All Rydberg experiments performed in this thesis excite the atoms into the Rydberg state by
suddenly switching on both coupling fields 11. The Rydberg state used for all measurements
presented in this chapter is the |57D5/2〉 state. A typical experimental sequence is shown in
Fig. 4.7, starting with the imaging phase following the assembly of a target structure (typically
consisting of multiple rearrangement cycles). The trap occupation obtained from this image
serves as a reference to determine atom loss after a Rydberg excitation. After taking this initial
image, the magnetic quantization field is switched on and the atoms are optically pumped into
the desired Zeeman sublevel. Directly afterwards, an excitation to the Rydberg state is performed
by switching on the Rydberg beams, with the blue beam being turned on significantly longer
(∼ 2 ms) than the red beam (∼ µs) due to the lack of a fast switching method for the blue laser.
The red Rydberg beam is pulsed with an AOM with switching times of 50 ns to 100 ns. The pulse
duration of the red laser thus defines the length of the coupling to the Rydberg state, during
which the traps are switched off to avoid having to account for the inhomogeneous AC Stark
shift caused by the trapping laser field, ensuring the same Rydberg resonance for all atoms 12.
During the optical pumping and Rydberg phase, the trap depth is ramped down by a factor of

11 Another way to prepare a desired Rydberg state is to apply adiabatic sweeps of the laser frequency and intensity,
as utilized in STIRAP schemes [151].

12 According to Eq. (4.19), the lightshifts caused by the Rydberg laser fields themselves still have to be taken into
account, especially considering the strong spatial dependence of the blue Rabi frequency. As the magnitude of
these shifts is typically smaller than the linewidth of the transition, they are accounted for by slightly tuning the
laser frequency.
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five. This adiabatically cools the atoms and increases the recapture probability after switching
the trap off and on.
Finally, the trap depth is ramped up again and an image is taken to assess the remaining trap
occupations.

Rydberg state detection

The detection of Rydberg excitation relies on the loss of excited atoms due to the fact that the
dipole trap does not represent an attractive potential for the Rydberg state, causing the atom to
drift out of the trap volume. In fact, the Rydberg state does experience an anti-trapping effect
due to a positive lightshift and a ponderomotive potential [152], which further accelerates the
expulsion. Within the lifetime of the Rydberg state, the atom thus moves far enough to not be
recaptured by the trap most of the time. This leads to the signals shown in Fig. 4.8 (a,b), obtained
by varying the Rydberg pulse duration τ or the two-photon detuning δ, respectively.
Other possible detection schemes, such as ionization of Rydberg atoms by a laser pulse or an
electric field and subsequent detection of the free electrons via microchannel plates have been
reported [87, 153]. This is, however, extremely challenging to implement in a single-site selective
fashion and not feasible for the given experiment. When exciting atoms to different Rydberg
states (in order to observe spin exchange dynamics, for example), the detection method may need
to differentiate between the two states, which can be accomplished by coupling one of the states
back to a ground state, which is then detected [109]. Such a positive Rydberg state detection
can also be performed in the present experiment, with a resonant pushout beam removing all
ground state atoms in between two Rydberg π pulses. For all measurements presented in this
thesis, however, the atom loss scheme was used because of its efficiency and simplicity.
Repeating a measurement a large number of times and counting the events where the atom was
lost versus when it was recaptured, one can extract the probability Precap of recapture. From this
quantity the probability of excitation into the Rydberg state can be inferred via Pr = 1− Precap.
Note that this does not take into account detection errors such as false positives (a ground state
atom was lost) and false negatives (the Rydberg atom decayed back to the ground state before
moving out of the trap, thus being recaptured). The influence of these errors will be analyzed
thoroughly in Chapter 5 and shall be ignored at this stage.

Spectroscopy of the Rydberg state

In order to perform a measurement probing the coherent dynamics between ground and Rydberg
state, it is essential to know the exact resonance frequency of the transition. For this reason, the
first measurement is typically a spectroscopic measurement of the Rydberg line: For a fixed
pulse length (typically a value close to a π pulse length is chosen to maximize the excitation
probability), the recapture probability of the atom is measured as a function of the two-photon
laser detuning δ. Such a measurement for a single atom is shown in Fig. 4.8 (a). The finite
length of the Rydberg pulse causes the observed signal to be broadened, as the Fourier width of
the pulse is larger than the linewidth of the transition (∼ 10kHz) 13. This results in a pulse shape
described by a squared spherical Bessel function:

Pr(δ) = A ·
Ω2

Ω2 +δ2
sin
�

p

Ω2 +δ2 ·
τ

2

�

+ B , (4.24)

13 This also means that the laser linewidth can be significantly larger than the linewidth of the transition while
still achieving maximum coupling.
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Figure 4.8.: Coherent excitation dynamics of a single atom. (a) Spectroscopy on the |57D5/2〉
state. Excitation of the atom is detected via a dip in recapture probability Precap =
1− Pr after the Rydberg pulse and inverting the retention signal yields the excitation
probability Pr . Variation of laser detuning δ reveals a spectral shape limited by the
Fourier width of the pulse. The red solid line is a fit of the formula in Eq. (4.24) to the
data used to obtain the exact position of the resonance peak. (b) Rabi oscillations on
resonance obtained by varying the Rydberg pulse duration τ. The red solid line is a
fit to Eq. (4.25), yielding an effective Rabi frequency of Ω= 2π× 0.59(1)MHz. Each
data point is based on an average number of 70 experimental realizations where an
atom was initially present, with error bars corresponding to a statistical uncertainty.

where τ is a parameter corresponding to the pulse duration and A, B are fit parameters used
to account for a reduced amplitude and an offset caused by baseline atom loss. The red solid
line in Fig. 4.8 (a) corresponds to a fit of this function to the data. The value τ = 0.97(3)µs
obtained by setting it as a free parameter for the fit matches well the length of the Rydberg
pulse for this measurement (t = 1µs). The Rabi frequency obtained from the fit is Ω = 2π ×
0.56(5)MHz.

Rabi oscillations

After the resonance frequency is determined, setting the detuning to δ = 0 and varying the
duration τ of the Rydberg pulse causes the system to coherently oscillate between the ground
and Rydberg state, an effect called Rabi oscillation. The result of such a measurement is shown
in Fig. 4.8 (b). The rate with which the amplitude of the oscillation decays is a measure of the
system’s coherence time. As discussed at the beginning of this section, a noticeable damping is ex-
pected due to the relatively small detuning from the intermediate state. Solving the optical Bloch
equations for the effective two-level system, with the spontaneous emission from the excited state
introduced by the quantity γ, results in a damped oscillation [154]

Pr(t) =
Ω2

γ2 + 2Ω2

�

1−
�

cos(Ω̃t) +
3γ

4Ω̃
sin(Ω̃t)

�

e−
3γt
4

�

, (4.25)
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Figure 4.9.: Simultaneous Rabi oscillations in a d = 7µm pitch array. (Top) In two separate
measurements, the atoms are prepared in a checkerboard pattern to avoid nearest-
neighbor interactions when excited to the Rydberg state, which would quickly de-
phase the oscillations. As the patterns in the two measurements are inverted, the
data can then be combined for analysis. The red and green frames distinguish the
data obtained from the two measurements. (Bottom) For each trap in the 5 × 5
squares marked above, the function in Eq. (4.25) was fit to the data and fit parame-
ters Ω and γ are given. Error bars correspond to statistical uncertainties.
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with Ω̃ =
p

Ω2 + γ2/16 corresponding to an effective Rabi frequency modified by the damping
constant γ. Note that this is a simplified picture, treating the decay from the intermediate state
in the same way as decay from the excited state in a two-level system 14. As Γe � Γr , this is
a useful empirical approximation to qualitatively describe the dynamics and obtain appropriate
quantitative estimates of the relevant parameters.
Fitting this function to the data (red solid line in Fig. 4.8 (b)) yields a Rabi frequency of
Ω = 2π × 0.59(1)MHz, in excellent agreement with the value obtained from the resonance
scan.
It should be noted that the array site that was evaluated for this analysis does not correspond to
the site with maximum Rydberg beam intensity. An analysis of the distribution of Rabi frequen-
cies across the array as well as a comparison with ab initio calculations will be given in the next
subsection.

4.3.3 Parallel Rydberg excitation of an array of atoms

Having implemented an effective way of extracting information about the coupling of an atom
to a Rydberg state from the analysis of the Rabi dynamics, the next step is to use this method to
study the simultaneous coupling of multiple atoms within the beam radius of the Rydberg lasers.
For this purpose, the 110µm pitch MLA (ML1) is replaced with a 75µm pitch MLA (ML2, see Ta-
ble 2.1.2), yielding a pitch of d = 7.0(2)µm for the dipole trap array. This increases the number
of atoms coupling to the Rydberg fields. However, it also increases the van der Waals interaction
between neighboring Rydberg atoms by an amount where it becomes detectable and leads to a
quick dephasing if multiple neighboring traps are occupied. The resulting interaction physics will
be the subject of Chapter 6. Here, the influence of this interaction is largely suppressed by only
filling the traps in an alternating fashion. The atom assembly scheme introduced in Chapter 3 is
utilized to prepare a 5×5 checkerboard of atoms with near-unity filling fraction, after which the
Rydberg beams are switched on for a variable time. The atom retention rate after the pulse is
analyzed for all atoms in the cluster, leading to the observation of Rabi oscillations with differing
amplitude and frequency across the structure. Comparison with a measurment loading only a
single trap reveals no significant influence of the remaining diagonal interactions on the dynam-
ics. In a second measurement, the checkerboard is inverted and the data obtained from the two
measurements are merged for analysis. Averaged fluorescence images of theses two patterns are
shown in Fig. 4.9 (Top).

Measuring waist and light shift of the blue Rydberg beam

Figure 4.9 (Bottom) shows the result of such a measurement, superposed with a fit of Eq. (4.25)
to every trap. From the distribution of Rabi frequencies obtained this way, information about the
spatial distribution of the intensity of the blue Rydberg laser beam is obtained. From the design
of the beam paths and measurements of the beam waists before demagnification into the vacuum
chamber, the beam waists could be estimated to be w0,R = 550(50)µm and w0,B ' 20µm. The
spot size of the red Rydberg beam is thus significantly larger than the typically used array size
and can thus be treated as having a homogeneous intensity in the region where the blue beam
illuminates the array. The distribution of Rabi frequencies is thus determined by the intensity of
the blue Rydberg field, which is proportional to Ω2 (see Eq. (4.22)). Figure 4.10 (a) shows a 3D

14 If the detuning could be chosen so that ∆� ΩR,ΩB, then Γsc,|e〉 would vanish according to Eq. (4.20), rendering
spontaneous emission from the Rydberg state as the dominant decay channel. The system would then be
equivalent to the one considered in [154].
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Figure 4.10.: Distribution of Rabi frequencies within a central 5×5 cluster of atoms (see Fig. 4.9).
(a) 3D plot of Ω as a function of the atom position. (b),(c) Projections of a 2D
Gaussian fit to the square of the measured Rabi frequencies, yielding the blue beam
waist as w(x ,y)

0,B = (19.7(3)µm, 17.6(2)µm) (see text for details). Uncertainties are
smaller than the plot symbols.
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Figure 4.11.: Light shift distribution within the central 5 × 5 cluster. (a),(b) Projections of the
normalized resonance shift caused by the blue laser beam in x and y direction, re-
spectively, superposed with a Gaussian fit. (c) 3D plot of a two-dimensional Gaussian
fitted to the data. The maximum value δB, max = 2π× 189(4)kHz yields a maximal
blue Rabi frequency of ΩB ' 2π× 18 MHz (see text for details).

plot of the squared Rabi frequencies over the atom array. Fitting a two-dimensional Gaussian on
the data (projections to the x and y dimension are shown in Fig. 4.10 (b)) yields a blue beam
waist of w(x ,y)

0,B = (19.7(3)µm, 17.6(2)µm), revealing a slight ellipticity. For further calculations
of peak Rabi frequencies, the average of these values w̄0,B = (wx

0,B + wy
0,B)/2 = 18.7(2)µm will

be used.
A similar procedure can be applied to characterize the light shift of the blue Rydberg laser beam.
Analysis of the site-resolved atom-loss signal from a frequency scan yields the resonance fre-
quency as a function of the trap index. Comparing these frequencies reveals a shift to positive
values, scaling linearly with laser intensity. This is expected from Eq. (4.19), where the AC Stark
shift of the blue laser light has a positive sign and scales with δB := Ω2

B/4∆∝ IB(r).
Figure 4.11 shows the distribution of these shifts across the array, again with a two-dimensional
Gaussian fit to the data. The baseline of the Gaussian corresponds to the absence of blue light and
is thus normalized to zero. The peak value δB,max = 2π×189(4)kHz corresponds to the intensity
maximum, yielding a maximal blue Rabi frequency of ΩB =

Æ

δB,max · 4∆ = 2π× 17.9(4)MHz,
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Figure 4.12.: Suppression of Rabi oscillation through a light shift applied via the optical tweezer.
(Left) Rabi oscillations in a 2 × 2 sub-cluster of the array. (Right) Illuminating the
lower left trap with the optical tweezer shifts the resonance for the corresponding
atom by ≈ 4 MHz, largely inhibiting excitation to the Rydberg state. The data are
normalized to the maximum value among the respective cluster and red solid lines
are fits of Eq. (4.25). Error bars correspond to statistical uncertainties.

with ∆ = 2π × 417 MHz. This is roughly 30% less than what was expected from the calcula-
tion in Eq. (4.22) for a laser power of 45 mW, suggesting that the transmission loss through the
window of the vacuum chamber is higher than the expected value of ∼ 35% based on previous
transmission measurements.

4.3.4 Site-selective control of coherent dynamics with an optical tweezer

A crucial requirement for the comprehensive control of quantum states in the system is the ma-
nipulation of individual qubits in a site-selective fashion. Local control of the qubit basis states
{|0〉 , |1〉} via a spatial light modulator has already been demonstrated in the present experiment
[155]. A similar approach can be realized for the Rydberg lasers, albeit at a significant loss of op-
tical power associated with using an SLM. A simple, yet effective alternative to a local excitation
laser beam is the use of an off-resonant addressing laser beam to indroduce a local light shift that
selectively tunes single sites out of resonance for the global excitation laser field. This scheme
has been demonstrated in optical lattices [156, 157] and, more recently, for Rydberg excitation
in a tweezer array [158], where it was used to switch a pair of atoms between a blockaded and
unblockaded regime.
The given setup is well suited for the integration of this scheme into the experimental reper-
toire. The optical tweezer introduced in Chapter 3 already has the ideal properties for this
purpose, as the local addressing with a light shift is essentially the same procedure as extract-
ing an atom from the trap, though at different laser intensities. In Fig. 4.12 a proof-of-principle
measurement is presented, where the tweezer was used to shift one of four neighboring traps
out of resonance for the Rydberg light, thereby suppressing the excitation for that trap. The
light shift applied corresponds to approximately a third of the trap depth used for atom rear-
rangement, or ∼ 4 MHz, which is roughly 4 times the measured linewidth of the resonance. The
residual excitation probability, especially noticeable for longer pulse times, can be most likely
attributed to Rydberg interactions between neighboring atoms, leading to a non-negligible exci-
tation probability due to a shifting of the Rydberg levels. In Chapter 6 this will be discussed in
detail.
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4.3.5 Conclusion

In this chapter, the first observation of coherent Rydberg Rabi oscillations in the present exper-
iment is documented. Utilizing the versatility of configurable atom geometries provided by the
atom assembler introduced in Chapter 3, simultaneous excitation in a 5× 5 site region of the ar-
ray could be realized and studied effectively, allowing an accurate mapping of the individual Rabi
frequencies and light shifts. Careful selection of the atom structure and Rydberg state parameters
allows to minimize effects of atom-atom interactions at this stage. Using the optical tweezer to
induce an additional light shift on a selected trap can shift the corresponding atom out of reso-
nance and thus block its Rydberg excitation to a large extent, which has been demonstrated in
a proof-of-concept measurement. The observed damping and reduced contrast of the oscillation
amplitude, however, points to a short coherence time of the dynamics and imperfect excitation
and/or detection of Rydberg states, which needs to be improved in order to perform high-fidelity
gate operations or an efficient mapping of spin Hamiltonians to the system. The following chap-
ter is thus dedicated to understanding and modelling the effects that contribute to this limitation,
which is crucial if they are to be eliminated, or at least diminished.

74 4. Spatially resolved Rydberg excitations in assembled atom arrays



5 Analysis of imperfections in the coherent
Rydberg excitation

In the previous chapter, the observation of coherent dynamics between ground and Rydberg
states has been demonstrated. All of these measurements, however, exhibit a reduced contrast
and strong damping. A simplified, empirical model of these effects was applied in order to
perform fits to the data and extract information such as Rabi frequencies and light shifts. As
discussed in Chapter 2, the goal of the present experiment is to use this system for quantum
computation and simulation purposes. Both of these applications require high fidelities for the
excitation into a Rydberg state as well as decoherence on timescales longer than a π pulse du-
ration. To get into this regime, the parameters of the system have to be significantly improved.
As there is a multitude of effects contributing to the observed deficiencies of the signal, a careful
analysis has to be applied to isolate these effects and understand their respective influence. Only
then appropriate measures can be taken to address experimental shortcomings and improve the
system. This chapter aims to study and quantify these limiting effects and model their influence
on the Rabi oscillations. The goal is to replace the empirical fit function from the previous chap-
ter with an ab-initio numerical simulation, taking into account all major limiting factors.
These effects can be classified into two categories. The first contains effects that result in a
reduced initial amplitude and limit the contrast of the oscillations, such as imperfect state prepa-
ration, detection errors and baseline atom loss. They usually do not depend on the coherent
dynamics and shall thus be called static effects.
The second type summarizes effects that lead to a time-dependent damping of the oscillations.
They will be called dynamic effects and include spontaneous emission from the intermediate
state, Doppler broadening, and other sources of noise that can cause a loss of coherence. These
two categories will be discussed in the following two sections, after which they will all be com-
bined in a comprehensive model. A detailed analysis of most of the effects considered here, for a
similar setup, can also be found in [59, 159].

5.1 Static effects

Given an atom prepared in the appropriate ground state and having precisely measured the
Rabi frequency of the oscillation arising when driving the atom with the laser field, it should
be possible to execute a π pulse into the Rydberg state with near-perfect efficiency, as has
been demonstrated in [38]. Despite the existence of imperfections limiting the efficiency of
the excitation itself, there are several effects restricting the detection efficiency of a Rydberg
excitation, which means that even for a perfect π pulse fidelity, the observed signal would
still exhibit a reduced global amplitude. In the following, these effects will be discussed and
quantified.

5.1.1 Atom temperature and baseline loss

The finite temperature of the atoms trapped in the array comes into play in different ways. The
Rydberg detection scheme used in this experiment relies on the conditions for an atom to have a
mean velocity large enough for it to leave the trapping volume within the lifetime of the Rydberg
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state, whereas a larger temperature also increases the probability of ground state atoms getting
lost from the traps, as well as broadening the laser beam linewidth seen by the atoms due to the
Doppler effect.

10 ms 10 ms

t

t

Image Image

Utrap

U0

Umin

0

Figure 5.1.: Experimental sequence of a "release
and recapture" measurement. As it is
almost identical to a Rydberg mea-
surement, it serves as a benchmark
for baseline atom loss as well as a
measurement of the atomic temper-
ature.

In order to quantify the influence of all these
effects, knowing the atom temperature to a
fair amount of accuracy is essential. For this
purpose, a "release and recapture" measure-
ment is performed, which is described in de-
tail in [160] and has been introduced in the
context of this experiment in [83]. Figure 5.1
illustrates the experimental sequence corre-
sponding to this technique. The only differ-
ence to a Rydberg measurement is the lack
of a Rydberg pulse and the variation of the
time ∆t during which the traps are switched
off (for the Rydberg measurements conducted
for this thesis, this time was kept constant for
all pulse durations). Thus it serves as a good
benchmark for baseline atom loss for all Ryd-
berg measurements 1 in addition to yielding
information about the atom temperature.
As Rydberg measurements are typically per-
formed in the central 5× 5 traps of the array,
only this region is analyzed, averaging the sig-

nal obtained from these 25 traps with a mean lowered trap depth of Umin/kB = 300(50)µK. The
probability of atom recapture after a varying release time ∆t is plotted in Fig. 5.2. A fit to the
data is made by performing Monte-Carlo simulations of the recapture probability for different
temperatures and minimizing the weighted least squares value (χ2) obtained from comparing
the simulations with the data (shown in the inset of the graph). The underlying model assumes
a Maxwell-Boltzmann distribution of atom position and velocity in the trap and simulates tra-
jectories based on this thermal motion, counting an atom as ejected from the trap if a threshold
energy is exceeded during the release time (for details, see [83, 160]). The best fit yields an
average temperature for atoms in this central region of 52(1)µK, about a factor of six lower than
the trap depth. This is consistent with earlier measurements [82, 83].
As can be seen in the graph, the recapture rate is nearly constant for the first ' 10µs. During

this time, the atoms can not travel enough distance to leave the center of the trap and are thus
always recaptured. The finite probability of detection in the second image for this initial plateau
of ' 0.95 is likely to stem from other sources than loss during release time. The most probable
source is atom loss during fluorescence detection or while adiabatically ramping down the trap
depth from U0 = kB · 1.7(2)mK to Umin, where a finite survival probability is associated with the
truncation of the Boltzmann distribution [160]. The baseline atom loss can thus be quantified
as ε0 = 0.05 and the obtained temperature of the atoms will be used for the analysis of further
limiting effects later on.

1 Loss induced by the Rydberg laser fields themselves is not included here. It can be neglected, as was confirmed
in a separate measurement.
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Figure 5.2.: Recapture probability for a lowered trap depth of Umin/kB ≈ 300(50)µK, averaged
over the central 5 × 5 traps. The data are superposed with the best fit obtained
from Monte-Carlo simulations of the recapture for different temperatures. This best
fit is found by minimizing the weighted least-squares values (χ2) between data and
simulation through harmonic approximation (inset).

5.1.2 Efficiency of ground state preparation

A further source of reduced Rydberg detection efficiency is an imperfect preparation into
the correct ground state. The scheme used for trapping the population in the stretched
|5S1/2, F = 3, mF = −3〉 state (see Section 4.3.1) is relatively robust against imperfections in
polarization and fluctuations of laser power, as the target state essentially constitutes a dark
state for the pumping laser field, which means that the population should always gather in this
state as long as the correct polarization is dominant. The main influence of a slightly non-optimal
polarization of the pumping or repumping laser beam should therefore be the number of exci-
tation cycles the atoms have to undergo before gathering in the target state. This can lead to
an associated increase in temperature, which could cause some atom loss. This loss, however,
was measured to be almost negligible and is already included in the baseline atom loss quanti-
fied in Section 5.1.1, where the pumping cycle was already applied before releasing the atom.
There is, however, a small chance that the atom gets excited out of the target state by a pho-
ton with a σ+ polarization right before the end of the pumping sequence, which would result
in the atom decaying into the wrong ground state with a small probability. Another possible
source of error is the shift of the Zeeman sublevels by the applied quantization field. At a B-field
strength of |B|= 2.75G, the two outermost states mF = (3,−3) are shifted relative to each other
by ' 10MHz, which is more than the linewidth of the transition, thus having a non-negligible
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impact on the relative detuning of the various sublevels.
To quantify the state-preparation efficiency, the population of the hyperfine manifold can be
probed by coupling a driving field to the hyperfine transition (|F = 2〉 ↔ |F = 3〉) of the
ground state. As the hyperfine splitting for 85Rb has a frequency in the microwave spectrum
of νHFS = 3.036 GHz, the transition can be driven by an appropriate microwave, or by a two-
photon Raman transition with two 780 nm laser fields far-detuned to the |5S1/2〉 ↔ |5P3/2〉
transition. The latter has been used extensively before in this group, primarily for optimizing
preparation into the clock states (mF,F ′ = 0) as well as performing single-qubit gate operations
[45, 47]. For the preparation into a stretched state, as required here, the situation is slightly
different. As the current setup only allows for ∆mF = 0 coupling of the hyperfine sublevels, it
precludes the direct probing of the stretched state populations, as is illustrated in Fig. 5.3 (a) 2.
The stretched state populations after the optical pumping stage can thus not be directly observed
and have to be inferred by careful analysis of the other populations and how they change when
increasing the time of optical pumping. The laser system used for these measurements as well as
the phase-stabilized locking scheme is described in [161, 162]. The dynamics arising when driv-
ing the transition with the Raman laser fields can again be derived by considering a three-level
system, but this time in a Λ-scheme. Because of the relatively large detuning from the excited
state of ∆' 10GHz, all allowed hyperfine transitions contribute equally to the Rabi frequencies
of the respective transitions. A detailed description can be found in [45]. As transitions from and
to states with smaller values of |mF,F ′ | can couple via a larger number of paths than the stretched
states, the Rabi frequencies decrease for increasing |mF,F ′ |. This can be seen in Fig. 5.3 (b), where
Rabi oscillations for all available transitions are plotted. First, a short repumping pulse ensures
that all atoms are initially in |F = 3〉. The measurements consist of a Raman pulse directly fol-
lowed by a blow-away pulse resonant to the cycling transition that removes all atoms in the
|F = 3〉 ground state. By fits to the data, the exact Rabi frequencies and corresponding π pulse
durations can be extracted. These values can then be used to perform a spectroscopic measure-
ment where the respective π pulse is applied to all transitions, thus ensuring that the observed
peak amplitudes correspond to the underlying state populations |F = 3, mF 〉. Varying the dura-
tion of optical pumping, one can observe a passage of populations in the direction of negative
mF states, as illustrated in Fig. 5.3 (c), as expected for pumping with σ−-polarized light.
Let Pi denote the population in the respective state mF = i. From the top graph corresponding
to an absence of optical pumping, a linear decrease of Pi with increasing i can be observed 3. A
linear fit to P−2,..,2 thus yields the population P3. As mF = −3 is a dark state, P−3 is expected to
be higher than what one would obtain from the same linear regression. However, as all other
populations are now known, it can be estimated via

P−3 = 1−
3
∑

i=−2

Pi . (5.1)

2 This is due to the requirement of colinear propagation of the Raman laser beams, as other angles would in-
troduce a significant Doppler broadening much larger than the linewidth of the transition and larger than the
Fourier width of the pulse, causing a reduction of contrast. Colinear propagation with different polarizations
can be used for ∆mF = ±1 coupling to the stretched states, but this would require a considerable modification
of the setup and was thus avoided.

3 The non-uniformity of this distribution can likely be attributed to four of the six MOT beams being slightly out
of balance, resulting in a dominance of σ− over σ+ photons when initially preparing the atoms in the |F = 3〉
state.
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Figure 5.3.: Analysis of ground state preparation efficiency. (a) Schematic of the transitions that
can be probed by the (σ−-σ−) Raman laser beams, in the presence of a magnetic
field lifting the degeneracy of the Zeeman sublevels. Since only ∆mF = 0 coupling
is available, the stretched states can not be directly coupled (for details, see text).
(b) Rabi oscillations measured on all of the 5 transitions with fits to determine the
exact π pulse duration for the respective drives. (c) Spectroscopic scan on all the
transitions to measure the effect of optical pumping on the relative amplitudes of
the resonances. The small global shift to negative detunings relative to the theoretical
mF = 0↔ m′F = 0 transition frequency corresponds to the Raman laser light shift.
For all transitions, the respective π pulse duration obtained from (b) was applied. Via
linear extrapolation, the corresponding populations in the stretched states can be
inferred and the efficiency of the optical pumping quantified (see text). Error bars
correspond to statistical uncertainties.
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Factoring in the baseline atom loss measured in the previous subsection, the corrected population
is then obtained via

P̃−3 =
P−3

1− ε0
=

P−3

0.95
. (5.2)

The extrapolated populations P−3 and P3 are plotted as dashed grey lines in the graphs, to differ-
entiate them from the measured data. The initially estimated dark state population is P−3 ' 0.32
(Fig. 5.3 (c, top)), having increased to 0.79 after 50µs of optical pumping (Fig. 5.3 (c, center)).
For the final value of tpump = 100µs (Fig. 5.3 (c, bottom)), all states but the target state are al-
most completely depleted, making a spectroscopy impossible. Only for P−2, a residual peak value
of 0.03 can be measured, indicated as a single data point. From this point, the same extrapola-
tion as before is applied to estimate the final populations. Thus, a baseline atom-loss corrected
efficiency P̃−3 ' 0.96 of preparation in the |5S1/2, F = 3, mF = −3〉 ground state is obtained.
Obviously, atom loss caused by the pumping laser would significantly hamper the accuracy of this
method. For this reason, it was confirmed in a separate measurement that this loss is negligible
for the pulse durations applied here.

5.1.3 Recapture of Rydberg atoms

As discussed in Section 4.3.2, the detection of Rydberg excitation relies on the assumption that
the Rydberg atom leaves the trapping volume, and thus gets lost, before it decays back to the
ground state, where it would see the trapping potential again and could get recaptured. De-
pending on the Rydberg state, however, this assumption is not always entirely valid. As the
57D5/2 state used for the measurements in Chapter 4 has an effective lifetime of τeff ' 95µs, a
comparison with the recapture measurement presented in Fig. 5.2 reveals a significant chance
of recapture after a decay from the Rydberg state, if only the atom’s thermal motion is con-
sidered. The false-negative error associated with this recapture (the Rydberg excitation is not
detected even though the atom was excited) shall be denoted as εr and will be estimated in the
following.

Ponderomotive potential

Considering only thermal motion of the atom while in the Rydberg state already yields an upper
bound for εr . There is, however, an additional potential acting on the Rydberg atom in the
presence of the focused trap laser beam. As the valence electron in a Rydberg state is very
weakly bound, it can be considered as a free electron and its interaction with the light field can
thus be described by the ponderomotive potential [152, 163]

Up(r) =
e2|E(r)|
4meω

2
L

, (5.3)

where −e and me are the electron charge and mass, andωL/2π is the frequency of the trap laser.
As Up is always positive, it constitutes a repulsive potential for every Rydberg state. Because of
its scaling with ω−2

L , longer wavelengths yield a stronger repulsion, especially considering the
increase in power needed to achieve the same trap depth for larger detunings, which manifests
itself in the ∼ |E(r)| scaling of the potential. The time a Rydberg atom stays in the trap region
thus strongly depends on the wavelength of the trapping light. This is illustrated in Fig. 5.4,
showing a simulation of the recapture probability over time, given different wavelengths, while
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Figure 5.4.: Monte-Carlo simulations of Rydberg atom recapture for different trap laser wave-
lengths. The curve corresponding to thermal motion (blue) is obtained from a fit to
experimental data (see Fig. 5.2). For all other curves, the repulsive ponderomotive
potential experienced by a Rydberg atom is included in the simulation. Apart from
the laser power, which has to be adjusted to assure a constant trap depht of 300µK,
all other parameters are kept constant and correspond to experimentally measured
values.

keeping the trap depths constant at 300µK. All other simulation parameters correspond to ex-
perimentally measured values. The curve for λ= 796.3 nm (for thermal motion) is thus identical
to the one shown in Fig. 5.2. The red and green curves correspond to the two wavelengths used
for all measurements presented in this thesis. The acceleration of Rydberg atom loss by the pon-
deromotive potential in this case is only minimal. Earlier measurements on this setup have been
conducted with the Ti:Sa laser set to λ = 815nm (black curve), where the difference already
becomes noticeable. The requirement of large arrays currently precludes a significant increase in
wavelength, however. The curves for 850 and 1064 nm serve as a comparison to other dipole trap
wavelengths typically used. The probability of Rydberg atom recapture can thus be expressed as
an integral over [59]

εr =

∫ ∞

0

Precap(t)ṗg(t)dt , (5.4)

where Precap(t) can be obtained from the simulations and ṗg(t) = Γ0 exp(−tΓ0) denotes the time
derivative of the ground state population, given that the atom is initially in |r〉 and decays to
the ground state by spontaneous emission with a rate Γ0 (see Section 2.2.2). Blackbody-induced
transitions can be neglected, as transferring the atom to a neighboring Rydberg state would still
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lead to its loss. Given the n−3 scaling of the radiative decay rate with principal quantum number
n, this detection error decreases the higher n gets. Evaluating the above integral for the states
|57D5/2〉 and |87D5/2〉 used in this thesis yields the error rates εr,57 = 0.19 and εr,87 = 0.06.
As all measurements presented in Chapter 4 were performed on the |57D5/2〉 state, this error
constitutes by far the most significant cause of the finite amplitude observed in these measure-
ments.

5.2 Damping mechanisms

Having analyzed the experimental imperfections that lead to an overall reduction in contrast
in the oscillations, the goal of this section is to understand and quantify the mechanisms that
cause a damping of the oscillations. Although they can already reduce the amplitude of the
first oscillation period, thereby also having an effect on the total contrast, these effects mainly
cause a time-dependent decay of the amplitude. Because the measurement of Rabi oscillations
necessarily includes averaging over many experimental cycles, it is not possible to distinguish
between effects damping a single Rabi oscillation and damping effects only arising when averag-
ing over various cycles (like shot-to-shot fluctuations of experimental parameters). Both of these
types will be treated in the same way, with most of the studied effects belonging to the latter
type. So far, the damping has been accounted for by introducing a phenomenological damping
rate γ, which allowed for fits to the data. This phenomenological approach does, however, not
distinguish between different sources of damping and is thus insufficient for understanding and
quantifying the underlying limitations. In the following, the main sources for oscillation damping
will be analyzed, after which all of the considered effects will be combined in a comprehensive
numerical simulation.

5.2.1 Spontaneous emission from the intermediate state

As already mentioned in the previous chapter, the relatively small detuning of∆= 2π×417 MHz
necessary to achieve high enough Rabi frequencies in the current setup causes non-negligible
spontaneous emission from the intermediate state. The effective scattering rate associated with
this decay is given in Eq. (4.20). Generally, all possible decay channels have to be considered
here, as was done in [164] for a π transition to the intermediate state. Since the current scheme
in the presented setup uses σ−-polarized light to couple to the stretched state, there is only one
possible decay channel, namely the |5P3/2, F ′ = 4, m′F = −4〉 → |5S1/2, F = 3, mF = −3〉 transi-
tion. Coupling to other Zeeman sublevels of the intermediate state caused by imperfect polariza-
tion would introduce additional decay channels, but is neglected here, as the probability of these
transitions happening is small compared to the decay via the dominant channel. A schematic
of this simplified process is shown in Fig. 5.5 (a). This decay can thus be considered by keep-
ing the three-level model, but switching to a density-matrix formalism and solving the Master
equation.

Master equation approach

As soon as spontaneous decay is introduced into the system, it can no longer be considered as in
a coherent superposition of the pure states |g〉 and |r〉, as was previously done in the idealized
two-level scheme. The random decay causes decoherence in the system, which can be accounted
for by including the intermediate state in the picture. The system can then be treated as a
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superposition of the three pure states |g〉, |e〉 and |r〉 described by introducing the density matrix
operator [154]

ρ =
∑

(i, j)∈(g,e,r)

ρi j |i〉 〈 j| . (5.5)

The time evolution of the system is then governed by the master equation in Lindblad form
[164]

dρ
dt
= −

i
ħh
[H,ρ] +L [ρ] , (5.6)

where the Hamiltonian H describes the unitary part of the dynamics. Spontaneous emission
causes dissipative damping, expressed by the Lindblad L dissipator. Both operators are given in
the {|g〉 , |e〉 , |r〉} basis as

H = ħh





0 ΩR/2 0

ΩR/2 −∆ ΩB/2

0 ΩB/2 −δ



 (5.7)

and

L [ρ] =





Γρee − Γ2ρge 0

− Γ2ρeg −Γρee − Γ2ρer

0 − Γ2ρre 0



 , (5.8)

where decay from |r〉 was neglected as the corresponding decay rate is three orders of magnitude
smaller than Γ and thus has a negligible impact on the dynamics for the short timescales con-
sidered here. Defining an initial state of the system and solving this Master equation for various
time steps yields the time-dependent population of the Rydberg state. A Python implementation
of this solver is given via the QuTiP library [165], which was used for the simulation of Rabi
oscillations presented in this chapter. The corresponding code is shown in Appendix C.
Figure 5.5 (b) shows the effect of different detunings ∆ on the damping of the amplitude. For
better comparability, the effective Rabi frequency Ω was kept constant throughout the simu-
lations by adjusting ΩR

4. The influence of spontaneous decay in the current experimental
realization is represented by the red curve, with larger and smaller detunings given for com-
parison.

5.2.2 Dephasing effects

While spontaneous emission causes an immediate dissipative loss of coherence in the system,
there is a multitude of effects whose influence on the amplitude of the oscillations manifests
via averaging over multiple realizations. Shot-to-shot variations of laser frequencies and laser
power, fluctuations of the atomic resonance via external fields or the Doppler effect lead to
the oscillations having a slightly different Rabi frequency and amplitude in every repetition,
causing the individual oscillations to drift out of phase with each other, which is why this effect
is referred to as dephasing. In the following, the different sources of dephasing will be quantified
and included in the model.
4 This was done to match the experimental situation, where ΩB is always set to the maximal value and only ΩR is

varied to adjust the Rabi frequency.
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Figure 5.5.: Simulation of amplitude damping via spontaneous emission from the intermediate
state. (a) Schematic of the simplified damping process. As the stretched interme-
diate state |e〉 can only decay to one Zeeman sublevel, only this one channel has to
be modelled. (b) Monte-Carlo simulations for different detunings ∆. The red curve
corresponds to the value present in the experiment.

Doppler effect

One of the largest contributors to dephasing is the Doppler effect. Due to its finite temper-
ature, the atom oscillates in the trap, while its velocity is described by a Maxwell-Boltzmann
distribution. For every repetition of the experiment, the atom can be treated as having a fixed
velocity drawn randomly from this distribution 5, with a standard deviation of σv =

p

kB T/m'
0.07µm/µs for the measured temperature of T ≈ 50µK. The Doppler effect thus gives rise to a
corresponding distribution of frequency shifts σδ = |keff|σv ' 2π×170kHz, where keff = kR+kB
is the effective wave vector, taking into account that the laser beams are orthogonal to each
other (see Fig. 5.6 (a)). This frequency distribution can be included in the model by treating the
effective detuning δ in Eq. (5.7) as a Gaussian distributed random variable with a mean given
by the AC Stark shift caused by the laser fields and standard deviation σδ. The effect of this is
illustrated in Fig. 5.6 (b). In the Bloch sphere picture, a drive on resonance is represented by a
rotation about the x axis. A small detuning δ introduces an angle θ ≈ δ/Ω between the axis of
rotation Ω and the x axis, reducing the amplitude of a π pulse when making a projection mea-
surement on |r〉. Having the detuning δ fluctuate randomly for different experimental repetitions
further causes a dephasing of the individual Bloch vectors, which is observed as a damping of
the amplitude when averaging over these repetitions 6. The strength of this effective damping

5 For the relatively slow Rabi oscillations achievable in the current setup, the interaction time with the Rydberg
laser fields lies on the order of the inverse trap frequencies, which means that the atom can actually change its
direction of movement during a single oscillation, causing dephasing even in a single experimental realization.
As this effect is indistinguishable from the simplified model due to the necessary averaging, the latter suffices
for a quantitative analysis.

6 Note that this does not correspond to an inherent decoherence, as the individual systems remain in a pure state
(represented by the Bloch vectors staying on the surface of the sphere) as opposed to the mixing of states caused
by spontaneous decay. The randomness of the underlying process, however, makes it impossible to rephase the
system.
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Figure 5.6.: Influence of Doppler broadening on the dephasing of Rabi oscillations. (a) The ef-
fective wave vector of the Rydberg laser beams is given by vectorial addition of the
perpendicular components. Multiplied by the standard deviation of atom velocity,
this results in a distribution of frequencies, from which δ is sampled for each experi-
mental repetition (b). This is represented by a shift of the Bloch vector corresponding
to Ω by an angle ∼ δ/Ω. The state vector (red) is then rotated about a varying
axis, leading to a dephasing of the system. (c) Simulation of the effect of the exper-
imentally estimated Doppler broadening of σδ ' 170 kHz on Rabi oscillations with
different Ω, illustrating that strong couplings are much less vulnerable to this effect
than weak ones. For better comparability between different timescales, the oscilla-
tions are plotted as a function of the pulse area Ωt. The red curve corresponds to a
typical experimental value of Ω.

scales with the ratio δ/Ω, as is illustrated in Fig. 5.6 (c). The stronger the coupling, the weaker
this effect becomes. Looking at the red curve corresponding to current experimental values, it
becomes evident that the Doppler effect has a noticeably stronger influence on the signal than
spontaneous decay (see Fig. 5.5 (b)).

Fluctuations of the magnetic quantization field

During the excitation to the Rydberg state, a Bx = 2.75G magnetic field is applied to lift the
degeneracy of the Zeeman levels. The stretched states which are then excited by the laser fields
are especially sensitive to this magnetic field, with the ground state experiencing an energy shift
of' −3.9MHz. As the Rydberg state experiences a similar shift of' −6.9 MHz, the effective shift
of the transition frequency between these states caused by the magnetic field is δB/2π≈ −3MHz
7. A variation of this shift, as could be caused by fluctuations of the current sent to the coils
creating the magnetic field, would thus have the same effect as the Doppler broadening. In order
to be in a comparable order of magnitude as the latter, and thus have a noticeable influence
on the oscillation, this current would have to fluctuate by ' 5%. This would translate to a

7 As the magnetic field did not change for all measurements presented in this thesis, this shift was not explicitly
introduced, but is rather implicitly included in the resonance frequency of the transition
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fluctuation of the resonance peak in the Raman measurements (see Fig. 5.3 (c)) greater than the
Fourier width, which was clearly not observed. There is furthermore no reason to assume that
the high-precision power supply (∆I/I < 2× 10−4, according to specifications) used to provide
the current should fluctuate in this magnitude. Smaller variations can still have an effect on the
oscillations on longer timescales and should be taken into account once the dominating effects
are reduced, but for the current situation, the influence of magnetic field fluctuations can be
neglected.

Fluctuations of laser power

Both Rydberg lasers are stabilized in intensity via a Sample and Hold scheme to ensure pulses
with constant laser power over the course of a measurement. Small variations are, however,
still possible and have been observed. The effect of such a variation is that it slightly modifies
the coupling strength Ω and, via the Stark shift, the effective detuning δ. This also results
in a dephasing and thus in an observed damping of the oscillation amplitude. As Ω scales
with the square root of the laser power P, this can be included in the simulation by treat-
ing ΩR,B as a random variable with standard deviation (∆PR,BΩ)/2PR,B for each repetition of
the simulation. The respective laser power uncertainties are estimated as ∆PR/PR ≈ 0.02 and
∆PB/PB ≈ 0.05.

5.2.3 Other sources of noise

Electric fields

In contrast to the magnetic field sensitivity of Rydberg atoms, which is independent from the
principal quantum number, the electric polarizability of a Rydberg atom scales as α0 ∝ n?7,
making it extremely sensitive to electric fields, a property which can be harnessed for high-
precision electric field sensing [166, 167]. In the present experiment, no external electric fields
are applied. However, as even very small fields can cause an energy shift according to ∆E =
−1/2α0|E|2, stray fields and buildup of static charge on the sides of the vacuum windows can
have a noticeable influence (in [168], a significant shift was observed caused by static charge
on the surface of lenses placed inside the vacuum chamber). So far, no obervations have been
made in this experiment that would clearly point to an influence of such stray fields and since
the magnitude of a hypothetical electric field is hard to gauge, it is difficult to include in a
simulation. However, especially when working with higher-lying Rydberg states - the |87D5/2〉
state also studied within this thesis is roughly 20 times more sensitive than the |57D5/2〉 state -
this effect has to be kept in mind as a potential source of damping.

Laser phase noise

As the Rydberg lasers exhibit a stabilized linewidth far below the Fourier width of the excitation
pulses, it does not constitute a limitation of the observed signal. There is, however, another
quantity associated with the laser fields that can represent a source of noise. If the phases
ΦR(t) and ΦB(t) fluctuate in time, the effective Rabi frequency is given by Ω = |Ω|ei(ΦR(t)+ΦB(t)),
which corresponds to an azimuthal displacement of Ω on the Bloch sphere. A strong modulation
of ΦR,B(t) with a frequency on the order of Ω can thus lead to a strong damping of the Rabi
oscillations. Precisely measuring the magnitude of these fluctuations is not an easy task, however.
It can be estimated by analyzing the PDH error signal to measure the voltage noise spectral
density SV ( f ), from which the related spectral density of phase noise SΦ( f ) can be estimated
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Table 5.1.: Simulation parameters obtained from the individual measurements presented in this
chapter.
Error source Quantity value type

Efficiency of optical pumping ηp 0.96 static

Baseline loss ε0 0.05 static

Rydberg detection error εr 0.19 (n= 57) static

Spontaneous decay Γsc,|e〉 0.08/µs damping

Doppler effect σδ 2π× 170 kHz dephasing

Laser power fluctuations (∆PR, ∆PB) (2%, 5%) dephasing

with the knowledge of the PDH parameters and the cavity linewidth, as described in [59, 159].
As the parameters of the laser system reported therein are similar to the system presented in this
thesis 8, these results suggest that in the current setup, laser phase noise does not represent a
major limitation, as long as the PDH parameters are set to optimal values (too much gain, for
example, can significantly increase the phase noise). Once other limitations are reduced, this
effect will however become noticeable, and a more thorough analysis should be performed. An
effective way to reduce phase noise is to use the light transmitted through the cavity, which
serves as a passive low pass filter for frequency noise, to inject another laser diode. Light from
this injection seeded laser then exhibits an enhanced spectral purity and can be used to excite
the atoms. This technique has been successfully applied in [38], among other improvements,
leading to a reported Rydberg Rabi coherence time of 27µs.

5.3 Combining the effects

After having analyzed the main sources of reduced contrast and amplitude damping in the cur-
rent experiment, all these effects can be combined in a comprehensive simulation of the dynam-
ics. Table 5.1 lists the individually obtained experimental parameters that are included in the
simulation. The simulation relies on the same Master equation solver as introduced in Section
5.2, only this time all damping effects are combined and the obtained Rydberg state population
is modified according to the static effects. The combination of these effects can be factored in
as:

Pr = ε0 +ηp(1− ε0 − εr)P̃r , (5.9)

where P̃r denotes the "real" Rydberg state population and Pr corresponds to the population one
would measure in the experiment, given these static sources of finite contrast. The Python im-
plementation of this code is given in Appendix C. Figure 5.7 shows the result of averaging over
100 such simulations for a selected trap, each time stochastically sampling the fluctuating pa-
rameters from a Gaussian distribution 9. The values of ΩR and ΩB are set as the measured
values from Chapter 4. For this trap, the simulation is in good agreement with the experi-
mental data. Comparison with a simulation including only static effects confirms the strong
influence of the damping effects as well as an increase of the oscillation frequency. The latter

8 Our cavity linewidth for red light of ∆ν = 47 kHz is even smaller than the linewidth of 75 kHz reported in
[159].

9 These include the effective detuning δ due to the Doppler effect and the laser powers PR and PB according to
the uncertainites given in Table 5.1.
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Figure 5.7.: Combined simulation of Rabi oscillation in a single trap using the individually obtained
experimental parameters given in Table 5.1 (red curve), showing good agreement
with the experimental data (black dots with errorbars). Comparison with a simula-
tion including only static errors (grey dashed line) shows the increase in oscillation
frequency through amplitude damping and dephasing. The combined result is based
on 100 repetitions of the simulation.

is associated with a slight detuning from the resonance due to the fluctuating Doppler shift and
laser power, increasing the effective Rabi frequency according to Ωeff =

p

Ω2 +δeff. On top
of this predicted behaviour, however, there appears to be a slight asymmetry in the damping
(the minima are damped stronger than the maxima) that is not accounted for in the simulation.
The cause of this is unclear. A hypothetical coupling to other intermediate states and corre-
sponding decay to other (dark) ground states would manifest itself as an asymmetry in opposite
direction.

Simulation for the array

Having compared the simulation result to a single trap, the obvious question is how it holds up
against the measurement of simultaneous Rabi oscillations in the array. To make an appropriate
comparison, the variation in the coupling of the light fields over the array has to be taken into ac-
count in the simulation. For this purpose, the Rabi frequencies obtained from the measurement
shown in Fig. 4.9 are used to seed the simulation of the dynamics for each trap individually.
Figure 5.8 shows the result of this site-selective simulation. While it matches the data well for
some traps, in others a discrepancy of varying degree is visible. It appears that the simulation
generally overestimates the damping and reduction of contrast for traps at the edge of the pre-
pared cluster, while underestimating it for some of the central traps. A natural interpretation
of this is that the dynamics are influenced by a non-negligible interaction between the diagonal
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Figure 5.8.: Combined simulation of Rabi oscillations in the trap array. Rabi frequencies used for
the simulations are obtained from the measurement shown in Section 4.3.3. The sim-
ulation for each trap is performed in the same way as for Fig. 5.7. It is apparent that
it matches the data well for some traps, while generally overestimating the damping
for outlying traps and underestimating it for central traps.

neighbors 10. A calculation of the expected interaction strength, taking into account a distance
of
p

2d = 9.9µm and an angle of 45◦ to the quantization axis defined by a 2.75 G magnetic field,
yields an effective energy shift on the order of ∆E/h ' 75kHz. As the central traps have four
diagonal neighbors, these interactions can add up to a significant portion of the Rabi frequency,
which would lead to a reduced amplitude, as is the case for an off-resonant drive. A varying
number of diagonal neighbors would also explain additional damping. This is plausible, as the
data was not post-selected for a fixed number of neighbors and a finite preparation efficiency
of the checkerboard cluster causes these fluctuations. Accurately modelling the interaction with
multiple neighbors is a non-trivial task and would exceed the scope of this chapter. An analysis of
how interactions affect the coherent dynamics when driving to Rydberg states is given in Chapter
6.
10 As explained in Section 4.3.3, the experimental data consists of two separate measurement utilizing an inverted

checkerboard pattern, so that no next neighbors along the grid lines are present.
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In addition to a reduced contrast and increased damping, the signal in the central traps also
appears to be offset to higher values. A higher baseline atom loss in these traps could explain
this behavior, although it is not clear why this should be the case, as this baseline loss was ex-
plicitly measured for these traps. As the two measurements lie several months apart, however,
it might be possible that some other parameter led to a higher loss in the case of the oscillation
measurement. The slight asymmetry in the damping discussed for the single trap is observable
in most of the traps, leaving room for further investigation.
Furthermore, it is not clear what leads to the signal in outer traps not being as strongly damped
as what one would expect from the considerations made in this chapter. It appears, however, that
the inclusion of the measured static effects, indicated by the grey dashed curve in the graphs,
yields an accurate prediction of the initial amplitude in these traps, especially for the corner
traps that only have at most one relevant interaction partner. Thus, assuming the perfect isola-
tion of an atom driven to the Rydberg state, normalizing the measured signal Pr by these static
errors should result in a good estimate of the real probability P̃r . Accordingly, inverting Eq. (5.9)
yields

P̃r =
1
ηp

Pr − ε0

1− εr − ε0
. (5.10)

This equation will thus be used for normalizing the data in the following chapter.

5.4 Conclusion

This chapter analyzed the various sources of reduced contrast and amplitude damping observed
when driving the atoms coherently to a Rydberg state. This was done using ab-initio calculations
and independent measurements to isolate each limiting effect and quantify it. Combining all
these effect into a comprehensive simulation of the dynamics yields good agreement with exper-
imental data, with some residual discrepancies mostly attributed to non-negligible interaction
between Rydberg atoms. As mentioned in the introduction of this chapter, the goal of this study
was to derive knowledge about the relative influence of the limitations, so they can be specifically
targeted and diminished. To sum up what could be learned, these are the parameters with the
most potential for improvement:

• Rabi frequency Ω and detuning∆: Increasing Ω by an appreciable amount, while keeping
∆ constant or decreasing it, would yield the most significant improvement, as it would
render the system less vulnerable to both spontaneous decay from the intermediate state
and a fluctuating two-photon detuning. It can be achieved in the present system by focusing
the blue beam down to a significantly smaller waist. As it would then only be able to
effectively couple a single atom, a site-selective addressing will have to implemented at
the same time, for example with a two-dimensional AOD as used in the atom assembly
board. Multi-tone generation as introduced in [53, 123] could then be used for parallelized
addressing.

• Doppler shift fluctuations σδ: An anti-parallel alignment of the Rydberg laser beams, in-
stead of the perpendicular configuration used currently, would reduce the magnitude of the
effective wavevector keff = kR+kB by roughly a factor of three, which would reduce the fluc-
tuation of the Doppler-induced frequency shift to σδ ' 2π× 60 kHz, thereby significantly
diminishing its effect on the dephasing of the oscillations.
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Other parameters do also hold some potential for an enhancement of the coherence time, but
are either more challenging to improve or their benefit is less immediate. The only way to
reduce the fluctuations of the laser powers, for example, is improving their intensity stabiliza-
tion, which is challenging, since the feedback loop spans two laboratories, causing the signal to
travel a significant distance and making it prone to noise. Residual electric fields can have a
significant impact on high-n Rydberg states, but installing field compensation would require a
drastic modification of the vacuum chamber. A new version of the experiment that is currently
being set up, however, will allow for the inclusion of such compensation plates. An alternative
way of reducing the impact of fluctuations and inhomogeneities in the Rabi frequency is the
implementation of an excitation scheme using stimulated Raman adiabatic passage (STIRAP)
[151], which has been successfully implemented for a robust excitation to a Rydberg state that
is insensitive to small variations in the coupling strength [90, 169]. This is useful when the
goal is to prepare one or more atoms quickly and efficiently in a Rydberg state, as is impor-
tant for the implementation of XY quantum magnets [43, 159], where ground-Rydberg state
coherence is of less importance, as the coupling is only applied for preparation and read-out.
For quantum gate operations [20, 38], or the mapping of Ising-type Hamiltonians to the system
[39, 41, 42, 108, 143, 170], the ground-Rydberg coherence is of primary importance, however.
For this application, an improvement of the laser sytem to reduce phase noise, as shown in [38],
may become necessary.
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6 Observation of Rydberg blockade and
collective enhancement in the array

Having observed and characterized the coherent dynamics arising when driving the transition
from the ground to the Rydberg state, the next step towards a two-qubit gate or the simulation
of many-body physics consists of implementing controlled interactions between the atoms in the
assembled array. As already mentioned in Chapter 2, the dominant type of interaction in the
dipole trap array presented here is the van der Waals interaction VvdW = −C6/R

6. In this chapter,
a first observation of partial and complete blockade between atoms in the array is documented
for this experiment. It is structured as follows: The first section introduces the concept of Rydberg
blockade and the effect it has on the coherent dynamics of the atoms, describing how the analysis
of the measured Rabi oscillations allow to gain information regarding the underlying interactions.
In the second section, first results are presented, documenting partial and complete blockade,
while the third section is dedicated to analyzing imperfections and quantify effects that lead to a
loss of coherence.

6.1 Rydberg interactions in the array

In order to understand the effect of the van der Waals interaction on the observable dynamics
when driving Rydberg transitions in the array, it has to be studied in a more thorough approach
than the simplified picture employed in Section 2.2.4, taking into account the anisotropy of
the interaction and the geometry of the array. This is especially important when working in a
partially blockaded regime, where the strength of the interaction is on the order of the Rabi
frequency for nearest or next-nearest neighbors, while it can be neglected when working in a
strongly blockaded regime. This section discusses both of these cases.

6.1.1 Angular dependence of the interaction

As the van der Waals interaction between two Rydberg atoms is a dipole-dipole interaction, its
strength depends on the shape of the Rydberg orbitals and their relative orientation. The energy
shift of the doubly-excited state caused by the interaction is given by second-order perturbation
theory as

∆E =
∑

r′r′′

| 〈r ′r ′′|Vdd(R)|r r〉 |2

∆r′,r′′
, (6.1)

where the sum is taken over all pair states |r ′, r ′′〉 dipole-coupled to the target state |r r〉, and
∆r′,r′′ := E|r′〉 + E|r′′〉 − 2E|r〉 is the energy difference between the respective pair states at infinite
separation [171]. Vdd(R) is the dipole-dipole operator introduced in Section 2.2.4 (Eq. (2.35)).

The geometry of this problem is illustrated in Fig. 6.1 (a). In the presence of a quantization field,
the dipole moments d1,2 of the atoms are aligned parallel to it. Since the atoms are ordered
in a two-dimensional structure in the array, the angle θ between the distance vector R and
the quantization axis is not always zero, as was assumed for the simplified picture in Section
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Figure 6.1.: Angular dependence of the van der Waals interaction. (a) In the 2D array, atom pairs
generally have a non-zero angle θ between their internuclear axis and the quantiza-
tion axis defined by the magnetic field B. (b) For nD states, the van der Waals coef-
ficient C6 (solid lines) has a strong angular dependency, while being nearly isotropic
for nS states. The blockade radius (shaded regions), due to its scaling with 6

p

C6, only
exhibits a slight anisotropy, even for nD states. In the graphs, it is plotted in arbi-
trary units and normalized to the maximum of the corresponding C6 data. For the
|57 D5/2〉 state, it is only drawn for the |mJ |= 3/2 sublevel, as this corresponds to the
experimentally probed state.

2.2.4. The angular dependence of the interaction potential leads to an anisotropy of the van
der Waals energy shift [171–173]. Figure 6.1 (b) shows a numerical calculation of this angular
dependence, expressed in the coefficient C6 := ∆E(R,θ )/h · |R|6. The spherical symmetry of an
S orbital leads to a nearly isotropic interaction for the |57S1/2〉 ⊗ |57S1/2〉 pair state, while the
interaction between two atoms in the |57D5/2〉 state is strongly anisotropic. A direct observation
of this anisotropy was reported in [116, 174]. The blockade sphere, illustrated as shaded regions
with arbitrary scaling to match the C6 plot, only exhibits a minor anisotropy, due to the 6

p

C6
scaling of the blockade radius.

6.1.2 Collective enhancement through Rydberg blockade

While the van der Waals shift between two atoms is fairly simple to model and computationally
tractable to quantify, the situation rapidly becomes more complex when increasing the number
of atoms coupled by the interaction. This means that for a typical structure size prepared in the
experiments presented in this thesis, the van der Waals shift experienced by an atom coupled to
all other atoms in its vicinity is essentially impossible to calculate within a reasonable timeframe.
A major benefit of the Rydberg blockade mechanism, and one of the reasons for its widespread
use across many different systems, is its robustness against variations in the exact energy shift.
For all atoms well inside the blockade sphere of a Rydberg atom, the condition ∆E � ħhΩ is
met, which means that only a single atom can be excited to the Rydberg state at the same
time. Consequently, while the Hilbert space originally contains 2N states, the ensemble can be
described as an effective two-level system in the N -atom Fock space. The ground state of the
system,

|G〉 := |g1 g2...gN 〉 , (6.2)
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is coupled to the superposition state

|Ψ1r〉 :=
1

Ç

∑N
i=1 |Ωi|2

N
∑

i=1

Ωie
ik·Ri |g1 g2...ri...gN 〉 , (6.3)

where the Rydberg excitation is shared among all atoms. Ωi denotes the local Rabi frequency cou-
pling atom i, while Ri is its position and k is the wavevector of the laser field. This entanglement
of the ensemble leads to a collectively enhanced coupling strength

ΩN =

√

√

√

N
∑

i=1

|Ωi|2 (6.4)

between |G〉 and |Ψ1r〉, compared to the coupling of a single atom. This effect has been experi-
mentally observed for the first time in [175]. In order to simplify the description, two assump-
tions shall be made, the validity of which will be discussed further below:

1. All atoms inside the blockade sphere are coupled with the same Rabi frequency Ωi = Ω,
such that the enhanced Rabi frequency can be written as

ΩN =
p

NΩ . (6.5)

2. The phase factors eik·Ri in Eq. (6.3) can be neglected, which is the case if the interatomic
spacing is either small compared to the wavevector of the light field, or the vectors k and
Ri j = Ri −R j are perpendicular to each other for all atom pairs (i, j).

If these assumptions are valid, the excited Fock state corresponds to the maximally entangled
state

|W 〉 :=
1
p

N

N
∑

i=1

|g1 g2...ri...gN 〉 . (6.6)

Both of the above assumptions are easier to fulfill the smaller one can make the interatomic
distance, making optical lattice experiments perfect candidates for observing highly entangled
multi-particle states in a single-atom trapping geometry 1. Accordingly, the creation of such a
Rydberg "superatom" has been reported in [56], entangling more than 100 atoms. For the larger
distances in a tweezer array, these requirements are more challenging to fulfill. Inhomogeneity
of the Rabi frequency can lead to fast dephasing when driving the transiton |G〉 ↔ |Ψ1r〉, as is
the case for the system presented here. The first condition is only approximately valid for a small
number of neighboring atoms, which can be addressed by restricting the size of the atom cluster.
The phase factors, however, can not be neglected, since the effective wavevector keff = kR + kB
is not perpendicular to the atom plane, but has a horizontal angle φ = tan−1(kR/kB) with the
quantization axis. The different phases thus acquired by the components of |Ψ1r〉 can lead to
a reduction of the observed oscillation amplitude if they exhibit a time dependence, as caused
by thermal motion of the atoms. A solution for this could either consist of aligning the red
laser beam parallel or antiparallel to the blue beam 2, or in coupling the Rydberg state to the

1 In ultracold gases, naturally a significantly larger number of atoms can be entangled because of the much
smaller mean distances, as for example reported in [176].

2 The latter would be much preferable, because of the accompanying significant reduction of the Doppler broad-
ening.
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second ground state, as demonstrated in [35]. The latter reduces the effective wavevector to
that of the hyperfine splitting, which is orders of magnitude smaller than keff, thus allowing for
a robust entanglement of the ground states, which can then be selectively detected. It should
also be noted that the enhanced Rabi frequency causes a slight reduction of the blockade radius,
according to

R(N)b =
6
√

√ C6

ħh
p

NΩ
=

Rb
12pN

. (6.7)

This correction is not very large (it reduces the radius by ∼ 10% for N = 3 atoms),
but it has to be kept in mind when working in intermediate regimes not strongly block-
aded.

6.1.3 Effect of imperfect blockade

So far, the dynamics of the system have either been considered in the non-interacting regime
(Chapter 4) or, as in the previous subsection, in the strongly blockaded regime. In reality, for most
measurements performed within the period documented in this thesis, the situation did not fully
correspond to either of these regimes. Instead, the damping of the Rydberg oscillations presented
in Chapter 4 suggests a non-negligible influence of interaction-induced energy shifts, and the
strongly blockaded regime can only be achieved for a small number of atoms in the current setup.
Unfortunately, an accurate prediction of the dynamics in this unblockaded interacting regime is
extremely difficult, as calculating the interaction-induced shifts between multiple interacting
particles is a highly non-trivial task. In [177], this has been done for a system of three atoms,
yielding non-additive potentials due to strong state mixing.

6.2 Observation and analysis of partial and complete blockade

This section documents the first observation of Rydberg blockade in the experiment on which
the work for this thesis was conducted. For all experiments presented in this chapter, an array
with a pitch of 7.0(2)µm was used (ML2, see Table 2.1.2), as the smaller distance significantly
facilitates the generation of blockaded clusters. The ability to assemble arbitrary structures, as
introduced in Chapter 3, is utilized to build advantageous geometries for the observation of
blockade.

6.2.1 Analysis of blockade strengths

The previously presented Rydberg measurements in this thesis all included an excitation of the
|57 D5/2〉 state. The choice of this state was mainly due to historical reasons, as the laser system
was aligned to work in the corresponding wavelength regime. Rydberg states in this region of
n are commonly used for a first characterization of the system, as they represent a good com-
promise between coupling strength and state lifetime. For the observation of Rydberg blockade,
however, higher-lying states (n = 80..100) are typically used [34, 105, 174, 178] in setups
with comparable atomic distances as the 7µm pitch array used here, which exhibit apprecia-
bly stronger interactions, albeit at the cost of a reduced coupling strength. Figure 6.2 shows a
comparison between the expected blockade strength for the |57 D5/2〉 and |87 D5/2〉 states. The
latter was chosen, as its transition frequency has a similar offset with regard to the closest cavity
fringe as the former, making it convenient to reach, only requiring alignment of the grating of
the 960 nm laser. As interatomic axes between next neighbors in the array are either parallel
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Figure 6.2.: Comparison of interaction strengths between the |57 D5/2〉 (blue) and |87 D5/2〉 (red)
states, for mJ = −3/2. The left graph shows the angular dependence of vdW coeffi-
cient C6, obtained via a perturbative calculation, illustrating the 100-fold increase in
interaction strength. The right graph shows the corresponding blockade radii for the
two states. The grid of a 7µm pitch array is drawn for scale. For n= 87, the blockade
exterted by a Rydberg atom in the central trap extends appreciably further than one
array pitch. Note that this perturbative calculation only serves to supply an estimate
of the expected magnitude of blockade, a more accurate calculation is performed in
Section 6.3.

or perpendicular to the quantization axis, those two angles have to be taken into account for
the calculations, especially since the interaction strength along these two directions can differ
significantly. A comparison of the blockade radii with the size of the array reveals an insufficient
interaction strength for the n = 57 state, whereas the blockade exerted by a central atom in
the |87 D5/2, mJ = −3/2〉 state should easily cover all neighbors. The graphs were obtained by
performing a perturbative calculation, which serves as an estimate of the magnitude of blockade
and the anisotropy of the interaction, and is relatively fast to compute. For an accurate anal-
ysis, however, this is not sufficient, especially in the presence of a magnetic field. This will be
discussed in Section 6.3.

6.2.2 Experimental observation of Rydberg blockade

Following the considerations above, the n = 87 Rydberg state was chosen for the measurements
presented in this chapter. A blockade radius of Rb ' 12µm can be estimated as a lower bound.
The largest structure in which a complete blockade can be expected to be observed is thus a 3×3
cluster, as indicated in Fig. 6.2. For the realization of two-qubit gates or the implementation of
Ising- or XY-type Hamiltonians, this is enough, as all of these rely on pairwise interactions.
The goal of the experiment presented in this section is the verification of Rydberg blockade via
the observation of collectively enhanced Rabi oscillations, as well as via the suppressed excitation
of more than one atom.
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Figure 6.3.: Collective enhancement of the Rabi frequency through Rydberg blockade. (a) Prob-
ability of observing a single Rydberg excitation in a system of one, two and three
atoms, respectively. The insets indicate the prepared geometries contributing to the
signal, with exemplary fluorescence images shown on the right. Shots were post-
selected for situations where a region of three traps in each direction from the cen-
tral structure was empty, to exclude unwanted interactions. (b) As expected from
Eq. (6.5), an enhancement of the Rabi frequency of the oscillation can be observed,
in good agreement with a square root scaling. The grey dashed line corresponds to
an unblockaded situation. (c) Double excitation probability in the structures with two
(red triangles) or three (green squares) atoms, indicating some blockade leakage in
the triangular arrangement. Error bars correspond to statistical uncertainties.
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The strong spatial variation of the Rabi frequency due to the small waist of the blue laser beam,
however, makes it difficult to align the beam in a way that four atoms are coupled with the same
strength 3. Analyzing the Rabi oscillations for all atoms in the central 5× 5 region of the array, a
similar Rabi frequency could be detected for no more than three traps at the same time. As the
beating of incommensurate Rabi frequencies within the blockaded ensemble would cause strong
additional damping, the structure size is thus restricted to three atoms.
Figure 6.3 (a) shows Rabi oscillations in the probability of detecting a single |87 D5/2, mJ = −3/2〉
excitation in the prepared structure. From top to bottom, the number of atoms was increased,
from one, to two, to three, with the corresponding combinations indicated in the insets. Ex-
emplary fluorescence images of the structures are shown to the right. In order to rule out any
residual interactions from atoms outside the target structure, a region consisting of three sites
in each direction of the cluster was emptied prior to the application of the Rydberg excitation.
Atoms in the surrounding "frame" and beyond served as a reservoir for reloading the structure
after a Rydberg cycle.
The small size of the prepared cluster allowed for the repeated reconstruction within one ex-
perimental cycle, such that various Rydberg measurement cycles could be performed without
having to reload the MOT. The closest distance to the "frame" is 4× d = 28µm, corresponding
to an interaction strength of < 30kHz, which is less than the transform-limited linewidth of the
excitation, even for the longest occurring pulse durations of 6µs. The data are normalized for
static preparation and detection errors, as discussed in Chapter 5. Despite the near-deterministic
preparation of the structures, the data were post-selected to only include measurements where
the depicted initial configurations were achieved 4.
Solid lines correspond to fits of Eq. (4.25) to the data. Even though the damping of the oscillation
becomes more pronounced when more than one atom is present, the enhancement of the Rabi
frequency is clearly visible and in good agreement with the expected scaling as ΩN =

p
NΩ, as

shown in Fig. 6.3 (b). Further evidence for the presence of blockade is the suppression of more
than one excitation in the cluster. Figure 6.3 (c) shows the probability for detecting two simulta-
neous excitations, corrected for baseline atom loss and detection errors. While this probability is
strongly suppressed for two atoms, there appears to be an imperfect blockade in the triangle. An
analysis of the possible causes for this blockade leakage as well as the strong amplitude damping
of the signal is performed in the next section.

6.3 Analysis of imperfections

In order to gain an understanding of the sources of oscillation damping and blockade leakage,
the geometry of the experimental configuration and its influence on the blockade strength has
to be analyzed in more detail. Particular attention has to be given to the modification of the
Rydberg interaction potentials by an external magnetic field.

Influence of external fields

The application of an external magnetic field is necessary to guarantee a well-defined quantiza-
tion axis and to lift the degeneracy of the Zeeman sublevels, which ensures both efficient optical
pumping and the exclusive coupling to a single Rydberg state.
3 This is complicated by the fact that the blue spot is slightly elliptical.
4 Even though the preparation efficiency for just the three-atom target structure is practically 100%, the require-

ment of a completely empty region surrounding the structure reduces the overall preparation efficiency of the
depicted configurations to less than unity, due to imperfections associated with finite atom removal efficiency
and a small chance of recapture in neighboring traps after removal.
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Figure 6.4.: Level diagrams of the |87 D5/2, mJ = −3/2〉 pair state in the presence of a |B| =
2.75 G magnetic field, aligned parallel (top) or perpendicular (bottom) to the inter-
atomic axis. The plots show the relative energy of the eigenstates of the interacting
system, colored corresponding to the overlap with the unperturbed pair state. For
discussion, see text. Calculations are based on the ARC library [103].

Since this Zeeman shift affects the entire manifold of Rydberg states, the strength of the vdW
interaction between two Rydberg atoms can depend strongly on the magnetic field and its angle
with respect to the interatomic axis [20]. This is especially true for Rydberg nD states, due to
the multitude of Zeeman levels that can couple via the dipole-dipole interaction. Given the com-
position of the state |87 D5/2, mJ〉, with mJ = ±1/2, ±3/2, ±5/2, the Zeeman manifold of the
|87 D5/2, 87 D5/2〉 pair state is composed of 36 sublevels. As they are all shifted corresponding to
the respective value of M = mJ ,1+mJ ,2 in the presence of a magnetic field, where indices denote
atom 1 and 2, this results in strong mixing with the Zeeman manifold of energetically close pair
states, rendering the interaction strength extremely sensitive to external fields.
Figure 6.4 shows a comparison between the pair-state energies of two interacting Rydberg atoms
for a parallel (top) and perpendicular (bottom) alignment of the interatomic axis with respect to
a magnetic field of |B| = 2.75G. Levels are colored according to the contribution of the original
pair state |r r〉 = |87 D5/2, mJ = −3/2〉 ⊗ |87 D5/2, mJ = −3/2〉. If the interatomic axis is aligned
parallel to the magnetic field, the Zeeman sublevels are degenerate with regard to the interac-
tion, and only two eigenstates carry a significant contribution from the original state. At 90◦ to
the magnetic field, the initial state is spread out across a multitude of non-degenerate Zeeman
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3 pair state

Figure 6.5.: Blockade strength in the presence of a magnetic field. If applied at an angle to the
interatomic axis, the magnetic field lifts the degeneracy of the Zeeman levels, result-
ing in a rich level structure. Blockade strengths are calculated by diagonalizing the
interaction Hamiltonian and weighting the resulting eigenstates by contribution of
the inital pair state [179]. The three curves correspond to the distinct interatomic
separations and angles in the array, as indicated by the inset. The red dashed line
marks the magnetic field strength applied in the experiment.

levels, which generally weakens the interaction strength.
It should be noted here, that a calculation of the exact blockade interaction strength for the given
system is far from trivial. The choice of mJ = −3/2 leads to the coupling with a multitude of
∆mJ = ±1 states, initially separated by a few MHz, once the distance of the atoms gets small
enough, which is the case even for distances far larger than 10µm, due to the high principal
quantum number. The diagonalization of the interaction Hamiltonian thus only reaches conver-
gence for a very large basis set, corresponding to long calculation times, and the value of the
C6 coefficient is difficult to determine as it typically relies on finding the state with the highest
contribution of the unperturbed state and fitting its distance-dependent shift with a vdW-like
function. If the original state is spread over too many eigenstates, this method is prone to errors.
Depending on the state and interaction angle, one can expect a strong dependence of the block-
ade strength on external fields. This has been analyzed in [143, 159] for the |62 D3/2, mJ = 3/2〉
state, demonstrating that even the application of a small electric field of E = 20mV cm−1 can
lead to a breakdown of an otherwise strong blockade and illustrating the effect of the strength
and sign of a magnetic field.
Performing similar calculations for the present experimental setup while varying the magnetic
field (in the absence of an electric field), one obtains the graphs shown in Fig. 6.5, correspond-
ing to the three distinct atomic distances and angles occurring in the measurement shown in
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Fig. 6.3. Blockade strengths were calculated using the Pair Interaction library [179] 5. Values
range from 23 MHz for next neighbors along the quantization axis to 5 MHz for diagonal neigh-
bors. The latter would still correspond to more than 10 times the Rabi frequency, even when
considering the collective enhancement. However, the graph shows that a small change in mag-
netic field strength can lead to a situation where the shift can get down to 1 or 2 MHz, in which
case the blockade condition would barely be satisfied. This could lead to a non-negligible double
excitation probability, that can be estimated as P2r ' Ω2/(2B2) [34], where B is the blockade
strength. A similar effect was reported in [116], where the excitation probability of more than
one atom was also higher than expected and ascribed to the geometry of the array.
A possible cause may lie in the interaction between all three atoms. In [180], it was shown
how a third atom can break the Rydberg blockade in a triangular geometry with unequal in-
teraction strengths, as is the case here, through the emergence of a three-atom dark state that
does not experience an interaction shift. Similarly, the deformation of the blockade sphere in
a system where the interatomic distance is on the order of the blockade radius, is analyzed in
[181].

Discussion of amplitude damping

Comparing the signal shown in Fig. 6.3 (a) to single-atom Rydberg oscillations shown in Chapter
4 (see Fig. 4.9), one observes a significantly stronger damping of the amplitude in the inter-
acting system when increasing the atom number. In an ideally blockaded system, as discussed
in Section 6.1, this increased damping can not be explained. Since a comprehensive simula-
tion, as performed in [116, 174] would exceed the scope of this preliminary demonstration 6,
possible causes are only discussed qualitatively here. As mentioned previously, the individual
Rabi frequencies with which the atoms are coupled to the Rydberg state vary because of the
Gaussian profile of the Rydberg beams (see Section 4.3.3). The triangular structure for this mea-
surement was chosen to minimize this inhomogeneity among the three atoms, but analyzing the
excitation probability for every trap individually still yields a variation of ±10%. This, given
Eq. (6.4), does explain to some degree the slight discrepancy with regard to the

p
N scaling vis-

ible in Fig. 6.3 (b). The beating of multiple enhanced Rabi frequencies could also constitute a
contribution to the damping in the two-atom case, where the signal was averaged over three dif-
ferent two-atom configurations. In the three-atom case, however, where the observed damping
is strongest, it can not be explained that way, as the same enhanced Rabi frequency should have
been present in every repetition. Comparing the experimental parameters with considerations
made in [116], one can also rule out inhomogeneous detunings and atomic motion as a major
cause of damping, which leaves imperfect blockade and thus fluctuating interaction strengths as
the most probable cause, especially since the nD5/2 states give rise to such a complex pair inter-
action potential landscape. Please note that the considerations of interatomic distance neglected
variations of the axial position of the atoms in the traps, that is, in the direction perpendicular
to the array plane. Given a Rayleigh range of zR = 8.3(12)µm, however, one can expect the
corresponding uncertainty in the axial position to "smear out" the blockade interaction strength
between the atoms. Given the radial trap frequency ω‖ (Eq. (2.19)) for the lowered potential
before switching off the trap, U0/kB ≈ 300µK, one obtains a standard deviation of the axial po-
sition of ∆x‖ =

Ç

kB T/mω2
‖ ≈ 2.4µm [160] 7. This can further weaken the interaction strength

and is likely to contribute to the observed blockade leakage and damping of the amplitude.

5 https://pairinteraction.github.io/pairinteraction/sphinx/html/index.html
6 The comparison of a sophisticated model with the experiment requires more data.
7 The variation of the radial position is roughly a factor of 10 smaller and is thus neglected here.
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An unexpectedly strong increase in damping has been observed in various experiments probing a
fully blockaded ensemble [56, 116, 174, 182], and a quantitative explanation for this diminished
coherence has yet to be found.

6.4 Conclusion

In this chapter, the first observation of Rydberg blockade in the present experiment was docu-
mented. This was done via the observation of a collective enhancement of the Rabi oscillation
between the ground state and an entangled state with a single Rydberg excitation shared among
two and three atoms, respectively. The observed scaling of the Rabi frequency with atom number
is in good agreement with the expected

p
N law. Analysis of a residual double excitation prob-

ability reveals it to be higher than expected from calculated blockade strengths. This imperfect
blockade, primarily occurring in the triangular geometry of three atoms for longer pulse dura-
tions, point to either an overestimation of the van der Waals strength or to the diminishment of
the blockade through three-body interactions [180, 181]. The rich level structure of nD5/2 states
leads to a strong dependence of the blockade strength on external fields and interaction angle
with respect to the quantization axis [173], even more so for three interacting atoms [177].
Similar effects may contribute to the unexpectedly strong damping of the oscillation amplitude,
which was also observed in [56, 116]. These results underpin the notion that, in order to rely on
a robust blockade mechanism in an array of Rydberg atoms, one has to carefully tune the exper-
imental parameters when working with nD states. Alternatively, switching to nS states may be
preferable, if the decrease in coupling strength can be compensated, as the blockade interaction
for these states is far more robust and isotropic.
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7 Discussion and Outlook
In the course of this thesis, the assembly of defect-free periodic clusters containing more than 100
neutral atoms could be demonstrated for the first time. This was accomplished by integrating a
movable optical tweezer into the experiment and implementing a feedback control of the atomic
occupation in the dipole trap array using a fast heuristic algorithm for the calculation of the
atom rearrangement. Repeated cycles of assembly, in conjunction with a lifetime prolonging
cooling effect caused by the associated imaging cycles, was shown to significantly increase the
probability of defect-free filling in the presence of experimental imperfections such as transport
losses. By the integration of a laser system for Rydberg excitation into the experimental setup,
progress towards the implementation of a versatile quantum simulation architecture could be
made, realizing coherent Rydberg excitation and controlled interactions in the assembled array.
A detailed analysis of the limitations in the setup has been made in order to pinpoint sources of
imperfections, which can be used as a reference for future improvements. At the time of writing
this thesis, a new version of the experiment is being set up, with various improvements such as
facilitated optical access, the possibility to include compensation plates for electric fields, and a
larger, more stable magneto-optical trap.
In either of the two setups, the presented architecture lends itself to the investigation of countless
physical problems spanning multiple areas of research in atomic physics and quantum optics
[37, 96, 183]. These include quantum simulation and computation applications, examples being
the implementation of topological quantum computing and quantum error correction [134, 135]
based on Rydberg-mediated interactions [20, 30, 37] and the simulation of quantum physical
systems [11, 13, 184]. Techniques developed here can be applied to the fields of quantum
sensing and metrology, as having a large number of atoms in a periodic structure with tunable
interactions holds potential for quantum-enhanced measurements and clock operation [185]
using squeezed states and entanglement [186]. Scaling up the assembled atom array to more
and more macroscopic sizes will provide abundant possibilities for the advancement of Rydberg-
atom based sensors for electromagnetic fields [96, 167, 187]. Reduced trap separations pave the
way to bottom-up engineering of quantum systems based on tunneling interactions [122, 188,
189]. While all results presented here are based on a quadratic grid, hexagonal MLAs are readily
available and direct laser writing methods give access to user defined geometries [142, 190]. The
trapping of atoms in the Talbot optical lattice introduced in Section 3.3.4 comes at no additional
cost in terms of laser power and will allow for the expansion of the above-mentioned approaches
into the third dimension.
Some of these applications require significant improvements and modifications of the presented
setup and are thus more distant than others. In the following a brief outlook to two possible
applications is given which can likely be implemented in the near future.

Parallelized two-qubit or multi-qubit gates

One of the logical next steps is to build on the above-mentioned advances to implement two-
qubit gate operations between pairs of atoms. As has been shown in Chapter 6, an appropriate
choice of Rydberg state leads to a strong nearest-neighbor blockade, which is a requirement for
the implementation of the entangling operations that correspond to conditional logic gates on a
quantum computer. One of the simplest forms of such an entangling operation is the conditional
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phase gate CZ . It corresponds to a sequence of three laser pulses on resonance between a qubit
state |1〉 and a Rydberg state |r〉. The two atoms are referred to as control atom and target atom.
The pulse sequence consists of a π pulse on the control atom, followed by a 2π pulse on the
target atom, which is then followed by a second π pulse on the control atom. This sequence is
illustrated in Fig. 7.1 for the target prepared in |1〉. If the control atom is initially in |0〉, it is
not coupled to the Rydberg state and the target atom undergoes a 2π rotation, thereby acquiring
a phase shift of π. If the control atom is in |1〉, the target is blockaded and its phase remains
the same, but the control atom picks up a π phase shift. The only case where the two-atom
state does not acquire a phase shift is if both atoms are initially in |0〉. In the two-atom basis
{|00〉 , |01〉 , |10〉 , |11〉}, this operation can be expressed as the matrix

CZ =











1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1











. (7.1)

As the state of the target atom after the operation depends on the initial state of the control
atom, this corresponds to the entanglement of the two atoms. Combining the CZ gate with two
π/2 rotations of the target atom before and after the interaction transforms the operation into a
CNOT gate [20, 34, 191].
There are different Zeeman sublevels that can be used as qubit states. The stretched states
|5S1/2, F = 2, mF = −2〉 =: |0〉 and |5S1/2, F = 3, mF = −3〉 := |1〉 are the most convenient
choice in the current setup, as the transition |1〉 ↔ |r〉 is already implemented. A second
option would be the clock states with mF = 0 each, which have the advantage of increased
qubit state coherence because of their reduced coupling to external magnetic fields and have
been intensively used in earlier measurements [45, 47]. The site-selective excitation necessary
for this operation can be accomplished by shifting one of the atoms out of resonance with the
tweezer, as demonstrated in Chapter 4, or by site-selective illumination with the Rydberg lasers.
The latter can be achieved by a two-dimensional AOD akin to the one used for the tweezer, which
would have the added benefit of allowing for significantly higher Rabi frequencies and homoge-
neous coupling to all atoms within a large region. Rapid sequencing of pulses or multi-toning of
the AODs would then allow for the parallelized application of entangling operations for multiple
atom pairs in the array. Entanglement between more than two atoms, as shown in Chapter 6,
also allows for the implementation of three-qubit gates, such as a CNOT with multiple targets or a
Toffoli gate [191]. While the fidelity of such gates can be expected to be limited by experimental
imperfections [30], optimized pulse sequences using STIRAP [90, 151, 169] or optimal control
[192] could lead to robust Rydberg gates [193], which presents in itself an interesting topic of
research.

Synthesizing spin models

In addition to local entanglement operations, the periodic structure of the assembled atom ar-
ray lends itself to the study of quantum magnetism, as the van der Waals interaction between
Rydberg atoms can be mapped onto a system of interacting spins, where the two spin states
are the ground state |g〉 = |↓〉 and the Rydberg state |r〉 = |↑〉. In the case of a strong laser
drive Ω on the |g〉 ↔ |r〉 transition, the resulting dynamics happen on a timescale much
shorter than the thermal motion of the atoms, making this frozen Rydberg gas behave in an
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Figure 7.1.: Controlled phase (CZ ) gate. Depicted is the case where the target atom is initially
in |1〉. (a) If the control atom is initially in |0〉, it is not coupled by the laser and the
target undergoes a 2π rotation via the Rydberg state, acquiring a phase π. (b) In the
case of the control being in the state |1〉, it is excited to the Rydberg state, shifting the
two-atom Rydberg state by ∆E and thus blocking the excitation of the target atom,
whose phase remains unchanged. Adapted from [20].

analogous way to a crystalline solid. The system can thus be described by the spin-1/2 Hamilto-
nian

H =
ħhΩ
2

∑

i

σx
i −ħhδ

∑

i

ni +
∑

i 6= j

C6

R6
i j

nin j , (7.2)

where σx = |↑〉 〈↓|+ |↓〉 〈↑| is the x Pauli matrix and ni = |↑〉 〈↑|i is the projector on the Rydberg
state for atom i. The first term in Eq. (7.2) therefore corresponds to the laser drive and the sec-
ond to the detuning δ from the transition, as illustrated in Fig. 7.2 (a). The third term describes
the van der Waals interaction VvdW. Restricting interactions to approximately isotropic nearest-
neighbor interactions 1 thus realizes an Ising-like model, where the first term takes the role of a
transverse magnetic field∝ Ω and the second term that of a longitudinal field∝ δ. For Ci j > 0
this gives rise to antiferromagnetic (AFM) order for certain values of (Ω, δ). The corresponding
phase diagram is shown in Fig. 7.2 (b), delineating the phase transition between the AFM and
paramagnetic (PM) phase. The arising dynamics can be probed either by applying a sudden
quench [41, 108, 143] or by adiabatically sweeping the system across a phase transition [40, 42]
to study the slow buildup of correlations. The comprehensive control over the longitudinal and
transverse fields, the interaction strength and, to a large extent, the topology of the system, will
allow for the study of a plethora of rich physics in the presented setup. Implementing microwave
transitions to a second Rydberg state would also give access to the implementation of XY-type
Hamiltonians and the study of dipolar exchange interactions between the two Rydberg states,
further expanding the range of explorable quantum phases [43]. The possibility for scaling this
Rydberg simulator to hundreds or even thousands of atoms holds the potential for observing

1 The requirement for isotropy suggests the use of a nS Rydberg state. Tuning the interatomic spacing in one
dimension only, as has been done in [40] to accommodate the use of an anisotropic nD state, is not possible in
the presented setup.
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Figure 7.2.: Magnetic order arising in a frozen Rydberg gas. (a) The ground and Rydberg state of
atoms trapped in a tweezer array can be mapped to spin states. The laser coupling
Ω and detuning δ take the role of a transverse and longitudinal magnetic field in
a quantum magnet, respectively. (b) Tuning the van der Waals interaction strength
to only nearest-neighbor interactions realizes an effective Ising model, with antiferro-
magnetic (AFM) order manifesting within a critical region of the phase space spanned
by Ω and δ, considered here in units of the interaction strength VvdW. Outside of this
region, the external drive dominates and the system behaves like a paramagnet (PM).
Adapted from [40].

these correlations in ever larger systems, soon leaving the realm of classical tractability and en-
tering the one of quantum supremacy [10, 11].

All of the above-mentioned applications will benefit from technical improvements of the setup.
As is evident from the analysis performed in Chapter 5, higher Rabi frequencies will significantly
increase the coherence of Rydberg dynamics, which would lead to both higher gate fidelities and
more efficient state preparation. An upgrade of the blue laser system by installing a higher-power
tapered amplifier (TA) would yield a power increase by an appreciable factor with commercially
available TA chips. An alternative would be the implementation of a scheme utilizing the 6P3/2
state as intermediate state (see Fig. 2.9 (d)), in which the weakly coupled transition corresponds
to an infrared wavelength, where much more powerful lasers are available. A potential switch to
this scheme was already taken into account when coating the mirrors of the reference cavity. An-
other limitation of the coherence time of ground-Rydberg state dynamics is the thermal motion
of the atoms, observable both as shot-to-shot dephasing and baseline loss when switching off the
traps. Finite atom temperatures and mechanical forces caused by Rydberg interactions restrict
the validity of the frozen Rydberg gas approximation, limiting quantum state fidelities and the
available time for coherent Rydberg dynamics [59, 123]. This coherence time can be increased
by cooling the atoms to the motional ground state of the dipole traps by Raman sideband cooling
[194, 195] or by trapping the Rydberg atoms in a ponderomotive potential [196, 197], recently
realized in a tweezer array experiment using a blue-detuned bottle-beam trap [198].
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Potential measures to scale up the size of the assembled array have been analyzed in Chapter
3. Most of these are contingent on an increase in available dipole laser power. However, as the
simulations show, an increase in initial loading rate would significantly benefit the assembly of
larger arrays as well and might even become crucial at some point. Adopting a gray-molasses
loading scheme as presented in [85] could thus be a key factor for scaling the system to thou-
sands of atoms.
The experimental results presented in this thesis hint at the suitability of this setup for advancing
quantum technologies as well as our knowledge about the rules that govern the behaviour of
matter at the fundamental level.
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A Properties of 85Rb
A detailed compilation of the atomic properties of 85Rb can be found in [101]. A selection of
data relevant for the QUIPS experiment is shown in Table A.1.

Figure A.1 shows an extract from the energy level scheme of 85Rb including the ground
state 52S1/2 and the first two excited states 52P1/2 and 52P3/2. The right hand side de-
picts transitions driven by the lasers introduced in this thesis (excluding Raman and Rydberg
lasers).

Atomic properties of 85Rb

Atomic number Z 37

Total nucleons Z + N 85

Atomic mass m 1.409 99× 10−25 kg

Nuclear spin I 5/2

Nucl. Landé factor gI −2.936 400× 10−4

Electr. Landé factor gJ ' 3
2 +

S(S+1)−L(L+1)
2J(J+1)

Properties of the 52S1/2 ground state

Electr. Landé factor gJ 2.00233113(20)
HFS splitting ωHFS 2π · 3035.732439 MHz

Quadr. Zeeman effect ∆ω0→0 2π · 1293.98Hz G−2 · B2

Properties of the 85Rb D1 line and the excited state 52P1/2

Wavelength λ 794.979014 933 nm

Transition frequency ω0 2π · 377.107 385690 THz

Natural linewidth Γ 2π · 5.7500MHz

Properties of the 85Rb D2 line and the excited state 52P3/2

Wavelength λ 780.241368 271 nm

Transition frequency ω0 2π · 384.230 406373 THz

Natural linewidth Γ 2π · 6.0666MHz

Saturation intensity I0 1.66932 mW/cm2

Doppler temperature TD 145.57 µK

Recoil temperature TR 370.47 nK

Table A.1.: Physical properties of 85Rb. Data taken from [101].
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Figure A.1.: Energy level scheme of the 85Rb D line states. The hyperfine splitting is given in MHz.
Besides the gF factor, the Zeeman splitting of the mF states is indicated. On the right
hand side the D2 line transitions driven by the lasers in the QUIPS experiment are
drawn (excluding lasers driving the Raman and Rydberg transitions).
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B Monte-Carlo simulation of atom-structure
assembly

Figures 3.13 and 3.15 show the result of Monte-Carlo simulations of the atom assembly proce-
dure, with a single array and interleaved arrays acting as a reservoir, respectively. The code
uses the GridMover class written by J. Werkmann [86, 133] and is given in the following
(The code for the functions pad_rows_cols and grid_generators was provided by J. Werk-
mann):

1 import numpy as np
2 from q u t i l s . GridMover import GridMover
3 import ma tp lo t l i b . pyp lo t as p l t
4

5 def pad_rows_cols ( arr , pad=(1, 1) , o f f s e t =(0, 0) ) :
6 " " "
7 Generates an i n t e r l e a v e d array from the given array , padded with zeros .
8

9 Parameters :
10 ar r (np . ar ray ) : Or i g ina l ar ray tha t i s to be padded .
11 pad ( tup le of i n t ) : Numbers of rows and columns tha t are to be padded between

each row and column of a r r .
12 o f f s e t ( tup le of i n t ) : O f f s e t de f in ing the p o s i t i o n of the o r i g i n a l ar ray

i n s i d e the padded one .
13

14 Returns :
15 ar r (np . ar ray ) : Or i g ina l array , padded with rows and columns of zeros .
16 " " "
17 shape = ar r . shape
18

19 i f pad [0] < o f f s e t [0] or pad [1] < o f f s e t [1 ] :
20 r a i s e Except ion ( ’ o f f s e t can not be l a r g e r than the padding ’ )
21

22 rows = np . s p l i t ( arr , shape [0] , a x i s =0)
23 ar r = np . zeros (( shape [0] * (1 + pad [0]) , shape [1]) , dtype=np . i n t )
24 f o r i , row in enumerate ( rows ) :
25 ar r [ i * (pad [0] + 1) + o f f s e t [0]] = row
26

27 c o l l s = np . s p l i t ( arr , shape [1] , a x i s =1)
28 ar r = np . zeros (( shape [0] * (1 + pad [0]) , shape [1] * (1 + pad [1]) ) , dtype=np . i n t

)
29 f o r i , co l in enumerate ( c o l l s ) :
30 ar r [ : , i * (pad [1] + 1) + o f f s e t [1]] = co l . f l a t t e n ()
31

32 re turn a r r
33

34 def g r id_genera to r s ( width , width_res , n_gr ids =1, p=0.5) :
35 " " "
36 Prov ides genera tor s f o r a random i n i t i a l ( r e s e r v o i r ) ar ray and a t a r g e t ( r e s u l t

) ar ray . R e s t r i c t e d to quadra t i c a r ray s .
37 Allows f o r i n t e r l e a v e d ar ray s .
38
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39 Parameters :
40 width ( i n t ) : Width (and he ight ) of the workspace gr id .
41 width_res ( i n t ) : Width (and he ight ) of the t a r g e t gr id , centered in the

workspace .
42 n_gr ids ( i n t ) : Number of i n t e r l e a v e d r e s e r v o i r g r i d s (max . 4) .
43 p ( f l o a t or np . ar ray ) : Loading rate , can be e i t h e r g loba l ( f l o a t ) or s i t e −

s p e c i f i c (np . ar ray ) .
44

45 Returns :
46 r e s e r v o i r _ g r i d _ f a c t o r y : Generator func t ion tha t can be c a l l e d to provide a

random r e s e r v o i r ar ray .
47 padded_res_gr id_ fac tory : Generator func t ion tha t can be c a l l e d to provide a

padded t a r g e t ar ray .
48 " " "
49 i f n_gr ids < 0 or n_gr ids > 4:
50 r a i s e Except ion ( ’ Number of g r i d s needs to be > 0 and < 5. ’ )
51 i f width_res > width :
52 r a i s e Except ion ( ’ The width of the r e s u l t g r id needs to be smal le r than the

s t a r t g r id . ’ )
53

54 def r e s e r v o i r _ g r i d _ f a c t o r y () :
55 i f n_gr ids > 1:
56 r e s e r v o i r = np . zeros (( width * 2 , width * 2) )
57 f o r i in range ( n_gr ids ) :
58 i f np . i s s c a l a r (p) :
59 gr id = np . random . choice ([0 , 1] , s i z e=(width , width ) ,
60 p=[1 − p , p ])
61 e l i f p . shape == ( width , width ) :
62 gr id = (np . random . uniform (0 , 1 , s i z e=(width , width ) ) < p)
63 . as type ( i n t )
64 e l s e :
65 r a i s e Except ion ( ’ Loading ra t e array does not have the r i g h t

s i z e ! ’ )
66 r e s e r v o i r += pad_rows_cols ( gr id , pad=(1, 1) , o f f s e t =( i // 2 , i % 2)

)
67 e l s e :
68 i f np . i s s c a l a r (p) :
69 r e s e r v o i r = np . random . choice ([0 , 1] , s i z e=(width , width ) ,
70 p=[1 − p , p ])
71 e l i f p . shape == ( width , width ) :
72 r e s e r v o i r = (np . random . uniform (0 , 1 , s i z e=(width , width ) ) < p)
73 . as type ( i n t )
74 e l s e :
75 r a i s e Except ion ( ’ Loading ra t e array does not have the r i g h t s i z e ! ’ )
76

77

78 re turn r e s e r v o i r
79

80 def padded_res_gr id_ fac tory () :
81 d i f f = width − width_res
82 r e s _ g r i d = np . ones (( width_res , width_res ) , dtype=np . i n t )
83 r e s _ g r i d = np . pad( res_gr id , ( ( d i f f − d i f f // 2 , d i f f // 2) ,
84 ( d i f f − d i f f // 2 , d i f f // 2) ) , ’ cons tant ’ ,
85 cons tan t_va lues =(0))
86 i f n_gr ids > 1:
87 r e s _ g r i d = pad_rows_cols ( re s_gr id , pad=(1, 1) , o f f s e t =(0, 0) )
88 re turn r e s _ g r i d
89
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90 re turn r e s e r v o i r _ g r i d _ f a c t o r y , padded_res_gr id_ fac tory
91

92

93 def s imulate_assembly (name , g r i d_ f a c to ry , r e s _ g r i d _ f a c t o r y , n_sim=1000,
94 t r a n s p o r t _ e f f =0.75 , n_ so r t s =20, img_time =0.05 ,
95 l i f e t i m e _ a r r =13, r i s e _ t i m e=300e−6, f a l l _ t i m e=300e−6,
96 wait_t ime=200e−6, tweezer_ramp_speed=1200,
97 wait_t ime_beginning =0.045) :
98 " " "
99 Simulates the repeated assembly of a t a r g e t s t r u c t u r e . Averaging the r e s u l t s

over n_sim r e a l i z a t i o n s y i e l d s a corresponding succes s p r o b a b i l i t y .
100

101 Parameters :
102 name : Pr in ted at the beginning , u se fu l f o r keeping t ra ck of the cur ren t

s imula t ion .
103 g r id_ f a c to ry , r e s _ g r i d _ f a c t o r y : Funct ions to generate a random i n i t i a l g r id as

wel l as a t a r g e t ( r e s u l t ) g r id . Provided by the func t ion ’ g r id_genera to r s ’ .
104 n_sim ( i n t ) : Number of s imula t ions , over which the r e s u l t s w i l l then be

averaged . Corresponds to the number of exper imental c y c l e s .
105 t r a n s p o r t _ e f f ( f l o a t or i t e r a b l e ) : Transport e f f i c i e n c y of the tweezer . I f

passed as a tuple , the second index corresponds to the unce r t a in t y .
106 n_so r t s ( i n t ) : Number of assembly c y c l e s with in a s i n g l e exper imental c y c l e .
107 img_time ( f l o a t ) : Duration of the f luo re s cence imaging in seconds .
108 l i f e t i m e _ a r r ( f l o a t or np . ar ray ) : Atom l i f e t i m e in the array . Can be e i t h e r

g loba l ( f l o a t ) or s i t e −s p e c i f i c (np . ar ray ) .
109 r i se_ t ime , f a l l _ t i m e , wait_t ime ( f l o a t ) : I n t e n s i t y ramp dura t ions f o r an

elementary atom move and wait time in between two moves in seconds .
110 tweezer_ramp_speed ( f l o a t ) : Average speed of a t r a n s p o r t ramp in nodes per

second .
111 wait_t ime_beginning ( f l o a t ) : Wait time at the beginning of each assembly cyc le ,

given by the ’ downtime ’ of the EMCCD.
112

113 Returns :
114 sort_num ( l i s t ) : L i s t of i n d i c e s corresponding to assembly r e p e t i t i o n s .
115 ind_prob ( l i s t ) : L i s t of i n d i v i d u a l succe s s p r o b a b i l i t i e s , with i n d i c e s

corresponding to sort_num .
116 cum_prob ( l i s t ) : L i s t of cumulat ive succes s p r o b a b i l i t i e s , with i n d i c e s

corresponding to sort_num .
117 f i l l f a c ( l i s t ) : L i s t of f i l l i n g f r a c t i o n s , with i n d i c e s corresponding to

sort_num .
118

119 " " "
120 p r i n t (name)
121 # Implement a randomly f l u c t u a t i n g t r a n s p o r t e f f i c i e n c y by drawing from a

normal d i s t r i b u t i o n :
122 i f type ( t r a n s p o r t _ e f f ) == tup le :
123 t r a n s p o r t _ e f f = np . random . normal ( t r a n s p o r t _ e f f [0] , t r a n s p o r t _ e f f [1] , n_sim )
124 # I f no unce r t a in t y i s given , keep i t s t a t i c :
125 e l i f type ( t r a n s p o r t _ e f f ) == f l o a t or type ( t r a n s p o r t _ e f f ) == i n t :
126 t r a n s p o r t _ e f f = [ t r a n s p o r t _ e f f f o r i in range ( n_sim ) ]
127 e l s e :
128 pass
129

130 succe s s = {n : [ ] f o r n in range (0 , n_ so r t s + 1)}
131 f i l l _ f a c t o r = {n : [ ] f o r n in range (0 , n_ so r t s + 1)}
132 cumula t ive_success = {n : [ ] f o r n in range (0 , n_ so r t s+1)}
133 # Create an in s tance of the GridMover c l a s s :
134 mover = GridMover ()
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135 f o r j in range ( n_sim ) :
136 # Bui ld gr id
137 done = Fa l se
138 t r i e s = 0
139 while not done :
140 gr id = g r i d _ f a c t o r y () . as type ( i n t )
141 r e s _ g r i d = r e s _ g r i d _ f a c t o r y () . as type ( i n t )
142 # Check i f there are enough atoms in the r e s e r v o i r to f i l l the t a r g e t :
143 done = np . sum( r e s _ g r i d ) <= np . sum( gr id )
144 t r i e s += 1
145 i f t r i e s >0: # Set t h i s g rea t e r than zero i f some kind of i n i t i a l

s e l e c t i o n based on the number of loaded atoms s h a l l be s imulated
146 break
147 # The succes s marker i s True once the s t r u c t u r e i s assembled
148 success_marker = (( r e s _ g r i d & gr id ) == r e s _ g r i d ) . a l l ( )
149 succe s s [ 0 ] . append ( success_marker )
150 f i l l _ f a c t o r [ 0 ] . append (np . sum( r e s _ g r i d & gr id ) /np . sum( r e s _ g r i d ) )
151 cumula t ive_success [ 0 ] . append ( success_marker )
152

153 cu r r en t_g r id = gr id
154 # Loop over assembly c y c l e s :
155 f o r s o r t in range (1 , n_ so r t s+1) :
156 # Apply the s o r t i n g algor i thm to c a l c u l a t e a s e r i e s of reorder ing moves

, moving o b s t a c l e s out of the way :
157 moves = mover . f i nd_rou te ( cu r r en t_g r id . copy () , re s_gr id ,
158 t r iv ia l_movement=False , compress=False ,
159 remove_mode= ’ d e f a u l t ’ )
160 # Ramp of the form 0bxyz
161 # x : i s removal move
162 # y : f a l l i n g ramp
163 # z : r i s i n g ramp
164 paths = []
165 # S p l i t the moves onto i n d i v i d u a l paths
166 f o r i , ( from_node , to_node , ramps ) in enumerate (moves) :
167 i f ramps == 0b011 : # Ri s ing and f a l l i n g ramp .
168 paths . append (( from_node , to_node , ramps ) )
169 e l i f ramps == 0b001 : # Only r i s i n g ramp , in tha t case j o i n with the

next elementary move . Corresponds to the path having a 90 degree turn .
170 from_node2 , to_node2 , ramps2 = moves[ i +1]
171 paths . append (( from_node , to_node2 , 0b011) )
172 e l s e :
173 pass
174 # Keep t rack of time to implement time−dependent l o s s e s :
175 so r t_ t ime = wait_t ime_beginning + img_time
176 f o r ( from_node , to_node , ramps ) in paths :
177 # Add the ramp and wait t imes :
178 so r t_ t ime += r i s e _ t i m e + f a l l _ t i m e + wait_t ime
179 # Add the time necessary f o r the cur ren t movement
180 so r t_ t ime += (np . abs ( to_node [0] − from_node [0])
181 + np . abs ( to_node [1] − from_node [1]) )
182 / tweezer_ramp_speed
183 chance = np . random . uniform (0 ,1)
184 # Implement random l o s s due to f i n i t e t r a n s p o r t e f f i c i e n c y :
185 i f chance < t r a n s p o r t _ e f f [ j ] :
186 # Update gr id i f atom i s not l o s t :
187 _ , cu r r en t_g r id = mover . perform_moves ( from_node , [ to_node ] ,
188 cu r r en t_g r id )
189 e l s e :
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190 # Remove atom :
191 row_from , col_from = from_node
192 cu r r en t_g r id [ row_from , col_from ] = 0
193

194 # Implement random atom l o s s according to l i f e t i m e
195 su rv i va l _p rob = np . exp(−(np . f l oa t64 ( sor t_ t ime ) )
196 /np . f l oa t64 ( l i f e t i m e _ a r r ) )
197 temp_grid = np . random . uniform (0 , 1 , s i z e=gr id . shape )
198 loss_mask = temp_grid < surv i va l _p rob
199 cu r r en t_g r id = cur ren t_g r id & loss_mask
200 # Store r e s u l t s :
201 succe s s [ s o r t ] . append ( ( ( r e s _ g r i d & cur r en t_g r id ) == r e s _ g r i d ) . a l l ( ) )
202 f i l l _ f a c t o r [ s o r t ] . append (np . sum( r e s _ g r i d & cur r en t_g r id )
203 /np . sum( r e s _ g r i d ) )
204 success_marker = success_marker or (( r e s _ g r i d & cur r en t_g r id )
205 == r e s _ g r i d ) . a l l ( )
206 cumula t ive_success [ s o r t ] . append ( success_marker )
207

208 # Average over a l l s imu la t i ons and re turn f i n a l r e s u l t s :
209 sort_num , ind_prob , cum_prob , f i l l f a c= [ ] , [ ] , [ ] , [ ]
210 f o r key , value in succes s . i tems () :
211 sort_num . append ( key )
212 ind_prob . append (np . mean( value ) )
213 cum_prob . append (np . mean( cumula t ive_success [ key ]) )
214 f i l l f a c . append (np . mean( f i l l _ f a c t o r [ key ]) )
215

216 re turn sort_num , ind_prob , cum_prob , f i l l f a c
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C Simulation of Rydberg dynamics
In the follwoing, the code used for the Monte-Carlo simulations in Chapter 5 is given. It uses
the Master equation solver provided by the QuTiP package [165], as well as the ARC library
for atomic properties [103]. In the presence of only one decay channel, as is the default,
the implemented Hamiltonian and Lindblad dissipator correspond to Eq. (5.7) and Eq. (5.8),
respectively.

1 import numpy as np
2 import ma tp lo t l i b . pyp lo t as p l t
3 # Import the QuTiP package :
4 from qut ip import *
5 # Import the ARC l i b r a r y f o r c a l c u l a t i n g Rabi f r equenc i e s :
6 from arc import *
7

8 # Bas i c d e f i n i t i o n s :
9 atom = Rubidium85 ()

10 # Decay ra t e of the in te rmedia te s t a t e :
11 Gamma = 2 * np . p i * 6.0666e6
12

13 # n , L , J , mJ
14 r ydberg_s ta t e = [57 , 2 , 2 .5 , −1.5]
15

16 # Experimental parameters :
17 wais t_red = 550e−6
18 wais t_b lue = 19e−6
19 power_red = 500e−6
20 power_blue = 0.04
21

22 power_uncert_red = 0.02
23 power_uncert_blue = 0.05
24

25 Omega_B = atom . getRabiFrequency (5 , 1 , 1 .5 , −1.5 , * rydberg_s ta t e [ : 3 ] , 0 ,
26 power_blue , wais t_b lue )
27 Omega_R = atom . getRabiFrequency (5 , 0 , 0 .5 , −0.5 , 5 , 1 , 1 .5 , −1,
28 power_red , wais t_red )
29

30 Del ta = 2 * np . p i * 417e6
31

32 # Measured s t a t i c e r r o r s :
33 prep_e f f = 0.96
34 b a s e l i n e _ l o s s = 0.05
35 de t_e r r = 0.19
36

37 # Take the l i g h t s h i f t i n to account f o r the e f f e c t i v e detuning :
38 de l t a = − (Omega_R**2 − Omega_B**2) / (4 * Del ta )
39

40 # Introduce Doppler Broadening of the resonance :
41 doppler = 2 * np . p i * 170e3
42

43

44

45
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46 def get_rydberg_s ta te_pop (Omega_R , Omega_B , Delta , de l ta , times , Gamma,
47 doppler , p rep_e f f ) :
48

49 " " "
50 Uses the QuTiP Master equat ion s o l v e r to obta in the populat ion in the Rydberg

s t a t e f o r a s e t of time s t ep s given by ’ t imes ’ ,
51 f o r a three l e v e l system with two p o s s i b l e decay channels .
52

53 Returns :
54 r e s u l t . expect [0 ] : L i s t of expec ta t ion va lues of a Rydberg s t a t e p r o j e c t i o n

measurement f o r a l l time s t ep s in ’ t imes ’
55 " " "
56

57 # The s t a t e g ’ corresponds to a second decay channel from the in te rmedia te s t a t e
not coupled to the Rydberg s ta t e ,

58 # lead ing to an asymmetric damping of the dynamics . However , in a l l experiments
presented in t h i s t h e s i s ,

59 # i t was not present due to using the s t r e t che d in te rmedia te s t a t e mF=−4
60 Gamma_g = Gamma
61 Gamma_gprime = 0
62

63 # Define the b a s i s . For the sake of gene ra l i t y , the s t a t e g ’ i s inc luded in the
b a s i s :

64 ket_gprime = np . array ( [ [1] , [0] , [0] , [0]])
65 bra_gprime = np . ar ray ([ [1 , 0 , 0 , 0]])
66

67 ket_g = np . array ( [ [0] , [1] , [0] , [0]])
68 bra_g = np . array ([ [0 , 1 , 0 , 0]])
69

70 ket_e = np . array ( [ [0] , [0] , [1] , [0]] )
71 bra_e = np . array ([ [0 , 0 , 1 , 0]])
72

73 ke t_ r = np . ar ray ( [ [0] , [0] , [0] , [1]] )
74 bra_r = np . ar ray ([ [0 , 0 , 0 , 1]])
75

76 # Define the c o l l a p s e opera tor s corresponding to d i s s i p a t i o n v ia the in te rmedia te
s t a t e :

77 c_g = Qobj (np . s q r t (Gamma_g) * ket_g * bra_e )
78 c_gprime = Qobj (np . s q r t (Gamma_gprime) * ket_gprime * bra_e )
79

80 # Draw a random e f f e c t i v e detuning from the Doppler broadened d i s t r i b u t i o n :
81 d e l t a _ e f f = de l t a + np . random . normal (0 , doppler )
82

83 # Define the Hamiltonian and i n i t i a l s t a t e :
84 H = Qobj ( [ [0 , 0 , 0 , 0] , [0 , 0 , Omega_R / 2 , 0] ,
85 [0 , Omega_R / 2 , −Delta , Omega_B / 2] , [0 , 0 , Omega_B / 2 , −d e l t a _ e f f ] ] )
86 ps i0 = prep_e f f * b a s i s (4 , 1) + (1 − prep_e f f ) * b a s i s (4 , 0)
87

88 # Use the QuTiP Master equat ion s o l v e r to evolve the system :
89 r e s u l t = mesolve (H, psi0 , times , c_ops=[c_g , c_gprime ] ,
90 e_ops=[Qobj ( ke t_ r * bra_r ) ])
91

92 re turn r e s u l t . expect [0]
93

94

95 def s imulate_dynamics ( times , Omega_R , Omega_B , de l ta , Del ta=Delta , n_sim=100,
96 b a s e l i n e _ l o s s=b a s e l i n e _ l o s s , p rep_e f f=prep_ef f ,
97 de t_e r r=det_err , i n c l u d e _ s c a t t e r i n g=True ,
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98 inc lude_dephas ing=True , doppler=doppler , Gamma=Gamma,
99 inc lude_power_uncerts=True , power_uncert_red=power_uncert_red

,
100 power_uncert_blue=power_uncert_blue ) :
101 " " "
102 Returns a l i s t of Rydberg s t a t e evo lu t ions , corresponding to mul t ip l e

exper imenta l r e a l i z a t i o n s .
103 This way , dephasing e f f e c t s can be modelled , such as Doppler broadening and

f l u c t u a t i n g l a s e r power .
104 " " "
105 r_pops = []
106 f o r i in range ( n_sim ) :
107 doppler = doppler i f inc lude_dephas ing e l s e 0
108 Gamma = Gamma i f i n c l u d e _ s c a t t e r i n g e l s e 0
109

110 # Model a f l u c t u a t i n g l a s e r power by drawing the Rabi f r e q e n c i e s from a
normal d i s t r i b u t i o n :

111 O_R = np . random . normal (Omega_R , power_uncert_red *Omega_R/2) i f
112 inc lude_power_uncerts e l s e Omega_R
113 O_B = np . random . normal (Omega_B , power_uncert_blue *Omega_B/2) i f
114 inc lude_power_uncerts e l s e Omega_B
115

116 # Obtain the Rydberg popula t ions and int roduce s t a t i c e r r o r s to model
exper imenta l l i m i t a t i o n s :

117 r_s ta te_pop = get_rydberg_s ta te_pop (O_R, O_B , Delta , de l ta , times , Gamma,
118 doppler , p rep_e f f )
119 r_s ta te_pop = r_s ta te_pop * (1− b a s e l i n e _ l o s s ) + b a s e l i n e _ l o s s
120 r_s ta te_pop = r_s ta te_pop * (1 − de t_e r r )
121 r_pops . append ( r_s ta te_pop )
122

123 re turn r_pops
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states in a quantum nonlinear medium, Science 359, 783 (2018).

[96] C. S. Adams, J. D. Pritchard und J. P. Shaffer, Rydberg atom quantum technologies, Journal
of Physics B: Atomic, Molecular and Optical Physics 53, 012002 (2019).

[97] J. R. Rydberg, XXXIV. On the structure of the line-spectra of the chemical elements, The
London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 29, 331
(1890).

[98] C.-J. Lorenzen und K. Niemax, Quantum Defects of the n2P1/2,3/2 Levels in 39K I and 85Rb I,
Physica Scripta 27, 300 (1983).

[99] W. Li, I. Mourachko, M. W. Noel und T. F. Gallagher, Millimeter-wave spectroscopy of cold
Rb Rydberg atoms in a magneto-optical trap: Quantum defects of the ns, np, and nd series,
Phys. Rev. A 67, 052502 (2003).

[100] J. Han, Y. Jamil, D. V. L. Norum, P. J. Tanner und T. F. Gallagher, Rb nf quantum defects
from millimeter-wave spectroscopy of cold 85Rb Rydberg atoms, Phys. Rev. A 74, 054502
(2006).

[101] D. A. Steck, Rubidium 85 D line data, http://steck.us/alkalidata, 2012.

130 Bibliography

http://dx.doi.org/10.1103/PhysRevX.9.011057
http://dx.doi.org/10.1103/PhysRevX.9.011057
http://dx.doi.org/10.1103/PhysRevLett.100.033601
http://dx.doi.org/10.1103/PhysRevLett.100.033601
http://dx.doi.org/10.1038/nature11596
http://dx.doi.org/10.1038/nature11596
http://dx.doi.org/10.1103/PhysRevLett.119.220501
http://dx.doi.org/10.1103/PhysRevLett.119.220501
http://dx.doi.org/10.1103/physrevlett.123.153603
http://dx.doi.org/10.1103/physrevlett.123.153603
http://dx.doi.org/10.1038/nature13832
http://dx.doi.org/10.1038/nature13832
http://dx.doi.org/10.1103/PhysRevX.7.041010
http://dx.doi.org/10.1103/PhysRevLett.107.133602
http://dx.doi.org/10.1103/PhysRevLett.107.133602
http://dx.doi.org/10.1126/science.aao7293
http://dx.doi.org/10.1126/science.aao7293
http://dx.doi.org/10.1088/1361-6455/ab52ef
http://dx.doi.org/10.1080/14786449008619945
http://dx.doi.org/10.1088/0031-8949/27/4/012
http://dx.doi.org/10.1103/PhysRevA.67.052502
http://dx.doi.org/10.1103/PhysRevA.67.052502
http://dx.doi.org/10.1103/PhysRevA.74.054502
http://dx.doi.org/10.1103/PhysRevA.74.054502
http://steck.us/alkalidata


[102] I. I. Beterov, I. I. Ryabtsev, D. B. Tretyakov und V. M. Entin, Quasiclassical calculations of
blackbody-radiation-induced depopulation rates and effective lifetimes of Rydberg nS, nP,
and nD alkali-metal atoms with n≤ 80, Phys. Rev. A 79, 052504 (2009).
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