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Abstract

Matter wave interferometry offers a novel approach for high precision mea-
surements, such as the determination of physical constants like the local grav-
ity constant g or the fine-structure constant. Since its early demonstration, it
has become an important tool in the fields of fundamental and applied physics.
The present work covers the implementation of matter wave interferometers
as well as the creation of novel guiding potentials for ultra-cold ensembles of
atoms and Bose-Einstein condensates for this purpose. In addition, novel tech-
niques for the manipulation of atoms with Bragg lattices are presented, serving
as elements for interferometry.
The measurements in this work are performed with a Bose-Einstein condensate
of 25000 87rubidium atoms created in a crossed optical dipole trap. The crossed
optical dipole trap is loaded from a magneto-optical trap and allows a measure-
ment every 25 s.
This work introduces the novel technique of double Bragg diffraction as a tool
for atom optics for the first time experimentally. The creation of beamsplitters
and mirrors for advanced interferometric measurements is characterized. An
in depth discussion on the momentum distribution of atomic clouds and its in-
fluence on double Bragg diffraction is given. Additionally experimental results
for higher-order Bragg diffraction are explained and double Bragg diffraction is
used to implement a full Ramsey-type interferometer.
A second central result of this work is the implementation of novel guiding
structures for ultra-cold atoms. These structures are created with conical re-
fraction, an effect that occurs when light is guided along one of the optical
axis of a bi-axial crystal. The conical refraction crystal used to operate the
novel trapping geometries is a KGd(WO4)2 crystal that has been specifically
cut orthogonal to one of the optical axis. Two regimes are discussed in de-
tail: the creation of a toroidal matter wave guide and the implementation of
a three-dimensional dark focus. Additional geometries accessible with conical
refraction are introduced and possible applications are shown.
The first regime characterized in detail is the creation of a toroidal wave guide
for ultra-cold atoms and Bose-Einstein condensates. With the aid of a lightsheet
potential atoms are trapped in a quasi two-dimensional ring geometry. Inside
of the geometry atoms are accelerated, decelerated and held for extended stor-
age times of up to two seconds. First attempts for the implementation of a
Mach-Zehnder-type interferometer in a toroidal trap are presented. The second
regime shown is the creation of a three-dimensional dark focus that is used to
trap atoms in a repulsive confinement of light. The parameters of the dark fo-
cus are investigated in detail. Future application of a two-dimensional array of
dark foci is shown by demonstrating the respective light field.
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Zusammenfassung

Materiewelleninterferometrie bietet einen neuartigen Zugang zu Hochpräzisi-
onsmessungen physikalischer Konstanten, wie beispielweise die Messung der
lokalen Erdbeschleunigung g oder der Feinstrukturkonstante. Seit ihrer ersten
Demonstration hat sie sich zu einem wichtigen Werkzeug der Grundlagen- so-
wie der angewandten Physik entwickelt. Die vorliegende Arbeit beschäftigt sich
mit der Konstruktion von Materiewelleninterferometern, sowie mit der Erzeu-
gung neuartiger Potentiale für ultra-kalte Atome und Bose-Einstein-Kondensate
für diesen Einsatzbereich. Ebenfalls werden neuartige Techniken für die Mani-
pulation von Atomen mittels Bragg Gitter vorgestellt, welche ihre Anwendung
in der Interferometrie finden.
Die atomoptischen Messungen in dieser Arbeit werden mit einem Bose-Einstein-
Kondensat von 25000 87Rubidiumatomen durchgeführt. Dieses wird in einer
gekreuzten Dipolfalle erzeugt, welche aus einer magnetooptischen Falle gela-
den wird. Der Experimentzyklus beträgt typischerweise 25s.
Diese Arbeit führt erstmals Doppel-Bragg Beugung als experimentelle Technik
der Atomoptik ein. Die Erzeugung von Strahlteilern sowie Spiegeln für Materie-
wellen für fortschrittliche interferometrische Messungen wird charakterisiert.
Eine tiefgreifende Diskussion in Bezug auf die Impulsbreite von atomaren En-
sembles und ihren Einfluss auf Doppel-Bragg Beugung wird geführt. Ebenfalls
wird Doppel-Bragg Beugung hörer Ordnung sowie die experimentelle Umset-
zung eines Ramsey-Interferometers mittels Doppel-Bragg Beugung gezeigt.
Ein zweites, zentrales Ergebnis dieser Arbeit ist die Erzeugung von neuartigen
Wellenleitern für ultra-kalte Atome. Diese werden mit Hilfe konischer Refrak-
tion erzeugt, ein Effekt welcher Auftritt, wenn Licht entlang einer optischen
Achse eine biaxialen Kristalls eingestrahlt wird. Zur Untersuchung der koni-
schen Refraktion wird ein KGd(WO4)2 Kristall eingesetzt. Zwei Parameterberei-
che werden im Detail diskutiert: die Erzeugung eines toroidalen Materiewellen-
leiters sowie die Erzeugung eines dreidimensional dunklen Fokus. Zusätzliche,
mittels konischer Refraktion realisierbare Geometrien, werden vorgestellt und
ihre Anwendungsgebiete werden aufgezeigt.
Der erste Parameterbereich beschreibt die Erzeugung des toroidalen Wellenlei-
ters für ultra-kalte Atome und Bose-Einstein-Kondensate. Mit Hilfe eines zu-
sätzlichen Lichtteppichs wird ein quasi zweidimensionaler Einschluss erzeugt.
In diesem können Atome beschleunigt, abgebremst und für bis zu zwei Sekun-
den gehalten werden. Erste Versuche zur Implementierung eines Mach-Zehnder
Interferometers in einer kreisförmigen Falle werden präsentiert. Der zweite Pa-
rameterbereich beschreibt die Erzeugung eines dreidimensionalen dunklen Fo-
kus. Dieser wird als repulsiver Einschluss genutzt und seine Eigeschaften wer-
den im Detail diskutiert. Zusätzlich wird die zukünftige Anwendung in einer
zweidimensionalen Registeranordnung experimentel vorgestellt, indem die da-
für notwendigen Lichtfelder charakterisiert werden.
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1 Introduction
Interferometric measurements with light waves are one of the most well-known
physical measurement methods. By exploiting the coherence of photons in
depth, new knowledge on a multitude of different phenomena is gained. In-
terferometric experiments have shown to be one of the most sensitive measure-
ment methods. For example Michelson-Fabry-Perot interferometers are used
to measure gravitational waves at the Laser Interferometer Gravitational-Wave
Observatory (LIGO) [1]. Also optical coherence tomography (OCT) is used
in clinical environments to image the retina and to gain insight on disease
patterns [2]. Another example, the famously failed experiment to show that
electromagnetic fields propagate in a medium called ether, by A. Michelson and
E. Morley in 1887, is a well known example for a measurement exploiting the
interference of light waves [3]. The ongoing improvement of the precision of
these measurements spawned the field of matter wave interferometry.
Since the predictions of the wave-like behaviour of matter by L. de Broglies
in 1924 [4] and the experimental proof by C. Davisson and L. Germer, the fo-
cus for high precision interferometric measurements extended towards massive
particles like atoms, electrons, or neutrons [5]. The wave nature of matter
showed scattering of electrons in a single nickel crystal [6] in the same way as
X-rays are scattered by crystals [7]. Due to the shorter wavelength of matter
waves, the expected precision of interferometric measurements is predicted to
be higher. Matter wave interferometers have been successfully used to measure
the earth’s gravitational force [8–11] or the fine structure constant [12, 13]
with high precision. They also serve as a tool for measurements in micro-
gravitational environments [14–16]. A reliable source for coherent atoms is
a key point for matter wave interferometry.
Bose-Einstein condensates, firstly predicted in 1924 by S.N. Bose and A. Ein-
stein [17–19], offer a mesoscopic number of identical particles with the ability
to interfere, due to their large coherence length. These properties make Bose-
Einstein condensates ideal for interferometric measurements. 70 years after the
initial discussion, the first ever Bose-Einstein condensate could be produced ex-
perimentally in 1995 [20, 21] in a magnetic trap. For their work, E.A. Cornell,
W. Ketterle, and C.E. Wieman received the Noble Prize in Physics in 2001. The
experimental success of the creation of a BEC was preceded by a long series of
experimental breakthroughs in the creation of ultra-cold atoms. Most notice-
able is the technique of laser-cooling [22] and the first magneto-optical trap as
a source for ultra-cold atoms [23–25], work for which W.D. Phillips, S. Chu,
and C. Cohen-Tannoudji have been awarded with the Nobel Prize in Physics in
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1997. In order to provide a fast and reliable process for the creation of con-
densed atoms a multitude of novel techniques exists.
Supplementary to the creation of Bose-Einstein condensates in magnetic traps
an additional experimental method for the creation of ultra-cold atoms has been
developed: Optical dipole potentials exploit the electric dipole interaction of
atoms with far-detuned light to create attractive or repulsive potentials [26].
By lowering the trap depth, an efficient evaporation mechanism is found that
is used to cool atoms to quantum degeneracy [27]. In 2001 a first all-optical
Bose-Einstein condensate could be demonstrated in a crossed optical dipole
trap with rubidium atoms [28]. The simple beam shaping mechanism of dipole
potentials with standard optical elements, such as lenses and mirrors, offers
high flexibility and adaptability in the creation of novel potential shapes and
structures. These structures are a valuable tool to store and guide atoms for
advanced interferometric measurements. Developing novel types of trapping
geometries enables the usage of experiments impossible until now.
An important tool for the creation of exotic and unique beam shapes in this
work is conical refraction. Since its prediction in 1832 by Hamilton [29] and
the soon after experimental observation by Lloyd in 1833 [30], conical refrac-
tion has been a phenomenon of constant experimental and theoretical research.
Only after its theoretical discussion by A.M. Belskii and A.P. Khapalyuk [31] in
1978 and its reformulation by A.M. Belskii and M.A. Stepanov [32,33] in 1999,
a full theoretical description of the phenomenon is possible. The rotationally
symmetric, cone shaped light field formed inside a bi-axial crystal has recently
been discovered as a tool for atom optics and solid state physics [34–36].
In addition to the experimental creation of optical potentials for atom optics
and matter wave interferometry, beamsplitters and mirrors for atoms are im-
plemented, similar to interferometers with light waves. For ultra-cold atoms
and Bose-Einstein condensates optical lattices [37], created by standing light
waves, have shown to be a great tool for atom manipulation [38, 39]. They
offer the possibility to accelerate, decelerate and coherently split atomic en-
sembles and were first used experimentally for matter wave interferometry in
1991 [40].

The present work is devoted to the investigation of the dynamics of Bose-
Einstein condensates in novel dipole potentials. The long term goal of this
work is the creation of compact and scalable tools for atom optics, interferome-
ters and quantum information processing. This work has been carried out at the
ATOMICS experiment of the Atome-Photonen-Quanten group at the Institute of
Applied Physics at the Technische Universität Darmstadt. The acronym ATOM-
ICS stands for ’ATom Optics with MICro Structures’.
In addition to this introduction, this work is divided into six chapters:
Chapter 2 introduces the ATOMICS experiment and the preceding work that
leads to the experiments in this work. It will be shown how the efficient cre-
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ation of all-optical Bose-Einstein condensates is carried out and characteristics
of the experimental setup are discussed. In addition basic properties of optical
potentials and Bose-Einstein condensates are given. Especially, the dynamics of
interacting ensembles of atoms in trapped geometries are investigated.
Chapter 3 is dedicated to the discussion of double Bragg diffraction as a novel
tool for atom optics and atom interferometry. A discussion on the theoretical
description of Bragg diffraction and double Bragg diffraction will be given. Sub-
sequently, the experimental demonstration of double Bragg diffraction will be
shown for the first time. The following sections will identify important experi-
mental parameters that define the applicability of double Bragg diffraction. In
addition, higher-order Bragg diffraction will be implemented and the quality of
double Bragg diffraction as a beamsplitter and mirror is conducted. Finally, a
full interferometer sequence using double Bragg diffraction will be shown. In
particular, differences of double Bragg diffraction and Bragg diffraction for in-
terferometric applications will be discussed.
Chapter 4 gives an introduction to conical refraction, a phenomenon occur-
ring in bi-axial birefringent crystals. After a short summary on birefringence
in uni-axial crystals the theory describing conical refraction will be presented.
The discussion is led to different regimes of conical refraction structures. Two
important regimes, the double ring structure with the Poggendorff dark ring
and the three-dimensional dark focus, are explained in detail. Special attention
is given to the applicability of these potentials towards trapping and guiding
of ultra-cold atoms in these structures. Furthermore a discussion on additional
optical potentials realizable with conical refraction is given.
Chapter 5 is devoted to the experimental implementation of toroidal trapping
potentials with conical refraction. The creation of toroidal wave guides with
conical refraction and their properties are explained in detail and verified ex-
perimentally. The toroidal wave guide is used as a storage potential for moving
ensembles of ultra-cold atoms and a scheme for dynamically loading the ring
shaped potential is demonstrated. The discussion is followed by first results on
an experimental implementation of a Mach-Zehnder like interferometer in the
toroidal wave guide. Experimental problems impeding the interferometer will
be shown and a possible outlook on future improvements will be given.
Chapter 6 presents the first ever implementation of a three-dimensional dark
focus created with conical refraction as a trap for ultra-cold atoms and BECs.
In conjunction with the experimental implementation of the potential, impor-
tant trapping parameters are characterized. Supplementary an experimental
demonstration will be shown, which illustrates the scalability of the dark focus
structure. An implementation of the optical configuration a two dimensional
register of dark foci is performed and its use for quantum information process-
ing is discussed.
Chapter 7 summarizes the experimental insight gained in this work and gives
an outlook on future developments and improvements of the experiment.
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2 Preparation and detection of
ultra-cold atoms and
Bose-Einstein condensates

After the first ever realization of Bose-Einstein condensation of an atomic
vapour [41,42] in a magnetic trap additional methods for the creation of BECs
emerged. Even though magnetic traps are most frequently used to create BECs
of up to 120× 106 atoms [43], the use of far detuned optical dipole potentials
has shown to be advantageous in certain situation. On the one hand atoms
without magnetic moment are trappable and on the other hand, in contrast to
magnetic traps, optical traps are capable trapping atoms regardless of which
magnetic state the atoms has [27]. In addition optical dipole potentials gener-
ally feature smaller experimental setups and do not need huge magnetic coils
to create sufficient trapping potentials. The implementation of optical dipole
potentials peaked with the first ever all-optical BECs created in 2001 [28].
Since 2008 the group Atome-Photonen-Quanten at the Technische Universität
Darmstadt is capable of producing all-optical BECs [44,45]. The chosen wave-
length of 1070 nm enables the use of commercially available optics. In addition
to the implemented scheme at the ATOMICS experiment additional techniques
emerged to efficiently create BECs with optical potentials [46–49]. All of these
implementations aim to reduce the impact of reduced trapping frequencies [50]
in all-optical configurations during the evaporation process, which allows faster
evaporation.
This chapter will introduce optical dipole potentials used to create ensembles
of ultra-cold atoms and BECs (see Sec. 2.1). In addition basic properties of
Bose-Einstein condensates will be explained Sec. 2.2. The chapter closes with
the explanation of the experimental setup used at the ATOMICS experiment for
the creation of ultra-cold atoms and BECs (see Sec. 2.3).

2.1 Optical dipole potentials

The interaction of atoms and light is mainly dependent on the frequency of
the incident light ω and the transitions of the atom species. The rate at which
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photons resonantly excite a transition with frequency ω0 is given by the spon-
taneous scattering rate ΓSC:

ΓSC
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where Γ is the decay rate of the transition, and I(~r) is the intensity of the in-
cident light at the position ~r. Scattering of photons introduces heating, which
is not desired in an experimental environment of ultra-cold atoms. Especially
interferometers suffer from spontaneous scattering as they are a main contrib-
utor to decoherence, and therefore the loss of contrast.
Introducing a detuning∆=ω−ω0 reduces the scattering rate and gives rise to
an additional phenomenon. Detuned light fields produce conservative poten-
tials that can be used to store or guide atoms. Depending on the detuning ∆
an energy shift ∆E is introduced that creates attractive or repulsive potentials,
which are directly dependent on the intensity I(~r). The energy shift can be
calculated by perturbation theory and is given by [26]:

∆Ei

�

~r
�

=
3
2
πc2 × I

�

~r
�

∑

i 6= j

Γi jc
2
i j

ω3
0,i j∆i j

. (2.2)

The energy shift ∆Ei of each state i is given by the sum over all other states
j. Γi j gives the decay rate of the transition and ω0,i j is frequency. I(~r) gives
the local intensity and c denotes the speed of light. The frequency detuning
∆i j =ω−ωi j defines the detuning with respect to the transition j. The coupling
strength is given by the Glebsch-Gordon coefficients ci j = 〈ei|µ̂|e j〉/||µ|| and is
listed in [51,52].
The used isotope in this work of 87Rb features a fine-splitting of the excited P
state. The two transitions D1 and D2 of feature wavelength of λD1

= 794.987nm
and λD2

= 780.241nm. For 87Rb the shift of the states of the atomic transitions
is then given by:

Udip

�

~r
�

= −
πc2ΓD2

2ω3
D2

�

2
ωD2
+ω

−
2

ωD2
−ω

�

I
�

~r
�

−
πc2ΓD1

2ω3
D1

�

1
ωD1
+ω

−
1

ωD1
−ω

�

I
�

~r
�

.

Udip

�

~r
�

= −ÛRb I
�

~r
�

(2.3)

The values for Eq. 2.3 are summarized in App. A or can be taken from [52].
The values of ÛRb used at the ATOMICS experiment are composed in Table 2.1.
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Wavelength[nm] Laser system ÛRb [m2s]

782.5 Lightsheet laser 9.985× 10−35

792.5 Ring and dark focus laser 3.101× 10−35

1070 Crossed dipole trap laser 2.076× 10−36

Table 2.1: Compilation of ÛRb for different laser system used at the ATOMICS
experiment.

2.1.1 Specific beam shapes

A Gaussian beam is the fundamental transverse, or TEM00 mode of an optical
resonator. Gaussian beam profiles are typically emmited from lasers an widely
used for atom optic experiments, such as dipole traps [27] and optical lattices
[53]. Focussed Gaussian beams used for atom trapping exhibit basic properties
which will be discussed in this section.

Focussed gaussian beam

The intensity profile of a Gaussian beam propagating along the z-axis is given
by:

I
�

r, z
�

=
2P

πw (z)2
e
− 2r2

w(z)2 , (2.4)

where P is the input power, w(z) the waist at position z, and zR the Rayleigh
range of the beam. The Rayleigh range gives the distance from z = 0, the focal
point, where the waist is increased by a factor of

p
2w0. The Rayleigh range is

defined as:

zR =
πw2

0

λ
, (2.5)

with λ being the wavelength of the incident beam. The waist w0 of a focussed
laser beam in the focal plane is calculated with:

w0 =
λ f
πwi

, (2.6)

where f is the focal length of the lens and wi is the incident beam waist. The
evolution of the waist along the z axis is given by:

w (z) = w0

√

√

√

√1+

�

λz
πw2

0

�2

= w0

√

√

√

1+

�

z
zR

�2

. (2.7)

2.1 Optical dipole potentials 7



Eq. Eq. (2.4) put in Eq. Eq. (2.3) gives the possibility to calculate the trap depth
of a red detuned focussed Gaussian beam. A blue detuned beam would create
a equivalent repulsive potential. An attractive potential near the focal plane be
described as harmonic and the trapping frequencies in the radial direction ωr
and along the beam propagation ωz are given by:

ωr =

√

√

√8PÛRb

πmw4
0

, (2.8)

ωz =

√

√

√ 4PÛRb

πmw2
0z2

R

. (2.9)

In the ATOMICS experiment Gaussian beams used for the creation of Bose-
Einstein condensates feature a beam waist of w0 ≈ 45µm and don’t feature
sufficient trapping frequencies in the longitudinal direction to efficiently evap-
orate atoms. The creation of BECs is therefore done in crossed optical dipole
beams.

Crossed focussed gaussian beams

The combination of two crossed focussed Gaussian beams is used to create
an efficient confinement in all three dimensions. The achieved confinement is
sufficient to evaporate atoms and to achieve Bose-Einstein condensation. The
two beams propagate along the x and the y direction and feature the waist
w1(x) and w2(y) respectively. The intensity distribution is given by:

I
�

r, z
�

=
2P1

πw1 (x)
2 e
−

2
�

y2+z2
�

w1(x)
2 +

2P2

πw2

�

y
�2 e

−
2
�

x2+z2
�

w2(y)2 (2.10)

with P1 and P2 being the optical power of the two beams. The trapping fre-
quencies of the beams are defined as:

ωx =

√

√

√

√

4ÛRb

πm

 

2P2

w4
0,2

+
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w2
0,1z2
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, (2.11)

ωy =

√

√

√

√

4ÛRb
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, (2.12)

ωz =

√

√

√

√

8ÛRb
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w4
0,1

+
P1

w4
0,1

!

, (2.13)

with zR,1 and zR,2 being the Rayleigh ranges of each of the beams.
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Elliptically focussed gaussian beam

An elliptical Gaussian beam is produced with lenses that feature different focal
length fx and f y . Elliptical lenses are used to create lightsheet potentials with
(see Sec. 5.1.2) and without conical refraction (see Sec. 4.5.1). The intensity
distribution of an elliptical focussed Gaussian beam propagating in z-direction
is:

I
�

x , y , z
�

=
2P

πwx (z)w y (z)
e
−

�

x2

wx (z)2
+ y2

w y (z)2

�

, (2.14)

where wx(z) and w y(z) are the waists and P the input power of the beam. The
trapping frequencies are given by:

ωx =

√

√

√
4PÛRb

πmw3
0,x w0,y

, (2.15)

ωy =

√

√

√
4PÛRb

πmw0,x w3
0,y

, (2.16)

ωz =

√

√

√

√

2PÛRb

πmw0,x w0,y

 

1
z2

R,x

+
1

z2
R,y

!

, (2.17)

where P denotes the input beam power and zR,x and zR,y are the respective
Rayleigh ranges.

2.2 Bose-Einstein condensates

This section gives an introduction to Bose-Einstein condensates as well as im-
portant parameters used throughout this work. An in depth discussion on Bose-
Einstein condensates can be found in [54–56].

2.2.1 Non-interacting Bose-Einstein condensate

The occupation number n̄(ε) of a state with energy ε of non-interacting bosons
in thermal equilibrium is given by the grand canonical ensemble [57]:

n̄ (ε) =
1

eβ(ε−µ) − 1
, (2.18)

where β = 1/kB T , with the temperature T and kB the Boltzmann constant.
µ = δE/δN is the chemical potential, which gives the change in energy for
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varying atom numbers N . As temperature declines the chemical potential rises
up to the energie of the ground state ε0. Higher chemical potentials are not
possible, because these would yield negative occupation numbers.
The total number of atoms N is defined as sum over the atoms in the ground
state N0 and and all higher states NT :

N = N0 + NT = n̄ε0
+
∑

i 6=0

n̄εi
. (2.19)

The occupation number NT for low temperatures gives a critical point where
NT < N and N0 > 0. NT is given by:

NT =
V
λ3

DB

g3/2

�

eβµ
�

, (2.20)

where V is the volume and g3/2 is defined as gη(z) =
∑∞

t=1 z t/tη. λDB is the
thermal de Broglie wavelength:

λDB =

√

√

√ 2πħh2

mkB T
, (2.21)

with m the mass, and ħh= h/2π the Dirac constant. The temperature dependent
occupation of N0 and NT yields a critical temperature for which N0 > 0 and is
given by:

kB TC =
2πħh2

m

�

n
g3/2(1)

�2/3

. (2.22)

The temperature dependant occupation of the ground state in terms of the crit-
ical temperature TC is then defined as:

N0 (T ) = N ×
�

1−
T
TC

α
�

, (2.23)

with α = 3/2 in a three-dimensional box potential and α = 3 in a three-
dimensional harmonic potential. For temperatures below TC a macroscopic
occupation of N0 observable with N0 = N at zero temperature.
With the definition ρpsd = nλ3

DB, the phase space density, a criterion is found
for which Bose-Einstein condensation is observable:

ρpsd = nλ3
DB > g3/2 (1) = 2.612 (2.24)

The wave function of a non-interacting Bose-Einstein condensate is given as the
product of the single particle wave function ϕ0(~ri):

Φ
�

~r1, ...,~rN

�

=
N
∏

i=1

ϕ0

�

~ri

�

. (2.25)
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This results in a density n(~r) of:

n
�

~r
�

=

�

�

�

�

�

N
∏

i=1

ϕ0

�

~ri

�

�

�

�

�

�

2

= N
�

�

�ϕ0

�

~ri

�

�

�

�

2
, (2.26)

which is the scaled density of a single particle wave function, which, in a har-
monic potential, is defined as:

ϕ0

�

~r
�

=

�

1
πaho

�
3
4

e
h

− m
2ħh

�

ωx x2+ωy y2+ωzz2
�
i

, (2.27)

where aho is the oscillator length:

aho =

√

√ ħh
mω̄

, (2.28)

a characteristic length that gives the spatial expansion of the non-interacting
condensate in a harmonic potential. ω̄ gives the mean trapping frequency of
the harmonic potential and is given by:

ω̄=
�

ωxωyωz

�
1
3 . (2.29)

2.2.2 Interacting Bose-Einstein condensate

Up until now interaction of atoms has been neglected. For a complete discussion
the interaction of atoms has to be taken into account. In a dilute vapour, the
interaction can be expressed by a simple contact-interaction of the form V (~r ′ −
~r) = gδ(~r ′ − ~r), where the constant g is given by g = 4πħha/m. The s-wave
scattering length a is defined by the interacting particles.
The resulting system can be described with a classical field Ψ(r, t) for very low
temperatures and is given by the Gross-Pitaevskii eqation:

iħh
∂

∂ t
Ψ
�

~r, t
�

=

�

−
ħh2∇2

2m
+ Vext

�

~r, t
�

+ g
�

�

�Ψ
�

~r, t
�

�

�

�

2
�

Ψ
�

~r, t
�

, (2.30)

where Vext(~r, t) describes the external potential. The interaction of the sys-
tem takes into account the mean interaction of all particles, thus the term
mean-field emerged to describe the interaction. For non-interacting particles
the system collapses to the Schrödinger equation. In order to provide normal-
ized solution N =

∫

d~r|Ψ(~r, t)|2 has to be fulfilled.
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Stationary solutions of simplify the description and rule out the time-
dependence. The resulting time-independent Gross-Pitaevskii equation is given
by:

�

−
ħh2∇2

2m
+ Vext

�

~r
�

−µ+ g
�

�

�Ψ
�

~r
�

�

�

�

2
�

Ψ
�

~r
�

= 0 . (2.31)

For repulsive interaction and a large particle numbers the kinetic energy of the
particles is negligible. This approximation is known as the Thomas-Fermi limit.
Eq. (2.31) can be reduced to:

�
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~r
�
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�

�
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�
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�

�

�

�

2
�

Ψ
�
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�

= µΨ
�

~r
�

, (2.32)

and a solution for Vext(~r)< µ is:

�

�

�Ψ
�

~r
�

�

�

�

2
= n

�

~r
�

=
µ− Vext

�

~r
�

g
. (2.33)

The obtained density distribution has the inverse shape of the external potential
and is filled up to the energie of the chemical potential. For locations with
Vext(~r) > µ the obtained density is n(~r) = 0. In harmonic potentials, as used in
this work, the radius RTF, i in the spatial dimensions i of the density distribution
is called Thomas-Fermi radius and is defined as:

RTF, i =

√

√ 2µ
mωi

=

�

15ħhNω̄3

m2ω5
i

�
1
5

, (2.34)

Experimental realizations of condensed atoms clouds in all-optical potentials
typically feature a bimodal distribution. The bimodal distribution consists of
a thermal cloud of atoms, which is not condensed, and a condensed cloud of
atoms. The fraction of condensed atoms is given by the condensate fraction
N0/N . The resulting density distribution shows the quadratic density given by
the harmonic external potential on top of the cloud of thermal atoms.

2.2.3 Expansion of Bose-Einstein condensates in trapped geometries

A cloud of condensed atoms in a harmonic trap will keep its shape as long as the
trapping potential itself is kept harmonic [58–60]. This is also true if atoms are
loaded from one potential into another as long as the loading itself is adiabatic
(see Sec. 5.3.2). The temporal evolution of the cloud can then be described by
a linear scaling law:

Ri (t) = λi (t)Ri (0) . (2.35)
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The size Ri of a condensate at different times t is dependent on the initial size
Ri(0) and the scaling parameter λi(t). The three dimensions i are independent
of each other. The scaling parameter λi(t) fulfils:

λ̈i (t) =
ωi (0)

2

λi (t)λ1 (t)λ2 (t)λ3 (t)
−ω2

i (t)λi (t) , (2.36)

where ωi(t) (see Sec. 2.1) are the trapping frequencies of the harmonic po-
tential. In general Ri can be chosen arbitrarily as a distance from the centre
of mass of the atomic cloud. The Thomas-Fermi radius (see Eq. (2.34)) is a
meaningful choice to describe the evolution of a BEC. The velocity field of the
the cloud is given by [58]:

vi

�

~r, t
�

=
ħh
m
φ
�

~r, t
�

. (2.37)

In general the time evolution of the velocity field and the phase profile φ
�

~r, t
�

of a condensate is given by [60]:

vi

�

~r, t
�

=
ħh
m
∇φ

�

~r, t
�

. (2.38)

Since the evolution of the phase profile of the condensate follows the evolution
of the density profile [58] a valid ansatz for the phase profile is:

φ
�

~r, t
�

=
αi (t)

2
x2

i + βi (t) x i . (2.39)

By using Eq. (2.37) and Eq. (2.38) a solution for α(t) can be found. For
simplicity this is given in a single dimension x:

α (t) =
m
ħh
λ̇x (t)
λx (t)

. (2.40)

Fig. 2.1 shows the solution of Eq. (2.36) for the initial values of λx = λy =
λz = 1 and λ̇x = λ̇y = λ̇z = 0. The trapping frequencies are chose to be ωx =
ωy = ω, ωz = (ω2

x +ω
2
y)

1/2, ωx(t) = 2π× 1 Hz, and ωy(t) = ωz(t) = 2×ω.
Where ω is given three different initial values. The system represents the time
evolution of a BEC loaded from the crossed optical dipole trap into a quasi-
one-dimensional wave guide. The solution in the guided direction is shown
where experimental procedures like guiding or interferometric measurements
are performed. After an initial mean-field expansion a ballistic expansion dom-
inates. Mean-field typically stops after 5ms for experimental values obtained at
the ATOMICS experiment. This can easily be observed by the velocity λ̇x that
asymptotically converges a fixed value. The value itself is dependent on the
trapping parameters and the initial trap after the loading process.
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Figure 2.1: Numerical solution of Eq. 2.36 for three different values of ω. The
calculations where carried out withωx = ωy = ω,ωz = (ω2

x +ω2
y)1/2,

ωx(t) = 2π × 1 Hz, and ωy(t) = ωz(t) = 2 × ω. The calculation
describe the creation of the BEC in a crossed dipole trap and the free
expansion in one of the dipole trap legs after the other has been shot
off. The top section shows the time evolution of the scaling factor λx .
The middle section shows its derivative λ̇x and the bottom section its
quotient λx/λ̇x .
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Figure 2.2: Drawing of the vacuum system [45, 61].

2.3 The ATOMICS experiment

In this thesis ultra-cold atomic ensembles and Bose-Einstein condensates of
87Rb have been investigated. The cooling of 87Rb atoms to quantum degen-
eracy is a multi-step process and the implemented procedure at the ATOMICS
experiment will be explained shortly in this section. The ATOMICS experiment
is has the capability to produce an all-optical BEC of 25000 87Rb atoms every
25 seconds with a condensate fraction of N0/N > 0.8 [61]. In addition the de-
tection system of the ATOMICS experiment will be discussed (see Sec. 2.3.3).
A mathematical system to further improve the quality of the obtained images
will be introduced.

2.3.1 Creation of ultra-cold atoms in a magneto-optical trap

The ATOMICS experiment consists of a combination of two vacuum cham-
bers [45]. The first vacuum chamber has a pressure of ≈ 10−6 mbar and is
used to house the oven used as an atom source for the experiment. The second
vacuum chamber is connected to the first vacuum chamber via a differential
pumping stage and is used as the experimental chamber. It features a pressure
of ≈ 3 × 10−11 mbar and its vaccum is provided by titan sublimation pump in
combination with ion-getter pump.
The oven housed in the first vacuum chamber is filled with rubidium. By heat-
ing the oven to ≈ 100 ° a vapour of rubidium atoms is created. The opening of
the rubidium oven is pointed at the differential pumping stage and the beam
of hot rubidium atoms is aligned to pass through the stage into the experimen-
tal vacuum chamber. In order to efficiently load the magneto-optical trap a
chirp laser system [62] is used to pre-cool the atoms along their passage into
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the experimental vacuum chamber. The chirp laser system cools the atoms by
spatially The atomic beam is aligned next to the magneto-optical trap, which is
constantly loaded by the chirp-cooled beam of atoms [63].
The magneto-optical trap of the ATOMICS experiment consists of three beams
covering all three dimensions. The circular polarized beams are retro-reflected
and a λ/4 waveplate in front of each mirror creates the needed polarization
in order to create a magneto-optical trap. The light for each beam is provided
by a master oscillator power amplifier (MOPA) laser system that provides up to
300 mW of optical power and detuned by 10 MHz to the red in respect to the D2
F = 2→ F ′ = 3 transition of 87Rb. The needed magnetic field gradient is cre-
ated by two magnetic coils in anti-Helmholtz configuration, which are placed
inside the vacuum chamber. Additional details to the magneto-optical trap in
the ATOMICS experiment can be found in [44, 45, 61, 63–67]. The atomic en-
semble created by the magneto-optical trap typically consists of 5 × 107 87Rb
atoms slightly above the Doppler-temperature of 87Rb which is 145µK. The
loading time of the MOT during the experimental procedure is typically 8 s.

2.3.2 Creation of Bose-Einstein condensates

The all-optical creation of Bose-Einstein condensates has been investigated in
detail before [45,61,68]. Therefore only a brief compilation of the experimen-
tal parameters will be given.
The creation of BECs at the ATOMICS experiment is performed in a crossed
optical dipole trap setup [69]. Each of the beams is focussed down to a waist
of ≈ 45µm. The ytterbium doped fibre laser1 with a maximum optical output
power of 50 W is at 1070nm provides the light for both laser beams. Each beam
is guided through an AOM separately to control the intensity of the beams for
the evaporation process. In addition a frequency shift is imprinted to reduce
interference effects between the laser beams in the cross section of the dipole
trap. The maximum optical power used for the creation of a BEC is 10 W per
beam.
The beams are aligned in the horizontal plane and guided into the experimen-
tal vacuum chamber. They intersect under an angle of 90 ° in the centre of the
MOT. The crossed dipole trap is loaded directly from the magneto-optical trap
with the aid of an optical molasses to further cool the atoms. The cross sec-
tion of the dipole trap contains up to 350.000 87Rb atoms at a temperature of
100µK. The achieved phase space density is ρPSD = 2× 10−5. To further reach
Bose-Einstein condensation evaporative cooling is used [27].
Evaporative cooling relies on the principle that elastic collisions in a confined
atomic vapour create a thermodynamic equilibrium state. By removing the
hottest atoms from the ensemble the system has to re-thermalize to a state

1 IPG, YLR-50-1070-LP
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of lower mean energy and therefore lower temperature. In the case of opti-
cal dipole potentials, evaporation is done by lowering the intensity of the trap
beam. The lowered potential allows the hottest atoms to escape and the remain-
ing atoms are left at lower temperature. The drawback of this method is the
loss of atoms. By choosing the appropriate intensity ramp a gain in phase-space
density is achieved until the atomic ensemble is cold enough to condense into
a Bose-Einstein condensate. The experimental details on the evaporation strat-
egy and characterization measurements can be found in [65,68]. The produces
Bose-Einstein condensates consists of up to N = 25000atoms with a conden-
sate fraction of up to N0/N = 0.8. The calculated Thomas-Fermi radius of the
BEC is RT F = (3.02 ± 0.12)µm. After the evaporation the temperature of the
non-condensed atoms is well below T = 100nK .

2.3.3 Detection of cold atom ensembles

The detection of atom clouds in this work is done via absorption imaging [70].
A cloud of atoms is illuminated with light and due to scattering of light with
the atoms a shadow is cast. This shadow is imaged with a CCD camera and
the incoming intensity is used to determine the spatially resolved density of the
cloud and therefore the atom number. Due to scattering this measurement is
destructive and a each cloud can only be measured once. Every measurement
must begin with the complete experimental procedure from the beginning in
order to achieve a new experimental image.
The ATOMICS experiment features two absorption detection system that are
used to detect the atomic distribution along two axis (see Fig. 2.3). In vertical
direction a Roper-Scientific Sensys camera is used for detection. The shadow
cast by the atom ensemble is re-imaged with a combination of two achromatic
lenses f3 and f4. The diameter of the lenses is D = 75 mm and the diffraction
limit of the optical setup is ∆d = 1.22λ f /D = 3.8µm. This camera is mainly
used to detect atomic distributions. The second camera used is a PCO Pixelfly
qe camera, which is detects along the horizontal direction. Similar to the other
imaging system the shadow of the atoms is re-imaged by a pair of achromatic
lenses ( f1 and f2). The diameter of the lenses is 50.8 mm giving a diffraction
limit of ∆d = 4.8µ.
To calculate the space-resolved atom density n(x , y), integrated along the z
direction, three images have to be taken. The first image is the image of the
atomic ensemble IA(x , y). The second image, the reference image IR(x , y), is
taken after a waiting time of 1s, again with detection light but without atoms.
For all images the detection light illuminates the atoms for a duration of 200µs.
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Figure 2.3: Setup of the imaging system used at the ATOMICS experiment. Two
independent setups are used to image the density distribution of an
atomic ensemble in the vacuum chamber. The main detection line
used is the vertical direction, where as the horizontal line is used for
alignment of beams in the vertical direction.
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The third image, the dark picture ID(x , y), taken without detection light. The
density can be calculated using [70]:

n
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2I0

ħhωΓ
ln
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x , y
�
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!

(2.41)

where I0 is the saturation intensity of the transition:

I0 =
2π2ħhcΓ

3λ3
, (2.42)

and Γ is the line width of the transition.
Due to the large temporal separation of the images intensity modulations of the
detection light may occur. In addition small dust particles in the beam path may
change their position or elements may vibrate, and therefore small impurities
are imprinted in the experimentally obtained images. As long as they are the
same for all images the detection algorithm is robust enough to cancel them
out. If these disturbances change during the detection process, additional, non-
desired patterns are visible in the final density distribution n(x ,y). In the worst
case these spatial fluctuations are in the same order as periodic structures that
are measured at the ATOMICS experiment. As a consequence an additional step
is taken to rule these errors out. An in depth discussion can be found here and
only the main concept will be drawn out shortly [65,71].
Typically a series of measurements has between 50 and 300 experimental im-
ages with different unwanted interference effects each. Even though they are
different from image to image, they are similar. The entirety of these images
spans a vector space. The implemented algorithm now finds a basis for said
vector space and each image is projected onto said basis. The idea behind this
is, that not the complete image is taken but only the area without atoms. Peri-
odic errors outside the interesting experimental area should be the same as on
the inside of the interesting area. By taking only the outside area of the images
a weighting is found that describes the occurrence of these disturbances by the
weighted fractions of the whole vector space. By subtracting the errors for the
whole picture the detected errors without atoms cleanse the area filled with
atoms.
The algorithm has been implemented in Python [72] and allows an easy and
fast correction of all images from a series of measurements. Without the ad-
ditional corrections most of the measurements in this work would have been
impossible.
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3 Bragg diffraction and double
Bragg diffraction

Bragg scattering or Bragg diffraction was first observed as the diffraction of X-
rays in crystals [73]. In atom optics Bragg diffraction allows the controlled ma-
nipulation of ultra-cold atom ensembles and BECs with moving optical lattices
[38, 74–76]. Acceleration, deceleration, as well as splitting of atomic ensem-
bles into multiple moving and non-moving parts has been demonstrated [77].
The key advantage of Bragg diffraction is the resonant excitation of discrete
momentum states of natural multiples of |2ħhk〉. The quantized manipulation of
atoms serves as basic tool for atom manipulation [78], spectroscopy of motional
states [79], and matter wave interferometry [80]. Double Bragg diffraction ex-
tends Bragg diffraction towards a symmetric splitting of atomic ensembles in
positive and negative momentum states simultaneously, thus in opposite direc-
tions. It was first theoretically discussed in [81] and implemented in this work
for the first time. Double Bragg diffraction offers a new way of creating matter
wave beamsplitters and mirrors and serves as a new tool for matter wave optics.
This chapter introduces the effect of Bragg diffraction that occurs when atoms
are illuminated by periodic optical potentials (see Sec. 3.1). Sec. 3.2 expands
the theoretical description to the coherent splitting of ensembles with double
Bragg diffraction. Sec. 3.3 describes the experimental implementation and the
first successful observation of double Bragg diffraction. The expansion of dou-
ble Bragg diffraction towards higher momenta is shown in Sec. 3.4. Next Sec.
3.5 characterizes the influences of pulse length and initial ensemble momen-
tum width on the quality of double Bragg diffraction. Sec. 3.6 compares double
Bragg diffraction to other methods of coherent beam splitting. This chapter
concludes with the implementation of a complete matter wave interferometer
using double Bragg diffraction lattice pulses (Sec. 3.7).

3.1 Bragg diffraction

Bragg diffraction is a versatile tool at the ATOMICS experiment. It is used to
accelerate, decelerate, and split atomic clouds. It is also used to measure the po-
tential depth and the trapping frequencies of matter wave guides. Additionally
it serves as a tool for matter wave interferometry (see Chapter 5 and Chapter
6).
Bragg diffraction is a resonant excitation of momentum states in periodic po-
tentials. It offers a high state selectivity and the possibility to transfer multiple
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momenta of 2ħhk. In Sec. 3.1.1 an introduction to periodic optical potentials will
be given. To describe the dynamics of Bragg diffraction the method of averag-
ing [82] is introduced in Sec. 3.1.2 before it is applyied in Sec. 3.1.3 to describe
the temporal evolution of momentum states excited by Bragg diffraction. Pre-
vious experimental implementation and characterization of Bragg diffraction at
the ATOMICS experiment are described in [61,65,83].

3.1.1 Spatially periodic optical potentials

Spatially periodic optical potentials, or optical lattices, show a high degree of
similarities to the observation of Bragg diffraction in crystals [84]. The diffrac-
tion of atoms in spatially periodic optical potentials can be described in the
same way as the diffraction of light in spatially periodic crystals. Additionally
Bragg diffraction can also be seen as a two-photon process as depicted in Fig.
3.1. Two beams are superimposed to each other at an angle Θ. An atom re-
sides in the cross section and absorbs a photon from one of the beams. It then
emits a photon stimulated into the other beam. The potential detuning ∆ω of
the two beams yields a small energy transfer ∆E = ħh∆ω. Due to energy and
momentum conservation the following criterion has to be met:

n×
P2

2m
= ħh×∆ω , (3.1)

where n gives the order of Bragg diffraction and P = 2ħhk sin(Θ/2) the momen-
tum transfer of a single Bragg diffraction process. Counter propagating laser
beams have Θ = 180 ° which yields ∆ω = 4×ωR = 2π× 15.08 kHz for n = 1.
ωR = ħhk2/2m is the recoil frequency, with k the wave vector of the incident
beam and m the mass of the atom. Table A.2 compiles a list of experimentally
used values for ∆ω as well as the correspondent velocity of a 87Rb atom after
the momentum transfer.
The light field in one dimension depicted in Fig. 3.1 can be represented as
follows:

E
�

z, t
�

= Ezei(kz−ωt) + Ezei(−kz−(ω+∆ω)t) + h.c. . (3.2)

The combined electric field E(~r, t) consists of two light fields of equal amplitude
Ez. They are counter propagating and aligned on top of each other, indicated
by the sign of the wave vectors k. As shown in Sec. 2.1 the optical potential
is proportional to the intensity of the light, which is given by the square of the
electric field:

U1D

�

~r, t
�

= 4Û
2P

πw2 (z)
cos2

�

kz +
∆ω

2
t
�

e
2
�

x2+y2
�

w2(z) . (3.3)
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Θω+
Δω ω

Atoms

P

Figure 3.1: Two incident beams with frequency ω and ω + ∆ω are aligned to
intersect at the angle Θ. Atoms positioned in the cross section ex-
perience a momentum transfer after the absorption of light from
one of the beams and the stimulated emission of light of the other
beams.

The depth of an optical potential is four times the depth of a single beam
with the same optical power per beam and shape. The maximum depth of
the optical lattice is given by the U1D(0) and normalized by the recoil energy
ER = ħh

2k2/2m = ħhωR. The introduction of ER simplifies the comparison of op-
tical lattices used for different atomic species. U1D(0) in orders of the recoil
energy ER is given by:

U1D (0)
ER

=
2m

ħh2k2
8Û

P
πw2

0

. (3.4)

Several one-dimensional optical lattices can be used in combination to produce
two- or three-dimensional lattice systems. The time evolution of atoms in such
an optical lattice will be discussed in Sec. 3.1.3. For the minimum energy
transfer the Fourier limit yields a minimum pulse time τmin of

τmin >
1

2ωR
= 21.1µs , (3.5)

which will not be undercut during the experimental procedure in this work.

3.1.2 Method of averaging

The method of averaging gives an elegant way to solve a system of coupled
differential equations. It was first discussed in [82] and can be applied to de-
scribe the time evolution of Bragg diffraction (see Sec. 3.1.3) and double Bragg
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diffraction (see Sec. 3.2.1). A short overview on the method will be given in
this section. The notation used is taken from [81] which differs from [82]. A
system of n coupled differential equations can be written as:

ġ = iεH g ≡ iεH0g + iε
∑

j 6=0

ei jωr t H j g (3.6)

g is the representation of the state, H, H0, and H j represent complex time-
independent matrices. Additionally a frequency ωr has been introduced and
the adiabaticity parameter ε. Eq. (3.6) is separated in fast and slow oscillating
terms γ(m):

g(m) = γ(m) +
m
∑

j=1

ε j f j

�

γ(m)
�

, (3.7)

where f j(γ(m)) is a solution of the original differential equation, that can be
found up the the order εm. Choosing m = 1 eliminates all higher orders and
yields a set of equations for which Bragg diffraction and double Bragg diffrac-
tion can be described. In order to solve the time dependency of the system it is
assumed that γ(m) fulfils:

γ̇(m) = iεH0γ
(m) + i

m
∑

j=2

ε j p j

�

γ(m)
�

. (3.8)

f j(γ(m)) can be determined by grouping parts of equal ε for Eq. (3.7) satisfying:

ġ(m) = iεH g(m) +O
�

εm+1
�

. (3.9)

Creating the time derivative of Eq. (3.7) and using the definition of Eq. (3.8)
yields a solution for f j(γ(m)) that can be used to solve equation Eq. (3.7).
For m = 1 a first-order solution can be found which solves the system of n
coupled differential equations up to ε1. Then Eq. (3.8) simplifies to:

γ̇(1) = iεH0γ
(1) . (3.10)

A solution for this differential equation is:

γ(1) (t) = eiεH0 tγ(1) (0) . (3.11)

Where H0 is a square matrix of dimension n × n. It is specific to the system
described by the set of differential equations. By using the solution of f1 [81]:

f1

�

γ(m), t
�

=
∑

j 6=0

ei jωr t

jωr
H jγ

(m) (t) , (3.12)
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For m= 1 Eq. (3.7) can now be written as:

g(1) (t) =



1+ ε
∑

j 6=0

ei jωr t

jωr
H j



γ(1) (t) . (3.13)

The solution of the coupled system of differential equations can be found by
determining the appropriate matrices H0 and H j. Depending on the adiabaticity
parameter ε fast oscillating terms of the order jωR are suppressed. In order to
find higher order solutions an analogous method can be applied to find f2 [81].
In principle this method is capable of being extended to higher-orders of ε. For
the experimental value of ε < 0.1 a strong suppression of higher order terms is
already present. Therefore only first-order solutions are used in the following
discussion.

3.1.3 Time evolution of momentum states of Bragg diffracted atoms

Atoms in the field of an optical lattice experience the interaction between two
counter propagating light fields (see Sec. 3.1.1). Eq. (3.2) describes two clas-
sical fields that interact with the atom in place. The interaction of light and
atom by absorption and emission, and the resulting momentum transfer, can be
expressed quantum mechanically with an operator of the form:

e±ikz =

∫

dp
�

�p±ħhk
� 


p
�

� . (3.14)

The operator shifts the momentum of a given state by a margin of ±ħhk and
depending of the direction of the incident light beam. This is true for both, ab-
sorption and emission processes, either from the ground state |g〉 or the excited
state |e〉. The ground state |g〉 follows the dispersion relation of a free atom
E = p2/2m. Due to the optical lattice this dispersion relation is modified and
Bloch bands emerge [53]. These bands shift the energy of the state but do not
interfere with the discussion of Bragg diffraction as long as the intensity of the
lattice is sufficiently small. Increasing the intensity yields additional dynamics
of fast oscillating terms and the excitation of non-resonant momentum states.
To distinguish between both regimes the adiabaticity parameter ε is used. For
ε < 0.1 the deep Bragg regime can be assumed, where fast oscillating terms
are neglected [81]. For higher values of ε this is no longer valid and higher
order oscillations are no longer suppressed. This regime is called quasi-Bragg
regime. In order to apply the method of averaging [85, 86] the representation
of the system has to be transformed into a similar form as Eq. (3.6), a system
of n-coupled differential equation. The initial description of the system is given
by the Hamiltonian [87]:

Ĥ =
p2

2m
+ħhωeg |e〉 〈e|+ħh

h

Ωaei(kz−ωt) +Ωbei(−kz−(ω+∆ω)t)
i

|e〉



g
�

�+ h.c. ,

(3.15)
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Figure 3.2: Energy scheme for Bragg diffraction system. A two photon process
resonantly excites an oscillation between the neighbouring momen-
tum states |0ħhk 〉 and |2ħhk 〉. Due to the quadratic dispersion rela-
tion higher order momentum states are not excited resonantly.

where Ωa and Ωb are the single-photon Rabi frequencies [51] and ωeg the
eigenfrequency of the system. This description assumes that fast oscillating
terms are negligible (see rotating wave approximation [88]). Solving the
Schrödinger equation for this system on an arbitrary state

�

�ϕ
�

=

∫

dp
�

g
�

p
� �

�g,p
�

+ e
�

p
� �

�e,p
�

�

, (3.16)

yields a system of coupled differential equations. This system can be expressed
in the form of Eq. (3.6) and a solution for the time evolution of the system is
found via the method of averaging. The introduction of a detuning ∆ elimi-
nates transfer to the excited state and yields a solution where only the ground
states |g〉 of different momenta are present. A schematic representation of the
described system is shown in Fig. 3.2. The resonant oscillations between the
neighbouring states |0ħhk〉 and |2ħhk〉 is excited by the incident light beams. The
detuning ∆ with respect to the excited state yields an effective suppression of
|e〉 and higher order momenta are suppressed due to the quadratic dispersion
relation of the free particle.
In order to apply the method of averaging the following definitions are used:
The adiabaticity parameter ε in a Bragg diffraction system is given by:

ε≡
Ω

8ωR
. (3.17)

ε is used to determine the different regimes of Bragg diffraction and quasi-Bragg
diffration. The effective Rabi frequency is defined as Ω = ΩaΩb/2∆ [89, 90].
For Bragg diffraction the effective 2-photon-Rabi frequency is given by [51]:

Ω=
U1D(0)

2ħh
. (3.18)
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The application of the method of averaging follows the discussing in Sec. 3.1.2.
For m= 1 the state of the system is defined as:

γ(1) (t) =
�

γ
(1)
0 (t) ,γ

(1)
2 (t)

�ᵀ
. (3.19)

γ
(1)
0 (t) represents the state |0ħhk〉 and γ(1)2 the state |2ħhk〉 having an additional

momentum of 2ħhk. Following Eq. (3.10) the following differential equation
has to be solved:

γ̇(1) = iεH0γ
(1) = iΩ

�

0 1
1 0

�

γ(1) . (3.20)

A solution for this equation is:

γ (t) =

�

cos
�

Ω

2
t
�

�

1 0
0 1

�

+ i sin
�

Ω

2
t
�

�

1 0
0 1

�

�

γ (0) , (3.21)

and the population P(t) of the momentum states after time t is:

P (t) = |γ(1)(t)|2 =
�

P0ħhk (t) , P2ħhk (t)
�

. (3.22)

Eq. (3.21) is completely independent of the adiabaticity parameter ε. Correc-
tion due to reaching the quasi Bragg regime can be included by solving Eq.
(3.11). This will be discussed in Sec. 3.2.3 for double Bragg diffraction, where
an increased influence of higher frequency fluctuations are more dominant.
One of the main applications of Bragg diffraction is matter wave interferometry
(see Sec. 5.6). For matter wave interferometry well defined light pulses of opti-
cal lattices are used to create superposition of multiple momentum states. Two
pulse durations τ are of interest: On the one hand a π/2 -pulse creates a co-
herent superposition of two momentum states where both states have an equal
population. The length of the pulse is defined as π/2 = Ωτπ/2. On the other
hand a π-pulse inverts the population of a system. For example if all atoms are
at rest in the beginning, all are transferred to momentum state |2ħhk〉 after the
π-pulse and vice versa. The pulse length is defined as π= Ωτπ.

3.2 Double Bragg diffraction theory

Bragg diffraction is used to coherently split atoms in multiple wave packets with
different momenta. A drawback of Bragg diffraction is, that its acceleration is
directed in one direction only. To create a beamsplitter, where atoms are accel-
erated in opposite directions, additional light fields are needed. Double Bragg
diffraction promises to create coherent splitting in opposite directions with the
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Figure 3.3: Two light beams with frequency difference ∆ω and orthogonal po-
larization are aligned on top of each other. After passing the atoms
they are retro-reflected on a mirror. A λ/4 waveplate in front of the
mirror turns the polarization axis by 90 °. This results in a combina-
tion of two optical lattices with orthogonal polarisation.

use of a single optical beam line. By combining two beams with orthogonal po-
larization and by utilizing the polarization as a selection criterion, two optical
lattices can be realised that feature opposite acceleration directions.
This section will introduce double Bragg diffraction as a tool for atom optics
by describing the time evolution of atoms in a double Bragg lattice (see Sec.
3.2.1). Next the influences of the momentum distribution of an atomic cloud
will be shown (Sec. 3.2.2) as well as the influence of lattice depth (Sec. 3.2.3).
The section ends with the description of typical pulse times used with double
Bragg diffraction and will focus on the differences of the definition in respect
to standard Bragg diffraction.

3.2.1 Rabi oscillations induced by Double Bragg diffraction

The theoretical analysis of double Bragg diffraction follows the method of aver-
aging (Sec. 3.1.2) and the discussion on Bragg diffraction (Sec. 3.1).
The optical system used for double Bragg diffraction is depicted in Fig. 3.3. Two
light beams are orthogonally linear polarized with respect to each other. The
frequency difference of the two beams is ∆ω. After passing the atomic cloud
for the first time they are retro-reflected by a mirror. In front of the mirror is a
λ/4 waveplate that rotates the polarization of each of the beams by 90 °. The
retro-reflected beams cross the atoms a second time and a combination of two
optical lattices is produced. Each of the beams interferes with the only counter-
propagating beam of the same polarization and the resulting two Bragg lattices
feature different directions of momentum transfer. Instead of using linearly po-
larized light an identical system can be built using a pair of circular polarized
beams. As long as the two lattices feature orthogonally polarization to suppress
cross-talk, both systems are viable options that yield the same theoretical rep-
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resentation.
The Hamiltonian describing the outlined system is given by [81]:

Ĥ =
p2

2m
+ħhωeg

�
�

�e+
� 


e+
�

�+
�

�e−
� 


e−
�

�

�

+ħhΩ+
�

ei(kz−ωt) + ei(−kz−(ω+∆ω)t)
�

�

�e+
� 


g
�

�

+ħhΩ−
�

ei(−kz−ωt) + ei(kz−(ω+∆ω)t)
�

�

�e−
� 


g
�

�+ h.c. ,

where Ω+ and Ω− are the single photon Rabi frequencies. In the same way as
single Bragg diffraction was applied to an arbitrary state to create a system of
coupled differential equations the Hamiltonian Ĥ is now applied to |φ〉:

�

�φ
�

=

∫

dp
�

g
�

p
� �

�g,p
�

+ e+
�

p
� �

�e+,p
�

+ e−
�

p
� �

�e−,p
�

�

. (3.23)

The result is a system of coupled differential equations. This system of dif-
ferential equations is reduced with the method of averaging to the following
equation:

γ̇(1) = iΩ





0 1 0
1 0 1
0 1 0



γ(1) , (3.24)

which can be solved algebraically. The solution for γ(1)(t) is:

γ (t) =







1
2





1 0 −1
0 0 0
−1 0 1





+
1
2

cos
�p

2Ωt
�





1 0 1
0 2 0
1 0 1





+
i
p

2
sin
�p

2Ωt
�





0 1 0
1 0 1
0 1 0










γ (0) ,

(3.25)

where γ(0) is the initial state of the the system expressed by the state vector
(γ−1(0),γ0(0),γ1(0))ᵀ. Eq. (3.25) describes the time evolution of momentum
states in a double Bragg diffraction system. The population of each state is
given by the state vector γ(t) = (γ−1(t),γ0(t),γ1(t))ᵀ:

�

�γ (t)
�

�

2
=
�

P−2ħhk (t) , P0ħhk (t) , P2ħhk (t)
�ᵀ

. (3.26)

The following sections discuss special additions in regards of double Bragg
diffraction. In addition to this shortened discussion an in depth discussion of
double Bragg diffraction can be found in [81].
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3.2.2 Influences of a finite momentum distribution on double Bragg
diffraction

In an experimental realisation all atomic ensembles feature a finite momentum
distribution and in the case of BECs this momentum distribution evolves accord-
ing to its mean-field energy [58]. An initial momentum, as introduced by the
mean-field energy, will modify the time evolution of double Bragg diffraction as
well as standard Bragg diffraction [77, 91]. This is especially relevant for high
precision spectroscopy and matter wave interferometers [92].
Due to the momentum distribution of an atomic cloud each atom experiences a
Doppler shift ωD. The Doppler shift ωD is given by:

ωD =
pD

ħhk
× 2ωr , (3.27)

where pD is the momentum of the atom. For |pD| � 2ħhk or |ωD| � ωr Eq.
(3.10) is still valid, the temporal change of Hi is small compared to the resonant
excitation. For higher deviations this is no longer valid. The Doppler shift ωD
introduces two additional terms on the diagonal of Eq. (3.24) [93]:

γ̇(1) = i





ωD Ω 0
Ω 0 Ω
0 Ω ωD



γ(1) (3.28)

The solution for this differential equation is given by [81]:

γ
�

t,ωD

�

=







1
Ω2

eff





Ω2 −ωDΩ −Ω2

−ωDΩ ω2
D ωDΩ

−Ω2 ωDΩ Ω2





+
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�
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Ω2
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ω2
D +Ω

2 ωDΩ Ω2

ωDΩ 2Ω2 −ωDΩ
Ω2 −ωDΩ ω2

D +Ω
2





+
i sin

�

Ωeff t
�

Ωeff





ωD Ω 0
Ω 0 Ω
0 Ω −ωD










γ (0) ,

(3.29)

where Ωeff is defined as:

Ωeff =
q

2Ω2 +ω2
D . (3.30)

Fig. 3.4 shows the solution of Eq. (3.29) for different Doppler shifts ωD. The
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Figure 3.4: Population P0ħhk (t)of γ0(t) according to Eq. (3.29). The initial state
is γ(0,ωD ) = (0, 1, 0)ᵀ for all ωD . High population is shown in red,
low population in blue.
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Figure 3.5: Oscillations of the momentum state |0ħhk 〉 in a double Bragg lattice
(Eq. (3.29)). For momenta pD 6= 0 an increased oscillation frequency
is observed. In addition the transfer efficiency is reduced for higher
initial momenta. The behaviour is analogue to Rabi oscillations of
two state systems.

Doppler shift is presented as the momentum of a 87Rb atom in orders of ħhk.
For pD = 0 the system follows the same evolution of Eq. (3.25). For increasing
values of pD the oscillation frequency Ωeff changes according to Eq. (3.30).
The more initial momentum is present the faster the oscillations occur. This
behaviour is shown in Fig. 3.5 for three momentum pD. According to their
effective oscillation frequency atoms oscillate between the momentum states
|0ħhk〉, |2ħhk〉, and |−2ħhk〉. Deviations from pD = 0 yield an increased oscillation
frequency. Increasing the momentum further reduces the maximum population
transfer and dampens the oscillation. This process is analogous to laser induced
Rabi oscillations in two-level systems [88]. The dampening of the oscillations is
increased the more initial momentum an atom has. The momentum distribution
of an atomic ensemble yields a multitude of different initial momenta, which
oscillate at different Ωeff. The population of a momentum state is then given by
the sum over all pD. The broader the momentum distribution gets the faster the
dampening effects are observed and the more the mean oscillation period shifts
towards higher frequencies. The resulting oscillation frequency Ω̄Doppler can be
determined by the weighted average of the Doppler shifted frequency Ωeff:

Ω̄Doppler

�

ωD

�

=

∫∞
−∞Ωeff

�

ωD

�

× NBEC

�

ωD

�

dωD
∫∞
−∞ NBEC

�

ωD

�

dωD

, (3.31)
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where NBEC(ωD) gives the amount of atoms with a given Doppler shift of ωD
(see Sec. 3.5).

3.2.3 Influences of the lattice depth on double Bragg diffraction

Eq. (3.17) has shown that the adiabaticity is directly dependent on the potential
depth of the optical lattice. Up until now the influences of a non-adiabatic exci-
tation have been neglected. For ε < 0.05 the change in population is below
2.5 %, which equates the experimental resolution of population states. For
higher values of ε the effects of faster oscillations are non-negligable. To
accommodate for deeper lattices, and therefore working in the quasi-Bragg
regime, rapidly oscillating correction have to be taken into account. Follow-
ing Eq. (3.13) a solution is found for:

g (t) = γ (t) +
ε

2





0 ei8ωr t 0
−e−i8ωr t 0 −e−i8ωr t

0 ei8ωr t 0



γ (t) . (3.32)

The modified solution of Eq. (3.25) introduces higher order fluctuations on top
of the initial solution. The fluctuations occur with a frequency of 8ωr and are
suppressed by a factor of ε/2. Fig. 3.6 depicts the sum of γ−1 and γ1 and the
influence of ε on the smoothness of the population oscillations. The larger the
adiabaticity factor ε gets, the higher the fluctuations become. It is important
to notice, that fluctuations do not occur between the two states | − 2ħhk〉 and
|2ħhk〉 but between |0ħhk〉 and both accelerated momentum states. The dashed
line shows the solution of Eq. (3.32) for γ1 and γ−1. The introduced corrections
are applicable to Eq. (3.25) and Eq. (3.29), thus describing population oscil-
lations including the Doppler shift. Standard Bragg diffraction does not show
this behaviour once the quasi Bragg regime is reached. Instead leaving the
Bragg regime in standard Bragg diffraction shows excitation of non-resonant
momentum states [94].

3.2.4 Beamsplitter and mirror for atoms

As with Bragg diffraction double Bragg diffraction is being used for atom inter-
ferometry. In the same manner specific pulse durations are defined, which are
basic utilities for matter wave interferometry. π/2- and π-pulses are defined in
the same manner as before: the duration τπ/2 of a pulse is π/2 = Ωeffτπ/2. The
duration of a π-pulse as π = Ωeffτπ. In contrast to Bragg diffraction, a π/2-
pulse does not create an equally distributed population superposition. Instead
the application of a π/2 -pulse on the initial state γ(0) = (0,1, 0)ᵀ produces
a depopulated ground state with zero momentum and two equally populated
accelerated states: γ(π/2) = 1/

p
2(1,0, 1)ᵀ (see Fig. 3.7a). Applying the same
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Figure 3.6: Dependence of the population oscillation of the sum of the acceler-
ated states γ−1 and γ1 on ε. Higher order fluctuations occur with
the frequency of ωR/2. It is important to notice that Ω and ε can-
not be chosen separately. For ε = 0.2 the dashed line represents the
solution for γ−1 and γ1. The fluctuations do not occur between the
states |2ħhk 〉 and | − 2ħhk 〉 but between the accelerated momentum
states | ± 2ħhk 〉 and the initial state |0ħhk 〉.

pulse on a different initial state produces a completely different result. For
example, the application of a π/2 on the initial state γ′(0) = (1, 0,0)ᵀ (Fig.
3.7(a)) produces the state γ′(π/2 ) = 2(1/4, 1/2, 1/4)ᵀ. This is of importance
since each of these states is a possible exit of an interferometer (see Sec. 3.7).
The behaviour holds true for the application of a π-pulse with double Bragg
diffraction. Fig. 3.7 shows that a π-pulse creates an unexpected superposi-
tion of momentum states if the definitions of standard Bragg diffraction are
applied. An initial state γ(0) = (0, 1,0)ᵀ (Fig. 3.7(b)) is transferred into the
state γ′(π) = (0, 1,0)ᵀ and represents the same population distribution. Ap-
plying a π-pulse on the state γ′(0) = (1,0, 0)ᵀ yields a different outcome: the
state γ′(π) = (0,0, 1)ᵀ. This differs from the previously encountered two level
systems such as standard Bragg diffraction but is a well known difference in
multi-level system [95].

3.3 Experimental realization of double Bragg diffraction

To show that double Bragg diffraction is a versatile tool for controlled manipula-
tion and matter wave interferometry an experimental implementation of double
Bragg diffraction was performed. The experimental setup will be shown in Sec.
3.3.1 and the experimental procedure as well as the experimental results will be
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Figure 3.7: Population oscillation in a double Bragg system normalized to give
defined pulse length in the range of 0 to 2π. Depending on the
initial state γ(0) = (γ−1,γ0,γ1) the oscillation evolves differently ac-
cording to Eq. (3.25)

discussed in Sec. 3.3.2. Additional experimental observations will be discussed
in the following sections.

3.3.1 Experimental setup

The experimental implementation of an one-dimensional optical lattice consists
of two steps. First the appropriate beams with their respective frequencies have
to be produced. Afterwards they have to be aligned to create an optical lattice
at the place of the atoms. An optical fibre is used to decouple these to parts
experimentally.
The experimental setup is depicted in Fig. 3.8. An interference filter stabilized
external-cavity diode laser [96] is used to produce light at λ = 780nm. The
laser has a maximum output power of 40 mW. The light is guided through a
Faraday isolator and a pick-up is used to guide a fraction of the light to a pho-
todiode1. The light is spatially overlapped with a reference beam in order to
create a beat signal which is used for offset stabilization [97]. The reference
beam is stabilized to the D2 F = 2→ F ′ = 2 transition of 87Rb. The lattice laser
is stabilized to a frequency 750MHz above (’blue’) this transition.
The main fraction of the light is guided through is mechanical shutter and a
λ/2 waveplate. The λ/2 waveplate is used to adjust the splitting of the light
beam by the following polarizing beamsplitter cube with a ratio of 50/50. Each
of the light beams is then guided through an AOM which imprints a frequency
1 Ultrafast MSM Photodetector
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shift ∆ω between the two beams. After the AOMs the two beams are aligned
on top of each other with an additional polarizing beamsplitter cube. The light
is then guided to the experiment by an optical fibre. The λ/2 waveplate in front
of the fibre is used to set to polarization axis for the polarization maintaining
optical fibre.
At the experiment table, the light is collimated to a beam waist of w0 = 1.7mm
and guided to the experimental vacuum chamber. The lattice beam is aligned
on top of leg 2 of the crossed optical dipole trap via a dichroic mirror. The
mirror features a high transmittivity for λ = 1070 nm, the wavelength of the
dipole trap, and a high reflectivity for λ = 780nm. The light passes through
the vacuum chamber and is decoupled from the dipole trap beam with an ad-
ditional dichroic mirror. The light is reflected by a mirror and passes through
a λ/4 waveplate twice. The induced polarization rotation creates the desired
combination of lattice beams for double Bragg diffraction. To optimize the spa-
tial overlap of both lattice beams, the retro-reflected beam is again guided into
the optical fibre. The spatial overlap is ideal once the maximum transmission
of the retro reflected beam is achieved.
To create the desired frequency difference ∆ω between the two lattices, two
AOMs are operated by a pair of synthesizers2. Each synthesizer offers a syn-
chronization out-/input to synchronize the synthesizers with respect to each
other. The frequency error of each synthesizers is 10Hz. Each output of
the synthesizers is connected to a power splitter-combiner3 separately to of-
fer a fast and reliable way of controlling the pulse form. The control input of
the power splitter-combiners is connected to programmable waveform genera-
tors4. Depending on the input signal at the control port, the synthesizer signal
can pass through the output port to the AOM amplifiers. Since the suppression
of the power splitter-combiner is not sufficient to eliminate spontaneous scat-
tering completely a mechanical shutter is installed to block the light completely.
The home-built amplifiers increase the power to the needed level to drive the
AOMs.
The experimental control of the optical lattice is covered by three independent
LabView Vis [98], each having a discrete function to program and trigger the
desired pulse shape for the optical lattice. The desired pulse shape for each
waveform generator is programmed with a LabView Vi via GPIB. The Vi offers
a programming interface in which arbitrary pulse shapes can be configured and
joined to complex pulse trains. Each part of the pulse train can be adjusted
independently. The Vi disassembles the pulse train to discrete time steps and
converts them to the appropriate format for the waveform generators. Because
GPIB offers parallel programming of multiple devices at once the pulse needs to
be sent only one time. This step only defines the shape of the programmed pulse

2 Hewlett-Packard, 8657A
3 Mini-Circuits ZSC-2-1+
4 Agilent 33120A
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Figure 3.8: Optical setup for a one-dimensional optical lattice. The light is pro-
vided by a interference filter stabilized diode laser that is offset sta-
bilized to a reference beam. The light is split and guided through
two AOMs in order to imprint a frequency shift ∆ω. After recom-
bining the two light beams the light is guided to the experiment
with an optical fibre. The light is then aligned on top of leg 2 of the
crossed optical dipole trap and later retro-reflected. The λ/4 wave-
plate creates the polarization rotation of π required for a double
Bragg lattice.
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but no information on frequency or amplitude is given to the devices. Instead a
second Vi is used to set these parameters. This has the advantage that they can
be changed quickly. The initialization procedure ensures that the pulse is only
triggered once for each external trigger pulse. After this procedure the system is
ready to be used. The trigger mechanism is embedded in the main laboratory Vi
via a digital output channel of a National instrument control card. This enables
a seamless usage of the lattice in the normal experiment procedure. Once the
trigger pulse is sent from the experimental control to the waveform generator
the generator releases the pre-programmed waveform. To ensure that the light
pulse reaches the atoms as desired the mechanical shutter in front of the AOMs
is opened 2 ms in advance to impede influences of jitters during the opening
procedure of the shutter.
This setup enables a maximum control of the lattice light pulses and ensures
that each cycle performs the same. In principle this setup is able to implement
pulse times as short as 5µs. Following Eq. (3.5) the used pulse time τ did not
fall bellow 21µs in the experiment. The programmable waveform generators
offer a simple way to alter the pulse shape to the requirements of the exper-
iment. As an addition an intensity stabilization for the lattice beams would
reduce day-to-day fluctuations of laser power and thus accompanying fluctu-
ations of lattice pulses. Without stabilization the pulses have to be adjusted
every day to operate as desired, which is especially important for interferomet-
ric measurements (see Sec. 3.7).

3.3.2 Observing double Bragg diffraction experimentally

To observe double Bragg oscillations a cloud of condensed atoms was formed
in the crossed optical dipole trap (see Sec. 2.3.2). After condensation, the
trapping potential was switched off immediately and the trigger is sent to the
pulse generator for double Bragg pulses. All the atoms are in the momentum
state |0ħhk〉. The atoms then interact with the optical lattice for variable times
τ. The lattice beams were adjusted to a power of 230µW each and the fre-
quency difference is ∆ω = 2π× 15.08kHz. Eq. (3.18) this yields a oscillation
frequency of Ωeff = 2π × (1.09 ± 0.06)kHz for ωD = 0. To further minimize
non-adiabatic oscillations a Gaussian pulse shape was chosen. After the appli-
cation of the lattice pulse an additional waiting period of 18 ms was applied.
During this time the momentum distribution causes a visible separation of the
atomic clouds. According to their position each cloud can be attributed to the
appropriate state. The population of each momentum state can be determined
by fitting a Gaussian distribution to each cloud. The relative population is de-
termined by dividing the population of a cloud by the accumulated population
of all clouds.
Fig. 3.9 shows the population oscillation caused by the application of a double
Bragg pulse of the length τ. On top of the figure are the absorption images
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Figure 3.9: Double Bragg oscillations: A double Bragg pulse with n = 1 was
applied for the duration τ. The population for |0ħhk 〉, | − 2ħhk 〉,
and | + 2ħhk 〉 are shown as well as the combined population of | ±
2ħhk 〉. Underlying the solution of Eq. (3.29) for each momentum
state withΩeff = 2π× (1.09±0.06) kHz forωD = 0. Each data set is
accompanied by the correspondent absorption image and the time
between each measurement is 10µs.
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acquired in the measurements, taken in steps of 10µs. Starting with 50µs a
transfer of atom population towards | ± 2ħhk〉 begins. After 230µs a full pop-
ulation transfer to | ± 2ħhk〉 is achieved. Due to the special definition of the
double Bragg pulses this pulse is defined as a π/2 -pulse. This pulse demon-
strates a beam-splitter of very high fidelity that can be utilized for matter wave
interferometry (see Sec. 3.7). Due the definition of the oscillation frequency
Ω for double Bragg diffraction this time is, by a factor of

p
2, longer than a

π/2 pulse for standard Bragg diffraction. For twice the time we would expect
to reverse the momentum distribution, thus applying a π pulse. Instead of a
full population of |0ħhk〉 we observer that 25 % remain in the respective states
| ± 2ħhk〉. This situation can be explained by the momentum distribution of the
BEC itself. The velocity selectivity of Bragg diffraction causes a dephasing in the
oscillation between the three momentum states. In addition the calculated os-
cillation frequency Ωeff falls short behind the measured oscillation period. The
dephasing not only inhibits an effective population transfer but also changes
the mean frequency to higher frequencies. Following Eq. (3.31) and with a
momentum width of σP = 0.1ħhk this yields a Doppler shifted frequency of
ΩDoppler = 2π× 1146 Hz. This effect is well understood and will be covered in
detail in Sec. 3.5.
Also more than 99 % of the total number of atoms is transferred to the antici-
pated state, a clear variation in population transfer to the single states | − 2ħhk〉
and | + 2ħhk〉 can be seen. This can be attributed to intensity fluctuations and
fluctuations of the polarization during the transport of the light to the exper-
iment. For Fig. 3.9 two measurements were performed for each data point.
To further suppress intensity fluctuations an active intensity stabilization would
significantly improve the stability of the system. Also day-to-day variations,
and therefore changing oscillation periods, would diminish. Because of the
special setup for double Bragg diffraction an intensity stabilization, as normally
used in the group [61], would be hard to implement. Because two perpendic-
ularly linear polarized beams are guided through one optical fibre a polarizing
beamsplitter would be of no use. One possible solution would be to use a
polarization independent pick-up which could be used to branch a fixed laser
intensity of the main lattice beam line. One of these non-polarizing beam-
splitters is already used for the creation of ring potentials (see Chapter 5) but
features an unusable division ratio of 50/50. This light could then be used to
stabilize each polarization independently with an additional polarizing beam-
splitter. Additional fluctuations of the population oscillation are introduced
by polarization modifications imprinted by mechanical stress in the optical fi-
bre. An polarizing beamsplitter after the optical fibre in conjunction with a λ/2
waveplate is generally used to purify the polarization after an optical fibre. This
is not possible with two perpendicular polarized light fields travelling through
the fibre. The lack of an additional polarization selective element yields could
increase cross-talk between the two optical lattices of double Bragg diffraction.
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3.4 Higher-order double Bragg diffraction

Higher-order Bragg diffraction offers the possibility to accelerate atoms to mul-
tiple momenta of 2ħhk. The maximum momentum transfer achieved at the
ATOMICS experiment has been 12ħhk [83] and is equivalent to a velocity of
140mm/s. Higher momentum transfer is advantageous for atom optics since
shorter transfer times can be realised. For guided matter waves this reduces
interaction times and thus limits losses due to spontaneous scattering or colli-
sions with the background gas. Higher-order Bragg diffraction is achieved by
choosing ∆ω according to Eq. 3.1. The higher frequency difference yields a
faster oscillation of the standing wave formed by the lattice beams and there-
fore reduces the minimum lattice pulse duration. To generate π/2 and π pulses
the lattice depth has to be chosen appropriately.
This section will demonstrate the implementation of double Bragg pulses of the
order n = 2 and n = 3. For n = 3, the atoms are accelerated to a velocity
of 23.53 mm/s. Additionally Table A.2 features a compilation of experimental
values to help find the appropriate settings for future experiments.

3.4.1 Second-order double Bragg diffraction

Second-order Bragg diffraction is achieved by choosing a frequency difference
of ∆ω= 8×ωR = 2π× 30.17kHz. The experiment was performed in a similar
fashion to previous double Bragg experiments. After Bose-Einstein condensa-
tion the atoms were released from the trap by switching the trap off completely.
A lattice pulse of variable time τ was applied. An additional waiting time of
18ms after this ensured a macroscopic spatial separation of the ensembles
according to the momentum difference. The population of each cloud was
determined by fitting a Gaussian distribution to each of the evolving clouds
separately. The relative population was calculated by taking into account all
atoms for normalisation. In contrast to first-order double Bragg diffraction
more than the expected ensembles of atoms with a momentum of 4ħhk and
−4ħhk develop. Additionally ensembles with +2ħhk and −2ħhk show a not negli-
gible population. In previous experiments, non-desired momentum states were
populated if too deep lattices were used. This behaviour showed population of
| ± 4ħhk〉 for Bragg diffraction even when the resonance has been set to excite
| ± 2ħhk〉. By choosing a shallower lattice these excitation can be suppressed.
For second-order Bragg diffraction, the observed excitation of lower momen-
tum states hints a too shallow lattice, even if these states are not in resonance.
Changing the offset lock detuning of the lattice to ∆ωL = 500MHz yields a
deeper lattice and therefore higher oscillation frequencies. Even though an in-
creasing scattering rate limits the maximum pulse duration, the efficiency for
short pulses could be increased. For future experiments with higher-order Bragg
diffraction an increased overall laser power of the lattice could be favourable.
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Figure 3.10: Population oscillation of atom momentum states after second-
order double Bragg diffraction pulses of varying duration. A maxi-
mum of 77 % of atoms are transferred into | ± 4ħhk 〉. | ± 2ħhk 〉 is
suppressed for short pulse durations but after 900µs each momen-
tum state is populated nearly equally. Measurements are taken
every 25µs.
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Alternatively the width of the lattice beams could be reduced to increase the
intensity at the position of the atoms.

Fig. 3.10 shows the population oscillation of second-order double Bragg diffrac-
tion. On top of the plotted population oscillation are the corresponding density
distributions after 18 ms waiting time. Each data point is an average over two
independent measurements. The shortest pulse duration used was 50µs. After
180µs 77 % of the atoms were transferred from |0ħhk〉 to | ± 4ħhk〉. This is the
maximum efficiency achievable in the experiment. The rest of the atoms pop-
ulate |2ħhk〉. State |0ħhk〉 is completely depopulated. The pulse length of 180µs
would be equivalent to a π/2 pulse in this system. Due to the lack of laser
intensity stabilization for the lattice beam this value has to be adjusted for each
experimental measurement series to guarantee the best splitting efficiency. The
high population of |2ħhk〉 indicates that the laser power, and consequently the
lattice depth, are not sufficient to couple the momentum states. This has also
been observed in previous experiments with Bragg diffraction [65]. Chang-
ing the detuning ∆ωL of the frequency stabilization even closer to the res-
onance elevates scattering processes even more and makes observing double
Bragg diffraction impossible.
According to the pulse duration of 180µs for a π/2 pulse the duration of 360µs
should be equivalent to a π pulse and create a complete oscillation of all of the
atoms back to |0ħhk〉. Fig. 3.10 shows that this is not the case. Instead only
40% of the atoms populate |0ħhk〉 and the remaining atoms occupy | ±2ħhk〉 and
| ± 4ħhk〉. Roughly 40 % of the atoms occupy |0ħhk〉 and 20 % of the atoms oc-
cupy | ± 2ħhk〉. This behaviour originates from the velocity selectivity of double
Bragg diffraction and is discussed in Sec. 3.4. The momentum distribution of
the cloud yields a different Ωeff for each of the momenta present in the cloud.
Additionally the population of | ± 2ħhk〉 rises steadily and reduces the quality of
the oscillation between |0ħhk〉 and | ± 4ħhk〉. After 1 ms the amount of atoms in
| ± 2ħhk〉 matches the population of |0ħhk〉 whereas the population of | ± 4ħhk〉
shows oscillations with a reduced amplitude. The dampening effect can also be
explained by the Fourier width of the lattice beam pulse (see Sec. 3.5). On top
of these effects, spontaneous scattering through the Bragg beams reduces the
total atom number and longer pulse durations cannot be evaluated.

3.4.2 Third-order double Bragg diffraction

As described in Sec. 3.4.1 higher-order Bragg diffraction is possible. In addi-
tion to second-order Bragg diffraction third-order Bragg diffraction has been
successfully implemented. Similar to second-order Bragg diffraction, the key
point limiting longer population oscillations is spontaneous scattering of pho-
tons. Due to the shallow lattice potential the coupling strength decreases for
higher-order double Bragg diffraction. This is also the case for Bragg diffrac-
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Figure 3.11: Double Bragg diffraction of the order n n = 3. The population of
|6ħhk 〉 reaches a maximum after τ = 170µs. Longer pulses show
an increasing amount of non-desired momentum states and a loss
of contrast due to a decreasing atom number. Measurements are
taken every 25µs.
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tion [77]. First experiments were carried out with a stabilized lattice laser with
∆ωL = 250MHz. The increased lattice depth should make efficient oscillations
possible but no oscillation measurements could be performed. Decreased con-
trast and loss of atoms due high scattering rates could not be compensated. As
a consequence, the measurements presented in this section were carried out
with ∆ωL = 500 MHz.
To achieve resonant momentum transfer to | ± 6ħhk〉 the detuning of the lattice
beams was chosen to be ∆ω = 12 ·ωR = 2π × 45.3kHz. After the BEC gen-
eration and release from the crossed optical dipole trap the lattice pulse was
applied for variable duration. The density distribution was detected after an
additional time of 18 ms of free expansion.

3.4.3 Quality of Bragg diffraction beamsplitters

Fig. 3.11 shows the population of each momentum state after varying pulse
durations τ. On top, the density profiles of the atoms after the application of
the lattice pulse and the following free expansion time are shown. Each data
point is averaged over two measurements. Similar to Sec. 3.4.1 the atoms are
not only occupying |0ħhk〉 and | ± 6ħhk〉 after the light pulse, but | ± 2ħhk〉 and
| ± 4ħhk〉 are populated as well. Already after 50µs, the shortest lattice pulse
duration, 85% of the atoms are occupying other states than |0ħhk〉. After 170µs
74% of the atoms populate |±6ħhk〉 and a low population of all other states can
be observed. After the maximum population transfer to | ± 6ħhk〉, and therefore
a π/2 pulse, the population reoccupies |0ħhk〉 after 180µs with a maximum of
75%. The overall population of the non-desired momentum states is increas-
ing as the pulse duration increases. As before the lack of laser power and the
probability of non-resonant excitation of unwanted transitions cause towards
this behaviour. The oscillations of |6ħhk〉 shows an increased dampening effect
in regard to lower-order double Bragg diffraction. The total atom number de-
creases steadily and after 650µs the remaining atoms do not give a sufficient
signal for further analysis. In conclusion symmetric splitting of ultra-cold atoms
clouds is possible with higher-order double Bragg diffraction. Up to 77 % and
75 % are transferred into the accelerated momentum states |±4ħhk〉 and |±6ħhk〉
respectively. The loss in efficiency is explainable by the frequency width of the
laser, the lack of laser power provided by the laser used for the optical lattice,
and the large beam waists of the lattice beams.
Fig. 3.12 shows a compilation of beamsplitters obtained with double Bragg
diffraction. The top image shows the BEC after its creation in the crossed opti-
cal dipole trap and an additional free expansion time of 18ms. The following
images show the density distribution after the application of a π/2 lattice pulse
and an additional waiting time of 18 ms. From top to bottom the order of Bragg
diffraction increases from one to three. First-order Bragg diffraction achieves
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Figure 3.12: Experimental images demonstrating the quality of double Bragg
diffraction as a matter wave beamsplitter. The initial resting BEC
after the evaporation process is shown at the top. The following
pictures show a π/2 pulse for beamsplitters of n = 1, 2, 3 respec-
tively. The maximum efficiency for n = 1 is 99 %, for n = 2 it is
77 %, and for n = 3 it is 75 %.

creates a symmetric splitting in the momentum states | ± 2ħhk〉. For τ = 230µs
a π/2 pulse with an efficiency of 99 %. Second-order Bragg diffraction splits
the atomic ensembles into the momentum states | ± 4ħhk〉 with an efficiency of
77 %. The pulse duration is τ = 180µs. Third-order Bragg diffraction shows a
symmetric splitting after τ = 170µs. The π/2 pulse creates a symmetric mo-
mentum distribution of the states | ± 6ħhk〉 with an efficiency of 75 %.
The absolute efficiency of double Bragg diffraction is also limited absolute atom
count after the application of the lattice pulse. Fig. 3.13 shows the relative atom
count after the application of a double Bragg pulse. The atom count is normal-
ized to the initial atom count of the experiment. Higher-order Bragg diffraction
shows faster decay in atom number. Even though the momentum transfer to
the desired momentum state is still highly efficient the total atom number
decreases and reduces the applicability of double Bragg diffraction as an ex-
perimental tool for matter wave manipulation. This is especially relevant for
momentum transfer to | ± 6ħhk〉, where less than 20% of the atoms are present
after a pulse duration of 600µs. The main experimental difference between
first-order and higher-order Bragg diffraction has been the reduced detuning of
the lattice beams in respect to the D2 F = 2 → F ′ = 2 transition of 87Rb. As
displayed in Eq. (2.1) the scattering rate increases for a decreased detuning.
The detuning for higher-order lattice beams has been reduced from 750 MHz to
500 MHz which increases the scattering rate significantly. Also the beam inten-
sity has been adjusted to higher values, which further increases the scattering
rate and therefore reduces the atom count. The underlying solid curves repre-
sent exponential fits giving the exponential decay rate λ (see Eq. (2.1)). Table
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Figure 3.13: Atomcount after the application of a double Bragg lattice pulse
for varying duration. Different orders of double Bragg diffraction
are shown. The detuning of the lattice beams in respect to the D2
F = 2→ F ′ = 2 transition of 87Rb has been reduced from 750 MHz
to 500 MHz for momentum transfer to |4ħhk 〉 and |6ħhk 〉.

3.1 shows the compiled experimentally obtained and calculated values.
The decay rate λ is by a factor of at least two smaller than the calculated scat-
tering rate. Thus the scattered atom does not immediately yield atom losses,
but multiple scattered photons induce heating of the cloud and accelerate ex-
pansion and dilution of the ensemble. The experimental procedure of fitting
Gaussian distributions to the imaged density distribution also neglects very
shallow densities at the edge of each atomic ensemble, the location where
heated atoms would be positioned. For future applications of double Bragg
diffraction these atoms would be less desirable to use because the overall mo-
mentum width of the ensemble increases. A small momentum width of an
atomic ensemble is favourable for transport and interferometric measurements.
In addition exponential fits of first-order do not take into account losses due to
many-body interactions, the fits do not fully describe the behaviour of the sys-
tem. Due to the low detuning in the order of 750 MHz far-off resonant heating
of atoms can be excluded as a reason for increased atom losses [99]. Instead λ
gives an upper bound for the atom losses in the system and show that the loss
rate scales with increasing intensity and decreasing detuning. Both parameters
can be accommodated experimentally to reduce losses due to spontaneous scat-
tering.
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Order Detuning Optical Power Scattering Rate Decay Rate
n [MHz] P [µW ] (calculated) ΓSC [s−1] λ [s−1]

1 750 230 1467 232± 9
2 500 300 4300 1268± 113
3 500 500 7160 3240± 298

Table 3.1: Compilation of experimentally obtained decay rates λ of the atom
number after a double Bragg pulse. Additionally the calculated scat-
tering rate ΓSC (see Eq. (2.1)) is given. The scattering rate was calcu-
lated for the maximum intensity of a Gaussian beam.

3.5 Influences of the BEC momentum distribution on double Bragg
diffraction

The experimental realisation of double Bragg diffraction as described in Sec.
3.3.2 showed that a beamsplitter with 99 % efficiency has been implemented
successfully. A mirror for atoms was implemented but showed a decrease in
efficiency and part of the atoms reside in the accelerated state instead of com-
pletely populating state |0ħhk〉. This section discusses the influence of the pulse
length of the lattice beams as well as the momentum distribution of the atomic
cloud in the experiment and shows that they contribute to the decreased effi-
ciency of a double Bragg mirror.

3.5.1 Fourier width of a Gaussian lattice pulse

The spectral composition of a pulse is determined by the length τ and the shape
of the pulse itself [100]. On one hand, the longer a pulse is the narrower its
spectral distribution becomes. On the other hand, the shorter a pulse is the
broader its spectral width becomes. The frequency distribution of the pulse can
enter a regime in which it is smaller than the width of the spectral response of
an atomic ensemble. The distribution of spectral response in the atomic clouds
originates from the mean-field expansion where each momentum component
can be assigned to a specific frequency ωD due to its doppler shift (see Eq.
(3.27)).
Fig. 3.14 shows the two examples for different pulse durations. At top, two
Gaussian envelopes for lattice pulses are shown. The red pulse symbolizes a
short pulse, whereas the blue one symbolizes a long pulse. Each of the pulses
is applied to a BEC with a fixed momentum distribution, that are symmetric
around zero momentum. Depending on the pulse length the width of the pulse
in the frequency domain changes. The longer a pulse gets, the smaller the
frequency width gets. In the picture of Bragg diffraction, a non-zero momen-
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Figure 3.14: Schematic drawing of double Bragg diffraction and the influences
of pulse length on the selectivity of a lattice pulse. A short (red)
lattice pulse features a broad frequency spectrum and therefore
covers the complete BEC frequency distribution. A long (blue) lat-
tice pulse has a narrow frequency distribution and only part of the
BEC is accelerated by the lattice pulse. The grey area shows the
atomic ensembles whereas the dotted area depicts the fraction of
atoms influenced by the lattice pulse.

tum corresponds to a frequency shift ωD, due to the Doppler effect, and can
be calculated via Eq. (3.27). The red pulse is short and therefore the pulse
in the momentum domain is wide enough to interact with the complete BEC
momentum distribution. The blue Gaussian envelope on the other hand has
a momentum width smaller than the BEC and selects the centre piece of the
Bose-Einstein condensate. The remainder of the atoms is not affected by the
pulse. If we consider a standard Bragg or double Bragg diffraction experiment
this results in a fraction of the atoms being accelerated and part of the atoms
remaining at rest.
To describe the momentum distribution it is approximated with a Gaussian dis-
tribution:

NBEC (ω) = N0e
− 1

2

�

ħhkω
2ωRσP

�2

(3.33)

NBEC gives the fraction of the total number of atoms N0 with a given initial mo-
mentum of ħhkωD/2ωR. The momentum width of the distribution is described
by the parameter σP . Because the momentum profile of a BEC is quadratic a
Gaussian approximation introduces errors. These errors depend on the interac-
tion strength of the species and are not significant for future discussion [61]. To
limit non-adiabatic excitation of momentum states in optical lattices Gaussian
envelopes are used for light pulses [83]. The width of a Gaussian distribution
is given by the width σt . The relation to the pulse duration to the width of the
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pulse in the momentum domain is called time-bandwidth product and given
by [100]:

FWHMt × FWHMν ≈ 0.44 . (3.34)

The product of the full width half maximum (FWHM) in the time domain (t) or
frequency domain (ν) shows to be constant. In order to calculate the fraction
of atoms interacting with a light pulse of length τ, the width of the pulse in the
momentum domain FWHMP has to be calculated. The pulse width in the mo-
mentum domain defines the bounds χ for the integration over the momentum
distribution:

χ = 3×
FWHMP

2
p

2 ln2
= 3×

0.44/FWHMt

2
p

2 ln 2
. (3.35)

It is assumed that every atom inside the 3σ environment of the momentum
distribution is interacting with the light pulse. The relation of the full width
at half maximum is FWHM = 2

p
2 ln 2σ. The fraction of atoms can now be

calculated using:

NF (t) =

∫ χ

−χ NBEC (ω)dω
∫∞
−∞ NBEC (ω)dω

. (3.36)

The fraction of atoms manipulated by the pulse is given by NF whereas the
remainder is not interacting. For Bragg diffraction this means that the atoms are
accelerated or stay in place without achieving a momentum transfer. Fig. 3.15
shows numerical evaluation of Eq. (3.36). Depending on the momentum width
σP and the pulse duration τ, the maximum efficiency of a pulse is modified. For
typical momentum width of a BEC in the ATOMICS experiment of σP = 0.2ħhk
a pulse duration of less then τ = 500µs has to be used to achieve a complete
momentum transfer with respect to the Fourier width of the pulse. Using longer
pulse durations yields a decrease in efficiency.
This effect does not only inhibit the usage of Bragg diffraction but also gives
the possibility to examine specific parts of the BEC by applying long pulses on
purpose. This method is called Bragg spectroscopy [79] and is discussed in the
next section.

3.5.2 Bragg spectroscopy of a Bose-Einstein condensate

The calculated maximum efficiency of a lattice pulse calculated in 3.5.1 not
only limits the applicability of Bragg diffraction and double Bragg diffraction.
The limited efficiency can also be used to get detailed information on the mo-
mentum distribution of the BEC. Given a fixed detuning of ∆ω = 4×ωR and
a pulse length of at least 1 ms only the central part of the momentum distribu-
tion of a BEC is taking part in Bragg diffraction. After waiting an appropriate
amount of time the atomic clouds separate according to their mean momenta.
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Figure 3.15: Fraction of atoms NF being accelerated by a lattice pulse depend-
ing on the momentum width σP of the BEC distribution (see Eq.
(3.36)). Increasing the momentum width of a BEC shows that the
maximum efficiency decreases faster and shorter pulses have to be
used in order to guarantee 100 % efficiency.

By imaging the density distribution the fraction of atoms accelerated by Bragg
diffraction can be determined. By choosing a π-pulse it is guaranteed that all
of the atoms affected by the lattice pulse are accelerated. Due to the velocity
selectivity of a Bragg pulse (see Sec. 3.2) it is possible to shift the average mo-
mentum of the part of the BEC that is cut out. Atoms with an initial momentum
unequal to zero are resonant to different ∆ω. By tuning ∆ω it is possible to
image the population of atoms occupying different momenta of the momentum
distribution in ultra-cold atom clouds and BECs. Previous experiments (see Sec.
3.3) have shown that the momentum distribution has to be smaller than 2ħhk.
Otherwise ensembles would not separate completely because their width would
increase faster then their distance with respect to each other.
The experimental realisation of Bragg spectroscopy was performed in a stan-
dard Bragg configuration. In principal double Bragg diffraction would also be
viable but increases the difficulty of the analysis due to the splitting in multiple
accelerated clouds. After the preparation of a BEC the trapping potential of the
crossed dipole trap was switched off immediately. After 2 ms free expansion a
lattice pulse of fixed length τBS was applied. The time of 2 ms was chosen to
make sure that mean-field expansion has stopped completely and a quadratic
phase profile has evolved (see Sec. 2.2.3). Subsequently an additional time of
14 ms passed before detection of the atoms. The pulse duration was chosen to
be τBS = 1.45ms, which yields a sufficiently small Fourier width of the lattice
pulse to accelerate only a fraction of atoms. Fig. 3.15 shows that the pulse is
well in the regime where a reduced efficiency is expected. The pulse intensity
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Figure 3.16: Experimental realisation of Bragg spectroscopy. A fraction of
atoms is accelerated with a lattice pulse of duration τBS = 1.45 ms
depending on the detuning ∆ω of the lattice beams. The atom
count has been normalized to the total atom count in each ex-
perimental realisation. The x axis shows the shift relative to a
momentum of 2ħhk . On the right are five experimental images
for different values of ∆ω. The accelerated atoms move to the
right with a momentum of 2ħhk . From top to bottom ∆ω =
2π× (10.61 kHz, 13.11 kHz, 15.11 kHz, 17.61 kHz, 20.11 kHz).

was chosen that the pulse forms an ideal π pulse by maximizing the intensity of
the lattice and measuring the fraction of accelerated atoms. To spectroscopically
analyse the condensate, the detuning between the lattice beams was modified.
Fig. 3.16 shows the fraction of atoms accelerated after by the lattice pulse with
τBS depending on the detuning ∆ω of the two lattice beams used for Bragg
diffraction. The distribution shows that the maximum section is generated at
∆ω = 2π × 15.08 kHz = 4 ×ωR, corresponding to atoms at rest. This is the
expected behaviour because all the atoms are at rest after evaporation and the
mean-field expansion is isotropic (see Sec. 2.2.2). Therefore a maximum frac-
tion of atoms is accelerated and the population of the accelerated ensemble is
maximum. The frequency shifted lattice pulse selects a different part of the
BEC out of the density distribution. The reduced density causes a reduced sig-
nal. The right part of Fig. 3.16 shows a set of experimental images showing the
density distribution after the π-pulse the additional waiting time.
Additionally the position of the accelerated ensemble can be associated with
the position in the resting ensemble. Lower detuning cuts out a part of the
cloud that is more to the right. Since the atoms to the left of the centre have

52 3 Bragg diffraction and double Bragg diffraction



a negative momentum with respect to the acceleration direction the Doppler
shift adds to a total frequency of ∆ω = 4×ωR giving a perfectly resonant lat-
tice pulse. In the laboratory frame, this part of the cloud has a lower velocity
compared to a section of the central part of the distribution. The momentum
difference yields a displaced position of the accelerated ensemble.
Fig. 3.16 shows the population N0 of atoms coupled out of the atomic cloud.
The distribution is centred at a momentum of 2ħhk and the x axis shows the
momentum shift relative to 2ħhk. The fitted Gaussian (Eq. (3.33)) distribu-
tion in Fig. 3.16 features a momentum width of σP = (0.24 ± 0.03)ħhk. This
value shows that we are well under the momentum of 2ħhk that is imprinted
on the atoms by Bragg diffraction and double Bragg diffraction. Depending on
the evaporation depth of the crossed dipole trap the momentum width can be
tuned. Colder atomic ensembles feature a narrower momentum distribution.
In the BEC regime, the population of the ground state and the atom number
in general have to be taken into account and the momentum width cannot be
chosen independently.
To further calculate the impact of velocity selectivity, the momentum width σP
is used in Sec. 3.5 to show that the effectiveness of double Bragg diffraction is
not limited by the experimental implementation but by the momentum distribu-
tion of the Bose-Einstein condensate produced in the experiment. To investigate
broader momentum distributions a switch to higher orders of Bragg diffraction
can be made in order to create a macroscopic separation of the two atomic
ensembles.

3.5.3 Experimental realisation of long-pulse double Bragg diffraction

As previously described in Eq. (3.29) the momentum distribution of the atomic
cloud is important for the achievable efficiency of double Bragg diffraction. Fig.
3.17 shows the solution of Eq. (3.29) for the state |0ħhk〉 for different momen-
tum shifts weighted by the number of atoms in the BEC with this momentum
(see Sec. 3.5.2). It is given as the product of Eq. (3.29) and Eq. (3.33):

N0

�

t,ωD

�

= γ0

�

t,ωD

�

× NBEC

�

ωD

�

(3.37)

The centre of the distribution of ωD = 0 follows the simple solution of Eq.
(3.25) and does not experience a modified Rabi frequency, thus Ωeff = Ω. De-
pending on the initial momentum the Rabi frequency Ωeff gets shifted towards
faster oscillations. Each part of the atomic cloud executes a complete momen-
tum transfer between full population and depopulation and no loss in efficiency
is happening. The width is sufficiently narrow. Since a real atomic cloud shows
a multitude of different initial momenta the sum over all population oscillations
has to be considered. Fig. 3.17(a) shows the time evolution of the population of
|0ħhk〉, which are Rabi oscillations of |0ħhk〉 weighted by the relative occupation
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Figure 3.17: Population of state |0ħhk 〉 depending on the initial momentum
width σP = 0.1ħhk of the atoms and the Fourier width of the lat-
tice pulse. (a) shows the solution of Eq. (3.37) and (b) the solution
of Eq. (3.38) for the same input parameters. Colour Coding: High
population (red) and no population (blue).
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of a fixed momentum distribution width σP = 0.1ħhk. The value of σP has been
derived by a numerical fit of Eq. (3.29) to the experimentally obtained dou-
ble Bragg induced oscillations. It is a factor of two smaller than the momentum
width of the BEC measured with Bragg spectroscopy in the previous section. For
the calculations a Gaussian momentum distribution was assumed, which is an
acceptable approximation to a real bimodal distribution (see Sec. 2.2.2). The
momentum distribution is symmetric about zero representing a resting BEC af-
ter evaporation. To acquire the fraction of atoms populating |0ħhk〉 the integral
over the full momentum distribution has to be carried out. For the first 2 ms a
complete momentum transfer to |2ħhk〉 can be observed, thus |0ħhk〉 is depleted
for all momentums present. Beginning at 1 ms a deformation of the population
profile occurs. Atoms with higher initial momentum populate the state |0ħhk〉
whereas atoms withωD = 0 are still occupying |±2ħhk〉. Because of the momen-
tum profile of the atomic cloud atoms with higher momentum are less common
and their impact is small at the beginning. After 2 ms a non-negligible amount
of atoms occupies |0ħhk〉 whereas the central part of the atomic cloud is still
populating | ± 2ħhk〉. This yields a loss of efficiency in momentum transfer if
the complete cloud is taken into account. For sufficiently small momenta, dou-
ble Bragg oscillations show now decreasing efficiency. For increasing times this
effect damps the oscillations even more. Broader momentum distributions of
a cloud will amplify this effect. To observe perfect momentum oscillations the
momentum distribution has to be small. To create a perfect beamsplitter with a
π/2 pulse the width has to be smaller than 0.125ħhk. To create a perfect mirror
the momentum distribution has to be even narrower. Broader momentum dis-
tributions can exploit an additional feature of double Bragg diffraction. Every
even multiple of π creates a slightly more efficient mirror pulse.
After about 1 ms the effects of the finite momentum width inhibit the full popu-
lation transfer to |±2ħhk〉 and the oscillations are damped and completely vanish
for longer durations.
The experimental observation of long pulses is carried out in the same way as
already described in Sec. 3.3.2. After the preparation of the BEC the dipole trap
is switched of instantaneously and a lattice pulse of up to 3 ms is provided. A
waiting time of 18 ms was applied before imaging to guarantee a spatial sep-
aration of the ensembles according to their momentum. In order to be able
observe more oscillation periods the lattice depth was increased thus the Rabi
frequency was enhanced to Ωeff = 2π× 1.26 kHz.
Fig. 3.18 shows the population of atoms in |0ħhk〉 after the application of a dou-
ble Bragg pulse of τ. The solid black line takes into account the Fourier width
of the applied pulse as well as the momentum distribution of the BEC. It can be
calculated by integrating over complete momentum distribution of the atomic
cloud for each time step. The oscillation shows a complete transfer of popula-
tion from |0ħhk〉 to | ± 2ħhk〉 after 230µs, which can be associated with a π/2
pulse. After a pulse of twice this duration a maximum population of |0ħhk〉is
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Figure 3.18: Population of state |0ħhk 〉 after the application of a double Bragg
pulse of variable duration. The solid black line represents a solu-
tion of Eq. (3.38) taking the momentum distribution of the atomic
cloud into account as well as the Fourier limit of the lattice pulse.
The dashed line shows the maximum efficiency expected due to the
Fourier width of the pulse (Eq. (3.36)).
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observed, with 80 % of the population returning to the |0ħhk〉 and the rest of the
atoms occupying | ± 2ħhk〉. In a simple damped oscillating system the efficiency
of population transfer would constantly decline. In a double Bragg diffraction
setup the revival of the population can appear. This is the case after 840µs - a
2π pulse. 100% of the atoms return to |0ħhk〉 and no population of | ± 2ħhk〉 is
measurable.
Fig. 3.18 shows that a π-pulse reaches an efficiency of 80 %. A 2π-pulse is
applied with an efficiency of 98 %. For interferometric applications the shortest
pulse time that achieves the desired splitting will be chosen to reduce sponta-
neous excitation. As discussed in Sec. 3.5.1, the length of a lattice pulses also
limits the amount of atoms that are influenced by double Bragg diffraction. The
calculation depicted in Fig. 3.17(b) takes into account the Fourier width of an
applied pulse in the momentum domain. This is done by multiplying the maxi-
mum fraction of atoms taking part in oscillations derived from Eq. (3.36) with
the population oscillation (Eq. (3.37)):

N0,F

�

t,ωD

�

= N0

�

t,ωD

�

× NF (t) . (3.38)

For pulse durations larger than 1 ms the increase of the lower limit for the
population in state |0ħhk〉 can be explained by the Fourier limited efficiency
of double Bragg diffraction. Instead of converging towards a mean value of
N0/N = 0.5 all of the atoms stay at rest in |0ħhk〉. The oscillation period for
higher times is getting shorter as well. The increased Rabi frequency can be ex-
plained by the free movement of the BEC. Since the lattice is not strong enough
to hold atoms against gravity the atoms can escape the initial interaction re-
gion. It could be possible, that they fall in a range of higher lattice depth,
which would yield higher oscillation frequencies. Also mean-field expansion is
occurring during the interaction of the atoms with the lattice (see Sec. 2.2.2).
Mean field interaction creates a broadened momentum distribution until its en-
ergy is depleted and a fixed momentum distribution is established. Due to the
quadratic contribution of ωD in Eq. (3.31), a broader momentum distribution
yields a higher effective Rabi frequency averaged over the whole atom cloud.
The increasing momentum width can therefore increase the effective Rabi fre-
quency which explains why the oscillation for large pulse durations are faster
in the experimental data. These effects are not taken into account in the under-
lying calculations represented by the solid line in Fig. 3.18.
As discussed earlier in this section the Doppler shift introduces a momentum
selective frequency modulation. Different fractions of the atomic ensemble os-
cillate with different frequencies. This behaviour introduces patterns in the
atomic clouds. Fig. 3.19 shows a comparison between an experimental image
obtained with a double Bragg diffraction pulse and the solution of Eq. (3.29)
with an additional time of free expansion of 18 ms to account for the spatial
spreading of the atoms. Fig. 3.19(a) shows a density distribution after a lattice
pulse of length τ = 800µs. The density distribution shows a modulation along
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Figure 3.19: Measuring the population in | − 2ħhk 〉, |0ħhk 〉, and |2ħhk 〉 of a dou-
ble Bragg pulse for a long double Bragg pulse with τ = 800µs.
depending on the expansion for the duration tw in free space.

the separation direction in the accelerated and the non accelerated states. Fig.
3.19(b) shows the solution of Eq. (3.29) multiplied with a BEC density distri-
bution after 18ms obtained by the scaling law (see Sec. 2.2.3). The clouds at
−220µm and 220µm were positioned according to momenta −2ħhk and 2ħhk
after a time-of-flight of 18 ms. The obtained density distribution features the
same periodic structures as the experimentally obtained density distributions
of Fig. 3.19(a). The Doppler shift induced frequency change Ωeff(ωD) yields
periodic population of each of the momentum states. The spatial separation for
τ= 800µs is chosen in a way that the spacing is visible.
The width of the density distribution in the x and the y direction is shown to
be different. By minding the time of free expansion of 18ms the initial mo-
mentum width of the cloud is σp,x = (0.28 ± 0.05)ħhk in the x direction and
σp,y = (0.09±0.03)ħhk in the y direction. The y direction features the momen-
tum width that has been calculated by the fit of Eq. (3.29) to the oscillations of
momentum states caused by double Bragg diffraction. The x direction gives a
higher momentum width by a factor of three. The x direction is the direction in
which both lattice beams are aligned. The broadening of the atomic ensemble
may be caused by the illumination of near resonant of the double bragg lattice
for τ= 800µs.
This section shows that double Bragg diffraction of broad momentum distribu-
tions faces a reduced efficiency. This behaviour can be used to examine funda-
mental properties of atomic clouds via Bragg spectroscopy (see Sec. 3.5.4). For
pulse durations larger than 3 ms the inhibiting effects dominate and the oscil-
lation amplitudes are reduced to a point where less than 20 % of the atoms can
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be manipulated.

3.5.4 Measuring the mean-field expansion of a BEC with double Bragg
diffraction

As discussed in Sec. 3.5.3, the efficiency of double Bragg diffraction depends
on the momentum width of the BEC. This behaviour can be exploited to mea-
sure the momentum width by fitting N0,F to the population oscillation. Since
the mean-field expansion alters the momentum distribution according to Eq.
(2.36), introducing a waiting time before the application of double Bragg pulse
makes the process observable. Because the main contribution of the mean-field
expansion happens during the first 3 ms, the times were selected accordingly to
map this parameter area.
The experiment was carried out in the same way as described in Sec. 3.5.3.
In addition a variable waiting time tw was introduced before the application of
the double bragg pulse. The waiting time tw was then modified from 0 ms to
5ms in steps of 1ms. The density distribution was measured 18ms after the
application of the lattice pulse in order to let the atoms separate according to
their momentum.
Fig. 3.20 shows the population of |0ħhk〉 for different waiting times tw. Af-
ter τ ≈ 200µs a π pulse is achieved for all depicted tw, but its efficiency is
dependent on the momentum width of the BEC. For increasing waiting times
before the pulse application the efficiency decreases. For pulse durations of
τ < 500µs all atoms are accelerated by the double Bragg pulse and therefore
Eq. (3.37) was fitted to the population oscillation. The momentum width σP
of the BEC was a fit parameter. The solid line in each of the plots shows the
fitted population oscillation. Plotting the obtained width σP as a function of
the initial waiting time tw enables the direct observation of the evolution of
the momentum width. Fig. 3.21 shows the fitted momentum width σP for
over the waiting time tw. Because the pulse duration of several 100µs is in
the same order as the observed mean-field conversion time the momentum dis-
tribution itself changes significantly during the pulse. Therefore a mean pulse
duration of 200µs was assumed and was added to the initial waiting time:
texp = tw + 200µs. The solid black line is a numerical solution for RTF × λ̇x
of Eq. (2.36) for the initial parameters ωx(0) = ωy(0) = 2π × 115Hz,
ωz(0) =

q

ω2
x +ω2

y , ωx(t) = ωy(t) = ωz(t) = 0Hz, and RTF = 3.7µm. All
but the first data point corresponds to the theoretical description of the expan-
sion. The initial data point is in a regime where the change in momentum is
caused by the mean-field interaction. The mean pulse duration used for tw = 0
obviously underrates the expansion time. The remaining data points follow
the theoretical prediction and lie within the error margin. The mean-field ex-
pansion is mostly happening during the first 1.5ms after the atoms have been
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Figure 3.20: Measurement of the population in |0ħhk 〉 of a double Bragg pulse
depending on the free expansion of a BEC for the duration tw in
free space before double Bragg diffraction.
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Figure 3.21: Momentum width σP of a BEC after variable times tw . The solid
black line is the numerical solution of Eq. (2.36) with no free pa-
rameters. The waiting time before the experiment is defined as
texp = tw + 200µs, where 200µs is the mean duration of the dou-
ble Bragg pulse.

released from the trap with a full expansion achieved after 3 ms. This approves
the first estimation that mean-field expansion is happening in the first 5ms after
the release (see Sec. 2.2.3).

3.6 Other methods of coherent Beam splitting

In addition to double Bragg diffraction, two other methods where used to cre-
ate a symmetric and coherent superposition of matter waves. Three-frequency
Bragg diffraction, first described in [65], and the so called ’Pendellösung’ in a
non-moving optical lattice are shown [101]. Both methods feature a simple and
reliable way to implement beamsplitters and mirrors for matter wave optics.
This section compares the different methods and shows their experimental im-
plementation. The experimental results are compared to double Bragg diffrac-
tion and a in depth discussion on applications for each of the methods is given.

3.6.1 Three-frequency Bragg diffraction

Three frequency Bragg diffraction is first described in [65]. Instead of having
one frequency in each of the lattice beams, one of the beams features an addi-
tional second frequency. The frequencies are distributed in a way that one of
the lattice beams is driven with the centre frequency of ω. The second AOM
features two frequencies ω +∆ω and ω −∆ω. The experimental setup de-
scribed in Fig. 3.22 can be used without further modifications. One of the
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AOMs used for Bragg diffraction was used without any modification. In or-
der to achieve a second frequency in one of the lattice beams two frequencies
derived from two synthesizers5 where combined with a power splitter/com-
biner6 [65]. A third synthesizer is used to drive the remaining AOM at the
frequency of ω = 80 MHz. The detuning ∆ω was chosen to be 4 ×ωR. Fig.
3.23 (b) shows the configuration at the point of the atoms. Atoms in the cross
section of the lattice experience a spatial overlap of two optical lattices that
each fulfil the Bragg condition. Because the two lattices have an opposing de-
tuning, the acceleration direction is opposite and a splitting in different atom
clouds with opposite direction is achieved.

3.6.2 ’Pendellösung’ in a non-moving optical lattice

In the previous sections, Bragg diffraction and double Bragg diffraction were
observed in moving optical lattices, i.e. lattices in which a frequency shift was
introduced between counter propagating beams (∆ω 6= 0). Without frequency
shift double Bragg diffraction can no longer be observed, but depending on
interaction time and lattice depth two different regimes for Bragg diffraction
emerge: For short interaction times of the lattice τ, the Kapitza-Dirac regime
dominates [102]. For longer interaction times and shallow optical lattices the
Bragg regime is reached [101, 103]. The so called ’Pendellösung’ describes the
limit of excitation of only |0ħhk > and | ± 2ħhk > momentum states [104]. For
deeper potentials a in depth discussion can be found in [38].
The upper bound of the interaction time in which the Kapitza-Dirac regime
dominates is the inverse of the recoil frequency ωR [105]:

τ≤
1
ωR

. (3.39)

To observe the Kapitza-Dirac regime with 87Rb the interaction time has to be less
than 26µs [106]. This has been studied in detail at the ATOMICS experiment
in previous works [61,83].
When using longer interaction times, well in the Bragg regime, stimulation of
higher momentum orders can be observed. The highest momentum order can
be estimated by [85]:

nmax ≈

√

√

√

�

�U1D (0)
�

�

4ħhωR
, (3.40)

where U1D(0) is the amplitude of the modulation in the potential depth. The
resulting oscillation frequency is given by ΩP = U0/2ħh [89]. To describe the

5 Hewlett-Packard, 8657A
6 Mini-Circuits Power Splitter/Combiner ZSC-2-1+
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Figure 3.22: Modification of the double Bragg experimental setup (see Fig. 3.8)
for the implementation of standard and three-frequency Bragg
diffraction. Instead of a retro-reflecting mirror and a quarter wave-
plate an additional fibre coupler is used to guide the light of lattice
beam 1 and lattice beam 2 in two different optical fibres to the
experimental setup.

time evolution of the atom momentum state in an optical lattice the resulting
time-dependent Schrödinger equation can be solved using a trial solution. The
in depth discussion on the solution to the system can be found in [107]. The
’Pendellösung’ is a solution of the resulting differential equation:

N0 = cos2
�

U0 t/4ħh
�

(3.41)

N2 = sin2
�

U0 t/4ħh
�

.

N0 gives the population in the momentum state |0ħhk > and N2 the sum of the
population of the momentum states | ± 2ħhk >. The population of |2ħhk〉 and
| − 2ħhk〉 is distributed equally.
To achieve a symmetric splitting with a non-moving optical lattice, the appro-
priate lattice depth has to be used in order to provide a perfect beamsplitter. To
increase the fidelity of the beamsplitter and to avoid unnecessary fluctuations
an intensity stabilized lattice is favourable.

3.6.3 Modifications to the experimental setup

The initial setup described in Sec. 3.3.1 for double Bragg diffraction could be
used with only slight modifications. Fig. 3.22 shows the modified setup of
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Fig. 3.8 with the highlighted modifications. Instead of recombining the light
beams after the two AOMs and guiding them to the experimental setup with
only one optical fibre, a second optical fibre was installed. Each of the beams’
polarization was carefully adjusted to be linear in parallel to each other. Polar-
izing beam-splitter cubes and λ/2 waveplates after each optical fibre ensured a
matching linear polarization. The alignment on top of one of the optical dipole
trap legs was performed in the same way as for the double Bragg lattice align-
ment. To align the now counter-propagating second lattice beam, the rearward
transfer efficiency of one beam through the other fibre can be used. A perfect
alignment is achieved if the transfer efficiency is maximized. The electronic
control of the modified optical lattice could be used without major modifica-
tions. Only the appropriate frequency setting needs to be adjusted for each
lattice type used.
It is important to notice that due to the limited space available the experi-
mental setup, for double Bragg diffraction is easier to accomplish but lacks the
opportunity to use a single double Bragg lattice. The modified setup enables the
usage of non-moving optical lattices (see Sec. 3.6.2) and also two simultaneous
moving lattices (see Sec. 3.6.1) for beam splitting. On top of that, the acceler-
ation of an atom cloud into a single momentum state can be accomplished. A
single accelerated momentum component enables easier characterization mea-
surements and is therefore used in Chapter 5 and Chapter 6 to characterize the
potentials.

3.6.4 Comparison of different beam splitting configurations

Fig. 3.23 shows a compilation of the three different lattice configurations dis-
cussed earlier. Fig. 3.23 (a) shows the configuration of double Bragg diffraction
where two perpendicular polarized beams are retro-reflected. Due to the π/2
-waveplate the polarization is turned and a combination of two Bragg diffrac-
tion lattices interacts with the atoms. Fig. 3.23 (b) shows the three-frequency
Bragg implementation. A single beam is joined with two counter-propagating
beams that feature a detuning ±∆ω. All beams are linear polarized in the same
direction ~ex . Fig. 3.23 (c) shows the setup for the ’Pendellösung’ beamsplitter
in a non-moving optical lattice.
To compare the three matter wave beamsplitters, three sets of measurements
were performed in a comparable fashion. After a BEC was produced in the
crossed optical dipole trap the trap was switched off and the Bragg pulse was
applied. All three lattices were optimized in a way that excitation of the |−2ħhk〉
and |2ħhk〉 was achieved. The interaction time of the lattice and the atoms τ was
varied up to a duration of a π-pulse. After an additional waiting time of 18ms,
during which the atom clouds separate, the density distribution was measured.
The double Bragg diffraction implementation follows the discussion in Sec.
3.3.2. The atoms are split with an efficiency of 99 % by a π/2 -pulse and
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Figure 3.23: Beam configuration for different Bragg beamsplitters. (a) Double
Bragg diffraction uses linear polarized light and creates a pair of
one-dimensional optical lattices. (b) Three-frequency Bragg diffrac-
tion uses one beam with the centre frequency ω and two counter
propagating beams with the same polarization but different fre-
quencies ω − ∆ω and ω + ∆ω. (c) The ’Pendellösung’ beamsplit-
ter utilizes non-moving optical lattices. By varying interaction times
and lattice depth a beamsplitter is realized in all three configura-
tions.
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show a reduced efficiency of a π-pulse of 75 % due to the momentum width
of the cloud, as discussed in Sec. 3.5.
The three-frequency Bragg lattice shows a splitting efficiency of 82 % for a π/2
-pulse. The lattice depth and therefore the pulse time of three frequency Bragg
were chosen to be in the same order as double Bragg diffraction. Additional
damping effects cannot be explained by the pulse duration and a π-pulse al-
ready shows that only 50 % of the atoms return into the state |0ħhk〉. Working
with a focussed optical lattice, the same as used for the ’Pendellösung’ con-
figuration, also shows the dampening effect experienced with three-frequency
Bragg diffraction [65]. The experimental parameters used with standard Bragg
diffraction did not show this behaviour and it is unclear if the special combi-
nation of light pulses in this setup introduces additional resonant excitation of
momentum states or if higher order fluctuations inhibit the population oscilla-
tions. Because all of the three lattice beams are linearly polarized in the same
direction, cross-talk and unwanted interference processes can be a possible ex-
planation.
For a standing optical lattice, the lattice depth was not sufficient to excite a high
population of |±2ħhk〉. Therefore an additional lens was used to focus the light.
The achieved waist was w0 ≈ 80µm, which is twice the size of the crossed op-
tical dipole trap beams, and the lattice depth was U1D(0) = 19ER [83], which
equates to nmax ≈ 2. According to Eq. (3.40) the achievable maximum order is
way above n= 1 and a symmetric splitting into the states |±2ħhk〉 was achieved.
In order to create a good | ± 2ħhk〉 beamsplitter the lattice depth has to be cho-
sen following Eq. (3.40). The chosen lattice depth results in a pulse duration
of τ = 9µs for a π/2 pulse. This time is well within the region where Kapitza-
Dirac diffraction may occur. Fig. 3.24 shows that the resulting efficiency of a
π/2 -pulse is 88 %. Because of the short pulse time, the frequency width is suffi-
ciently long to guarantee a full momentum transfer of all atoms. The remaining
12 % of the atoms are either excited to | ± 4ħhk〉 or reside in |0ħhk〉, which could
be first effects of the Kapitza-Dirac regime.
All three methods show that splitting of an atomic cloud is possible with high
efficiency. The reduced efficiency of each of the methods has been discussed. In
the case of the ’Pendellösung’ an active intensity stabilization would increase the
stability and is essential for a reliable usage. Three-frequency Bragg and Bragg
diffraction show that the resonant excitation of momentum transfer is more
robust with respect to intensity fluctuations. Three-frequency Bragg diffraction
also offers the possibility to have different detuning for each of the lattice beams
opening up the opportunity to have asymmetric splittings in different momen-
tum states. This could be a useful technique for future applications. The large
pulse durations originate from the decision to use a large beam. With additional
laser power the oscillation frequencies could be increased. The advantage of a
collimated large beam is the insensitivity in regards of day to day beam position
drifts. Double Bragg diffraction has shown to be the most efficient way to split
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Figure 3.24: A full π period of the three different methods of Bragg based beam
splitting of atomic clouds. The efficiency of each process is above
80 %. The insets show an absorption image obtained at the time
of maximum splitting, which is therefore defined as a π/2 -pulse.
a) Double Bragg diffraction b) ’Pendellösung’ diffraction c) Three-
frequency Bragg diffraction.

atoms symmetrically in the momentum states | ± 2ħhk〉.
In addition to the shown methods of beam splitting additional methods ex-
ist and have been demonstrated experimentally. By using a combination of
two standing wave lattice pulses a coherent splitting with high fidelity can be
achieved [108]. This method uses the relative phase of the two clouds to create
a beamsplitter into the states | ± 2ħhk〉. It was already used to implement an
interferometer [109] but is limited to a coherent splitting to the order n= 1.

3.7 Matter wave interferometry with double Bragg diffraction

To demonstrate that double Bragg diffraction is an efficient tool for atom inter-
ferometry a Ramsey-type interferometer was realized by using double Bragg
diffraction pulses. The method of Ramsey-type interferometry with matter
waves has been investigated before [110, 111] and serves as a well known
method for auto-correlation measurements on BECs [65].
This section shows the initial idea behind Ramsey-type interferometry and the
applied method in this work (see Sec. 3.7.1). Next a discussion with a the-
oretical description of the expected density modulation in a BEC after the
interferometer sequence is given (see Sec. 3.7.2). The algorithm used to exper-
imentally determine the fringe spacing is explained in Sec. 3.7.3. Afterwards
the experimental use of double Bragg diffraction interferometry is shown and
discussed. In particular the differences to standard Bragg diffraction interfer-
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ometry are shown (see Sec. 3.7.4). The section closes with the experimental
realization of a second-order Bragg diffraction interferometer showing that the
developed method is also applicable to other velocity regimes (see Sec. 3.7.5).

3.7.1 Experimental procedure of a Ramsey-type interferometer

Initially Ramsey interferometry was developed to measure the frequency of
atomic resonances in atom beams [112]. To measure the frequency of an
atomic resonance, atoms are guided through two interaction regions. These
regions are spatially separated. In the first interaction region, a superposi-
tion of internal states is imprinted on the atoms. During the transfer from
one interaction region to the other, these superpositions oscillate with a specific
frequency. The phase difference of the internal frequency and the stimulat-
ing frequency is used to determine the internal oscillation frequency of the
atoms [113]. The accuracy of this method is directly proportional to the time
between the two interaction areas.
Today this method is used to determine the SI unit of time as 1s =
9,192,631,770 revolutions of 133Cs [114]. In addition Ramsey method has been
extended to an Ramsey-Bordé interferometer which uses four interactions re-
gions [115, 116]. In a Ramsey-Bordé interferometer rotation or acceleration
can be applied to shift the Ramsey fringes. These shifts can be measured with
high precision [117].
Matter wave interferometry can in addition apply the Ramsey interferometer for
auto-correlation measurements of an atomic ensemble. Instead of two spatially
separated interaction regions, two temporally displaced interactions are used.
Fig. 3.25 shows the experimental procedure of a Ramsey-type matter wave in-
terferometer. First a coherent matter wave is generated in the crossed optical
dipole trap via Bose-Einstein condensation. The long experimental procedure
of over 60 ms to follow arises the need to hold the atoms against gravity. Other-
wise they would leave the field of view of the detection camera. The atoms are
therefore loaded into one of the crossed optical dipole trap legs. Theoretically
it would be sufficient to switch off one of the legs. Experimentally the trapping
force of one dipole trap leg is not sufficient to hold atoms against gravity. To
compensate, the intensity of dipole trap leg 2 is increased before leg 1 is dis-
abled. The trapping frequency in the radial direction of leg 2 is approximately
ωt = 2π× 150Hz after the ramping process (see 2.13). The longitudinal trap-
ping frequency is ωr < 2π × 1 Hz because of the large Rayleigh range of the
focussed Gaussian beams generating the dipole trap.
The waiting time t1 ensures that the mean-field energy is depleted and that
ballistic expansion is the dominant process. After the waiting time t1 the first
π/2 -pulse is applied. This process has to be done before each experimental
run to ensure a full beamsplitter. The time between the two pulses τi gives
the two atom clouds the time to displace from each other. The time τi is short
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Figure 3.25: Experimental sequence of a Ramsey-type interferometer. After a
waiting time t1 a π/2 pulse is applied to create coherent superposi-
tion of the momentum states | ± ħhk 〉. After a time τ a second π/2
pulse is applied. After an additional waiting time t2 the resulting
density distribution is imaged via absorption imaging.

enough so that the clouds never separate completely and partly overlap all the
time. After the time τi has passed the second π/2 -pulse is applied. The final
pulse creates a total three wave packets. The three clouds have a momentum of
−2ħhk, 0ħhk, and 2ħhk. This process happens to both of the ensembles created by
the first π/2 -pulse. The separation between the two clouds imprinted during
the time τi between the two interferometer pulses determines the displacement
∆x between the clouds of same momentum (see Fig. 3.25). The spatial overlap
present in all three pairs of ensembles yields a density modulation. This density
modulation is imaged after an additional waiting time of t2.
In contrast to standard Bragg diffraction not a single but two spatial frequencies
can arise. Due to inequalities in the beam splitting process part of the atoms
reside in |0ħhk〉. This creates a second effective displacement which yields a sec-
ond spatial frequency. This has been shown in the experiment and is discussed
in Sec. 3.7.4.

3.7.2 Fringe period of interferometric measurements

The interference pattern after a Ramsey-type interferometer sequence is de-
pendent on two parameters: First the observed density modulation originates
from the interference of two wave packets with quadratic phase profile. Second
the relative velocity of the wave packets ∆v introduces density modulations as
well. By choosing the interferometer sequence appropriately ∆v = 0 can be
accomplished.
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Applying a Ramsey-type interferometer sequence with double Bragg diffraction
results in the creation of three interferometer exit ports. For simplicity, the dis-
cussion continuous for one of the possible interferometer outputs where all of
the outputs feature the same behaviour. In addition due to the separability of
the wave function in the radial and axial parts, the discussion can be done for
axial part only. Each experiment is oriented in way that displacements occur
only in one direction.
A wave function ψ(x) can be written as

ψ (x) = f (x) eiφ(x) , (3.42)

where φ(x) describes the phase profile and f(x) the density profile of the wave
packet. In the Thomas-Fermi approximation the phase φ(x) of a wave function
is defined as

φ (x) =
α

2
x2 + β x , (3.43)

where α gives the phase gradient as defined in Sec. 2.2.3 and β gives a linear
phase profile, the constant motion of an atomic ensemble. During the interfer-
ometer process two wave packets are separated spatially by ∆x . The density
distribution of two interfering wave packets with spatial overlap centred at the
positions x and x +∆x is given by:
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Considering the relevant cross term F(x) of the absolute value yields:
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. (3.45)

The constant factor C is introduces a constant phase that is defined as:

C = β∆x −∆x2α

2
. (3.46)

The cross term of Eq. (3.45) describes a density modulation with a spatial
frequency of

κ= α∆x + 2β . (3.47)
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β is proportional to the relative velocity∆v between the interfering wave pack-
ets after the second beamsplitter and is given by [118]:

β =
m∆v
ħh

. (3.48)

The relative velocity ∆v introduces additional interference patterns as long as
different packets of the cloud overlap spatially. The large relative velocity of
at least ∆v = 2ħhk/m = 11 mm/s makes a detection of the resulting narrow
structure in the current experimental set up not possible. The second pulse
ensures that the relative velocity of the pair of wave packets interfering within
each exit port is ∆v = β = 0. Given the definition of α (see Eq. (2.40)) the
fringe spacing d of the low frequency component is given by:

d =
2π
κ
=

2π
α∆x

=
λh

λ̇m∆x
(3.49)

The density modulation of two interfering atom clouds is controllable by the
separation ∆x in the experiment. In general α is dependent on the time (see
Sec. 2.2.3). After the initial mean-field driven expansion (typically 3 ms af-
ter release), ballistic expansion of the BEC is dominant α is considered to be
constant.

3.7.3 Analyses of spatially periodic density profiles

The absorption image of an interferometric measurement shows a modulated
density profile with one or more spatial frequencies present.
As discussed before the expected density profile consists of three interferometer
exit ports with two distinct spatial frequencies. The resulting density modula-
tion is described by the following function D(x):
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(3.50)

The density distribution D(x) features three distinct atom clouds, each one
representing an interferometer exit port. Each cloud consists of a Gaussian
distribution with amplitude A1, A2, and A3 and the same width σx . The dis-
placement of the clouds is determined by the time of flight after the interfer-
ometer and can be calculated by x2ħhk = 2ħhk/m× t for first-order double Bragg
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diffraction. Higher orders have to consider the changed velocity. Each Gaus-
sian distribution is a sum of an unmodulated background and two contributions
with sinusoidal density modulations with frequency ωa and ωb. Each of these
feature a distinct phase φ1,a, φ1,b, φ2,a, φ2,b, φ3,a, and φ3,b. The amplitude of
the modulation is given by the product of A1,2,3 and B1,2,3;a,b respectively. This
yields the possibility to determine the contrast of each of the modulations sep-
arately.
Eq. (3.50) has a total of fifteen independent variables and a fitting routine
considering all parameters appropriately could not be found. To compensate
for the lack of fitting the complete distribution the problem was divided into
two steps. First all spatial frequencies are extracted with the use of discrete
Fourier transformation (DFT). Afterwards the remaining parameters are fitted
to the density distribution using the determined frequencies κa and κb as fixed
values. The Fourier transformed distribution F(κ) is given by:

F (κ) =
N
∑

x=1

D (x) e
�

−2πi
N

�(x−1)(κ−1)

. (3.51)

A DFT offers a fast and reliable way to determine the frequency spectrum of
a temporal and spatial series of data. The initial two-dimensional density
distribution is summed perpendicular to the Bragg beam direction to create
a one-dimensional vector. The width of the one-dimensional waveguide was
chosen as boundaries for the summation. The sampling frequency equates to
the pixel count of the image. According to Eq. (3.51) the density distribution
was converted to a spatial frequency distribution. The scaling of the x axis has
to be chosen carefully and is determined by one over the sample length N . Fig.
3.26 shows a compilation of images depicting two density distribution before
the application of an DFT and the calculated spectrum for each of the distri-
butions. Fig. 3.26(a) and Fig. 3.26(c) feature an example density modulation
on top of a Gaussian background. This is a simplification of Eq. (3.50) to help
demonstrate the advantage of DFT. Fig. 3.26(c) adds additional noise to the
same density distribution. White noise was chosen to demonstrate random er-
rors that accumulate across the experimental procedure. The amplitude of the
noise was set to 1, the same amplitude as used for the sinusoidal density mod-
ulation.
Each of the two distributions were analysed using DFT. The resulting distribu-
tions in the frequency domain are shown in Fig. 3.26(b) and Fig. Fig. 3.26(d).
Fig. Fig. 3.26(b) shows a distinct peak at κ = 0.06 1/px which matches the
initial example value of the modulation perfectly. The frequency is determined
by fitting a Gaussian at the highest frequency available in the spectrum. The
centre of the Gaussian distribution yields the spatial frequency. Fig. 3.26(b)
shows the influences of noise. The expected peak at κ = 0.06 1/px is still vis-
ible and is a maximum for the spectrum. The weight of other frequencies has
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(b) Fourier spectrum of density profile
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(c) Density profile with noise
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(d) Fourier spectrum of density profile with
noise

Figure 3.26: A comparison of density profiles and their respective Fourier spec-
tra with and without noise. κ is determined by a fit of a Gaussian
distribution to the maximum value of the Fourier spectrum. The
error in the determination of κ is increased by noise. The visible
noise is not sufficient to introduce a significant error and shows
the robustness of DFT.
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increased significantly. Still it is possible to determine the frequency with the
method of fitting a Gaussian to the maximum of the distribution. If multiple fre-
quencies are present in a distribution the procedure has to be executed multiple
times. Each time the Gaussian distribution is subtracted and the next highest
frequency can be fitted with another Gaussian.
After the modulation frequencies are determined D(x) can be fitted more easily
to the density distribution. Fig. 3.27 shows two example density distributions
of a Ramsey-type interferometer and the resulting fits of Eq. (3.50).

3.7.4 Matter wave interferometry with double Bragg diffraction

Matter wave interferometry with double Bragg diffraction has been performed
according to the sequence explained in Sec. 3.7.1. The experiment started by
with loading a BEC of 25000 87Rb atoms into the one-dimensional waveguide.
The waiting time before the interferometer was chosen to be t1 = 30 ms. The
pulse duration of the optical lattice was set to create a π/2 -pulse. This was de-
termined experimentally beforehand and instead of Gaussian pulses Blackman
pulses [119] where used to achieve smaller values for τi. τi is defined as the
time span between the maxima of the two pulses. Blackman pulses feature a
steeper without altering the pulse area and can therefore be positioned closer
with respect to each other.
Fig. 3.27 shows two density profiles of a double Bragg interferometer. Fig.
3.27(a) features a pulse separation of τ = 105µm and a waiting time of
t1 = 30ms and t2 = 30ms. The black solid lines depict the position of the Gaus-
sian distribution after the experiment and show that the displacement from the
centre x2ħhk = (352 ± 21)µm due to the different momentums matches per-
fectly the calculated position of a cloud with a momentum of 2ħhk that moves
for t2 = 30ms, which is x2ħhk,calc = 353.1µm. As expected, there are three dis-
tinct Gaussian distributions that describe the three different exit ports of the
interferometer. For two perfect pulses each of the outer Gaussian distributions
should have the same amplitude whereas the centre Gaussian distribution fea-
tures a amplitude twice as large. In contrast all three Gaussian distributions
feature nearly the same amplitude. This can be explained by the variation of
the beamsplitter efficiency for the |2ħhk〉 and | − 2ħhk〉 splitting. Also the second
π/2 -pulse can add to this inequality. These variations in splitting efficiency
have been shown in Sec. 3.3.2. Fig. 3.27(b) features the same experimental
conditions but τ= 210µs. The position of the two outer Gaussian distributions
again matches the calculated position x2ħhk = (352 ± 21)µm. Also the width
of the distribution σx = (298± 38)µm is in the order of the calculated width
derived of Eq. (2.36), which is σx ,calc = 271µm. Both distributions show that
two spatial frequencies are present. Because the fringe spacings are wider in
Fig. 3.27(a) the effect is more visible. Between the maxima of the larger fringe
spacing smaller peaks arise and show that two spatial frequencies modulate the
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density distribution. Fig. 3.28 shows the measured fringe spacing for different
pulse separations τi. The expected fringe spacing is plotted with black lines
for the two different spatial frequencies separately. Following Eq. (3.49) each
of the two curves follows the product of τ and the relative velocity ∆v accord-
ing to the relative momentum ∆p. Two velocities separated by a factor of two
should therefore show the show the behaviour of two separate fringe spacings
with ∆p = 2ħhk and ∆p = 4ħhk.
In order to achieve a higher fringe spacing it would be possible to switch to a
Mach-Zehnder interferometer sequence [120]. It features a π/2-π-π/2-pulse
sequence with two separate waiting times between the pulses. By tuning the
two waiting times accordingly even smaller effective pulse separations are re-
alizable. This offers the flexibility to choose τ without experimental limitations
of the actual pulse duration and the closeness in which the pulses can be po-
sitioned temporarily. The experimental implementation of a Bragg mirror with
double Bragg diffraction has been shown in Sec. 3.3.2.

3.7.5 Interferometry with higher order double Bragg diffraction

In order to further investigate the properties of interference effects with double
Bragg diffraction an interferometer sequence with second-order Bragg diffrac-
tion was performed. The interferometer follows the the Ramsey-type interfer-
ometer sequence described in Sec. 3.7.1.
As Sec. 3.7.2 discusses the expected fringe period depends on the relative ve-
locity of the wave packets as well as the time between the two interferometer
pulses. Second-order double Bragg diffraction features acceleration of wave-
packets to a momentum of ±4ħhk that doubles the relative velocity that wave
packets have in regards to first-order Bragg diffraction. The expected fringe
period for the same time τ between the interferometer pulses should there-
fore decrease by a factor of two. To investigate this behaviour three different
sets of parameters were investigated. First second-order Bragg diffraction was
performed with two different values of τ: 60µs and 120µs. Additionally a
second-order Bragg diffraction interferometer with τ= 60µs was performed.
The main concern of second-order Bragg diffraction is the increased momentum
that yields a faster decrease in fringe spacing which could reduce the spacing
under the detectable resolution. To make sure that the fringe spacing is de-
tectable τ was chosen to be 60µs. The expected fringe period with a relative
momentum of 8ħhk is d8ħhk,calc = 97µm. The fringe period should be half the size
of first-order Bragg diffraction with the same value of τ, because the displace-
ment of the cloud is twice as large. A value of τ = 120µs should result in the
same fringe period because the cloud displacement is the same.
Fig. 3.29 shows the density distribution after a Ramsey-type interferometer
for first-order (see Fig. 3.29(a)) and second-order (see Fig. 3.29(b)) double
Bragg pulses. Fig. 3.29(b) shows the density distribution for a second-order
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Figure 3.27: Density distributions of a Ramsey-type interferometer based on
double Bragg diffraction with different τi between the two π/2
-pulses. The three Gaussian distributions depict the different exit
ports of the interferometer and are part of the fitting routine of
Eq. (3.50). The observed density distributions of each figure are
summed over the radial direction which gives the one-dimensional
density profile. The position of the outer Gaussian distributions is
x2ħhk = (352±21)µm and the width is σx = (298±38)µm. The solid
red line shows shows the fitted density distribution of Eq. (3.50).
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Figure 3.28: Fringe period of the density modulation after a Ramsey-type inter-
ferometer. The fringe period is dependent on the waiting time τi
between the two π/2 pulses of the interferometer pulse sequence.
The solid lines depict the solution of Eq. (3.49) for two different
relative momenta of ∆p = 2ħhk and ∆p = 4ħhk .
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Figure 3.29: Realization of a double Bragg interferometer with different orders
of diffraction. Fig. (a) shows a first-order (n = 1) double Bragg
interferometer and Fig. (b) shows a second-order (n = 2) double
Bragg diffraction interferometer. Both sequences featured a wait-
ing time before the interferometer sequence of t1 = 30 ms and a
time after the interferometer sequence of t2 = 30 ms. The sepa-
ration of the two π/2 -pulses was chosen to be τ = 60µs in both
cases.
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double Bragg diffraction interferometer. The lattice depth had to be increased
in order to achieve a sufficient splitting into the momentum state | ± 4ħhk〉. The
increased lattice depth on the other hand also increases losses due to spon-
taneous scattering. The density distribution shows a complex distribution of
peaks and features a small fringe spacing. As shown in Eq. (3.49) the factor
determining the fringe spacing is the separation of the clouds ∆x =∆p/m×τ.
The same separation can be achieved either by altering ∆p or τ. The param-
eter for τi = 120µs for first and τi = 60µs for second-order Bragg diffraction
has been chosen in order to achieve identical values of ∆x . Table 3.2 shows
the compiled measured fringe spacing values for the chosen parameters. In
Sec. 3.7.4 it has already been shown experimentally that double Bragg diffrac-
tion interferometers feature two distinct frequencies. First-order double Bragg
diffraction with τ = 60µs shows a good agreement with the calculated values
for ∆p = 4ħhk and ∆p = 2ħhk. The largest spatial frequency should be twice
the size of the largest spatial frequency of the other implementations of the
interferometers. Both other experiments show a good agreement with the cal-
culated fringe spacing as well. First-order double Bragg diffraction and second-
order Bragg diffraction have equal values for ∆x by choosing τ accordingly.
This should yield identical spatial frequencies for all interferometer sequences
featuring the same displacement ∆x . All values match the calculated fringe
spacing within the error margin and show an overall agreement with showing
two distinct frequencies. For second-order double Bragg diffraction and with a
spatial displacement of ∆x = 2.82µm the fringe spacing shows a huge uncer-
tainty. The uncertainty is derived from the Gaussian fit to the Fourier spectrum
of the one-dimensional density distribution. This error could originate from the
increased noise in comparison to the other measurements, due to an increased
lattice depth. The low fringe spacing introduces a large uncertainty for the de-
termined period yielding an overall unreliable value. In addition the spacing
of ∆x = 2.82µm lies in the regime of the coherence length of the conden-
sate, which has been determined in previous experiments [65]. The coherence
length of a BEC in a one-dimensional waveguide has been determined to be
LC = (2.42 ± 0.3)µm. Since the coherence length gives the value where the
observable contrast is reduced to 1/e of the maximum observable contrast the
large error can be explained.
As an additional difference to a first-order double Bragg diffraction interfer-
ometer the second-order interferometer shows that the moving exit ports after
the interferometer have higher momentum. Because the time t2 = 30ms is
the same for both orders the higher momentum yields a twice as large spatial
separation of the exit ports. For second-order Bragg diffraction this yields a
complete spatial separation of the two clouds. One of the clouds is visible in
Fig. 3.29(b) at the position of 1000µm. On the opposite side at −1000µm a
similar density distribution is expected. The observation of a significantly re-
duced density distribution hints inequalities of the lattice pulses. In addition to
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∆x [µm] Fringe Period [µm]

∆p/m×τ Calc 1st order DB 2nd order DB

value τ= 60µs τ= 120µs τ= 60µs

0.71 386 342± 52 * *
1.41 193 164± 36 186± 18 220± 24
2.82 97 * 93± 8 66± 41

Table 3.2: Compilation of experimental values of measured fringe spacings after
a Ramsey-type interferometer sequence for first-order and second-
order double Bragg diffraction. Cells marked with * are not mea-
surable due to ∆p/m × τ do not match ∆x for the experimental
configuration.

the already reduced density, due to additional losses due to spontaneous scat-
tering, this increases the difficulty of detecting the interference distribution. An
advantage of second-order double Bragg diffraction pulses is, that the resulting
interferometer exit ports can be measured independently due to their larger
relative velocity.
An additional disturbance is the reduced efficiency of π/2 -pulses of second-
order double Bragg diffraction. Sec. 3.4 shows that the maximum beamsplitter
efficiency is 77 % and that the remainder of the atoms either stays in |0ħhk〉 or
populates |±2ħhk〉. This yields an additional interference pattern between all of
the clouds travelling with different momentums present. This not only reduces
the visibility of the main interference patterns but also reduces the maximum ef-
ficiency. At least there are four different combinations of interferences possible
characterized by their relative momentum: ∆p = 8ħhk, ∆p = 6ħhk, ∆p = 4ħhk,
∆p = 2ħhk. Each of them is a combination of the momentum states present:
|0ħhk〉, | ± 2ħhk〉, and | ± 4ħhk〉. A reduction in visibility of the expected momen-
tum states could be due to these unwanted additional spatial frequencies. Even
if the spatial frequency analysis could not determine a significant excitation of
unwanted density modulations.
Second-order double Bragg diffraction has shown to also be a valuable tool for
matter wave interferometry. The reduced visibility and the overall loss of con-
trast can be explained by inaccurate π/2 -pulses and a reduced spatial density.
The expected decrease of fringe spacing by a factor of two could be shown.
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4 Conical Refraction
Conical refraction is an optical phenomenon that occurs when light passes
through a bi-axial crystal along one of its optical axis. From a first descrip-
tion in the early years of the 1830 to its application as a trap for atoms, as
demonstrated in this work, conical refraction has shown to give unique oppor-
tunities to shape light beams with unique properties.
This chapter will give a brief introduction in birefringence in general (Sec. 4.1)
and the properties of birefringence in bi-axial birefringent crystals (Sec. 4.2).
The occurrence of conical refraction in these crystals will be discussed in Sec.
4.3 and a description of the introduced formalism is given. The chapter con-
tinuous with the description of two basic regimes of conical refraction: the
Poggendorff dark ring in Sec. 4.4.1 and the three-dimensional dark focus in
Sec. 4.4.2. Both regimes will receive a detailed discussion as they are both im-
plemented as trapping geometries for ultra-cold atoms and BECs, as discussed
in Chapter 5 and Chapter 6.

4.1 Birefringence

Light in an optical medium experiences a change in the propagation velocity
due to a modified refraction index n. Depending on the direction of the beam,
the permeability µ, and the dielectric constant ε = (εx ,εy ,εz), the velocity of
the beam can be derived from the following definition [121]:

vx =
c

p
µεx

, vy =
c

p

µεy
, vz =

c
p
µεz

. (4.1)

Derived from Maxwell’s equations, the electromagnetic wave has to fulfil the
following equation [121]:

Ek =
n2sk

�

~E · ~s
�

n2 −µεk
, where k = x ,y ,z , (4.2)

the electric field ~E = (Ex , Ey , Ez), and the index of refraction n are introduced.
Vector ~s = (sx , sy , sz) gives the normalized propagation direction of the incident
wave, hence s2

x + s2
y + s2

z = 1. The non-zero solution of the system yields the
Fresnel equation, which is given in one of its possible forms:

s2
x

v 2
p − v 2

x

+
s2
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v 2
p − v 2

y

+
s2
z

v 2
p − v 2

z

= 0 , (4.3)
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where vp = c/n is the phase velocity of the incident beam and n = pµrεr the
index of refraction.
For uni-axial crystals the velocity in two dimensions is equal, hence vx = vy =
vo. The third dimension is defined as vz = ve where the indices o and e stand
for ordinary and extra-ordinary. Eq. (4.3) can now be written as:

�

v 2
p − v 2

o

�
h
�

s2
x + s2

y

��

v 2
p − v 2

e

�

+ s2
z

�

v 2
p − v 2

o

�
i

= 0 . (4.4)

The equation has two solutions with s2
x+s2

y = sin2 θ and s2
z = sin2 s2

z respectively,
given

v 2
p =v 2

o (4.5)

v 2
p =v 2

o cos2 θv 2
e + sin2 θ , (4.6)

with θ being the angle between the z axis and the normalized vector ~s. The
propagation of light in uni-axial crystals is given by the direction of the incident
light and its intersection points with the ordinary and the extra-ordinary wave
surfaces. The resulting direction of the beams inside the crystal is given by the
normal vector of the tangent plane of this intersections points. In general there
will be two different directions of propagation, corresponding to each of the
two intersection points. However where the two wave surfaces intersect the
two tangent planes of the wave surfaces coincide and only one beam can be
observed. This direction defines the optical axis of the crystal.
A beam propagating through an optical medium with length d an index of
refraction n 6= 1 experiences a changed optical path length dOP which is given
by [122]:

dOP = dn . (4.7)

The modified optical path is important for the alignment of the focal plane of a
conical refraction setup and will be considered in Chapter 5 and Chapter 6.

4.2 Birefringence in bi-axial crystals

In contrast to uni-axial crystals, bi-axial crystals feature three different indices
of refraction. For simplicity it is assumed that:

vx > vy > vz thus εx < εy < εz . (4.8)

The solution of Eq. (4.3) for the given system is shown in Fig. 4.1. Each plot
shows a cut through the wavefront of the crystal [121]. A three-dimensional
system would span a sphere, whereas the shown plots depict cuts along each
of the planes of the coordinate system. The cuts are obtained by settings the
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Figure 4.1: Wavefronts obtained by solving Eq. (4.3). (a-c) Each picture shows a
cut through the three-dimensional double sphere of wavefronts giv-
ing the different velocities in each propagation direction. (d) gives a
combination of all three directions dimensions and only shows one
quadrant of the three-dimensional spheres of wavefronts.
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remaining direction sk = 0 and solving Eq. (4.3). The calculated wavefronts
are compiled in Fig. 4.1(d). Fig. 4.1(d) shows only a section of the obtained
wavefronts which are symmetric along the planes of the coordinate system.
Fig. 4.1(a) and Fig. 4.1(b) show that the wavefronts in these directions share
no points regardless of the orientation of the incident beam. In the relevant
direction for uni-axial crystals two surfaces intersect in two points, but with bi-
axial crystals four intersection points are given (see Fig. 4.1(c)). Analogously to
uni-axial crystals, the two lines connecting the opposite touching points of the
wave surfaces in bi-axial crystals define the optical axis. It can be shown that no
more than these four touching points exist [121]. Light propagating along any
direction inside the crystal follows the behaviour described in uni-axial crystals.
In contrast, along any of the optical axis, the intersection between the two wave
surfaces has no well defined tangent plane, giving rise to an optical singularity
known as conical refraction.

4.3 Conical refraction

As explained in the previous section, conical refraction occurs when the inci-
dent beam is aligned along one of the optical axis of the bi-axial crystal. The
two crossing points of the wave surfaces do not define a single tangent plane,
instead an infinite amount of tangent planes, forming a cone, exist. The normal
vectors of these planes, giving the propagation direction of the incident beam,
also form a cone. Therefore the incident beam will refract conically inside
the crystal. Due to its unexpected behaviour this point has also been named
’Hamilton’s diabolical point’ [123]. Upon leaving the conical refraction crys-
tal, a hollow cylinder emerges and propagates along the propagation direction.
An important property of the produced cylinder is, that it is shifted laterally
with respect to the input beam (see Fig. 4.3). The discussed properties are
valid for ideally collimated beams, which are not possible to produce experi-
mentally. Physically correct analysis takes into account diffractive optics as well
as a Gaussian beam shape of the incident light. Focussed Gaussian beams have
been considered for the re-formulation of a complete theory of conical refrac-
tion used in this thesis [31,124,125].
The most relevant properties of conical refraction beams is the occurrence of a
pair of bright rings separated by the Poggendorff dark ring [126] in the focal
plane of the focussed incident Gaussian beam. Also the Raman spot that ap-
pears symmetrically on both sides of the focal plane is a signature phenomenon
of conical refraction. Without taking into account diffractive optics the occur-
rence of these very specific planes cannot be described.
In order to observe conical refraction experimentally, the incident axis of the
light has to be aligned along one of the optical axis. This is only possible if the
crystal has been cut and polished orthogonal with respect to one of the axis.
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Figure 4.2: Experimental intensity distribution along the focal plane of a conical
refraction structure. The ratio of beam waist w0 and ring radius R0
is ρ0 = 14. Each point of the intensity is linear polarized and the
polarization turns according to the azimuthal shift along the ring.

4.3.1 Polarisation dependence of conical refraction light field

As described before, conical refraction structures are created at Hamilton’s di-
abolical point. The first ever observation of conical refraction has been done
with completely unpolarized light and yields the same intensity distribution as
circular polarized light. Due to the polarization selectivity of the refraction
angle on the conical refraction cone, each point of the conical refraction inten-
sity distribution can be associated a distinct linear polarization axis. The axis
evolves along the azimuthal angle of the intensity distribution. This behaviour
is depicted in Fig. 4.2. The figure shows an experimentally obtained inten-
sity distribution of the conical refraction beam at the focal plane. The arrows
indicate the polarization vector of the electric field, which depends on the ori-
entation of the crystal. The colour code of the experimental data already hints
that the incident light features a non-desired elliptical polarization, where cer-
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Figure 4.3: Scheme of the creation of conical refraction structures. The depicted
scheme shows the creation of a Poggendorff dark ring in the focal
plane of the focussing lens. The beam is aligned along one of the
optical axis of the crystal. The half-opening angle α determines the
opening angle of the cone of light emerging from the conical refrac-
tion crystal.

tain polarization vectors are more dominant. This effect can be observed by the
varying intensity along the azimuthal distribution of the ring.
By polarizing the light field linearly on purpose part of the structure can be se-
lected. This has been shown for the three-dimensional dark focus as well as for
the double ring structure and the Poggendorff dark ring. The achieved intensity
distribution will be shown in the following sections.
It is important to notice that a homogeneous intensity distribution is key to
achieve versatile trapping geometries for ultra-cold atoms. Varying intensities
along the structure yield varying trapping potentials and could introduce non-
desired effects. To avoid these, selected optical elements like a non-polarizing
beamsplitter have been used in order to guarantee the best possible circular
polarization for the experimental realization optical dipole potentials created
with conical refraction crystals.

4.3.2 Important parameters of conical refraction setups

Fig. 4.3 shows a scheme of the beam propagation and introduces important
parameters where applicable. The half-opening angle α of the conical refraction
cone is defined as [122]:

α=
r

�

n2
2 − n2

1

��

n2
3 − n2

2

�

/n2 , (4.9)

where n1 < n2 < n3 are the indices of refraction of the used conical refraction
crystal. This equation is a paraxial approximation and valid for KGd(WO4)2,
the used material of the conical refraction crystal in this work. The length of
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the crystal l determines the diameter of the cone after the crystal and therefore
the radius R0 of the created structure in the focal plane:

R0 = lα . (4.10)

By choosing the length of the crystal and the focus size of the incident beam the
shape and the nature of the intensity distribution can be altered significantly.
This is discussed in Chapter 5 and Chapter 6, where two different structures are
created with conical refraction. The criterion used to distinguish between the
different regimes of conical refraction is defined as:

ρ0 =
R0

w0
, (4.11)

where w0 is the waist of the incident beam in the focal plane. This is also the
waist of the radial symmetric ring structure created in the focal plane. The
introduction of ρ0 also simplifies the discussion of the obtained structure since
their shape is only defined by ρ0. For values of ρ0 > 5 a double-ring structure
is observed in the focal plane with a dark ring in the middle, the Poggendorff
dark ring [123]. The Poggendorff dark ring is discussed in detail in Sec. 4.4.1.
For ρ0 = 0.92 a single ring is created with an intensity minimum of zero in its
centre [127].
In propagation direction, the z direction, the normalized parameter Z is used:

Z =
z
zR

, (4.12)

which gives the position z in orders of the Rayleigh range zR.
Each regime of ρ0 features the occurrence of the Raman spot [128] at the
location zRaman of [126]:

zRaman = ±

√

√4
3
ρ0zR . (4.13)

Due to normalization issues, the definition used in this work differs from the
original. Eq. (4.13) has been confirmed experimentally and numerically [127].
Given the definitions above, a full set of parameters used to describe conical
refraction structures in different regimes is present that will be used to calculate
the intensity distribution of the beam.

4.3.3 Intensity distribution of conical refraction

By the introduction of wave optics, an analytical solution for the description of
par-axial conical refraction could be found [32, 124]. The analytical solution
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was reformulated and the intensity distribution of a focussed Gaussian beam
after it passed a conical refraction crystal along one of the optical axis is given
by [123]:

IC P
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IC P(ρ, Z) gives the normalized intensity distribution of a circular polarized
Gaussian beam passing a conical refraction crystal. ILP(ρ, Z) describes the
intensity distribution for a linear polarized light beam. The linear polariza-
tion direction of the incident beam is given by φ0 and φ denotes the azimuthal
angle in cylindrical coordinates. ρ is the radial coordinate in cylindrical coor-
dinates. Φ denotes the orientation of the plane of the optical axis of the crystal.
BC
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where a(η) is:
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4 , (4.18)

for Gaussian input beams [127], and η is:

η= kw0 , (4.19)

the normalized wave vector with k = 2π/λ. J0 and J1 denote Bessel functions of
zero and first-order. A full discussion can be found in [123] and the discussion
of beam profiles along the propagation direction follows for selected values of
ρ0 in subsequent sections.

4.4 Intensity distribution for varying ρ0

The solution of Eq. (4.15) is investigated for various values of ρ0 in order to
gain additional insight on the structures of achievable with conical refraction.
Since the distribution of conical refracted light beams is rotationally symmetric
the discussion continuous to be in cylindrical coordinates as already hinted with
the choice of ρ as the parameter. Fig. 4.4 shows cuts through the focal plane
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Figure 4.4: Intensity distributions in the focal plane for different values of ρ0.
Three different regimes emerge, which will be discussed separatley.
For ρ0 ≈ 0.92 a dark focus trap is created (see Chapter 6). A double
ring structure emerges for ρ0 > 2 and in between ρ0 ≈ 1.5 a dark
ring potential is created in the focal plane (see Sec. 4.5.2). Each
column has been rescaled to give a maximum value of one.

at z = 0 for variing values of rho0. Each column has been rescaled to increase
the contrast. A normalized optical power would show a decreasing contrast for
higher values of ρ0.
As already mentioned four distinct regimes can be identified whereas three of
them feature unique properties. For values of ρ0 < 0.5 a distribution similar to
a Gaussian beam can be observed. In principle it can be seen as a regime where
the radius R0 of the produced intensity distribution is smaller than the width of
the produced ring.
For values of ρ0 ≈ 0.92 a ring structure emerges. Fig. 4.4 shows that the in-
tensity around the centre of the radial symmetric trap is near zero. To further
investigate this behaviour, Fig. 4.5 shows the intensity for different values of
ρ0 at z = 0 and ρ = 0. As already mentioned the intensity is zero for ρ0 = 0.
The obtained intensity distribution is of interest for a new set of experiments
and therefore investigated in more detail in Sec. 4.4.2 as well as experimentally
implemented in Chapter 6.
In particular the creation of a double ring structure and the Poggendorff dark
ring have been investigated. Since it has been the first structure observed show-
ing conical refraction experimentally it is a well known structure for nearly 200
years. It emerges once ρ0 is larger than 5. The structure has been used at
the ATOMICS experiment before to trap atoms and implement matter wave in-
terferometers. In the mean-time its properties have been investigated further
and additional insight on the achievable parameters will be given in Sec. 4.4.1.
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Figure 4.5: Intensity at ρ = 0 and z = 0 for varying values of ρ0. The values
are derived from Eq. (4.14) and show a local minimum at ρ0 = 0.92
where the intensity of the structure is zero.

It has been implemented experimentally, which will be discussed in detail in
Chapter 5. By altering the parameter ρ0 between the values of 0.92 and 5 an
additional distinct regime occurs: the focal plane features a ring shaped poten-
tial with a single focus in the centre. The distribution has not been investigated
experimentally yet but for a value of ρ0 = 1.5 a brief discussion can be found
in Sec. 4.5.2.

4.4.1 Creation of a double ring structure with conical refraction

The double ring structure created with conical refraction was one of the first
structures observed experimentally in an aragonite crystal in the early 1830th
[30]. The dark ring between the double ring structure could not be explained
theoretically up until 1978 [31, 124, 125]. Recent discussion has shown that
the emerging Poggendorff dark ring can also be interpreted as the interference
of counter-propagating cones of light [129]. Each of the cones originates from
one of the Raman spots propagating in the direction of the focal plane. Due
to the symmetric spacing of the Raman spot around the focal plane the created
interference pattern of the two cones is also symmetric around the focal plane.
The intensity distribution of the double ring structure in the focal plane is shown
in Fig. 4.6 for circular and linear polarized light. Fig. 4.6(a) shows the resulting
intensity distribution for circular polarized light. The intensity is divided into
two rings. The inner and the outer ring, which are separated by the Poggen-
dorff dark ring. The radius of the Poggendorff dark ring is not R0, but smaller
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(a) Circular polarized light
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(b) Linear polarized light

Figure 4.6: Solution of Eq. (4.14) for circular polarized light and Eq. (4.15) for
linear polarized light. Shown is the focal plane of the intensity dis-
tribution, hence z = 0. The value of ρ0 = 14.3 is taken from the
experimental implementation chosen for Chapter 5.

by w0/2 [130]. The intensity of the Poggendorff dark ring is zero and its radial
waist is w0. In radial direction the Poggendorff dark ring is confined by two
maxima given by the double ring structure. The depth of the potential is deter-
mined by the lowest, the inner ring potential. In the focal plane, the intensity
ratio between the outer and the inner ring is 4.7 [65].
Fig. 4.6(b) shows the intensity distribution of the identical setup but with linear
polarized light. Due to the azimuthal polarization dependence of the intensity
distribution linear light creates a gap in the ring. The intensity distribution
shows a cos2-dependence along twice the azimuthal angle.
On increasing the distance z, the intensity in the Poggendorff dark ring in-
creases. Fig. 4.7 shows the intensity distribution of three different positions in
z direction. The increase is symmetric around z = 0 and additionally the in-
tensity ratio between the inner and the outer ring structure changes. The outer
ring amplitude is decreased whereas the inner ring amplitude is increased. In
the longitudinal direction, the intensity of the Poggendorff dark ring rises up
until z = ±1.52zR [130], giving a confinement in the beam propagation direc-
tion. In addition the spatial separation of the two rings increases. At the Raman
plane z = zRaman the intensity of the outer ring has completely vanished and the
remaining inner ring has collapsed to the Raman spot. The complete contour of
the intensity distribution of the conical refraction structure is shown in Fig. 4.8.
This allows to understand an additional remarkable Ansatz for the description
of conical refraction: By defining the focal plane as the interference pattern
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Figure 4.7: Solution of Eq. (4.14) for circular polarized light. Shown is the focal
plane of the intensity distribution, and two additional positions. The
value of ρ0 is chosen to be 14.3 which yields a intensity of zero for
z = 0 in the centre between the two rings, the Poggendorff dark
ring.

of two cones of light originating from the Raman spots ±zRaman a complete de-
scription of the pattern is obtained [129]. This approach is used to demonstrate
the creation of a single ring structure with conical refraction in Sec. 4.5.3.
The potential depth of the Poggendorff dark ring can be approximated by
an harmonic potential and the derived potential depth can be found analyt-
ically [130]. In the focal plane at the position of the Poggendorff dark ring
ρPDR = R0 − 0.5w0 the potential in radial direction is:

U±(ρPDR) = C±ÛRb
P

4π2w2
0ρ0

, (4.20)
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Figure 4.8: Intensity distribution of the conical refraction structure created for
ρ0 = 14.3. The shown contour plot is derived from the numerical
solution of Eq. (4.14).
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where ÛRb is given by Eq. (2.3), C+ = 2.54 for the outer ring and C− = 0.54 for
the inner ring. Since the atoms will leave the potential at the weakest point U−
will determine the potential depth. The trap depth in longitudinal direction is
given by:

Uz(ρPDR) = 0.17ÛRb
P

4π2w2
0ρ0

. (4.21)

With the approximation of an harmonic potential the trapping frequencies of
the Poggendorff dark ring in the focal plane can be given as [130]:

ωradial =

√

√

√Aradial(0)× ÛRbP

π2mw2
0ρ0

, (4.22)

ωz =

√

√

√0.34× ÛRbP

π2mw2
0ρ0

. (4.23)

With Aradial(0) = 4.64. The equations show that the trapping potential in the
radial direction is far more intense than in the longitudinal direction. The ra-
dial trapping frequency in distance Z from the focal plane is derived with the
modified value of Aradial(Z):

Aradial(Z) = −0.05+
8.82

1.87+ 2.31Z2
. (4.24)

4.4.2 Creation of a three-dimensional dark focus with conical refraction

The three-dimensional dark focus has been first predicted by [127]. As shown
in the previous section, it features a radial confinement with a diameter of 2×w0
and zero intensity in its centre. Fig. 4.9 shows the normalized solution of Eq.
(4.14) for circular polarized light (see Fig. 4.9(a)) and linear polarized light
(see Fig. 4.9(b)). Both density distribution show a radius of 1.1 × w0 in the
focal plane and a waist of w0 [127,131]. For circular polarized light a perfectly
radially symmetric intensity distribution can be found in the radial direction. In
principle completely unpolarized light can also be used to create said structure.
Linear polarized light on the other hand shows that only part of the ring po-
tential is created. The linear polarization follows a cos2 dependence with half
the azimuthal angle as argument. The experimental creation is easily done by
using a polarizing beamsplitter.
Fig. 4.10 shows the evolution of the radial intensity for four different positions
of z. The focal plane at z = 0 shows a confinement in the radial direction
around ρ = 0 where the intensity is zero. Moving away from the focal plane
yields a rising intensity in at ρ = 0 and a decreasing maximum intensity. Also

4.4 Intensity distribution for varying ρ0 93



−4 −2 0 2 4
−4

−3

−2

−1

0

1

2

3

4

x [w0]

y
[w

0
]

(a) Circular polarized light
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(b) Linear polarized light

Figure 4.9: Solution of Eq. (4.14) for circular polarized light and Eq. (4.15) for
linear polarized light. Shown is the focal plane of the intensity dis-
tribution, hence z = 0. The value of ρ0 is chosen to be 0.92 which
yields a intensity of zero in the centre of the ring shaped intensity
distribution.

−4 −3 −2 −1 0 1 2 3 4
0

5

10

15
x 10

7

ρ [w0]

In
te
n
si
ty

[a
.u
.]

 

 

z = 0
z = 0.5zR
z = zRaman
z = 2zR

Figure 4.10: Calculated intensity distribution in four different planes. Shown is
the solution of Eq. (4.14) for ρ0 = 0.92. The intensity distribution is
symmetric around the focal plane.
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Figure 4.11: Intensity distribution along the beam propagation in the longi-
tudinal and radial direction. The beam is rotationally symmetric
around the z -axis and symmetric with respect to the focal plane.
The shown intensity distribution is obtained with Eq. (4.14) for
ρ0 = 0.92.

the position of the maximum shifts towards smaller ρ. Up until the Raman spot
(z = zRaman), two separate intensity maxima are distinguishable. After the Ra-
man spot, for z > zRaman only a single intensity peak is visible. The evolution of
the intensity is also depicted in the contour plot in Fig. 4.11. The contour plot
shows that the intensity distribution creates a closed area around ρ = 0 and
z = 0. In the centre of the distribution zero intensity is present creating a truly
dark focus. The radial extension of the beam is determined solely by the waist
w0 of the incident focussed beam whereas the radius R0 has to be chosen ap-
propriately for the desired application. The elongation in propagation direction
is determined by the Rayleigh range of the beam (see Eq. (2.5)). Depending on
the optical setup, a full three-dimensional trap for atoms can be produced: for
blue detuned light, high intensity yields a strong repulsive force on the atoms
that pushed the atoms to regions of low intensity, e.g. the centre of the intensity
distribution.
In order to trap atoms, multiple parameters are of interest and have been theo-
retically predicted in [131]. Even though the normalized solution of Eq. (4.14)
can be used to calculate the trapping potential depth, an analytical solution has
been found for both, the trapping potential depth in the radial and the longitu-
dinal direction, and the trapping frequencies in both directions.
The trap depth of the created potential is estimated by a Taylor series around
ρ ≈ 0 and in the axial direction for ρ = 0. Both calculations can be found
in [131]. The trap depth in radial direction is given by

Uρ = ÛRb
2P
πw2

0

× 0.8 , (4.25)

and in longitudinal direction by

Uz = ÛRb
2P

πw2
0

�

1+ Z2
� × 0.54 . (4.26)
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ÛRb is given by Eq. (2.3), P is the optical power of the incident beam. With the
approximation of a harmonic trap, the trapping frequencies have been deter-
mined by [131]:

ωρ =

√

√

√13.66ÛRbP

πmw4
0

�

�

�

�

�

�

F1

�

2; 3
2 ; −0.854

1+iZ

�

(1+ iZ)2

�

�

�

�

�

�

, (4.27)

and

ωz =

√

√

√ ÛRbP

πmw2
0z2

R

. (4.28)

F1 denotes the Kummer confluent hyper-geometric function of the order of one.

4.5 Additional intensity distributions created with conical refraction

This section will briefly introduce additional intensity distributions that can be
achieved by using conical refraction crystals. First a new way to create light-
sheet potentials will be shown by using conical refraction with an elliptical
focussed Gaussian beam. Next, a two dimensional ring potential with an addi-
tional focus in the centre of the ring will be introduced. Finally an additional
way to create single ring structures for values of ρ0 greater than five is dis-
cussed.

4.5.1 Lightsheet potential with conical refraction

In addition to circular symmetric beams addition geometries can be imple-
mented that use the advantageous of conical refraction. The ATOMICS ex-
periment uses a two dimensional sheet of light to support ultra-cold atoms and
BECs against gravity and to perform measurements (see Sec. 5.1.2). The im-
plemented lightsheet uses light at λ = 782.5 nm which is only 2.5 nm detuned
in respect to the D2 transition of 87Rb. The resulting scattering rate is ≈ 2.4 s−1

and limits the achievable coherence and trapping times inside the potential.
The lightsheet potential is produced with an cylindrical Gaussian beam that is
focussed by a cylindrical lens. This setup can be mimicked with conical refrac-
tion by guiding the same light through an additional conical refraction crystal
behind the focussing cylindrical lens [132]. If aligned along one of the opti-
cal axes of the conical refraction crystal, the circular polarized beam creates a
combination of two lightsheets separated by 2×R0. The elongation along the y
axis is the unfocussed beam whereas the focussed beam in x direction features
a focus of w0 = 20µm. The applied crystal has a half-opening angle of α = 1 °
and length of 2.2µm. Fig. 4.12 shows the experimentally obtained image of a
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Figure 4.12: Experimental image of two lightsheets created with a elliptical
Gaussian beam and conical refraction.

CCD camera [133].
Due to the polarization selectivity of conical refraction the two beams can fea-
ture a orthogonal polarization. With the help of a λ/2 waveplate these intensity
distribution of the two beams can be controlled. This is shown for two different
positions of an additional λ/2 waveplate in front of the conical refraction crys-
tal in Fig. 4.13. Fig. 4.13(a) shows the beam polarized in ~ex direction. Over
90% is of the optical power is in the top of the two beams where as Fig. 4.13(b)
shows the opposite behaviour for light linearly polarized in ~ey direction. The
optical power is now completely in the bottom sheet of light
The lightsheet created with conical refraction offers the possibility to create
a combination of two repulsive beams that trap atoms in the area between
the lightsheets or a single red detuned lightsheet that supports atoms against
gravity with its attractive potential. By using conical refraction to create these
lightsheet potential a fast and reliable way is implemented to switch between
these regimes. Additionally the intensity ratio between the two lightsheets can
be chosen freely with the help of a λ/2 waveplate.

4.5.2 Single ring with central barrier

The transition from the three dimensional dark focus regime to the double ring
regime yields an intermediate state. The intermediate state is given for a value
of ρ0 ≈ 1.5 and features a ring potential with additional intensity in the centre
of the ring. Fig. 4.14 shows the intensity distribution in the focal plane calcu-
lated with Eq. (4.14) for ρ0 = 1.5.
The diameter of the inner spot is in the order of w0 and can be compared to
the focal spot of a focussed Gaussian beam. The outer ring has a radius of
R0 = 1.5× w0, which is the expected position for ρ0 = 1.5. The inner focus in
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Figure 4.13: Experimentally obtained intensity distribution of a Gaussian beam
focussed by a cylindrical lens. Fig. (a) shows the intensity distribu-
tion for linear polarisation in ẽx direction whereas Fig. (b) shows
incident light with linear polarisation in ẽy direction.

the centre of the ring has a waist of w0 and by changing ρ0 the ratio between
the inner focus and the outer ring can be tuned.
Other experimental implementations of similar potentials feature the use of
two or more optical potentials [134], or involve the use of time orbiting poten-
tials [135] in conjunction with magnetic coils. These setup could be replaced
with the introduced potential created with conical refraction and show that
conical refraction offers a multitude of novel trapping geometries for ultra-cold
matter wave optics.

4.5.3 Single ring in a double ring configuration

In addition to the interpretation of the beam propagation discussed in Sec. 4.3,
an additional way of describing conical refraction is introduced in [129]. The
propagation of the light after it passed through a conical refraction crystal can
be described by two cones with slightly shifted vertices. The polarization of the
cones is orthogonal but matched in the region of the vertices and interference
occurs.
By blocking one of the two cones spatially a single ring potential can be cre-
ated [129]. The single ring potential is similar to the ring potential created
with ρ0 = 0.92 in Sec. 4.4.2 but offers a main advantage: The diameter
of the ring and the width of the ring structure can be chosen independently.
Because the non-desired light is blocked completely the process is inefficient.
Instead of blocking the light spatially a sectored linear polarization plates can
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Figure 4.14: Intensity distribution in the focal plane for ρ = 1.5. The intensity dis-
tribution features a ring shaped outer structure and an additional
intensity maximum in its centre. Using blue-detuned light creates a
single dark ring with central barrier that can be used to trap atoms
if an additional confinement in the third dimension is provided.
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be used [136]. The polarization plate features a starburst pattern and opposite
sectors give orthogonal polarization filtering. By positioning the pattern in front
of the focal plane a single ring in the focal plane is observed.
A single red or blue detuned ring potential that is scalable and created with
a single focussed beam offers a huge advantage over current strategies to cre-
ate said structure. Since the setup consists of small and static components
without electronic or mechanical additions it surpasses other setups such as
time-averaged adiabatic potentials [135]. A possible application for the poten-
tial is the creation of a planar disc shaped potential with circular shaped bounds
and [61,65,137].
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5 Toroidal waveguide for ultra-cold
atoms and BECs

Ring shaped trapping geometries are used to investigate basic properties of mat-
ter waves and are of interest for the creation of complex guiding structures for
atoms or molecules [138]. Ideally, a guided matter wave interferometer like a
Sagnac interferometer can be implemented in toroidal wave guides. Sagnac in-
terferometers have already been demonstrated experimentally with ultra-cold
atoms [139–141]. The possibility to create periodic boundary conditions or
periodic disturbances are main advantageous of ring potentials [142]. The ex-
perimental creation of these potentials is a demanding task and a multitude of
approaches exist. Complex combinations of coils [143] or atom chips [144]
can be used to create magnetic trapping potentials. Time-averaged adiabatic
potentials (TAAP) work with fast oscillating magnetic fields to create toroidal
trapping structures [135]. Additionally time-averaged dipole potentials can
be used to create time-averaged optical toroidal potentials [145]. Also Gauss-
Laguerre beams have been used to guide atoms in rings [146]. Two polished
optical fibres can also be used to create attractive dipole potentials to store
atoms [147].
This section introduces a new technique to produce ring shaped trapping ge-
ometries with far-detuned light. Conical refraction is used to create a pair of
repulsive light tubes nested inside each other. The tubes are aligned to prop-
agate along the direction of gravity. To compensate gravity and to define a
working plane, a thin lightsheet potential is used. Sec. 5.1 shows the experi-
mental implementation and discusses the process of alignment of said potential.
To further investigate ring shaped density distributions a conversion is charac-
terized which creates one dimensional density profiles (see Sec. 5.2). Sec. 5.3
discusses the potential parameters and characteristics of atoms inside the guid-
ing potential. In Sec. 5.4 properties of travelling atoms inside a ring shaped
dipole potential are shown. Sec. 5.5 demonstrates the dynamic loading proce-
dure of the ring potential to load BECs created outside into the toroidal guiding
structure. This chapter concludes with the discussion on guided matter wave
interferometry inside a ring shaped trap (see Sec. 5.6).

5.1 Experimental realisation of ring potential

To accomplish a toroidal waveguide for ultra-cold atoms and BECs conical re-
fraction is used. The atoms are trapped inside the Poggendorff dark ring be-
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Figure 5.1: Optical setup for the creation of a toroidal trap. The ring structure
is created outside the vacuum chamber and transferred into the vac-
uum chamber with two additional telescopes. The inset image is an
image of the focal plane taken with a CCD camera.

tween two blue detuned ring shaped potentials. The setup does not provide a
trapping force against gravity and therefore an additional lightsheet potential
was implemented. The next section discusses the experimental realisation of
the ring shaped trapping potential (see Sec. 5.1.1). Next Sec. 5.1.2 shows the
construction and alignment of the lightsheet potential.

5.1.1 Optical setup for the ring shaped potential

Fig. 5.1 depicts the experimental setup used to create the double ring structure
and to guide it into the experimental vacuum chamber. The light is guided from
a Ti-sapphire laser1 (Ti:Sa) to the experimental setup with an optical fibre [67].
The laser offers a large tunable wavelength between 750 nm and 850 nm which
is used to either create repulsive or attractive dipole potentials for 87Rb. The
Ti:Sa laser is pumped by a solid state laser2 at a wavelength of 532 nm with a
maximum output power of 18 W. In addition an AOM and a mechanical shutter
are used to control the light intensity.
On the experimental table, the laser light is aligned through a λ/2 waveplate
and a polarizing beamsplitter to purify the polarization. Afterwards a fraction

1 Tekhno-Scan TIS-SF-07
2 Coherent Verdi V18
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of light is guided to an intensity stabilization [61]. As discussed in Sec. 4,
perfectly circular polarized light is needed for the creation of a homogeneous
illuminated double ring structure. This is ensured by a combination of a λ/2
and a λ/4 waveplate. The use of a single λ/4 waveplate has been shown to
create elliptical polarized light. The additional λ/2 waveplate compensates po-
larization drifts on surfaces of optical elements and aids with the creation of a
homogeneous ring created by circular polarized light.
The lens in front of the conical refraction crystal has a focal length of f1 =
80mm. The spot size in the focal plane for the incident beam is w0 = 20.4µm.
The conical refraction crystal is positioned between the lens and its focal point.
The KGd(WO4)2 crystal has a length of l = 16.55 mm and an opening angle of
the conical refraction cone of α = 1.0 °. Its indices of refraction are compiled
in Table C.1 as well as the values for other biaxial crystals. The crystal is cut
and polished in a way that one of the optical axis is oriented parallel to the
incident beam direction. This simplifies the alignment of the light beam in the
crystal. In general the back scattered light of the crystal can be used to adjust
perpendicular incidence.
Following Eq. (4.10) the radius of the Poggendorff dark ring created by the
optical setup is R0 = 290µm in the focal plane. The resulting ratio between the
width of the two rings and the radius of the ring is given by ρ0 = R0/w0 = 14.3
and therefore well in the regime to produce a Poggendorff dark ring. The focal
plane is then re-imaged and demagnified by the combination of lens f2 and f3.
The diameter of the crystal is reduced by a factor of 0.8 and is 232µm in the
re-imaged plane. The beam path is then aligned on top of the detection beam of
the horizontal detection system (see Sec. 2.3.3). Since the polarization of the
beam is a key element for its homogeneity a non-polarizing beamsplitter with
a ratio of 50/50 is used. The beamsplitter features a reflectivity of 50 % for p-
polarized light and 52% for s-polarized light at a wavelength of λ = 792.5 nm.
This means that 50% of the optical power of the ring light and 50% of the
detection light are lost already.
The focal plane of the conical refraction ring is then re-imaged a second time
into the vacuum chamber at the place of the atoms. The lens system f4 and
f5 demagnify the focal plane by a factor of 0.75. This yields a calculated ring
radius of 174µm. The waist w0 is demagnified to 12.2µm. The light is guided
through the optical chamber and disperses on the inner walls of the vacuum
chamber.
To trap atoms in all three dimensions gravity has to be compensated. As shown
in Fig. 4.8 the conical refraction potential used to create blue detuned walls
offers no trapping force against gravity. Instead a focussed elliptical Gaussian
beam is used as a second trapping potential to support atoms against gravity
(see Sec. 5.1.2).
The total optical power provided by the Ti:Sa laser and usable for the creation
of the double ring structure is 200mW. The used intensity stabilization is posi-
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Figure 5.2: Schematic drawing of the lightsheet potential used to hold ultra-
cold atoms and BECs against gravity. Two telescopes with cylindrical
lenses shape the beam to create a highly anisotropic beam profile.
The beam is focussed with the last cylindrical lens to provide a tight
confinement in the z direction and to hold atoms against gravity.

tioned behind the polarizing beamsplitter in order to compensate polarization
drifts that occur in the optical fibre. The optical power is controlled by an ana-
logue voltage output of the experimental control that is connected to the AOM
via its driver. The intensity stabilization offers a linear relation between the
input voltage of the electronic stabilization system and the optical power avail-
able in the experiment. The optical power PTi:Sa corresponding to the voltage
VPD on the photo diode is given by:

PTi:Sa = VPD × 24.25
mW

V
. (5.1)

5.1.2 Lightsheet potential

A lightsheet potential is an elliptical Gaussian beam focussed by a cylindrical
lens. The system is designed to support the atoms against gravity and forms
a homogeneous trapping potential in the plane perpendicular to gravity. It is
possible to trap atoms in the lightsheet potential and use the Poggendorff dark
ring as a radial confinement to create an toroidal trap in three dimensions. The
construction and the characterization of the lightsheet potential was performed
by Martin Hasch during his masters thesis [148]. This section will focus on a
short overview of the lightsheet potential and its experimental parameters cru-
cial for the experiment.
The light for the lightsheet potential is provided by a master oscillator power
amplifier (MOPA) system. The master oscillator is a self-built external cavity
diode laser with an maximum output power of up to 70mW. The wavelength is
tunable with an external grating and laser operation is possible at wavelengths
from 778 nm to 785nm. The beam is coupled into a commercial tapered ampli-
fier3 and amplified to a maximum power of 500mW. The resonant spontaneous
3 Toptica TA 100
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emission background of the tapered amplifier is rejected by two bandpass in-
terference filters4. By tilting the filters the central wavelength of transmission
is shifted to the desired value. The combination of two filters guarantees can-
cellation of unwanted light by a factor of 1000. The laser is guided through
a mechanical shutter and an AOM to be then transported to the experimental
table with an optical fibre. The AOM is used for intensity stabilization via the
optical diode on the experimental table and the corresponding electronics [61].
The mechanical shutter is used to block the light completely.
On the experimental table, the beam exits the optical fibre and is collimated
by a collimation lens. The light then travels through two telescopes built with
cylindrical lenses in order to generate an elliptical Gaussian beam sufficient
to form the lightsheet potential. The beam is then focussed into the vacuum
chamber with a cylindrical lens. The produced lightsheet has a vertical waist of
wz = (26.2± 0.5)µm and a vertical waist of wz = (2752± 42)µm. The wave-
length of the MOPA system has been chosen to be 783.55nm which fits well
the compromise between trap depth and losses due to spontaneous scattering.
The lifetime of atoms in this trap is 1s [148]. The trap depth, reduced due to
gravity [44], in the vertical direction is ULS/kB = 1.24µK.
The alignment of the lightsheet potential is done with the help of absorption
imaging. Ideally an influence of the potential is already visible when the light-
sheet is roughly pointed at the atomic ensemble confined by the MOT. By choos-
ing the detuning of the lightsheet to be near a resonance of 87Rb this effect can
be amplified. Once an influence of the lightsheet potential can be observed
the positioning in the vertical direction is trivial. With the help of the side-
detection system the lightsheet potential is aligned at the place of the crossed
optical dipole trap. Ideally the focus of the lightsheet is positioned on top of
the cross section of the crossed optical dipole trap. The horizontal alignment is
done by loading atoms into the trapping potential and applying a waiting time.
During the waiting time, the drift of the atoms inside the lightsheet potential is
observed. In the region of the focal point an isotopic expansion is visible. The
lightsheet has been modified in a way that the final cylindrical lens is tillable
on an mechanical translation stage. By tilting the lens previously observed in-
equalities of the potential could be compensated.
The vertical trapping frequency of the lightsheet potential has been measured
experimentally by loading atoms into the lightsheet and exciting vertical oscil-
lations [65]. This is done by switching the lightsheet off for a short period of
time. After switching the lightsheet on again the potential energy deposited in
the system results in a vertical oscillation of the atoms. This has to be done care-
fully so that atoms do not leave the potential. The measured trapping frequency
is ωz = 2π× (169± 1.5)Hz [65].

4 Semrock Maxline LL01-785
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Figure 5.3: Three dimensional scheme of the complex combination of trapping
potentials. The crossed optical dipole trap (red) creates the BEC in
the cross-section. The atoms are then trapped in the three dimen-
sional wave guide created by the attractive lightsheet and the repul-
sive double ring structure.

Fig. 5.3 shows a three dimensional drawing of the combined optical configura-
tion of trapping beams. The tightly focussed crossed optical dipole trap creates
a cloud of ultra-cold atoms. The blue double ring structure is aligned along the z
and provides a tight confinement in the plane of the crossed optical dipole trap.
In order to trap the atoms in all three dimensions the lightsheet provides a tight
and homogeneous attractive potentials that holds the atoms against gravity.

5.2 Analysis of ring shaped density profiles

To investigate the properties of atoms inside a ring shaped trapping geometry
additional image processing is necessary. The tight confinement of the atoms
in the radial direction reduces the motion of the atoms to a one-dimensional
problem with periodic boundary conditions. This greatly simplifies curve fit-
ting and is favourable for additional analysis. To decompose the image into a
one-dimensional representation a grid of sections is superimposed on top of the
image. Each section covering a distinct area of the ring shaped density profile.
The density inside each section is binned together and represents the value of
the section. This accuracy of this method is largely dependant on the parame-
ters used.
The most important benchmark is the total atom number that has to be con-
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Figure 5.4: Illustration of the transformation process. Fig. (a) shows the super-
imposed sections on top of the ring structure. Each section repre-
sents a data point in the one-dimensional density distribution. Fig.
(b) shows the process of creating subpixels for an increased trans-
formation and binning quality. Depending on the position of each
subpixel an original pixel gets divided into different sections.

stant after the transformation. Using radial cuts to determine the density along
the azimuthal direction could consider single pixels multiple times which is pre-
vented by applying the following algorithm. This section will discuss the process
of transforming a ring shaped density profile into a one-dimensional represen-
tation. A discussion on possible errors and the influence of several parameters
is given. A set of parameters used for image transformation is elaborated. With
the one-dimensional representation of the density distributions additional data
examination is simplified.
The creation of a one dimensional density profile is done by dividing the ring
shaped density distribution into equally shaped sections. Each sector covers a
fixed angular part of the ring. Inside each sector, the sum of all pixels is binned
together to determine the cumulated density. The atom count is calculated with
Eq. 2.41. To determine the affiliation of each pixel to a section, two proper-
ties have to be matched: At first the distance of the pixel to the central point
of the ring shaped distribution has to be between the inner (ri) and the outer
radius (ro) of the ring. Fig. 5.4(a) depicts the inner and outer ring as dashed
circles which enclose the density distribution. The second property is the angle
in respect to an arbitrarily chosen starting point on the ring. To determine the
angle, a line is drawn from the centre of the ring to each pixel. The angle is
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Figure 5.5: Mean and maximum deviation of the transformation depending on
the section count. The mean deviation as well as the maximum de-
viation have a minimum at nS = 200. The obtained resolution is
identical to the optical resolution of the detection system. Changing
the ring diameter implies that a new section count has to be chosen
to match the resolution of the imaging system.

obtainable by the spanned rectangular triangle. Depending on the angle, each
pixel in sorted into one of the sectors spanning the according angular section
(see Fig. 5.4(a)). The more sectors are used the smaller each section becomes.
Fig. 5.5 shows dependence of the section count (nS) to the error made when
applying the binning algorithm. The obtained values of the density distribution
are compared to the analytical solution of the area A of a section of the ring
potential:

A=
π
�

r2
o − r2

i

�

nS
. (5.2)

Each pixel of the benchmark image has a value of one, which normalizes the
distribution for testing purposes. The mean deviation shown in Fig. 5.5 reaches
a minimum for a section count of nS = 200. Given a radius of the conical re-
fraction guiding structure of rRing = 173µm (see Sec. 5.3.4) each of the 200
sections can be attributed to a span of 5.4µm. The resolution of the experi-
mental imaging system in vertical direction is 5.33µm (see Sec. 2.3.3). The
benchmark shows that the least deviation is achieved when the resolution of
the transformation is the same as the resolution of the used image. In this sec-
tion all future image processing will be done with a section count of nS = 200,
if not stated otherwise. For different diameters of ring shaped structures the
section count has to be adjusted to match the detection resolution.
The position of the first sector can be chosen in a way that the resulting den-
sity profile is positioned optimal for additional analysis. Atoms occupying
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Figure 5.6: Mean and maximum deviation of the image transformation depend-
ing on the starting angle. The mean deviation is zero for all starting
angles and a section count of nS = 200. The maximum deviation has
a periodicity of about 9 °.

only a certain part of the ring should be positioned in the centre of the one-
dimensional representation to give an easy graphic representation. Since the
density distribution is periodic no fixed starting point is defined and can be
chosen separately for each image. This is done by applying a simple angu-
lar offset to shift the density distribution accordingly. Depending on the exact
value an increased maximum deviation can occur. To further investigate the
impact of the starting position a comparison of different starting angles was
done (see Fig. 5.6). The deviation shows a periodic behaviour with a period
of about 9 °. The mean deviation on the complete circle is zero for a section
count of nS = 200. The maximum deviation on the other hand changes with
the starting position. It peaks at 0.2 %. Choosing an offset of 0 ° gives a mini-
mum deviation and is favourable. The position of the section on the ring is then
given by the algorithm and is originated to the right of the ring structure (see
Fig. 5.8(a)). Additionally the one-dimensional representation of the density
distribution can be shifted. This can be done without losing accuracy just by
shifting the data values accordingly. Therefore it is favourable to use a value
of zero for the starting angle to reduce errors. In order to further improve the
resolution of the transformation process, an additional method is introduced.
Because the pixels of the camera are quadratic an easy scheme can be applied
to create a set of subpixels. Each pixel is divided into smaller quadratic subpix-
els of equal size and weighted according to the covered area. Fig. 5.4 shows
an example area of a density distribution acquired during absorption imaging
(see Fig. 5.4(a)). The ring shaped trapping potential is magnified to show the
alignment of subpixel in place of a normal pixel (see Fig. 5.4(b)). Each pixel is
divided into nine equally sized subpixels with a new weight of one ninth of the
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Figure 5.7: Mean and maximum deviation of the image transformation depend-
ing on the subpixel count. The more subpixels are used, the smaller
the mean and maximum deviation are. The drawback is an increased
computation time since this problem scales with O (n2).

20

40

60

80

100

120

140

(a) Experimental image

0 50 100 150 200
0

20

40

60

80

100

120

Section

A
t
o
m

C
o
u
n
t

(b) Transformed density distribution

Figure 5.8: Example image of atoms trapped in a ring shaped geometry. (a) The
inner and the outer boundary of the ring shaped guiding structure
limit the radius and the initial position of the first section is shown.
200 sections are distributed over the full circumference of the ring.
(b) Density distribution obtained after the transformation to a one-
dimensional profile.
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previous pixel value. The newly created pixels receive a new position according
to their centre. Afterwards they are sorted into sections of the ring to create an
one-dimensional representation of the ring shaped potential. Fig. 5.7 describes
the influence of the subpixel count according to the error made by binning the
pixels in discrete sections. As before the error made by this method is calculated
towards a perfect binning of an artificial density distribution where every pixel
has a value of one. According to the outer and the inner radius of the interest-
ing section of the density distribution an analytical solution of the density can
be given by Eq. (5.2). The binning algorithm was evaluated on the same artifi-
cial image and the deviation of the total section value to the analytical solution
was calculated. The mean deviation of all sections is plotted as a function of
the number of subpixels. As previously observed some of the sections show,
according to the position of the intersecting section boundaries, different devi-
ations. The maximum deviation is also given as a function of subpixels used
per real pixel. The maximum deviation as well as the mean deviation decrease
for an increasing subpixel count. On the one hand an increasing subpixel count
is favourable to achieve an increased accuracy of the one dimensional profile.
On the other hand the time needed to calculate the one dimensional profile in-
creases due to the increased computer power needed. A viable subpixel count
which gives a good accuracy and a short processing time is found for 25 sub-
pixels. In this work all transformations will be performed with a subpixel count
of 25, if not stated otherwise.
Fig. 5.8 shows an example for the application of the algorithm. Fig. 5.8(a) de-
picts an experimental image with atoms trapped inside a ring shaped wave
guide. Between the boundaries of the inner and the outer ring, shown by
dashed circles, the density distribution is transformed to a one-dimensional rep-
resentation. As discussed the section count, initial angle, and the subpixel count
have to be chosen appropriately. The transformation was done with a section
count of nS = 200, a starting angle of 0.1 ° and a subpixel count of 25. The
calculated density distribution is shown in Fig. 5.8(b). Each sector represents a
part of the ring geometry containing between zero and 120 87Rb atoms.

5.3 Loading and expansion of a Bose-Einstein condensate

The Poggendorff dark ring presented in Sec. 4.4.1 will serve as an atom guide
for ultra-cold atoms and coherent matter waves. The flatness and additional
properties as well as the loading process will be discussed in this section. It
starts with the horizontal alignment of the potential in Sec. 5.3.1, which is the
key to loading atoms in the toroidal wave guide (see Sec. 5.3.2). Once atoms
are trapped, a fine tuning of the vertical position can be done (see Sec. 5.3.3)
to find the focal plane and to adjust it on top of the crossed optical dipole
trap. Next, Sec. 5.3.4 discusses properties of the focal plane and the section
is completed with a discussion on the expansion of atoms inside the toroidal
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wave guide (see Sec. 5.3.5) and the lifetime of atoms stored in the trap (see
Sec. 5.3.6).

5.3.1 Horizontal alignment of the conical refraction potential

The horizontal alignment of the trapping potential is a two-step process. First
the focussed Gaussian beam is aligned to run through the MOT and its focal
point is determined to be in the atomic cloud. In a second stage, the conical
refraction crystal is placed after the focussing lens (see Sec. 5.1).
To align the focussed Gaussian beam into the cloud of atoms of the MOT multi-
ple aids are available. To make interactions between the atoms and the incident
light beam more visible the detuning should be reduced to a minimum in re-
spect to a transition of 87Rb. Because the ring light is aligned on the same
optical axis as the vertical detection light it can be used to pre-align the beam
before it enters the vacuum chamber. The detection light also has to pass the
non-polarizing beamsplitter in front of the detection camera (see Fig. 5.1) and
half of its intensity is reflected into the beam line of the conical refraction
ring potential. Once the alignment has been performed outside the vacuum
chamber, the light should already be visible inside the MOT. Depending on the
alignment it could be useful to work with an attractive rather than a repulsive
potential. Red-detuned light will produce an area of increased intensity, a blue-
detuned light beam will create a hole in the MOT. To pre-align the z position of
the beam, the waist of the created hole is used. The focal plane is reached once
its diameter is minimal. The focussing lens is positioned on a translation stage
to help with the positioning.
After the focal point of the focussing Gaussian beam is positioned in the MOT
the conical refraction crystal should be placed in front of the lens. The crystal
should be positioned to create the desired double ring structure and the wave-
plates in front of the focussing lens can be used to optimize the polarisation
and therefore the intensity distribution in the focal plane. Ideally, this happens
with a well aligned Poggendorff dark ring after the non-polarizing beamsplitter
in order to compensate its inequalities. Due to the crystals refraction index, the
distance of the focal plane after the focussing lens will be increased by 8.5mm
(see Eq. (4.7)). Due to the large Rayleigh range of zR = 592µm the beam
the Poggendorff dark ring should still be visible in the MOT. In Fig. 5.9(a) a
red-detuned beam is aligned in the MOT. The background shows the atom dis-
tribution achieved by the MOT. The attractive double-ring structure is aligned
with the maximum optical power available from the Ti:Sa laser system. The
double ring structure is clearly visible and can be used to position the potential.
This configuration can also be used to determine, whether the ring potential has
a tilt with regards to the optical axis of the detection beam. If the ring potential
is tilted, its image will show a deformed double ring structure. If the tilting
angle is large enough, the separation between the inner and the outer ring van-
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(a) Ring potential (b) Ring potential and crossed optical dipole
trap

Figure 5.9: Experimental images of the alignment process of the Poggendorff
dark ring. For a small detuning with respect to the D1 transition of
87Rb the double ring structure can be observed in the MOT. With
the addition of the crossed optical dipole trap, fine positioning in
the horizontal plane is possible.
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Figure 5.10: The Poggendorff dark ring is aligned on top of the intersection
of the crossed optical dipole trap. The lightsheet supports the
atoms against gravity and an efficient loading configuration for the
toroidal trap is accomplished.

ishes on the absorption image. This effect appears due to the large elongation
of the MOT along the detection axis. If the ring potential is perfectly aligned
with the absorption light, a clear distinction between both rings is visible.
In order to load atoms into the Poggendorff dark ring it is aligned on top of the
intersection of the crossed optical dipole trap. Fig. 5.10 shows the alignment
in a schematic drawing. The crossed optical dipole trap is positioned between
the double ring structure and the lightsheet supports the atoms against gravity.
Fig. 5.9(b) shows an absorption image taken during the alignment process. The
double ring structure and the crossed optical dipole trap are slightly misaligned
and a clear separation between the four light fields is visible. The ring can be
positioned via a beam walk in front of the non-polarizing beamsplitter.

5.3.2 Adiabatic loading of the toroidal trapping potential

The experimental usability of the ring potential depends on the coherent load-
ing efficiency of ring potential. A non-adiabatic loading transfer of atoms from
one trapping geometry to another yields the risk of losing coherence and in-
creasing the heat in the atomic ensemble. The coherent loading of the potential
was demonstrated in [65] and a brief overview on the experimental details will
be given. Afterwards a characterization of the loading scheme will be shown.
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Adiabatic loading of an harmonic potential is possible if the change in trapping
frequency is smaller as its squared value [70]:

dω
d t
�ω2 . (5.3)

The total change of trapping frequency in the experiment is determined by the
crossed optical dipole trap as well as the combined ring and lightsheet potential.
The trapping frequency ωDT of the crossed optical dipole trap at the end of
the evaporation process is in the order of ωDT = 2π × 100 Hz. The trapping
frequency of the toroidal trap can be determined by Eq. (4.22). With an optical
power of 200 mW and a wavelength of λ = 792.5nm a trapping frequency of
the ring of ω= 2π×400Hz is never exceeded. For a linear ramping time t ramp
of the combined optical potentials a lower bound for the ramping time is given
by [65]:

t ramp�
(2π× 400Hz)2

2× (2π× 100Hz)3
= 12.7ms . (5.4)

The loading process of the toroidal potential with linear intensity ramps has
therefore a minimum ramp time of tramp, min = 12.7ms. The choice of an exper-
imental ramping time of 40ms for all experiments carried out in this work gives
a sufficient separation from the lower boundary and should provide adiabatic
loading of atoms into guiding structures.

5.3.3 Vertical alignment of the conical refraction beam

The large Rayleigh length of zR = 592µm (see Sec. 5.1) makes a vertical align-
ment of the trapping potential difficult. In previous implementations the po-
tential was aligned so that atoms could be trapped [65] but the z position of
the ring potential could only be calculated afterwards. The experimental pro-
cedure started by positioning the focal plane of the focussing lense in front of
the crystal and adding the crystal at a later stage. Due to the crystals index of
refraction the optical beam path shortens and the focussing lense can be posi-
tioned appropriatley. Due to the large Rayleigh range the positioning process is
prone to uncertainties and a more reliable way was developed.
The goal of the alignment process is to position the focal plane at the same
vertical position as the intersection of the crossed optical dipole trap. This of-
fers multiple advantages. In the focal plane the Poggendorff dark ring features
a minimum intensity of zero. This should reduce effects of the ring potential
towards the trapped atoms. Additionally, the slope of the trapping potentials is
the steepest at the focal plane yielding a tight radial confinement.
The fine-tuning of the vertical position z of the ring potential can begin once
atoms are trapped inside the guiding structure. The ring potential is positioned
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Figure 5.11: Fraction of atoms leaving the ring shaped guiding potential after
an acceleration perpendicularly towards the outer repulsive ring.
On top of the fitted data points an error function is used to de-
termine the point where half of the atoms stay trapped inside the
potential. The measurement was taken for z = 0 (i.e. z = z0 as de-
termined according to Fig. 5.12) of the conical refraction potential.
The potential depth axis was scaled according to Eq. (5.5).

in such a way that Bose condensed 87Rb atoms are loaded into the Poggendorff
dark ring area. After the loading procedure of the potential, a Bragg diffraction
π-pulse is applied. The potential is aligned such that the atoms move perpen-
dicularly towards the outer ring potential. Depending on the laser intensity a
fraction of the atoms is able to travel over the repulsive potential of the blue
detuned light. The higher the kinetic energy of the atoms, the higher the poten-
tial barrier must be to successfully reflect the atoms. Since the laser intensity
for the outer ring is the highest in the focal plane the power needed should be
at a minimum.
An accelerated atom cloud with a momentum of 4ħhk was chosen which has a
kinetic energy of Ekin = 4 ER. After accelerating the atoms an additional wait-
ing time of 18 ms was applied so that the atoms leaving the trapping geometry
are separated spatially. Fig. 5.11 shows a representative measurement where
the laser intensity was slowly increased until all of the atoms stayed inside the
trapping potential. At the beginning nearly all of the initial 25000 87Rb atoms
are accelerated outside of the potential. The number of atoms decreases as the
intensity rises and the repulsive force of the ring potential increases. The data
is rescaled to match 4ER at the point where 50 % of the atoms are trapped and
50 % can leave the potential. By moving the ring potential along the vertical
direction an intensity evolution along the double ring guiding structure is mea-
sured. The smaller the needed optical power, the closer the z-position is to the
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focal plane.
Fig. 5.12 shows the resulting data for multiple iterations of the potential height
measurement. Depicted is the optical power needed to create a 4ER steep po-
tential barrier as a function of the vertical position z of the ring potential. Since
the translation stage on which the focussing lens in front of the conical refrac-
tion crystal is mounted offers a scale a reliable calibration of the position can
be done. The values used for the position are only viable for the experimental
setup realised in this experiment and have to be rescaled for different Rayleigh
ranges or after the repositioning of the focussing lens. Each of the data points
represents a full measurement of the fraction of atoms trapped in the ring po-
tential for varying optical power. The needed optical power to create a 4ER high
barrier has a minimum at z0 = (14.36± 0.06)mm giving the position of the fo-
cal plane of the conical refraction crystal. The value of z0 is taken in respect to
the translation stage used to position the lens and has to be re-evaluated once
changes to the beam path have been applied.
As described in Sec. 4.4.1, each vertical position shows a different set of at-
tributes in regards of potential height, potential width, intensity ratio between
the inner and the outer ring, and the intensity of the Poggendorff dark ring. Fig.
5.12 gives a map to find the desired position for future experiments.
In addition this measurement is used to calibrate the laser intensity of the Ti:Sa
laser and the corresponding trap depth of the ring potential. In this way losses
of the optical power can be determined and the efficiency of the whole laser
setup is determined. The intensity distribution of the Ti:Sa laser is given by Eq.
(4.14) and the total optical power P is determined by Eq. (5.1). Without know-
ing the losses of the optical beam path, the trap depth determined by Eq. (2.3)
is only an upper bound for the intensity. Due to losses at the non-polarizing
beamsplitter and additional optical elements, the potential height of the blue
detuned walls will be smaller. As shown in Fig. 5.11, the optical power needed
to create a trap depth of 4ER is well known. This value is used to calculate the
losses. The optical power needed for a 4 ER high potential wall is Pin = 70.8 mW
as measured in front of the conical refraction crystal. This yields a usable optical
power Pring at the place of the atoms of:

Pring = 0.3379× Pin . (5.5)

The calculated optical efficiency of the complete setup is 33.79 %. Due to the
non-polarizing beamsplitter, 50% of the optical power is lost already at this
element. The remaining optical elements and account for the remaining losses
of 16.21% showing that the conical refraction system used to create an optical
storage ring is very efficient in regards to the optical power.
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Figure 5.12: Optical power needed to create a 4 ER repulsive potential with the
outer ring of the conical refraction double-ring structure. Optical
power needed has a minimum at z = (14.36±0.06) mm indicating
the focal plane.

5.3.4 Properties of the potential in the focal plane

Loading efficiency

After the positioning in the z-direction of the ring potential has been performed
according to Sec. 5.3.3 the loading efficiency of the ring potential was in-
vestigated. Following Eq. (5.4) the linear ramping time was chosen to be
tramp = 40ms. The alignment of the potential is shown in Fig. 5.10. The
intensity of the Ti:Sa laser was varied in order to create different trap depth of
the ring guiding structure whereas the lightsheet was kept at a constant depth.
After the loading procedure an additional waiting time of 10ms was applied.
Fig. 5.13 shows two example images taken 10 ms after the loading process.
Fig. 5.13(a) was taken with a potential depth of UR = 1.37 ER. The atoms are
loaded into the ring potential at the top of the guiding structure in a way that
losses are minimized. This is done by slightly adjusting the position of the ring
and measuring the losses. The losses can be seen as atoms floating around the
actual trapping region depicted by the two dashed circles showing the guiding
structure of the ring.
After the alignment process, the loading efficiency of the potential was mea-
sured by comparing the atom number inside the ring geometry with the total
atom number. Atoms not trapped in the ring geometry occupy the disc shaped
potential created by the lightsheet and the inner ring potential. No atoms could
be observed on the outside of the outer ring potential and the optical power
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Figure 5.13: Absorption images taken 10 ms after the loading of the toroidal
wave guide has been completed. Fig. (a) shows a low potential
depth of UR = 1.37ER whereas Fig. (b) shows a deep potential of
UR = 8.22 ER.

available allows to alter the trap depth between 0ER and 8.22ER.
Fig. 5.14 shows the loading efficiency of the trap for varying potential depth.
For shallow potentials 24 % of the atoms are loaded into the inner part of the
ring geometry were the remainder of the atoms is positioned in the desired
ring structure. The more the depth of the potential increases the more atoms
are loaded into the guiding ring structure. For trap depth above 5 ER the trap
depth is sufficient to load over 90% of the atoms into the guiding potential.
The increased trap depth yields an additional effect on the atoms loaded into it.
Due to the increased radial trapping frequency the expansion in the azimuthal
direction is increased following Eq. (2.36). This can be observed by the two ab-
sorption images shown in Fig. 5.13. The lower trapping frequency in the radial
direction show corresponds to a smaller azimuthal spread of the condensate
(see Fig. 5.13(a)). Fig. 5.13(b) shows an increased azimuthal width by a factor
of 1.3 whereas the trap depth is increased by a factor of five. For interferomet-
ric measurements, such as shown in Sec. 5.6, this effect could be exploitable to
tune the spreading of the travelling wave packets.

Ratio between the inner and the outer repulsive ring potential

The ratio of the inner and the outer wall in the focal plane according to Eq.
(4.14) is 4.7. By using the method already introduced to find the focal plane
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Figure 5.14: Fraction of atoms loaded into the ring shaped trapping potential
depending on the optical power. The Potential depth is calculated
according to Eq. (5.5). Initially a BEC of 25000 87Rb atoms is created
in the crossed optical dipole trap.

(see Sec. 5.3.3) it is now possible to investigate the potential height of the inner
and the outer wall of the potential separately. The crossed optical dipole trap
is therefore aligned to the left or to the right of the ring potential to accelerate
atoms orthogonally into either the inner or the outer potential barrier. A stan-
dard Bragg lattice is used to accelerate the atoms to momenta of 2ħhk or −2ħhk
depending on the aimed ring wall and side.
Depending on the optical power, the fraction of atoms remaining in the po-
tential changes. The higher the repulsive potential gets, the more atoms are
trapped in the ring guiding structure. Once 50 % of the atoms are trapped in
the guiding potential the potential barrier has reached a height of 4 ER. Ideally,
both sides would act in the same manner showing that the double ring structure
is rotationally symmetric.
Fig. 5.15 shows a schematic of the measured optical power needed to create a
repulsive potential of 4 ER height. The inner potential on the right side needs an
optical power of (70.0± 11)mW to create said barrier. The outer ring needs a
factor of 3.8 less optical power: (18.1±1.9)mW. On the left side of the pattern,
the inner ring needs an optical power of (56.4±12.1)mW of optical power and
the outer ring needs (21.7± 1.9)mW, which yields a factor of 2.6 less power.
Both sides are below the expected ration of 4.7 and show a distinct difference of
nearly 30 %. Multiple reasons for this discrepancy with regards to the expected
ratio can be found. On the one hand, the circular polarization of the poten-
tial has to be determined outside of the potential and was adjusted with the
help of a CCD camera. This approach does not include out additional optical
elements as lenses and mirrors that guide the light into the vacuum chamber.
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Figure 5.15: Optical power needed to create a 4 ER repulsive potential. To
demonstrate the position and the shape of the potential Gaussian
distributions were chosen and their width was chosen arbitrarily.
The plot does not give an representation of the actual potential
shape.

On the other hand, the ring potential and the optical beam path is prone to
diffraction and interference. Additionally an elliptic beam profile would create
a modulation along the radial intensity distribution in the focal plane.

Radius of the Poggendorff dark ring in the focal plane

The diameter of the Poggendorff dark ring has been observed experimentally
with an CCD camera outside of the experimental vacuum chamber. The ad-
ditional optical elements used to guide the light into the chamber introduce
possible errors that would change the ring diameter. To eliminate uncertainties
and to verify the calculated ring diameter of 174µm at the place of the atoms,
an additional characterization measurement of the ring radius was performed.
The atoms were loaded into the trapping potential and part of the atoms was
accelerated to travel along the guiding ring structure. A standard Bragg lattice
was used in order to accelerate the atoms. Its experimental implementation and
additional discussion can be found in Sec. 5.4. After the atoms have travelled
half the circumference of the ring, an absorption image was taken. A one-
dimensional cut through the density profile and through the center of the ring
was made. The peaks from the density distribution of the atoms where used to
calculate the distance and therefore the diameter of the Poggendorff dark ring.
Fig. 5.16 shows the absorption image in addition to the one-dimensional cut
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Figure 5.16: Experimental image used to determine the diameter of the Poggen-
dorff dark ring. The density distribution of guided atoms allows to
use a cut through the potential as seen on the right to determine
the distance of the peaks. Two Gaussian distributions were fitted
in order to obtain the distance. The resulting measured radius of
the Poggendorff dark in the focal plane is ρPDR = (173± 2)µm.

used to determine the diameter. The calculated diameter of the Poggendorff
dark ring is:

ρPDR = (173± 2)µm, (5.6)

which is close to the expected radius of the Poggendorff dark ring in the focal
plane.

5.3.5 Expansion of atomic ensembles in the ring potential

The free expansion of an ensemble of trapped atoms in the ring guide is a bench-
mark for the flatness of the potential. Previous work has shown that free expan-
sion is not always possible in ring geometries created with light [61,65]. Due to
the radial trapping frequency created by the repulsive ring walls, the azimuthal
expansion should be different compared to the expansion in free space. De-
pending on the azimuthal trapping frequency a free ballistic expansion should
be observable. If the azimuthal trapping frequency is non-negligible, the com-
bination of light fields would not provide a flat toroidal trap.
Fig. 5.17 shows the azimuthal width σ of the BEC after variable expansion
times. Underlying is the solution of Eq. (2.36) (solid line) forωr(0) =ωφ(0) =
2π× 150 Hz and ωz(0) = 2π× 212 Hz, which are the initial trapping frequen-
cies of the crossed optical dipole trap. The initial width of the condensate was
set to the Thomas-Fermi radius of RT F = 3.02µm. The loading process of the
toroidal trapping potential was not modelled in the numerical solution. Instead
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Figure 5.17: Azimuthal expansion of a BEC loaded into the toroidal trapping
potential. The underlying solid line is a solution of Eq. (2.36)
for the initial parameters ωr(0) = ωφ(0) = 2π × 150 Hz and
ωz(0) = 2π × 168 Hz and ωr(t) = 2π × 250 Hz, ωφ(t) = 0 Hz
andωz(t) = 2π×168 Hz. The initial width of the atomic ensemble
was set to RTF = 3.02µm. The dotted line shows Eq. (2.36) with a
modified trapping frequency ofωφ(t) = 2π×5 Hz and the dashed
line featuresωφ(t) = 10 Hz
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Figure 5.18: Position of the centre of mass of the atomic cloud as a function of
the expansion time in the trapping geometry. The solid line depicts
an accelerated motion with an acceleration of a = (15± 1) mm/s2.

the trapping frequency in the radial direction is set to ωr(t) = 2π×250Hz, the
frequency of the radial confinement. The trapping frequency in z direction was
set to ωz(t) = 2π× 168Hz, the trapping frequency of the lightsheet potential.
In the azimuthal direction the frequency was set to ωφ(t) = 0 Hz. Fig. 5.17
depicts that the measured azimuthal expansion follows the theoretical predic-
tions, showing that the trapping frequency in the azimuthal direction is indeed
zero. After 80 ms the ensemble width is nearly 500µm, which means that the
condensate nearly covers the full circumference of the ring. In addition, two
values of ωφ(t) were plotted in conjunction with ωφ(t) = 0Hz. ωφ(t) = 5Hz
(dotted line) decline of ensemble width after 55 ms already showing that higher
trapping frequencies in azimuthal direction produce oscillations of the ensem-
ble width σ. This effect is even more pronounced for a trapping frequency of
ωφ(t) = 10 Hz (dashed line). Comparing the experimental results with the
numerical solutions shows that the flatness of the ring potential is given. The
highest trapping frequency in azimuthal direction describing the measured ex-
pansion of the ensemble is ωφ(t)≈ 1Hz.
If the coherence of the atomic ensemble is not destroyed during the expansion
inside the potential, it should be possible to observe interference fringes on the
opposite side of the loading point [149, 150]. Because of the relative velocity
of the ensemble parts these density modulations are smaller than the resolution
of the imaging system.
In addition to the expansion of the ensemble the drift of the centre of mass of
the atomic distribution is shown in Fig. 5.18. The ensemble is loaded into the
trap at the azimuthal position zero. During the free expansion the centre of
mass moves clockwise along the ring potential. The drift is described with an
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accelerated motion with an acceleration of a = (15± 1)mm/s2. The cause for
the drift are due to the misalignment of the lightsheet potential or residual light
from the ring potential in the Poggendorff dark ring. To estimate the impact of
each of these factors, the movement of the atoms in the lightsheet without the
ring potential was observed. It shows that the movement of the centre of mass
of a cloud inside the lightsheet potential is the same as the drift direction in the
ring direction. Assuming a tilt of the lightsheet potential resulting in an acceler-
ated motion of the atoms, the measured acceleration can be used to determine
the tilt angle. For an acceleration of a = (15 ± 1)mm/s2 the calculated tilt is
less than 0.1 ° which is the maximum precision achievable experimentally. After
50ms, the ensemble shows a distinct increase of the variation of the centre of
mass of the atomic ensemble.
Future interferometric measurements aim to split BECs into two distinct wave
packets where one of the wave packet travels a full circumference in the ring
structure while the other stays in place (see Sec. 5.6). After a full round-trip
the matter waves should interfere and therefore long storage times of the atoms
are important. The round-trip time of a travelling wave packet depends on its
momentum but can be as short as 30 ms in the current experimental configu-
ration (see Sec. 5.4). The sequence time of an interferometric measurement is
therefore well below 50ms and the measurements of the potentials shows that
a well defined positioning of atomic clouds is possible.

5.3.6 Lifetime of trapped atomic ensembles in the toroidal trap

The lifetime of the atoms is a crucial parameter for all applications of the
wave guide structure. Applications like atomic clocks or guided matter wave
interferometers rely on small losses and large storage times of up to several
seconds [16]. Disturbance in all optical traps often comes from spontaneous
scattering. Theses losses also yield a decrease in coherence destroying the pos-
sibility to perform interferometric measurements [151].
Therefore, as discussed in Sec. 2.1, large detuning of the beams with respect
to atomic transitions are favourable. In the experiments with the ring guiding
structure detuning of trapping potentials are in the order of 3 nm in respect to
the D1 or D2 transition of 87Rb. The chosen detuning is used to achieve sufficient
trap depth with the laser power available. This yields the problem that sponta-
neous scattering is non-negligible. The lightsheet potential features a detuning
of ∆λLS = 2.5nm to the red with respect to the D2-transition of 87Rb, which re-
sults in a scattering rate of ≈ 2.4 s−1 (see Sec. 5.1.2). The ring potential created
by conical refraction was chosen to have a wavelength of λ = 792.5nm, which
is blue detuned in respect to the D1-transition of 87Rb. The advantage of the
double ring structure is that atoms are trapped in the Poggendorff dark ring,
which has no intensity in the focal plane and therefore spontaneous scattering
is suppressed. Even if the alignment is off by a margin the intensity is bellow
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Figure 5.19: Lifetime of atoms in the ring potential as a function of potential
depth of the ring potential. Each dataset has been scaled to the
initial atom number of each measurement.

the scattering rate of the lightsheet potential.
To observe the lifetime of atoms in the ring guiding structure the condensed
atoms were loaded into the Poggendorff dark ring and supported by the light-
sheet against gravitational force. The lifetime is determined by observing the
atom number in the trapping area after variable times. Fig. 5.19 shows the
atom number after different times inside the ring potential. Three different
trap depth were chosen: 1.37ER, 4.11 ER, and 7.54ER. Depending on the trap
depth a lifetime change of the atoms inside the ring structure can be observed.
The deeper the trapping potential is, the longer the atoms stay inside the ring
structure. In the focal plane the ratio of the outer ring potential depth to the
inner ring potential depth is 4.7 (see Sec. 4.4.1) making it more likely to lose
atoms in the direction of the smaller barrier, the inner ring potential. The solid
lines in Fig. 5.19 are fitted exponential decays to determine the loss rate of the
potentials. Even if the trap depth increases it cannot account for all of the losses.
Fig. 5.20 shows experimental images obtained at a trap depth of UCR = 4.11 ER.
The left image (Fig. 5.20a) shows the atom distribution in the ring after 685 ms.
The ring potential is marked with two dashed rings showing the position of the
inner and the outer guiding rings. From the initial atom count only 32 % of the
atoms are still in the ring structure. The lost atoms are either lost completely
or occupy the inner part of the ring potential. This behaviour intensifies the
longer the atoms reside in the trapping geometry. After 2.34 s only 10 % of the
atoms reside in the ring shaped trapping geometry whereas more atoms are
now trapped in the centre of the ring structure (see Fig. 5.20b). In addition to
the inner ring potential limiting the free expansion of the atoms in the inside,
the light-sheet potential supports the atoms against gravity. Thus the structure
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Figure 5.20: Experimental images of the density distribution of atoms loaded
into the toroidal trapping geometry. Fig. (a) shows the distribution
after 685 ms where most of the atoms reside inside the ring wave
guide. (b) After 2335 ms more atoms occupy the inner part of the
trapping geometry.

can be seen as a disc like potential that features a homogeneous trapping region
and offers the possibility to perform matter wave resonator experiments [65].
Sec. 5.3.4 already discussed the initial loss of atoms due to the loading proce-
dure.
All of the measurement show that the decrease of atom number in the trapping
region follows an exponential decay which is typical for atoms trapped in an
optical dipole trap [152]. This is also true for combinations of multiple traps
where each light field introduces additional heating mechanics. For dipole traps
the most important parameter is the scattering rate of the trapping light which
is dependent on the intensity and the detuning of the light field with respect
to resonant transitions of 87Rb. Due to the rather small detuning, compared to
other optical dipole trap potentials, the lifetime of the atoms inside the light-
sheet potential are expected to be short. Previous measurement have shown
that the lifetime does not exceed 1 ms for a detuning of ∆λLS = 2.5 nm (see
Sec. 5.1.2). Depending on the potential depth the atom number in the toroidal
trapping geometry varies. The lifetime of the atoms inside the ring shaped trap-
ping region is higher for a deeper ring potential and is shown in detail in Fig.
5.21 for varying trap depth UR. The values are compiled in Table 5.1. Deeper
optical traps yield a stronger force that keeps atoms in place. In the case of the
ring shaped potential the ring structure imposes a repulsive force that pushes
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atoms into the Poggendorff dark ring. The time evolution of the system can be
described by a set of first-order coupled differential equations:

ṄR =−αRNR −αspontNR ,

ṄD =+αRNR −αspontND . (5.7)

The variables NR and ND give the atomic number in the ring and the disc po-
tential respectively. The parameter αR is the loss coefficient describing atoms
moving from the ring potential into the disc potential. αspont stands for losses
due to spontaneous effects, such as collisions with the background gas or spon-
taneous scattering off the light either from the lightsheet potential or the ring
potential. The inverse of the loss coefficients gives the lifetime of the atoms in
the trap. The analytical solution of Eq. (5.7) yields a coupled system describing
the decay of the atom number in the ring and the decay of the atom number in
the disc potential. To evaluate the appropriate values to describe the decay a
combined fit on both, the atoms in the ring and the atoms in the disc potential,
was performed. The values for each of the measurements are compiled in Table
5.1. Depending on the depth of the ring potential a change of αR occurs. The
deeper the potential of the ring gets, the longer atoms remain in the trapping
region of the ring. This can be seen by an increased lifetime of atoms inside
the toroidal potential. The main losses from the ring potential can be attributed
towards the drift of the atoms from the ring into the disc structure. As the ring
depth increases, the loss coefficient αR decreases showing that the possibility
for atoms to move over the potential barrier of the inner ring is inhibited. In
addition to the initial losses during the loading process (see Sec. 5.3.4) using a
very shallow ring potential is not favourable.
The loss of atoms from spontaneous scattering and other loss processes is com-
bined in parameter αspont. The lifetime in the lightsheet potential has been mea-
sured to be in the order of 0.5−1s for a wavelength of λLS = 782.5 nm (see Sec.
5.1.2). For a ring depth of 1.37ER the lifetime of atoms in the disc potential
is the same as the measured lifetime of atoms in the lightsheet. The lifetime is
dominated by the lifetime of atoms in the lightsheet potential. Increasing ring
depth an increase in the lifetime is observed. Atoms can be trapped significantly
longer in the trap with the a deep ring potential present. The repulsive poten-
tial of the ring increases the force that holds atoms on the inside. Since the
ring potential is trapped in the Poggendorff dark ring the additional laser in-
tensity should not contribute to an increased spontaneous scattering rate. This
increases the lifetime of the atoms in the trapping potential [153]. Additionally
the increased trap depth diminishes the rate of atoms flowing from the ring into
the disc potential. In combination with lower losses during the loading process
a deep ring potential is favourable to trap atoms for large periods.
For a ring depth of 1.37ER a combined lifetime of (αR + αspont)−1 = 0.36 s is

calculated. Higher trapping depth of the ring potential achieve a longer life-
time of up to 0.95 s. This result shows that the lifetime in the ring potential
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Figure 5.21: Atom number in different areas of the trapping geometry for dif-
ferent trapping depth of the ring potential. From top to bottom
the trap depth increases; starting from UR = 1.37 ER going to
UR = 4.11 ER and UR = 7.54 ER. Each
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Potential Depth [ER] α−1
R [s] α−1

spont [s] Combined Lifetime [s]

1.37 0.85 0.64 0.36
4.11 1.43 1.90 0.81
7.54 2.1 1.76 0.95

Table 5.1: Compilation of the lifetime of atoms inside the trapping geometry
of the ring potential. α−1

R gives the lifetime of atoms in the ring po-
tential lost to the disc potential. α−1

spont is the lifetime according to
losses due to spontaneous scattering of light from either the light-
sheet potential or the ring potential. The combined lifetime is given
by (αR + αspont)−1.

is largely dominated by the losses due to the lower inner blue detuned wall
in contrast to spontaneous scattering. The atoms occupying the disc potential
show a much longer lifetime than atoms trapped in the toroidal wave guide for
longer trapping times. The lifetime increases if the trap depth of the ring po-
tential is increased. The spontaneous scattering rate of the lightsheet potential
limits the lifetime, which is in the order of previously observed lifetimes in the
lightsheet potential [148].
The lifetime of atoms in the ring guiding structure largely depends on the depth
of the blue detuned double ring structure. Because the inner ring is less intense
then the outer ring most atoms are lost into the inner region of the trapping
geometry. The use of deep ring potentials is favourable in order to increase
trapping times but the drawback is an increased localisation of atoms due to
inequalities of the optical potentials (see Sec. 5.4).

5.4 Transport of BEC in ring shaped trapping potentials

Optical potentials and wave guides are widely used for a coherent matter wave
transport or for atom storage. Especially ring potentials created with conical
refraction offer a high grade of scalability [132]. The application of these po-
tentials could also be useful for atomtronics [154]. In addition full interferom-
eter procedures can be performed in ring shaped dipole potentials. The exact
knowledge on the movement and adjustability of these potentials is needed in
order to implement high precision experiments [155].
This section will discuss the application of a toroidal trapping geometry as a
wave guide for accelerated atoms. The atoms velocity is adjustable in multiples
on 2ħhk with the use of a one-dimensional optical lattice. Sec. 5.4.1 will discuss
the experimental changes in order to accelerate atoms in the guiding potential.
Sec. 5.4.2 shows the experimental work done with accelerated atom ensembles.
Next Sec. 5.4.3 shows the symmetric splitting and guiding of wave packets in
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Figure 5.22: As an addition to Fig. 5.10 an optical lattice is aligned on top of
dipole trap leg 2. This enables a tangential acceleration of the
atoms.

the optical potential. This section ends with the discussion on large trapping
times of up to 300 ms of accelerated atomic ensembles (see Sec. 5.4.4). The
measurements are carried out at a position of Z ≈ 1.3.

5.4.1 Additions to the optical setup

In order to accelerate atoms in a toroidal wave guide, the experimental addi-
tions as depicted in Fig. 5.22 were implemented. The experimental configura-
tion is an extension of the setup used to store atoms (see Sec. 5.3). An optical
lattice was aligned on top of leg 2 of the optical dipole trap used to create the
BEC. The toroidal potential is aligned with respect to the crossed optical dipole
trap that allows a tangential acceleration of the atoms. Misalignment of the
double ring guiding potential creates additional atom losses because atoms are
accelerated directly into the repulsive potential barrier provided by the ring po-
tential.
Experimentally the acceleration of the atoms is done after the loading of the
BEC into the toroidal wave guide has finished. After the loading process is
complete no additional waiting time is needed and the ensemble can be manip-
ulated by the optical lattice. Typically the acceleration of the full condensate
or the splitting of the condensate into 50/50 ratio is used. This yields either
a complete BEC travelling inside the waveguide or half of the BEC travelling
trough the wave guide while the rest of the atoms stays in place at the point of
loading.
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5.4.2 Accelerated atoms in a toroidal trapping geometry

The experiments for matter wave guiding were all carried out in a similar man-
ner. The BEC was loaded into the guiding toroidal structure and without an
additional waiting time the atoms were accelerated to the desired momentum.
The trap depth of the guiding structure was adjusted to create a sufficient con-
finement for the moving ensemble. All experiments were carried out using a
standard Bragg lattice that provides acceleration in one direction only. Fig.
5.23 shows a compilation of all three different momenta used: 2ħhk, 4ħhk, and
6ħhk. With standard Bragg diffraction momentum transfer is possible in two
directions, depending on the choice of ∆ω. By using different values of ∆ω
transport in both directions, clockwise and counter-clockwise, and with differ-
ent momenta was investigated. The solid lines depict the theoretical position of
the atomic ensemble after varying times for the appropriate momentum after a
Bragg pulse.

Momentum transfer to |2ħhk 〉

The position of the cloud in the toroidal wave guide has been determined with
absorption imaging and is shown in Fig. 5.24(a). The acceleration direction
was chosen to be clockwise but the measurements were also performed for
counter-clockwise movement of the atomic ensemble (see Fig. 5.24(b)). The
detuning between the two lattice beams was set to ∆ω= 15.08 kHz and lattice
pulse duration and amplitude were adjusted to accelerate all atoms.
The acceleration of the wave packet was performed with a potential height of
the outer ring of 20.8ER. The inner ring has a reduced height of a factor of
3.8 (see Sec. 5.3.4). The kinetic energy of a wave packet travelling with a mo-
mentum of 2ħhk is 4 ER, therefore the potential is well suited to guide the atoms
along its ring shape.
Fig. 5.24a depicts the time evolution of the atomic ensemble inside the trap-
ping geometry after the lattice pulse. In contrast to the beforehand adjusted
lattice pulse, without guiding potential, part of the atoms stay in place and are
not accelerated. They are strongly localised at the initial loading point of the
potential and stay in place without expanding. The accelerated fraction of the
atoms travels along the guiding ring potential with a momentum of 2ħhk. The
calculated round trip time of the atom cloud is t2ħhk = 93.0ms. Fig. 5.24 shows
the time evolution until a free evolution time of 87ms. Due to random shot-to-
shot density variations in the ensemble for higher times the determination of
the centre of mass is no longer possible. The movement up to this time shows
a very good agreement of the experimental data with the underlying calculated
position of the centre of mass (see Fig. 5.23).
In addition to the large centre of mass perturbation, another effect is increas-
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Figure 5.23: Position of atoms in the toroidal guiding potential after an accel-
eration pulse of the standard Bragg optical lattice. The lattice
pulse has been adjusted to accelerate as many atoms as possible
and by choosing an appropriate frequency difference ∆ω between
the two lattice beams the momentum transfer has been selected.
The atoms have been successfully transferred to the momentum
states |2ħhk 〉, | − 2ħhk 〉, |4ħhk 〉, | − 4ħhk 〉, and |6ħhk 〉. The solid lines
show the theoretical position of atomic ensembles travelling with
the equivalent momentum for each measurement series.
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Figure 5.24: Atoms with |2ħhk 〉 and | − 2ħhk 〉 inside a toroidal wave guide.
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Figure 5.25: Atoms with |4ħhk 〉 and |6ħhk 〉 inside a toroidal wave guide.

5.4 Transport of BEC in ring shaped trapping potentials 135



ing the difficulty to determine the centre of mass for large times. Due to the
expansion of the cloud and the limited amount of atoms, the density decreases.
The reduced density yields a reduction of the signal to noise ratio introducing
additional uncertainties. For interferometric measurement, a change to higher
order Bragg diffraction seems to be a good choice in order to reduce transport
time and limit the uncertainties in the positioning of the cloud after transport.

Momentum transfer to |4ħhk 〉

The movement of atoms with a momentum of 4ħhk is shown in Fig. 5.25a be-
tween 11 ms and 115 ms after the lattice pulse. The lattice has been adjusted to
a relative frequency of∆ω= 30.17kHz and the lattice amplitude was chosen in
order to accelerate a maximum fraction of the atoms. The depicted absorption
images show a clockwise rotation of the atoms inside the toroidal guiding po-
tential. Fig. 5.23 shows that the transport is also possible in counter-clockwise
direction. The lattice depth has been chosen as before in order to be able to
trap atoms with a momentum of 4ħhk or a kinetic energy 16ER.
The atomic ensemble is loaded into the guiding structure and accelerated im-
mediately. Over 90 % of the atoms are accelerated to the desired state of |4ħhk〉
while the remaining atoms occupy the states | ± 2ħhk〉 and |0ħhk〉. As already
observed before the remaining atoms stay at the loading point and do not show
expansion. In addition atoms in state | ± 2ħhk〉 move according to their momen-
tum around the guiding structure. The atoms accelerated into the desired state
|4ħhk〉 travel the full circumference of the guiding potential in 47 ms, which is
2 ms longer than anticipated but close to twice as fast as atoms accelerated to
a momentum of 2ħhk. After 103 ms a second revolution of the atoms in the
toroidal potential is observed, which is consistent with the first round trip time.
The density of the atomic cloud allows the observation of slightly longer times
but due to a loss of contrast no additional revolutions can be observed.

Momentum transfer to |6ħhk 〉

Fig. 5.25(b) shows the time evolution of a wave packet inside the toroidal wave
guide travelling with a momentum of 6ħhk. The atoms are accelerated clockwise
and a full circumference is shown. Due to the increased velocity additions on
the trapping potentials had to be made. The kinetic energy of a 87Rb atom
travelling with a momentum of 6ħhk is nine times the energy of a wave packet
with 2ħhk: 36 ER. The repulsive ring potential depth was matched to hold atoms
inside the outer ring. In order to achieve the needed potential depth the detun-
ing of the Ti:Sa laser was changed to λ = 793.5nm. With an optical power of
97.0 mW the repulsive potential of the outer ring is 45.4 ER which is sufficient
to guide atoms with a momentum of 6ħhk. The inner ring potential is reduced
by a factor 3.8 as determined in Sec. 5.3.4. Due to imperfections the potential
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height will vary along the full circumference of the potential which can induce
unwanted losses. In addition the lattice depth had to be increased in order
to achieve efficient excitation of the desired state |6ħhk〉. This was achieved
by setting the detuning of the lattice beam to 500MHz in respect to the D2
F = 2→ F ′ = 2 transition of 87Rb. The lattice depth was adjusted to result in
a π pulse and the detuning between the two lattice beams was chosen to be
∆ω= 45.23 kHz. About 75 % of the atoms can be transferred to |6ħhk〉.
The guiding of atoms with a momentum of 6ħhk gives a calculated round trip
time of t6ħhk = 31.0 ms. Fig. 5.25(b) shows the time evolution between 9ms and
35ms. The position of the centre of mass in the ring potential is also shown in
Fig. 5.23. The initial loading position is corresponding to 0 °. After 9ms the
atoms already traversed nearly a third of the full circumference. Additionally
a cloud of atoms can be observed that leaves the guiding geometry after the
initial acceleration and is now propagating straight right at 9ms and 10ms in
to the right (see top of Fig. 5.25(b)). The position of the cloud indicates the
acceleration direction and shows that a tangential acceleration was achieved.
The resting atoms at the top of the ring geometry show that the acceleration up
to 6ħhk lacks efficiency in respect to an acceleration to 2ħhk. In addition multiple
wave packets are observable that move with lower momentum as 6ħhk. Clearly
visible are wave packets of the momentum state |2ħhk〉 and | − 2ħhk〉. They orig-
inate from the off-resonant excitation of the undesired momentum states and
are also a travelling along the ring. Earlier experiments have shown that rest-
ing atoms could expand without azimuthal confinement cause of the very low
trapping frequency in the azimuthal direction. This is no longer observed in a
trapping potential sufficiently deep to guide atoms with 6ħhk momentum. Like
earlier experiments have shown imperfections in the potential yield a localisa-
tion that prohibits expansion [61]. Non-desired momentum states like |2ħhk〉
or | − 2ħhk〉 move along the guiding structure, therefore the potential depth of
corrugations has to be less than 4ER.
The moving atomic ensemble with a momentum of 6ħhk traverses the full cir-
cumference of the ring after 33 ms, which is 3ms more than anticipated before.
This could originate from radial oscillations that inhibit azimuthal propagation
but has not been investigated in detail. During the movement through the trap-
ping potential an increased loss of atoms can be observed. Between 20 ms and
28ms a second much less pronounced ring shaped cloud can be observed. Its
shape follows the shape of the toroidal guiding potential. This effect is more
pronounced in the lower left part of the ring potential on the absorption im-
ages. This indicates that the potential depth is modulated along the ring. From
previous measurement it is known that the left and the right part of the poten-
tial feature an unequal ratio between the inner and the outer ring potential.
The increased loss rate yields a shortened observability of the movement. After
35ms the atomic cloud travelling with 6ħhk is no longer observable.
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Width of the atomic ensemble

For future interferometric measurements the free expansion of a BEC is of inter-
est. As discussed in Sec. 5.3 free expansion of a resting BEC has been observed.
Since the phase α of the BEC evolves according to its spatial evolution a free
expansion of both interferometer legs is favoured. Differences of the phase gra-
dient will create additional spatial modulations and degrade the inteferometer
measurements.
A possible interferometer sequence would create a resting and a moving cloud
in the guiding structure and after a full round trip of the moving ensemble
the interferometer would be closed once the clouds overlap spatially. To gain
insight on the evolution of the phase profile the azimuthal width of the BEC
was observed during its movement in the ring shaped wave guide. Fig. 5.24
shows the time evolution of two BECs with 2ħhk and −2ħhk momentum travel-
ling clockwise through the guiding structure. The accelerated cloud expands in
azimuthal direction during its movement along the ring. A fitted Gaussian dis-
tribution yields the width of the ensemble and its time evolution is shown in Fig.
5.26. Underlying to the measurements of the width of atoms in the state |2ħhk〉
and |4ħhk〉 is the numerical solution of Eq. (2.36) with the starting parameters
of the trap as follows: ωr(0) = ωφ(0) = 2π × 100Hz and ωz = 2π × 150Hz
and ωr(t) = 2π × 300 Hz, ωφ(t) = 0Hz and ωz = 2π × 168 Hz. The initial
expansion of the ensemble was set to the Thomas-Fermi radius of the cloud
RTF = 3.02µm.
The expansion of atoms travelling with a momentum of 2ħhk (see Fig. 5.26) is
as expected and follows the numerical solution for the first 50 ms. The time
period in which mean-field interaction is dominant has already past and after
10 ms ballistic expansion is dominant. At 10ms the measured width agrees per-
fectly with the numerical solution. Since mean-field energy is already depleted
and ballistic expansion should be dominant a linear scaling of the width is ex-
pected for longer evolution times. This behaviour can be observed in Fig. 5.26
for expansion times of up to 40 ms. The azimuthal width of the atomic distribu-
tion is 200µm after 40 ms which corresponds to approximately a fifth of the full
circumference of the ring potential. After this time the width of the ensemble
is not following the expected behaviour any more. Instead the expansion of the
ensemble nearly stops and the width stays in the regime of 200µm.
The expansion of atoms with a momentum of 4ħhk was investigated (see Fig.
5.26). The behaviour of the azimuthal width follows the expected behaviour
and is identical to the expansion of the wave packet with a momentum of 2ħhk
showing that the expansion is not dependent on the momentum. For times be-
tween 38 ms and 48ms no reliable width could be determined. This originates
from the resting atom cloud at the initial loading point. It broadens the mea-
sured width and yields an incalculable spread. After the cloud has passed the
overlap region the width is determinable again. This width shows a distinct
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Figure 5.26: Azimuthal expansion of two BECs loaded and accelerated clockwise
in the toroidal trapping potential. The underlying solid line is a
solution of Eq. (2.36) for the initial parameters ωr(0) = ωφ(0) =
2π × 100 Hz and ωz = 2π × 150 Hz and ωr(t) = 2π × 300 Hz,
ωφ(t) = 0 Hz and ωz = 2π × 168 Hz. The initial width of the
atomic ensemble was set to RTF = 3.02µm. For clarity reasons
the width of counter-clockwise are not plotted but act in the same
manner.

difference to the numerical solution: In contrast to atoms with 2ħhk momen-
tum, ballistic expansion again is the dominant process. The azimuthal width
of the condensate shows a distinct difference to the numerical solution but the
overall ballistic behaviour is still present. This indicates that the measured trap-
ping frequencies are not as high as assumed and the spreading of the ensemble
happens slower. The measured behaviour indicates that the azimuthal width
of the ensemble evolves ballistically for times between 38ms and 48 ms, the
time needed for a complete round-trip of the atoms in the toroidal potential.
This would yield an identical behaviour to the measured azimuthal width of a
resting BEC (see Sec. 5.3).
Because of the unpredictable behaviour of the spreading of atoms with 2ħhk
momentum atoms with a momentum of 4ħhk should be used for interferomet-
ric measurements. Due to the expected behaviour they would feature a nearly
identical phase gradient α as resting atoms, which would be ideal for interfer-
ometric measurements. The demonstration of interferometric measurements
will be discussed in Sec. 5.6.
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Cleaning of the ring with additional dipole trap kick pulses

In order to remove non-accelerated atoms it is possible to apply a short dis-
tortion to the trapping potential to increase losses on one side of the ring on
purpose. This is done by switching leg 2 of the crossed optical dipole trap on
for a limited amount of time after the lattice pulse has been applied. The in-
tensity of leg 2 is increased for a maximum duration of 3ms which induces
enough disturbance and additional heating to fully remove all atoms remain-
ing at the initial loading point of the trapping potential. Since all atoms in the
overlap area of the ring guiding structure and the crossed optical dipole trap
are affected by this process a waiting time has to be applied to make sure the
desired atoms are on the other side of the ring potential. The time needed
varies with the momentum state of the atoms and is typically half the time of
one circulation. This procedure is useful for interferometric measurements as
described in Sec. 5.6 to remove non-desired atoms in the interferometer area,
if the interferometer sequence features an appropriate configuration.

5.4.3 Symmetric splitting of wave packets inside the toroidal potential

In addition to the standard Bragg acceleration, two three-frequency Bragg ex-
periments have been performed to accelerate atoms in the ring potential (see
Sec. 3.6.1). The experimental configuration used for the acceleration in one
direction stayed in place and an additional frequency shift is imprinted on one
of the lattice beams. The experimental sequence was the same as described
earlier and the lattice pulse is applied directly after loading of the toroidal ring
trap has been finished.
The lattice depth and pulse duration have been adjusted to perform as a beam-
splitter for atomic ensembles to the momentum states | ± 2ħhk〉. The detuning
was chosen to be ∆ω = 15.08kHz to accelerate the atoms to a momentum of
±2ħhk. The ring potential height was chosen to be 20.8ER of the outer ring.
Fig. 5.27(a) shows the time evolution of the atoms in the toroidal trap after a
lattice pulse was applied. The time is varied from 9ms and 87ms in steps of
3 ms. The efficient splitting of three-frequency Bragg diffraction is visible after
15 ms. After 30ms each of the two atomic ensembles has already covered more
than a quarter of the full circumference of the toroidal wave guide. As before
the fraction of atoms staying in place of the initial loading area does not expand.
The travelling atoms move with a momentum of ±2ħhk and meet at the opposite
side of the potential after 48ms. Since the wave packets azimuthal size already
covers a quarter of the ring a definitive meeting point is not defined. The clouds
run through each other and after a total of 72 ms after the initial lattice pulse
the ensembles have separated in the ring potential and move towards the load-
ing area. The clouds do not show a decreased velocity after the passing at the
bottom part of the ring. After 87ms both clouds occupy the initial loading area
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Figure 5.27: Atoms of | ± 2ħhk 〉 and | ± 4ħhk 〉 inside a toroidal wave guide.
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in the ring. They have spread to cover half of the rings circumference and no
distinction between the two clouds can be made any more. Due to the reduced
density and losses longer observation times could not distinguish between two
clouds.
In addition to the symmetric splitting of atoms to | ± 2ħhk〉 symmetric splitting
to the momentum states | ± 4ħhk〉 has been demonstrated experimentally. The
same experimental parameters as before were used in order to observe the
splitting and guiding process. The relative detuning of the lattice beams was
adjusted to ∆ω = 30.17kHz. Fig. 5.27(b) shows the experimentally obtained
images. The splitting process shows the same diminished efficiency as already
discussed for the single Bragg splitting. The additional components travelling
with a momentum of ±2ħhk are clearly visible. The efficiency of the splitting
process varies greatly, which explains why some images show nearly no non-
desired excitation, where other show significantly more atoms in the wrong
momentum state. Atoms travelling with a momentum of 4ħhk, as desired, meet
the first time after the splitting process after 24 ms which is slight above the ex-
pected duration of 23ms. The atoms pass each other without measurable loss
of velocity and meet again at the initial loading point after 48ms. At the same
time atoms with the non-desired momentum of ±2ħhk meet at the opposite side
of the toroidal potential.

5.4.4 Behaviour for long storage times

The experiments with accelerated atom ensembles in the toroidal guiding struc-
ture have shown that after 100ms no distinct position of an atomic ensemble
is determinable. Even though the atoms are still in the ring they occupy nearly
the complete circumference of the ring and the ring features an equal density
distribution along its guiding path. Initially sharp density peaks could be mon-
itored in order to obtain the position and the velocity of atoms in the ring. This
is not possible once the atoms cover the complete circumference of the guiding
potential.
To gain insight in the atom motion after large travel times the lightsheet and the
double ring potentials are switched off to release the atoms from the waveguide.
Fig. 5.28 shows a compilation of absorption images for times of 156ms and
306 ms free evolution after a 4ħhk momentum transfer with a standard Bragg
lattice. Fig. 5.28(a) (about 3.5 revolutions) and Fig. 5.28(c) (about 7 revo-
lutions) show the density distribution in the ring after their given propagation
times, whereas Fig. 5.28(b) and Fig. 5.28(d) show the same experimental se-
quence with an additional 6 ms TOF during which the lightsheet and the ring
potential are switched off before detection.
After 156 ms (see Fig. 5.28(a)) the atom distribution has filled the full circum-
ference of the ring and no movement of the atoms is visible. The density dis-
tribution shows a maximum at the top of the potential which might originate

142 5 Toroidal waveguide for ultra-cold atoms and BECs



(a) 156 ms transport (b) 156ms transport with 6ms TOF

(c) 306ms transport (d) 306ms transport with 6ms TOF

Figure 5.28: Compilation of atom distribution in the ring potential after a 4ħhk
momentum transfer. Each image is an average over a total of 20
absorption images to increase the visibility of the atom distribu-
tion. Parts (a) and (c) show the density distribution after the given
transport times. Parts (b) and (d) feature an additional 6 ms TOF
to observe the velocity distribution of the atoms in the ensemble.

5.4 Transport of BEC in ring shaped trapping potentials 143



from a gradient in the trapping potential that pushes atoms in this direction.
Fig. 5.28(b) features an additional TOF of 6ms that yields a covered distance
of 141µm for 87Rb atoms with a momentum of 4ħhk. If atoms would travel with
said momentum, after the release from the ring potential each of the atoms
should move tangentially to its last point of occupation in the ring potential.
The additional 141µm would result in a new ring structure with an increased
radius of 222µm. The dashed guiding lines mark the inner and outer bounds
of the trapping region of the atoms before and after the release and are orig-
inated at the same position in each image. This shows that the centre of the
ring shaped density distribution is staying the same after the release from the
potential. The increased radial width is explainable by isotropic expansion to
the centre of the ring and away from the centre of ring structure. This implies
that the motion of the atoms has stopped almost completely. The increase of
ring radius is 12µm which would equate to a velocity of 10.08 mm/s. Less than
50 % of the anticipated velocity of 23.43mm/s. The same behaviour can be
observed for the increased transport time of 306ms. The reason for the inhib-
ited motion of the atoms for long times is unknown and should be investigated
again in smaller toroidal trapping geometries, where the lifetime of the con-
densate in the trapping potential is much larger compared to the time it takes
to expand over the full circumference. The decrease of contrast due to losses
and the limited atom number in the beginning increases the difficulty in ob-
serving the atom distribution for long transport times. A smaller ring structure
as presented in Sec. 4.5.2 should be viable to observe the effect. Due to its
scalability it is also a promising system to observe persistent current dynamics,
a system where the full circumference is covered by a moving coherent matter
wave [156].

5.5 Dynamic loading and release of atoms in ring shaped guiding
structure

Wave guides offer the possibility to guide and store atoms for long times. Long
storage times offer the possibility to introduce complex systems for matter wave
transpoort [157]. The advantages of optical wave guides are the high customiz-
ability, the easy combinability, and the easy and space-saving structure. Guided
matter waves can be used for interferometer experiments and a ring shaped
guiding structure can serve as a delay device. Additional functionality can ex-
tend these towards velocity selectivity [158].
This section demonstrates the external loading of a ring shaped guiding struc-
ture. A linear wave guide is aligned tangentially on-top of the ring potential.
An accelerated cloud of atoms is sent towards the ring and loaded into the ring
potential (see Sec. 5.5.1). Additionally the release of moving atoms from the
potential is investigated (see Sec. 5.5.2).
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Figure 5.29: Experimental setup to dynamically load atoms into the toroidal ring
potential. In contrast to Fig. 5.22 the ring guiding potential is
aligned next to the overlap section of the crossed optical dipole
trap. This allows the acceleration outside of the guiding structure
to demonstrate a dynamic loading process of the toroidal wave
guide.

5.5.1 Loading a moving wave packet into the ring potential

In order to dynamically load the atoms into a guiding ring structure the setup
of Sec. 5.1 has been modified. Fig. 5.29 shows the experimental alignment.
Instead of placing the ring shaped trapping potential on top of the crossed op-
tical dipole trap the overlap section of the trap is shifted to the left. The dis-
placement of the cross section is xD = 150µm. Leg 2 of the crossed optical
dipole trap is oriented tangentially on the ring guiding structure. The remain-
ing setup is not changed. The experimental procedure starts with the creation
of a Bose-Einstein condensate in the crossed optical dipole trap. During the
creation of the BEC the ring shaped trapping geometry, including the lightsheet
as well as the ring potential, are turned off. Instead of releasing the condensed
atoms from the crossed optical dipole trap, leg 2 of the trap has its intensity
increased. By lowering the intensity of leg 1 of the crossed dipole trap a quasi
one-dimensional wave guide is created. The intensity of leg 1 is reduced lin-
early to zero. The depth of the potential produced by leg 2 of the dipole trap is
chosen to be enough to hold atoms against gravity. The condensed atom cloud
is then accelerated to a momentum of p = 4ħhk. The atoms now travel in the
trapping potential of leg 2 of the dipole trap. As the atoms reach the overlap
region the intensity of the lightsheet potential as well as the ring potential is
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ramped up. In the same manner the intensity of leg 2 of the crossed dipole
trap is ramped down until it is shut off completely. The lightsheet potential
now fully supports the atoms against gravity and the blue detuned double ring
structure forces the atoms to travel in the ring shaped guiding structure. The
speed of the atoms yields that the distance xD is covered in 6.5 ms. Eq. (5.4)
shows that adiabatic loading is possible for small changes of the trapping fre-
quencies. The trapping frequency of the lightsheet potential in the gravitational
direction is in the same order of leg 2 of the dipole trap potential that serves
as a guiding potential first. The radial trapping frequencies of the ring poten-
tial of ωRing ≈ 2π× 300Hz is higher than the radial trapping frequency of the
linear wave guide. The calculated ramp time should be larger than 12.7 ms.
Experimentally these ramp times are too large. Due to their movement atoms
will leave the overlap region before a sufficient confinement of the ring trap is
achieved. Therefore the experimental ramp duration was chosen to be 2 ms.
Losses introduced by longer waiting times due to the lack of confinement of the
ring potential rose significantly for longer times. Ramping up the ring potential
and the lightsheet separately also yielded additional losses. The 2 ms ramp was
started after 5.5 ms so that atoms are well into the ring geometry before the
repulsive potential shuts most of the atoms out.
Fig. 5.30 shows a compilation of experimental images showing crucial points
of the loading procedure. Fig. 5.30(a) shows the initial point where the atoms
are condensed in the cross section of the optical dipole trap. The momentum
transfer accelerates the atoms towards the overlap region to the right on the ex-
perimental image. After the initial momentum transfer the atoms travel into the
overlapp region, which is shown in Fig. 5.30(b). Part of the atoms are not accel-
erated and stay at the initial point of creation. About 10 % of the atoms remain
at rest. They are not to be mistaken for atoms not loaded into the ring shaped
guiding structure. Instead they disperse after the linear waveguide has been
shut off. In Fig. 5.30(c) the remainder of the resting atoms can be seen. The
waveguide has been completely shut off for 3 ms. The ring shaped guiding po-
tential and the lightsheet potential are the remaining guiding structures. 95 %
of the accelerated atoms already follow the curvature of the ring potential and
are fully trapped into the guiding structure. 5 % of the accelerated atoms are
lost because they at the top left are repelled by the blue detuned ring wall. Fig.
5.30(d) shows the repulsed atoms dispersing away from the trapping geometry.
The atoms which were successfully loaded into the trapping geometry are trav-
elling inside of the ring with a momentum of 4ħhk. The process of loading the
atoms into the trapping potential from the outside could also be accomplished
by using atoms with a momentum of 2ħhk. Due to the decreased velocity the
atomic cloud reached the overlap after 14 ms. The increased travelling time
yields an increased cloud size and the loading procedure is less efficient.
Fig. 5.31 shows the position of the atomic cloud in the ring shaped guiding
structure after loading from the one-dimensional wave guide. The centre-of-
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Figure 5.30: Experimental images after different times of the experimental pro-
cedure. (a) The atoms are created outside of the ring potential and
are accelerated towards the ring potential indicated by the arrow.
(b) After 7 ms the atoms occupy the overlap region of the toroidal
trap and the one-dimensional wave guide. (c) After the loading
process the atoms travel inside the ring shaped wave guide. (d)
The atoms travel in the waveguide after the loading process has
been completed.
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Figure 5.31: Position of the centre of mass of the atomic cloud inside the ring
guiding structure. The black line represents the analytical solution
of a wave packet of 87Rb atoms travelling with a momentum of
4ħhk . The motion of the centre of mass is not disturbed by the
loading procedure.

mass position was taken after increasing evolution times. The solid line indi-
cates the calculated position for a wave packet of 87Rb atoms moving with a
momentum of 4ħhk. The loading procedure does not inhibit the velocity of the
cloud. The angular position of the cloud at the overlap point is given as zero
and after 45 ms a full circumference has been travelled by the atoms. Due to
the limited time the atoms stay in the overlap region the intensity ramp for the
three light fields was chosen to be 2 ms. Non-adiabatic loading is a common
problem if the trapping frequencies change too quickly [70]. A non-adiabatic
loading process shows excitation of higher energy states and can be detected
by observing heating processes. Additionally non-adiabatic loading destroys co-
herence [159] and therefore an adiabatic loading procedure is desirable. The
energy deposited due to heating should result in a faster spread of the atom
cloud loaded into the guiding structure. Additionally an increased tempera-
ture should increase losses. Fig. 5.32 shows the width of the atomic cloud in
the azimuthal direction for different transport times. The broadening of the
atomic cloud can be described by the scaling parameters λ as discussed in Sec.
2.2.3. Next to the data points a solution of Eq. (2.36) is plotted for the pa-
rameters of the ring shaped trapping potential. The cloud is in the ballistic
expansion regime and a linear increase of width is expected. The measured
width of the ultra-cold atoms increases with a slightly lower slope indicating
a slightly lower trapping frequency of the potential. This can be explained
with day to day fluctuations of the experimental setup of the conical refraction
double ring structure. No acceleration of the wave packet spreading can be ob-
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Figure 5.32: Width σx of the atomic cloud as a function of time in the trap-
ping potential. The solid line describes the numerical solution of
Eq. 2.36 with the parameters for the trapping ring geometry. The
slope of the expansion is slightly lower than the theoretical predic-
tion indicating that the loading procedure did not impose a heating
process.

served showing that the loading procedure itself is working without increasing
the temperature of the atom distribution.

5.5.2 Releasing atoms from the ring potential

To gain insight in the movement of the atoms inside the trapping potential and
to study the dynamics of moving atoms in a toroidal waveguide, atoms were re-
leased on purpose from the potential after they were accelerated. As a function
of the transport time in the potential before the atoms were released different
effects could be observed.
Fig. 5.33 shows four sets of images for different transport times. The atoms
were accelerated to a momentum of 4ħhk after they were loaded into the toroidal
wave guide. The accelerated atoms travel in clockwise direction along the trap-
ping potential. The depth of the potential was chosen so that the atoms could
be guided along the ring potential. After a varying transport time the atoms
were released from the potential by switching off the Ti:Sa AOM as well as
closing the mechanical shutter in front of the AOM. An additional time-of-flight
in the lightsheet potential alone was applied and the density distribution was
imaged by absorption detection.
Fig. 5.33(a) shows the position of the atomic cloud 10 ms after the lattice pulse.
The atoms travelled 230µm in the toroidal potential. Fig. 5.33(b) shows the
corresponding image with additional 12 ms of free expansion in the lightsheet
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(a) 10ms transport (b) 10 ms transport
+ 12 ms TOF

(c) 15 ms transport (d) 15 ms transport
+ 12 ms TOF

(e) 20 ms transport (f) 20 ms transport
+ 12 ms TOF

(g) 25 ms transport (h) 25 ms transport
+ 12 ms TOF

Figure 5.33: Absorption images of the transport of atoms in the ring potential
with a momentum of 4ħhk . On the left side the atoms reside in
the trapping potential whereas on the right side the atoms were
released after the transport in the ring potential and detected after
an additional TOF of 12 ms. Depending on the azimuthal spreading
a varying rotation of the atomic ensemble is observable.
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Figure 5.34: Rotation of a released moving ultra-cold atomic ensemble from the
toroidal wave guide for different travelling times t1. The slope, giv-
ing the angular velocityωtwist, increases for longer transport times
t1 as described in Eq. (5.8).

potential without the ring potential. The atoms leaving the trapping area of the
ring tangentially and due to the azimuthal expansion of the ensemble different
propagation directions emerge. The front part of the ensemble has a different
tangential direction then the back side of the ensemble. This induces a twist of
the atomic ensemble once it is released from the ring potential. The twisting of
the ensemble is largely dependent on the initial azimuthal waist. The images
of Fig. 5.33 show the evolution of the twist for different azimuthal widths. A
higher azimuthal width was achieved by longer travelling times in the ring po-
tential.
To observe the twist of the atomic ensemble its evolution was monitored for
varying times after the release from the toroidal potential. The experimental
results are shown in Fig. 5.34 for four different initial transport times t1 in
the guiding ring structure. The angle is measured by fitting a two-dimensional
Gaussian distribution, where a dependence of the orientation on an angle αwas
introduced. α gives the twist in respect to the vertical axis of the ring potential
in the horizontal plane of the toroidal wave guide structure. The underlying
solid lines are linear fits to determine the slope ωtwist of the rotation of the en-
semble. The twisting shows a distinct variation for increased travelling times
and shows the following experimental correlation between the travelling time
t1 and the angular velocity ωtwist after the release of the guiding potential:

ωtwist = −0.0356
°

ms
× t1 − 0.165 ° . (5.8)

As shown in Fig. 5.34 the twisting of the atom distribution shows a linear
behaviour. Since no angular momentum has been imprinted on the atomic
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ensemble the twisting of the atoms should continue until a full 180 ° twist is
completed. Due to the limited field of view of the detection system this process
cannot be observed.
The experimental demonstration of free evolving ultra-cold ensembles previ-
ously trapped in a toroidal geometry could serve as an interesting starting point
for the study of collisions of ultra-cold atoms and BECs [160]. By using double
Bragg diffraction (see Chapter 3) a symmetric splitting of the condensate in the
toroidal wave-guide can be achieved. The moving atoms in the wave guide can
be released after they nearly travelled half of the rings circumference. Depend-
ing on their relative angle the collisions of clouds can be observed. By limiting
the momentum width of the cloud an additional momentum selectivity of en-
semble can be implemented. Depending on the exact release point of the atoms
the relative angle can be adjusted under which the ensembles collide.

5.6 Matter wave interferometry in ring shaped dipole potentials

The common ground of all interferometers is the coherent splitting of an initial
state, the subsequent evolution of the created superposition of the system, and
finally the recombination the respective parts. A phase difference between the
two or more parts of the interferometer yields an experimentally observable
signature. For matter wave interferometry, the initial state is represented by
the Bose-Einstein condensate of 87Rb atoms. In addition an optical lattice can
is used to split and recombine the ensemble. This has been shown in Sec. 3.7
with a double Bragg lattice. The Ramsey type interferometer, consisting of two
π/2 pulses, serves as an auto-correlation measurement and the phase differ-
ence between the interfering ensembles is realized by a spatial offset of the two
clouds.
By implementing a Mach-Zehnder like interferometer the phase accumulated
along a path can be observed. The Mach-Zehnder interferometer were first cre-
ated with light, where an initial optical beamsplitter creates two beams of light
that each travel different beam path. They are, at a later stage, recombined
with a second optical beamsplitter and depending on the phase difference the
interferometric intensity modulation can be measured at the two exits of the
interferometer. In combination with toroidal wave guides this scheme can be
conferred easily to matter wave interferometry. A coherent ensemble is split
in two parts with an optical lattice beamsplitter pulse. One of the two parts
travels a full circumference along the rings guiding structure and upon reach-
ing the resting part the interferometer sequence is completed. In this section
the implementation of an Mach-Zehnder-type interferometer in toroidal guid-
ing potentials will be demonstrated. In the following sections the experimental
scheme for matter wave interferometers is shown and the experimental mea-
surements will be discussed. The interferometer sequence was implemented by
utilizing coherent splitting and recombination with Bragg diffraction (see Sec.
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5.6.1). Possible influences prohibiting a successful implementation of the inter-
ferometer are discussed in Sec. 5.6.2. This section closes with a discussion on
consequences for future interferometric measurements at the ATOMICS experi-
ment to successfully implement a toroidal matter wave interferometer (see Sec.
5.6.3).

5.6.1 Experimental implementation of interferometric measurements with
Bragg diffraction

The introduced toroidal wave guide helps with the implementation of a mat-
ter wave interferometer due to its periodic structure in azimuthal direction.
Accelerated atoms periodically return to the exact same position after a full cir-
cumference in the ring potential. This eliminates the need to implement a π/2
-π-π/2 pulse sequence, which is normally used for Mach-Zehnder-type inter-
ferometer. Instead the π pulse is replaced with a sufficiently long waiting time
to let the atoms travel a full circumference of the rings guiding structure. The
interferometric pulse sequence therefore mimics the pulse sequence of a Ram-
sey type interferometer presented in Fig. 3.25.
Fig. 5.35 depicts the implemented interferometer sequence. A Bose-Einstein
condensate of 25000 87Rb atoms is produced in the crossed optical dipole trap.
The toroidal potential is positioned on top of the crossed optical dipole trap and
the atoms are loaded into it adiabatically. As Fig. 5.35(a) depicts the atoms are
then accelerated with standard Bragg π/2 pulse. The coherent superposition
between the momentum states |0ħhk〉 and |2ħhk〉 yields a separation of the two
atomic ensembles. Fig. 5.35(b) shows the resting ensemble at the initial point
of loading whereas the accelerated part travels along the guiding potential with
its imprinted momentum of 4ħhk. After the atoms travelled a full circumference
in the ring potential both clouds spatially overlap again (see Fig. 5.35(c)). A
second π/2 pulse is applied and the interferometer sequence is complete. In or-
der to observe the imprinted density modulation due to the spatial separation
∆x an additional waiting time is given until the density distribution is imaged
(see Fig. 5.35(d)).
Analogously to the interferometric measurements with double Bragg diffraction
in Sec. 3.7 the fringe period d is dependent on the spatial displacement ∆x of
the clouds. The spatial displacement can be tuned by altering the time τ be-
tween the two π/2 pulses.
The implementation of an interferometer with optical lattice pulses is not de-
pendent on the choice of the order of the Bragg lattice. As discussed earlier the
azimuthal width of the condensate follows the theoretical predictions up to a
time of 50ms (see Sec. 5.3.5 and Sec. 5.4) After that time the width of the
condensate is not well defined and shows unpredictable behaviour. The phase
gradient α, determining the properties of the expected density modulations,
therefore also is unpredictable, which makes interferometric measurements im-
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Figure 5.35: Schematic overview of the sequence used for matter wave interfer-
ometry in toroidal wave guides. (a) A Bose-Einstein condensate is
loaded into the toroidal wave guide. (b) A π/2 lattice pulse imple-
ments a matter wave beamsplitter. Half of the atoms move with
a momentum of 4ħhk in azimuthal direction along the ring guid-
ing structure. The other half of the initial atomic ensemble stays
at rest. Both atomic ensembles spread according to the scaling law
described in Sec. 2.2.3. (c) After a full round trip both ensembles
overlap spatially. A second π/2 pulse closes the interferometer and
projects the coherent superposition of the two atomic clouds. De-
pending on the separation of the two π/2 pulses the clouds are
displaced by ∆x . (d) After an additional waiting time the two exits
of the interferometer are spatially separated. The density modula-
tion is visible in both interferometer exits.

154 5 Toroidal waveguide for ultra-cold atoms and BECs



x Position [µm]

y
P
o
si
ti
o
n
[µ
m
]

100 200 300 400 500 600

100

200

300

400

500

600

−100 −50 0 50 100 150
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Position [◦]

D
en
si
ty

[a
.u
.]

Figure 5.36: (left) Density distribution after a full Mach-Zehnder-type interfer-
ometer. The time between the two π/2 pulses of the interferom-
eter is 45.5 ms. After the second π/2 pulse an additional waiting
time of 18 ms passed before the absorption detection image is im-
plemented. (right) After the transformation to a one-dimensional
density profile a fit to the distribution was made (solid red line).

possible. Because the round trip time of a BEC with a momentum of 2ħhk is
92.3ms, single order Bragg diffraction cannot be used. Second-order Bragg
diffraction on the other hand features half the round trip time and is therefore
used to implement a matter wave interferometer in toroidal guiding structures
with standard Bragg diffraction.
Fig. 5.36 shows the obtained a density distribution. The left side shows the
observed two-dimensional density distribution whereas the right side gives the
transformed density distribution to a one-dimensional profile (see Sec. 5.2).
The time between the two π/2 pulses was set to 45.5 ms which is 0.7ms short
of the time needed for a full circumference. The resulting displacement of the
clouds is ∆x = 0.7ms × 23.5µm/ms = 16.6µm. The density profile shows
a very distinct density modulation along its azimuthal direction. The density
modulation is present in both interferometer exits. The moving exit (about
0 − 100 °) shows a very high density in its centre. Its centre of mass moved
according to its velocity for additional 18 ms. The resting part of the density
distribution is originated at angles between −100 and 0 °. Its azimuthal width
is higher which yields more fringes to be visible. The distance of the fringes is
the same as the distance of the fringes in the first interferometer exit. The fit
used was derived from Eq. (3.50) but featured the following simplifications:
instead of two spatial frequencies only one was implemented and instead of
three Gaussian distributions only two were fitted.
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Figure 5.37: Finge spacing obtained after a Mach-Zehnder-type interferometer
sequence in a toroidal trapping potential. The time between the
two π/2 pulses is varied and a variing fringe spacing is expected.
The solid line shows the expected fringe spacing according to Eq.
(3.49) and the dashed line incorporates the drift of the resting
atomic ensemble, which reduces the time needed to achieve a spa-
tial overlap.

The resulting parameters for the fringe spacing are shown in Fig. 5.37. Along-
side the experimental data is the expected fringe period plotted. The numerical
solution of α was used to determine the fringe spacing d with Eq. (3.49). The
parameter ∆x in a toroidal trap has to take into account the periodicity of the
potential. Therefore ∆x is determined by:

∆x (t) =
�

t − t4ħhk

�

× 4vR , (5.9)

for an interferometer with momentum transfer to |4ħhk〉. t4ħhk = 46.2 ms denotes
the round trip time of an ensemble of 87Rb atoms with a momentum of 4ħhk in
the toroidal wave guide. In addition the dashed line shows the expected fringe
period for a drifting resting ensemble. As shown in Sec. 5.3 a resting cloud has
shown to move up to 20µm after a time of 45µs. According to the movement
direction of the displacement the overlap point of the interferometer to apply
the second π/2 pulse is reached earlier.
The experimental data does not show any dependency on the parameter ∆x .
As the numerical data would imply a shift in the displacement should induce
a changed spatial frequency, hence a changed fringe spacing. This could not
be observed. Instead the fringe spacing remains constant throughout the
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whole parameter area. The parameter is also independent from the poten-
tial depth in radial or z direction. With Eq. (3.49) a value for the phase
gradient α = (105 ± 46) × 10−6µm−2 can be derived from the experimental
data. The value is by at least four orders of magnitude lower than the expected
value of ≈ α= 0.4µm−2 calculated with Eq. (2.40).
To make sure that each lattice pulse creates the desired momentum distribu-
tion the sequence was performed without the application of both but only one
pulse. The timing of the remaining experimental setup was not altered. First
the second lattice pulse was omitted and the achieved density distribution was
investigated. In an additional measurement the first lattice pulse was omitted.
Both systems produced the expected momentum distribution which evolved ac-
cording to its momentum in the guiding structure.
In order to prove that the observed density distribution is not a product of ac-
celerated atom ensembles with different relative momenta of 2ħhk or 4ħhk the
evolution of the fringe spacing was observed. Fig. 5.38 shows the mean values
of the measured fringe period of up to 60 single shots per data point. The error
bars are the statistical errors of the average values. The obtained data illustrates
that the fringe distance of the density modulation achieved in the experiment is
changing. The slope m= (5.19± 0.44)µm/ms obtained from the fit of a linear
equation to the data point shows that the velocity differs significantly from the
velocity of the momentum states |2ħhk〉 and |4ħhk〉. The equivalent velocities are
11.77µm/ms and 23.54µm/ms. If the structures would be a simple product
of the application of multiple π/2 pulses without the addition of an coherent
relation between the wave packets relative velocities of 23.54µm/ms should
be observable. This is not the case. Under the assumption that one of the two
lattice pulses does not perform as desired, and excitation of the non-desired
momentum state |2ħhk〉 is occurs, relative velocity of 11.77µm/ms would be
observed. Both relative velocities cannot be observed. The measured slope of
m = (5.19± 0.44)µ/ms is not achievable with a momentum transfer by an op-
tical lattice for 87Rb. Therefore it can be ruled out that the observed density
patterns are created solely from non-coherent processes.

5.6.2 Discussion on limiting factors for matter wave interferometers in
wave guides

As shown in the previous section interferometric measurements have been per-
formed, but the expected behaviour could not been confirmed. In contrast to
successful implementations of guided matter wave interferometers [161] no
consistent dependence on the parameters could be observed. Instead a con-
stant density modulation occurred. This section will discuss possible experi-
mental uncertainties and their consequences for the implementation of matter
wave interferometers in toroidal wave guides.
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Figure 5.38: Fringe spacing depending on the additional waiting time after the
second interferometer pulse. The data points shown are the mean
values of multiple measurements. The solid line represents a linear
fit to the data points and has a slope of m = (5.19± 0.44)µm/ms.

Different evolution of phase gradients for both interferometer arms

In order to guide a wave packet with 4ħhk moment in the toroidal wave guide the
potential has to be at least 16 ER deep in order to hold the atoms on the circular
wave guide. In order to achieve said potential heights the intensity of the Ti:Sa
laser used to produce the wave-guiding ring structure has to be increased. The
free expansion along the azimuthal direction discussed in Sec. 5.3.5 is dimin-
ished by an increased optical power. As shown before the increased trap depth
yields a non-spreading atom ensemble in the loading area of the BEC. Since
the expansion of the wave and the phase gradient are dependent on each other
this occurrence yields a modified phase gradient. Because only the moving
cloud experiences a diminished expansion, different phase gradients in each
of the interferometric legs evolve. Eq. (3.49) gives the fringe period under
the assumption that both clouds feature the same phase gradient α during the
complete duration of the interferometric process. By introducing two different
phase gradients α1 and α2, Eq. (3.49) has to be altered accordingly.
Eq. (3.45) becomes:

F(x) = 2N × cos

�

−
�

α1 −α2

2

�

x2 +
�

α1∆x + 2β
�

x + C

�

, (5.10)

and κ is now defined as by:

κ (x) =
�

α1 −α2

2

�

x +α1∆x . (5.11)
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(a) α1 = α2 = 0.04µm−2
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(b) α1 = 0.04µm−2 and α2 = 0.01µm−2

Figure 5.39: Calculated density distributions for different values of the phase
gradient α1 and α2 for the respective atomic distributions.

In contrast to the previous discussion an additional term is introduced: a space
dependent oscillation frequency κ(x) of the spatial density modulation. For
α1 = α2 the term vanishes and the definition of κ(x) is the same as Eq. (3.47).
Fig. 5.39 illustrates the behaviour of the density modulation of different values
of α. Both density distribution feature the same set of experimentally obtained
values. The density distribution consists of a Gaussian envelope with a sinu-
soidal oscillation on top. The width of the Gaussian is 100µm. The amplitude
of the Gaussian has been set to one as well as the amplitude of the oscillation.
The position of the centre of mass has been set to zero. Fig. 5.39(a) shows
the density modulation obtained with α1 = α2 = 0.04µm−2. The density dis-
tribution shows a single-frequency modulation. The fixed period is very well
in the detectable region of the ATOMICS experiment. Fig. 5.39(b) shows the
density distribution obtained for α1 = 0.04µm−2 and α2 = 0.01µm−2 [63].
The space dependent oscillation frequency κ(x) yields a very fast increasing
oscillation frequency as the distance increases from zero. The obtained fringe
spacing reaches a regime of under 30µm, a lower bound for the detectable spa-
tial period of the optical system. Even though the resolution is 5.3µm, to fully
observe two density modulations as separate fringes at least 30µm of separa-
tion are favourable. The calculations do not take into account fluctuations of
the density due to imperfect lattice beams an noise, effects that further diminish
the observable parameter regime.
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Azimuthal width of the clouds

Due to the processing time of at least 45ms the azimuthal width of the con-
densate is at least a third of the complete toroidal wave guide. This yields
additional problems in regards of the lattice pulses used to accelerate and de-
celerate the atomic ensemble. Due to the large waist of the lattice pulses the
position of the atoms in the ring is of no problem. The problem arises from
the curvature of the toroidal wave guide and the acceleration direction of the
optical lattice. Atoms at the loading point of the toroidal trap are accelerated
tangentially in the ring direction. This is also possible on the opposite side
of the toroidal potential where the lattice beams are also aligned tangentially
width the ring potential. Accelerating the atoms at other positions in the ring
is also possible but yields excitation of radial oscillations or even atom losses.
In certain places this behaviour is useful, e.g. to measure the trap frequency of
the toroidal wave guide [65] or to measure the trap depth (see Sec. 5.3.4). In
the case of interferometric measurements this non-desired behaviour inhibits
the quality of the seconds π/2 pulse. Atom losses during the interferometric
process yield a reduced contrast of the interferometer and should be avoided.
In addition the excitation of radial oscillations inhibits the possibility to observe
density modulations [136,162].

Dependence of the motion of atoms on the lightsheet potential

The lightsheet potential used to support atoms against gravity is known to fea-
ture inequalities in its spatial intensity distribution. This yields modulated po-
tential depths also in the area of the ring potentials guiding structure [63]. It
could be shown that the free expansion of an atom cloud in the toroidal wave
guide is possible (see Sec. 5.3.5) and therefore the influence of the lightsheet is
negligible. Nevertheless in this respect a different effect has been observed. The
azimuthal position of an accelerated ensemble in the toroidal trap changes with
varying intensity of the lightsheet beam. To further investigate the behaviour of
atoms for different lightsheet depth a ensemble of ultra cold atoms was accel-
erated inside the toroidal guiding structure. Fig. 5.40 shows the position of an
atom ensemble after the acceleration to a momentum of 4ħhk and subsequent
waiting time of 35ms after the lattice pulse. The time of 35ms was chosen to
have the maximum rotation time of the atoms in the ring without interacting
with atoms resting at the loading point. After 35ms 75 % of the full circumfer-
ence of the ring have been travelled.
The solid black line shows the expected position of the centre of mass of the
wave packet at x = v × t = 22.5µm/ms× 35ms = 789µm. The ring potential
was kept constant at a wavelength of 792.5nm and repulsive outer ring height
of 24.2 ER. The position of the centre of mass has the expected position after
moving with a momentum of 4ħhk for 35ms for low lightsheet power. For in-
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Figure 5.40: Position of the centre of mass of an accelerated atom ensemble
in the toroidal waveguide. The atoms are accelerated to a momen-
tum of 4ħhk and after 35 ms their expected azimuthal position with
respect to the point of acceleration is 789µm. Depending on the
optical power of the lightsheet the position varies.

creasing power the position of the centre of mass is reduced to smaller values
indicating that an increased lightsheet depth introduces a potential gradient or
corrugations along the ring guiding structure. These effects influence the free
movement of the atoms by decreasing their momentum. This results is a false
estimation ∆x for the interferometer sequence.
In order to implement a perfect interferometer this drift has to be taken into
account. The relative position of the two clouds ∆x has to be adjusted appro-
priately if the influence of the lightsheet cannot be eliminated. The induced
displacement due to the lightsheets potential depth is in the order of 10µm
for the experimentally achievable optical power. This displacement does not
change the overall spatial density modulation by a large factor. A well defined
spatial density modulation should still be observable.

5.6.3 Consequences for future interferometric measurements

The implementation of a Mach-Zehnder-type interferometer for ultra-cold
atoms has not been successful in a quantitative manner. The expected depen-
dence of the fringe period on the displacement ∆x could not be observed.
The measured phase gradient of the BEC of α = (105± 46)× 10−6µm−2 is by
four orders of magnitude smaller than the expected value of αcalc = 0.04µm−2.
Also the assumption that both clouds feature the same phase profile α has to be
reconsidered. The implementation of a free expanding cloud has been shown
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in shallow ring potentials. Guiding potentials deep enough to guide accelerated
atoms with a momentum of 4ħhk did not show this behaviour.
In general the implementation of a smaller ring structure would decrease a mul-
titude of problems. On the one hand the transport times for all processes in the
ring system would decrease and on the other hand the reduced transport time
would yield smaller azimuthal expansion of the atomic ensembles. The reduced
ring size could also be used with less optical power. A Mach-Zehnder-type in-
terferometer in a smaller ring could be implemented using 2ħhk momentum,
which would also prevent the reduced contrast experienced in higher order
Bragg interferometers.
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6 Novel three dimensional dark
focus trap

Traps for atoms come in a multitude of different implementations. All-optical
trapping geometries have the advantage that they can trap all magnetic states of
an atom simultaneously [26]. They also feature flexibility and can be shaped ac-
cording to a given application [163]. A drawback of trapped atoms in attractive
dipole potentials is, that they suffer from different energy shifts depending on
the state and intensity of the trap. The fidelity of high precision measurements
based on dipole traps also suffer from coherence loss caused by inhomogeneous
differential light shifts [164]. These shifts can be compensated with appropriate
arrangements but would not arise in principle in a so called ’dark trap’. A dark
trap features large repulsive potentials enclosing the trapping region confining
the atomic ensemble spatially. Normally, dark traps consist of a combination of
multiple repulsive potentials. Conical refraction offers the possibility to create
true three-dimensional dark trap with a single beam. A perspective applica-
tion of these beams is found in quantum computation, where large registers of
atomic ensembles are used to store quantum information in atomic states. The
applicability of the involved operations is highly depended on the dephasing
effects which are partly caused by the differential ac Stark shift [165]. By using
micro-lens arrays a two-dimensional register of dark traps can be realised to
create a new way of storing atoms without the drawback of the differential ac
Stark shift at the traps centre.
In this chapter, the experimental implementation of a three dimensional dark
traps is presented. Sec. 6.1 characterizes a complete experimental setup of a
dark trap. Trapping of atoms and Bose-Einstein condensates is demonstrated in
Sec. 6.2. The chapter concludes with a discussion of future applications of dark
traps in quantum information processing and presents an approach towards the
generation of a two dimensional register of qubits in dark traps (see Sec. 6.3).

6.1 Experimental realization of a three dimensional dark focus trap

In addition to the general discussion on the three-dimensional dark focus in
Sec. 4.4.2, a complete characterization of experimentally realized potential has
been done. Sec. 6.1.1 shows the experimental creation of the bottle beam. The
intensity distribution along the propagation direction will be discussed in Sec.
6.1.2 and the properties of the focal plane will be shown in Sec. 6.1.3.
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Figure 6.1: Setup for the characterization of the three dimensional dark focus
beam. The polarization of the laser beam is purified by a polarizing
beamsplitter and can be adjusted by a combination of a λ/2 and
λ/4 waveplate. The focal plane of the focussing lens f1 is imaged by
a CCD camera.

6.1.1 Experimental setup of a three dimensional dark focus beam

The experimental setup to create a three dimensional dark focus is shown in
Fig. 6.1. The shown setup is part of the setup used to trap atoms with the
three dimensional dark focus described in Sec. 6.2. Collimated light out of a
laser passes a polarizing beamsplitter cube and is guided through a λ/4 wave-
plate to create circular polarized light. In order to compensate inequalities of
the polarization an additional λ/2 waveplate is used. The light is then guided
through a focussing lens with a focal length of f1 = 150 mm. In order to opti-
mize the optical beam path an aperture is placed in front of the focussing lens
f1. The aperture limits the waist and yields a well defined beam profile. With
an incident beam waist of wi = 1mm Eq. (2.6) gives a calculated beam waist
of w0,calc = 37.9µm and a Rayleigh range of zR = 5.88 mm. The conical re-
fraction crystal used is a KGd(WO4)2 crystal with a length of l = 2.2mm. The
remaining properties of the crystal are the same as the properties of the crystal
used for the creation of the double ring structure. In particular it features the
same half opening angle of α = 1 °. The radius of the ring structure is given by
R0 = α× l = 38.4µm. The created ring structure is imaged with a CCD camera
mounted on a translation stage. To avoid damage of the CCD camera a low
optical power was used.
The lens in front of the conical refraction crystal in combination with an aper-
ture produces a focus of size w0 = 42.7µm. The Rayleigh range of the beam
is zR = 5.42 mm. For the given values for the bottle beam, ρ0 = 0.90 which is
close to the ideal value of 0.92.
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Figure 6.2: Comparison of an experimental intensity distribution of the three-
dimensional dark focus in the focal plane and a fit of Eq. (6.1). The
azimuthal asymmetry of the potential yields an overall reduced trap
depth in the radial direction and is unfavourable.

6.1.2 Intensity distribution along the beam path

The beam profile of the three-dimensional dark focus has been measured in
detail in order to investigate the structure for the future use for atom trapping.
To obtain parameters like the radius and the width of the intensity distribution
a two-dimensional Gaussian distribution of the following form was fitted to the
experimental data:

I
�

x , y
�

= I0 × e−0.5

�

È

(x−x0)2+(y−y0)2−γ(z)
�2

σ2 + C , (6.1)

where γ(z) gives the radius of the ring in each plane z structure and σr the ra-
dial width of the ring. I0 denotes the amplitude of the intensity and C a constant
background. x0 and y0 are used to position the ring in the centre of the radial
structure. The intensity distribution I(x , y) does not feature a dependency on
an azimuthal angle in order to represent the radial symmetry of the numerical
solution of the potential. Deviations of I(x , y) to the experimental values are
discussed later and used to determine the radial symmetry of the potential.
The experimental data presents the intensity distribution of the three-
dimensional dark focus in the focal plane and azimuthal asymmetries are clearly
visible (Fig. 6.2a). Fig. 6.2b depicts the obtained fit of Eq. (6.1) and shows
the very good agreement with the experimental data. The ring radius as well
as the width of the ring wall can be extracted without problem. For z positions
near the focal plane, this fit gives easy access to experimental values. Near
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the Raman spot, the width of the ring walls is larger than the ring radius and
the obtained fitting parameters have to be handled with more care. Especially
amplitude A and the constant background C have to be reconsidered.

Beam Profile

Fig. 6.3 shows the comparison of the experimentally obtained dark focus and
the solution of Eq. (4.14) using experimental values determined in the focal
plane. Fig. 6.3(a) compiles experimental images taken every 0.5mm along
the direction z around the focal plane. The composition was built by using
a cut through the experimentally obtained image. The numerical solution of
Eq. (4.14) was carried out for the values of w0 = 42.7µm and ρ0 = 0.9 and
is shown in Fig. 6.3(c). The bottle beam shows a good agreement with the
numerical solution of Eq. (4.14) but also features some important differences.
In addition Fig. 6.3(b) shows Eq. (6.1) with the obtained fitting parameters
during analysis.
As discussed in Sec. 4.4.2, the beam propagation along the z-direction shows a
symmetric intensity distribution around the focal plane. The dark focus in the z
direction is limited by the Raman spot and the focal plane was determined ex-
perimentally by choosing the middle points between the two Raman spots. The
Raman spots themselves are calculated to be positioned at zRaman = ±7.23mm
(see Eq. (4.13)). The experimental position of the Raman spot is determined
to be at zRaman = ±7.7mm. The focussing lens and the crystal are positioned to
the left of z = 0 and the beam propagates in positive z direction. The overall
agreement of the numerical calculations to the experimentally obtained inten-
sity distributions is very good. Form and shape of the potential match. In
addition the experimental results show a asymmetry along the radial direction.
In the upper part of the experimental image shows a strong trend to higher dis-
tances from the initial axis of propagation and features an increased intensity.
The position just before the Raman spot at z = 6mm shows a larger decrease
in intensity as expected. Also the Raman spot to the left of the focal plane at
z = −7.7 mm features a smaller radial width by a factor of 1.7 in respect to the
Raman spot after the focal plane at z = 7.7mm. A broadening of the structure
in z direction indicates is not collimated perfectly.
To characterize the azimuthal variation of the intensity distribution in each
plane, the deviation of a perfect radially symmetric beam to the measured
intensity distribution was calculated. Fig. 6.4 shows the relative deviation
normalized to the mean intensity in each plane. The mean deviation along the
full ring is 6.7% whereas the maximum mean deviation is 10 %. The data shows
a minimum deviation in the focal plane of 5.1 %. The maximum deviation of
the intensity in azimuthal along γ(z) is also shown plotted and the minimum
intensity of the ring is 45 % of the mean intensity. The obtained data shows
that the radial symmetry is not perfect but the deviation should not hinder the
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(c) Calculated beam profile

Figure 6.3: Comparison of the experimental and calculated intensity distribution
of a three dimensional dark focus along the beam propagation axis
z . (a) Each slice of the measured intensity distribution is a cut of
10µm through centre of the ring shaped intensity distribution. The
position is given as ρ =

√
x2 + y2. Points of lower intensity show

the variation of intensity in the azimuthal direction of the intensity
distribution. (b) The solution of the fit of Eq. (6.1) to the intensity
distribution of each plane. The asymmetry of the measured images
with respect to the fit is clearly visible. (c) The numerical solution
of Eq. (4.14) was made with parameters matching the experimental
values: w0 = 42µm and ρ0 = 0.9 .
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Figure 6.4: Relative deviation of the measured intensity distribution in each
plane along the z direction from a perfectly radial symmetric in-
tensity distribution of equal power. The mean deviation shows a
minimum at the focal plane, where ultra-cold atoms and BECs will
be trapped in experiments. Additionally, the intensity drops about
40 % in the azimuthal direction around the ring.

trapping of ultra-cold atoms. The obtained intensity distribution in the focal
plane differs in a second setup used to measure the influences of spatial aper-
tures in front of the focussing lens. This implies that the overall setup used to
create conical refraction patterns is strongly prone to variations in the beam-
shaping process and should be revised for future implementations. Sec. 6.2
shows that the implemented setup is able to trap atoms despite its inequalities
and that a three-dimensional dark focus is a robust system that is also usable
with non-perfect beam shapes.

Radial size of the potential

As previously discussed, the radial size of the measured intensity distribution is
not as homogeneous and symmetric as expected (see Fig. 6.3(a)). Therefore,
the obtained radii of the fits of Eq. (6.1) have been investigated. Fig. 6.5 shows
the obtained values of the radius for each image along the beam propagation
axis. As before, the solid line represents the numerical solution of Eq. (4.14).
The radius of the numerical solution was determined by taking the distance
from the optical axis to the position of maximum intensity in radial direction.
The measured radii show a very good agreement with the expected evolution
but fall short of the maximum achievable radius. The maximum measured ra-
dius is 40.4µm and positioned at z = 0. The radii decrease symmetrically for
increasing distance to z = 0, as expected. At the position of z = ±7.7 mm the
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Figure 6.5: Radial dilatation of the three-dimensional dark focus depending on
the position along the beam propagation. The solid line represents
the distance of the position of maximum intensity from ρ = 0 for
each plane along the z .

measured radius of the ring is zero. This point lies behind the Raman spot and
shows that the Raman spot still features a small intensity at rho = 0. The mea-
sured radius in the focal plane is by 4µm short of the calculated radius of the
numerical solution. The reason for the difference between the calculated radius
and the measured radius is unknown. The not perfectly collimated beam be-
fore the focussing lense could be the reason the measured intensity distribution
diverges from the calculated one.

Confining potentials in a three-dimensional dark focus

The main application of the three-dimensional dark focus is going to be the
trapping of ultra-cold atoms and BECs. To build a trap, a tight confinement in
both, the radial as well as the longitudinal direction is important. As discussed
in Sec. 2.1, the trap depth is directly dependent on the detuning of the incident
light as well as the intensity. The dark focus is created with blue-detuned light,
therefore in a repulsive geometry. This potential stores atoms at locations of
low intensity. In the case of the three-dimensional dark focus, atoms will be
trapped around z = 0 and ρ = 0.
To determine the trap depth in radial direction intensity difference between the
lowest point of intensity and the highest points of intensity in the ring struc-
ture, i.e. the outer wall confining the potential, has to be determined. This is
done by measuring the intensity at ρ = 0 and at ρ = γ(z) along the transversal
direction z of the structure.
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Figure 6.6: Axial structure of the intensity at the points of minimum (ρ = 0) and
maximum (ρ = γ(z)) intensity.The solid line shows the numerical
solution of Eq. (4.14) with at ρ = 0 and the dashed line at ρ = γ(z).
The numerical solution has been rescaled to match the total optical
power.

Fig. 6.6 shows the mean intensity measured in each plane of the observed in-
tensity distribution, together with the intensity at ρ = 0. The underlying solid
line shows the solution of Eq. (4.14) for ρ = 0 and the dashed line shows the
intensity at ρ = r. Both lines have been rescaled to match the optical power
used by the experimental setup. The values of the solid and the dashed line
meet at the Raman spot. The measured intensity shows the same behaviour as
predicted by the numerical calculations and the previous discussed features of
the experimental implementation are also visible. As the most important fea-
ture an intensity of zero can be observed in the focal plane showing that a dark
state trap is possible. In addition the intensity distribution shows a minimum
at z = 0 for ρ = 0 and a maximum for ρ = γ(z). This shows that the maximum
trap depth will be present in the focal plane. The intensity along z for ρ = 0
rises until the Raman spot is met at z = ±7.7mm. Up until this point the inten-
sity distribution of ρ = r follows the expected behaviour having a maximum
around the focal plane. The previously discussed asymmetry of the potential is
clearly visible in the experimental data as the maximum intensity is shifted to
higher values of z.
The obtained trap depth is now calculated by the difference of the intensities
in each plane and is plotted in Fig. 6.7. As discussed before the ring wall has a
maximum in the focal plane and the intensity in the centre of the trap is zero.
This yields a maximum trap depth in the focal plane and has been confirmed
experimentally. The trap depth along the axial direction is lower and the dif-
ference length scales have to be taken into account. The trap size in the radial
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Figure 6.7: Intensity difference along the axial direction z . The difference of
the maximum and the minimum intensity is shown. The maximum
intensity was determined as the azimuthal averaged intensity of the
radial intensity distribution at ρ = γ(z). The minimum intensity is the
intensity at ρ = 0. The solid line shows the difference of the intensity
at ρ = 0 and ρ = γ(z) calculated by Eq. (4.14). The data has been
rescaled to match the total optical power.

direction yields a much smaller trap, with a diameter of ≈ 80µm, and there-
fore higher trapping frequencies for equal intensities. In the axial direction, the
trap has a size of ≈ 15 mm which yields far lower trapping frequencies. These
properties will be discussed in Sec. 6.2 where the three-dimensional dark focus
is used to trap atoms.

6.1.3 Properties of the focal plane

As shown in the previous section, the focal plane define the position of maxi-
mum trap depth for dipole potentials and features an intensity minimum equal
to zero. These properties give the focal plane ideal properties to serve as a trap
for ultra-cold atoms. The previously discussed asymmetry of the azimuthal in-
tensity distribution could reduce the quality of the trap as it could lower the
overall trap depth and therefore increase losses.
Fig. 6.2 depicts the intensity distribution in the focal plane recorded with the
CCD camera. In contrast to the theoretical predictions, the intensity distribution
features a modulation of intensity along its azimuthal evolution. The reduction
of intensity is in the order of 45 % and therefore halves the achievable trap-
ping depth. The image shows, that with a rotation of 90 ° the intensity changes
between maximum and minimum values. This modulation is unlikely to origi-
nate from polarization problems as the polarization changes along the ring and
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points with equal intensity have orthogonal polarization. It is likely, that the
incident, non-perfectly collimated light features asymmetries which produce
these patterns.
To further investigate on the quality of the obtained intensity distribution a sec-
ond beam line was set up to investigate on effects of a mechanical aperture in
front of the focussing lens. The overall setup was chosen to be identical to the
one already described in Sec. 6.1.1. With the extra aperture placed in front of
the focussing lens a second set of measurements was performed for compari-
son. The experimental images are presented in Fig. 6.8 depict the influence
of the aperture. Fig. 6.8(a) shows the experimental image of the focal plane
of a three-dimensional bottle beam without aperture. The beam features a ra-
dial intensity distribution with the same radial asymmetry already present in
the previous implementation of the setup. The modulation is less pronounced
indicating that the overall beam quality and collimation is better. Fig. 6.8(b)
depicts the same intensity distribution with an additional optical aperture in
front of the focussing lens. The aperture is used to increase the spatial coher-
ence of the input beam and to transform it into an ideally round Gaussian beam
that is then focussed through the conical refraction crystal. The focussed Gaus-
sian beam shows a less pronounced azimuthal intensity modulation and is close
to the numerical solution of Eq. (4.14) shown in Fig. 6.8(c). This indicates that
non-circular symmetric beam shaped introduce intensity modulations along the
ring structure that can be avoided by the use of an aperture. The aperture had
a diameter of slightly less than 1mm increasing the width of the focus w0. The
increased focus yields an increased ring wall width which in visible in the two
different experimental implementations.
In order to further observe the influences of the aperture, linear polarized light
was used. Fig. 6.8(d) shows the experimental image obtained without an aper-
ture. The image feature the typical moon-shape intensity distribution of a lin-
ear polarized conical refraction beam. Opposite of the maximum intensity is
an intensity minimum visible that is more pronounced as expected. With the
implementation of the same aperture used previously the unexpected intensity
vanishes (see Fig. 6.8(e)). For comparison the numerical solution of Eq. (4.15)
is shown in Fig. 6.8(f) which has a very good agreement to the overall shape
and size of the obtained intensity distribution in the focal plane. As before, the
radial width of the structure increases due to an increased w0.
The observed values of the intensity distribution have been further investigated
in Fig. 6.9. By applying the same algorithm described in Chapter 5 to calculate
the radial intensity distribution, fluctuations can be studied in more detail.
Without an aperture, the intensity distribution along the ring drops by 35% in
respect to the maximum value of intensity. By using an aperture the reduction
in intensity can be reduced to 9 %. The intensity modulations along the ring
are greatly reduced. The mean relative deviation of the rings intensity modu-
lation along the full ring structure is reduced from 11.8% to 2.6% showing a
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Figure 6.8: Intensity distribution of the focal plane of three-dimensional dark
focus. Fig. (a) and Fig. (d) show experimental images without an
aperture in front of the focussing lens. Fig. (b) and Fig. (e) show the
same experimental properties with an additional aperture in front of
the focussing lens. Fig. (c) and Fig. (f) show the numerical solution
of Eq. (4.14) and Eq. (4.15) respectively for the values of ρ0 = 0.92
and w0 = 42µm.
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Figure 6.9: Intensity distribution in the focal plane of the three dimensional dark
focus. The insertion of an aperture in front of the focussing lens
yields a decreased intensity modulation of the ring structure.

significant improvement. This confirms that the implementation of an aperture
to shape the input Gaussian beam is a useful addition of the creation of a three-
dimensional dark focus. It could also yield an improved double ring structure
if applied to the setup explained in Chapter 5. The differences in beam quality
between the two setups also shows that a rebuilt of the main setup should be
investigated in order to improve the symmetry of the intensity distribution.

6.2 Atom trapping in a three-dimensional dark focus

The experimental realization of a three-dimensional dark focus has been
demonstrated in Sec. 6.1. This section shows that trapping atoms with a
three-dimensional dark focus is possible and that it is valuable as a storage
structure for ultra-cold atoms and BECs.

6.2.1 Experimental alignment

The experimental implementation of the dark focus beam is done in the same
way as the previously described positioning of the Poggendorff dark ring (see
Sec. 5.1). To be able to switch between both potentials fast, a second beam line
was implemented. The light for the second beam lime is branched off from the
beam line of the Poggendorff dark ring right before its focussing lens in front
of the crystal. After the creation of the beam, it is recombined with the beam
path with a second mirror, before the non-polarizing beamsplitter. By removing
these two mirrors, the first beam line for the Poggendorff dark ring can be used
without additional alignment.
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Fig. 6.10 shows the experimental setup of the three dimensional dark focus
beam. The same laser system and intensity stabilization as described in Sec.
5.1 is used . Right after the combination of a λ/2 and λ/4 waveplates the used
aperture and the focussing lens with f1 = 150mm are placed. The beam passes
through the conical refraction crystal and in the focal plane the expected inten-
sity distribution of a single ring is observed. The focal plane is re-imaged by a
combination of two achromatic lenses with f2 = f3 = 400 mm. The re-imaged
focal plane features the same intensity distribution and is not magnified or de-
magnified. As with the Poggendorff dark ring the three dimensional dark focus
is aligned on top of the vertical absorption imaging beam of the ATOMICS ex-
periment (see Sec. 2.3.3). This is done with a non-polarizing beamsplitter. The
splitting of the non-polarizing beamsplitter varies between 50% for p-polarized
light and 52% for s-polarized light. Since conical refraction potentials rely on
equal intensity distribution for all linear polarization components of the inci-
dent light, the azimuthal intensity distribution along the ring was monitored
after the beamsplitter. The polarisation was adjusted with the combination of
λ/2 and λ/4 waveplates in front of the conical refraction crystal. The lenses
f4 and f5 re-imaged the focal plane into the vacuum chamber at the place of
the atoms. The creation of the three dimensional dark focus follows the imple-
mentation discussed in Sec. 6.1.1. The lens in front of the conical refraction
crystal in combination with an aperture produces a focus of size w0 = 42.7µm.
The Rayleigh range of the beam is 5.42mm. The KGd(WO4)2 conical refraction
crystal has a length of l = 2.2 mm which yields a ring radius of R0 = 38.4µm
directly behind the crystal. The ratio between the radius R0 and the beam waist
w0 is ρ0 = 0.90 which is near the desired ratio of 0.92. The ring is demagnified
by the second pair of lenses f4 and f5 in front of the vacuum chamber by a
factor of 0.75. This results in a ring radius at the place of the atoms of 28.8µm.
The Rayleigh range for λ= 792.5 nm is zR = 3.28mm.
Since the conical refraction crystal has no anti-reflection coating, about 30% of
the incident light is reflected backwards and lost for the creation of the dark fo-
cus. In addition, the non-polarizing beamsplitter that combines the dark focus
light with the axis of the detection beam introduces additional 50% losses. The
optical power remaining in front of the pair of lenses f4 and f5 is 29 % of the
initial optical power.
In contrast to the double ring potential the three dimensional dark focus
features a confinement in the all three spatial dimensions, if used with blue-
detuned light. Due to the large Rayleigh range, the Raman spot is positioned
at zRaman = ±3.41 mm (see Eq. (4.13)) and the resulting confinement in the
z-direction is too weak to hold atoms against gravity. Therefore the lightsheet
potential already used with the Poggendorff dark ring is used to hold atoms
against gravity (see Sec. 5.1.2). By reducing the Rayleigh range, the need for
an additional potential could potentially vanish. A possible solution is to switch
to another experimental vacuum chamber that features a shorter beam path
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Figure 6.10: Experimental beam preparation for the three-dimensional dark fo-
cus. The collimated light beam is focussed through the conical re-
fraction crystal and is re-imaged twice into the experimental cham-
ber. The second re-imaging process demagnifies the light field by a
factor of 0.75.
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Figure 6.11: Combination of optical dipole traps to create a three-dimensional
trapping potential. Due to the weak confinement of the dark focus
trap in the z-direction an additional lightsheet potential is used to
hold atoms against gravity. The dark focus is positioned on top
of the crossed optical dipole trap and the BEC is loaded into the
trapping geometry.

from the last optical element to the experimental plane in the vacuum chamber,
allowing for an increased de-magnification. This would help with the creation
of a tight confinement along the propagation axis z.
Fig. 6.11 shows a three-dimensional representation of the trapping geometry.
The crossed optical dipole trap is aligned in the focal plane of the three dimen-
sional dark focus. The three-dimensional dark focus is aligned along the z-axis
to provide a ring shaped potential barrier in the xy-direction. The z-direction is
supported by the lightsheet potential.

6.2.2 Vertical alignment and trapping of ultra-cold atoms

The vertical alignment of the beam is done in two steps. First, the beam itself is
positioned in the MOT without the use of the conical refraction crystal. Second,
the conical refraction crystal is placed in the beam line between the focussing
lens f1 and its focal point and the beam is re-positioned in the MOT.
For positioning the focussed Gaussian beam in the magneto-optical trap, sev-
eral tools are available to accelerate the alignment process. Since the beam
is positioned along the detection axis of the vertical imaging system, the two
beams can be aligned on top of each other. This is done by reducing the power
of the Ti:Sa laser system to an approximate value of the power of the detection
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(a) Focussed gaussian beam imaged into the
MOT in combination with the crossed op-
tical dipole trap
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(b) Dark focus trap in a cloud of atoms re-
leased from the crossed optical dipole trap

Figure 6.12: Experimental images obtained during the alignment of the dark
focus trap.

beam. By choosing two points before the non-polarizing beamsplitter a beam
walk can be performed to overlay the beams at two spots. Due to the transfer
optics f2 and f3 a large beam path is available which give the opportunity to fine
tune the position nicely. The re-imaging lens systems of the three-dimensional
dark focus also images the magneto-optical trap illuminated by the detection
light in counter-propagating direction. Due to the low intensity of the detection
beam the MOT produces a shadow that can be observed in the focal plane of
the re-imaging and in the focal plane of the lenses f4 and f5 in front of the
non-polarizing beamsplitter. This points can also be used to aid the initial posi-
tioning of the beam line.
After the beam has been aligned on top of the counter-propagating detection
beam it should already be visible in the MOT. By imaging the MOT with the ver-
tical detection system this can be observed. The intensity of the laser beam from
the Ti:Sa laser should be as high as possible and the detuning to the D1 transi-
tion of 87Rb should be reduced to a minimum. This yields stronger interactions
between the incident light and the atoms trapped in the MOT. A blue-detuned
focussed beam produces a hole in the MOT whereas its red-detuned counter-
part creates an area of increased density. Both should be circularly shaped.
Fig. 6.12 shows images of the alignment process. The focussed gaussian beam
is near the cross section of the crossed optical dipole trap in Fig. 6.12(a). The
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blue detuned potential creates a hole in the density distribution along its prop-
agation direction. To aid with the vertical positioning of the focal plane the
diameter of the hole can be utilized. A minimum diameter should be achieved
if the focal plane lies inside the magneto-optical trap. Since the MOT has a
large diameter of more than 1 mm this method can only be used to give a good
starting point for a following fine tuning. Also the side detection camera system
can be used. Due to the small diameter of the focussed beam with respect to the
diameter of the MOT the observable density modulation induced by the light
field is barely visible. After the positioning of the focus is done, the conical re-
fraction crystal can be adjusted in the beam path. This can be done with a CCD
camera to directly image the focal plane after the conical refraction crystal. In
order to optimize the beam path each re-imaged focal plane was observed with
a CCD camera.
Fig. 6.12(b) the ongoing alignment process after the conical refraction crys-
tal has been inserted in the beam path. After the position of the dark focus has
been adjusted near the cross section of the crossed optical dipole trap, the align-
ment procedure was adapted. Instead of observing the interaction the incident
light with the atoms from the MOT, atoms from the crossed optical dipole trap
were used to image the influence of the dark focus. This was accomplished by
aborting the evaporation procedure on purpose and by switching off the crossed
optical dipole trap. An additional waiting time of 4 ms ensured that the expan-
sion of the ultra-cold atom cloud was sufficient to cover the whole area of the
dark focus focal plane. The alignment was done with blue-detuned light, and
therefore repulsive interaction. The light is present during the complete process
of loading the MOT and loading the crossed optical dipole trap. Fig. 6.12(b)
shows that the angle with respect to the detection axis is critical for a good
alignment of the dark focus trap. The dark focus beam hits the evolving cloud
of thermal atoms and its repulsive interaction creates a hole in the otherwise
circular density distribution. The expected circular shape is present. Due to
the lower intensity of the intensity distribution in the centre of the ring shaped
structure, atoms are expected to be occupying said region. Instead, because of
the tilt with respect to the detection axis only a small fraction of atoms is visible
as a circular distribution next to the centre of the crossed optical dipole trap.
The angle between the dark focus beam path and the detection beam path can
be reduced by the combination of mirrors used to align the two beams on top of
each other. By carefully beam walking the dark focus beam, the small cloud of
atoms in the centre of the ring structure can be maximized. Fig. 6.13(a) shows
a perfect alignment of the two beam lines on top of each other. The dark focus
is directly aligned on top of the crossed optical dipole trap. After the release of
the atoms from the crossed optical dipole trap the atoms are held in place by
the repulsive ring of the dark focus.
For higher waiting times the atoms start to fall due to gravity. As already men-
tioned the trapping force of the dark focus trap against gravity is not sufficient
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(a) Perfectly aligned dark focus inside the
crossed optical dipole trap. The atoms are
released from the potential and the cen-
tral part of the atoms is confined in the
dark focus.
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(b) Atoms falling in the direction of gravity
and being scattered by the repulsive inter-
action with the Raman spot.

Figure 6.13: Experimental images obtained during the fine tuning of the hori-
zontal position of the dark focus traps. Atoms are loaded directly
from the crossed optical dipole trap without additional evapora-
tion.
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to support the atoms completely. As they begin to accelerate towards the bot-
tom of the trapping potential they pass the Raman spot and encounter a barrier
along the direction of gravity. The barrier yields a conical splitting of the atom
cloud and a ring shaped density distribution appears. Fig. 6.13(b) shows the
obtained density distribution for a total fall time of 30ms.

6.2.3 Loading of BECs into the dark focus potential

To support atoms against gravity the lightsheet potential introduced in Sec.
5.1.2 with identical parameters is used. To create a tight radial confinement the
wavelength of the Ti:Sa laser is set to λ = 793.8nm and the power to 9.7 mW
at the place of the atoms. The resulting trap depth in the radial direction is
given by Eq. (4.25): U = 25ER.
To load the potential with ultra-cold atoms, the same loading scheme previously
demonstrated with the Poggendorff dark ring is used (see Sec. 5.3). For a
linear ramping time exceeding 12.7ms, the calculated adiabaticity criterion as
discussed in Sec. 5.3.2 is fulfilled. An applied ramping time of 40ms gives
additional margin and should yield an adiabatically loaded ensemble of atoms.
The experimental result of the loading scheme is depicted in Fig. 6.14. The
image shows a confined ensemble of ultra-cold atoms of 87Rb loaded from the
crossed optical dipole trap. The maximum loading efficiency achieved is 95±
2%. Atoms lost during the loading procedure are visible for a period of up
to 10 ms in the region of the trapping potential. Due to the lack of spatial
confinement in the lightsheet potential they disperse quickly and are no longer
detectable. The remaining atoms are stored in the potential and their lifetime
will be discussed in the following section.

6.2.4 Lifetime of atoms in the dark focus trap

The applicability of the dark focus trap depends on the achievable trapping du-
rations. These are highly dependent on the scattering of photons [166, 167]
as well as on the density of the trapped gas [168]. Spontaneous scattering of
photons is described by Eq. (2.1) and is controllable in the experiment by ei-
ther using a large detuning with respect to resonant transitions of the trapped
atoms or by lowering the optical power. Blue-detuned traps feature the advan-
tage that atoms are stored in the region of low intensity which should increase
coherence as well as storage times. In the current implementation of the dark
focus trap, an additional red-detuned light field is used, the lightsheet, adds to
the losses of the conical refraction based optical potential. As discussed before
the scattering rate of atoms in the lightsheet potential is ≈ 2.4 s−1.
The experimental procedure was as follows: after the creation of a BEC in the
crossed optical dipole trap the atoms are loaded into the combination of dark
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Figure 6.14: Trapped BEC in the dark focus trap 18 ms after the atoms have
been loaded into the trapping geometry. A red-detuned light-
sheet potential is used in addition to support atoms against grav-
ity. The radial confinement traps the atoms efficiently in a three-
dimensional potential.
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Figure 6.15: Relative atom count for variable trapping times in the dark focus
trap. In addition to the dark focus trap an additional lightsheet
potential is used to support atoms against gravity. The solid line
depicts the fit of a combination of two exponential functions. The
loss coefficients is α = (4.4± 0.3) s−1

focus trap an lightsheet potential. The loading procedure consists of the lower-
ing of optical power of the crossed optical dipole trap legs and the simultaneous
increase of optical power for both, the dark focus and the lightsheet potentials.
After the crossed optical dipole trap has been shut off completely an additional
waiting time is applied. After the waiting time the atom count is determined by
integrating the density distribution over the trapping region of trap.
Fig. 6.15 shows the experimentally obtained atom number in the combination
of dark focus trap and lightsheet as a function of the trapping time. The trap-
ping time is defined as the time after the crossed optical dipole trap has been
shut off. The atom number is derived by summing up the density of each of the
experimentally obtained density distribution. About 95 % of the atoms leave the
potential until 0.65 s. The lifetime of the atoms, defined as the time after which
the initial atom number dropped to 1/e times its initial value, is 227ms. The
underlying solid line shows a fitted exponential curve. Its decay coefficient is
α= (4.4± 0.6) s−1. The uncertainty of the fitted parameter originates from the
large spreading of the experimental data in the first 300 ms. Higher order losses
due to many-body collisions are not incorporated in the fit. The observed tem-
poral evolution of the atom number in the combined trapping geometry shows
that trapping in a dark state focus is possible. On the one hand the lightsheet
potential provides support for the atoms to achieve a long storage times. On
the other hand the lightsheet seems to also be one of the main limiting factors
of the lifetime, due to its large loss rate of 2.4 s−1.
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6.2.5 Trapping frequencies of the dark focus potential

To measure the radial trapping frequency of the dark focus confinement, a BEC
was loaded into the trapping geometry of dark focus ring and lightsheet and
was collectively accelerated with a double Bragg pulse. The lattice pulse was
chosen to be a π/2 -pulse so that all atoms are in motion. The Ti:Sa laser
was set to an optical power of 24mW which results is a calculated trap depth
of 31ER (including the losses of the non-polarizing beamsplitter). Because of
the radial asymmetry of the confining ring potential, a trap depth well above
the needed depth of 4 ER was chosen to guarantee that all atoms are trapped
even after they are set in motion with a double Bragg lattice pulse of the order
n = 1. The accelerated atoms were trapped inside three-dimensional geometry
for variable times ttrap. After the applied trapping time the atoms are released
from the potential, by switching off the dark focus light, and left for free expan-
sion for an additional 18ms
Due to the acceleration experienced by the double Bragg pulse the atomic en-
semble oscillates in the confining potential. Because the atoms where acceler-
ated orthogonally with respect to gravity the resulting oscillation frequency is
given by the radial confinement of the trap. During the trapping time in the
potential the atoms oscillate, transferring kinetic energy and potential energy
depending on the position in the trap. The oscillation eigenfrequency of the
confining potential: the radial trapping frequency ωR. Because double Bragg
pulses are used to accelerate the atoms, two clouds are oscillating in opposite
directions and are oscillating with a phase difference of 180 °.
Fig. 6.16 shows the measured mean momentum of an atomic ensemble after the
previously introduced procedure. For simplicity only the position of the atomic
ensemble to the left of the position of the trap is considered. Depending on the
trapping time in the confining dark focus the position of the cloud changes. In
conjunction with the time of free evolution the mean momentum of the cloud is
calculated. Since only the side to the left is considered it should vary between
0 and 2ħhk. An oscillation of the momentum depending on the trapping time
can be observed. The expected oscillation between the momentum states is
not covered in total. Instead the atoms do not return to zero momentum after
a full revolution. This can be attributed to the fitting routing used to deter-
mine the position of the clouds and does not hinder determining the oscillation
frequency. The black solid line shows the fitted sinusoidal oscillation to the
momentum oscillation and gives a frequency of ωρ = 2π× (283± 16)Hz. The
fit already takes into account that the shown frequency in the plot is twice the
trapping frequency. The calculated trapping frequency using the experimental
parameters give a trapping frequency of ωρ,calc = 2π×311Hz (see Eq. (4.27)).
The calculated trapping frequency already incorporates 50 % losses introduced
by the non-polarizing beamsplitter and assumes the same losses along the op-
tical beam path as experienced before with the toroidal trapping potential of
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Figure 6.16: Mean momentum of an oscillating atom ensemble in the trap as a
function of trapping time ttrap. The atomic ensemble is split into
two packets with momenta of −2ħhk and 2ħhk which oscillate in
the trapping potential. After varying times the atomic ensemble is
released from the trap and moves according to its kinetic energy.
For simplicity only the left side of the trapping region is considered.
The opposing side behaves equally.

20%. The calculated value is slightly above the expected value. These dis-
crepancies are likely to originate from the radial asymmetry lowering the mean
trapping frequency atoms experience as the oscillate in the x y-plane of the
toroidal dark focus geometry. In addition the vertical positioning Z of the dark
focus potential is critical for the calculation of the trapping frequency. Even
though the shape between the two Raman spots is only varying slightly, the
trapping frequency in the radial direction is decreasing for Z 6= 0.

6.3 Two dimensional array of dark-foci

The creation of a single dark focus for atom trapping in the previous section
is a concept that can be applied to create a two-dimensional array of trapped
atoms. The application of such a two-dimensional array of cold atoms has been
investigated before [169–172]. Typically they are produced by two-dimensional
arrays of micro-lenses generating focussed Gaussian beams with attractive po-
tential. These potentials are prone to the differential ac Stark shift which has
to be compensated manually [164]. Three-dimensional dark-trap implemented
with conical refraction offers a new way to create these multi-site trapping po-
tentials.
This section will give an introduction on two-dimensional trapping potentials
and show important parameters for the applicability of a scalable register of
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atom traps. The chosen register will be presented and its properties are char-
acterized (Sec. 6.3.1). Next Sec. 6.3.2 demonstrates the implementation of
a two-dimensional array of three-dimensional dark-foci and their properties.
Differences to single focus implementations are reviewed and a possible exper-
imental implementation to trap atoms is outlined.

6.3.1 Two-dimensional lens arrays

In order to create a two-dimensional array of dark foci, a system of identical
Gaussian beams is needed. This system can be built with a two-dimensional
lens array that features a discrete arrangement of lenses that each produces a
near Gaussian focus. The two important properties of the lens array for the
creation of an array of dark foci are the pitch dpitch and the achievable beam
waist w0 in the focal plane. The pitch describes the distance of two neighbour-
ing lenses. The lenses used in this work feature a quadratic lens array, meaning
that distances in the horizontal and in the vertical direction are identical. An in
depth discussion on these types of lenses can be found in [173–179].
In order to create a dark focus trap with zero intensity in the focal plane for
ρ = 0 a ratio of ρ0 = 0.92 is needed. The present crystal for the generation of
a dark focus has a length of 2.2mm and creates a ring radius of R0 = 38.4µm.
In order to create a perfect ratio ρ0 a waist of w0 = 41.7µm for each foci of
the micro-lens array would be needed. In addition the pitch of the micro-lens
has to be at least twice the size of w0. Otherwise neighbouring traps would
overlap and could potentially create additional substructures. The aim of the
implementation was to avoid these unwanted structures.
Micro-lens arrays feature additional effects that need to be considered. The
two main effects are the Talbot effect and the modification of the focal plane
due to a low Fresnel Number. The Talbot effect describes the appearance of
additional planes with focal spots near the focal plane. The parameters of these
planes are related to the properties of the focal plane and can be modified like-
wise [153]. Typically, the Talbot planes show a modified waist w0 as well as
a reduced pitch [180]. These properties may be utilized to further modify the
implemented system. In addition, the micro-lens arrays typically used for the
creation of two-dimensional arrays of traps feature a very low Fresnel Number.
This introduces chromatic aberration which reduces the effective focal length
and can yield a second spatially separated focus [181].

6.3.2 Experimental realisation of a two-dimensional array of dark foci

The experimental realisation of a two-dimensional array of dark foci is done by
implementing the setup depicted in Fig. 6.17. A diode laser is used to illuminate
a two dimensional array of micro-lenses and the focal plane of the lens array is
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Figure 6.17: Measurement setup for a two-dimensional array of dark-foci. The
polarization of the laser beam is purified by a polarizing beam-
splitter and can be adjusted by a combination of a λ/2 and λ/4
waveplate. The focal plane of the microlens array is re-imaged by a
combination of the lenses f1 and f2. The conical refraction crystal
is positioned between the lens f2 and the re-imaged focal plane in
propagation direction. The resulting two dimensional array of dark
foci is imaged by a CCD camera.

re-imaged onto a CCD camera.
The re-imaging process is not necessary in general but the limited space after
the micro-lens mounting and the needed space for the conical refraction crystal
give rise to this implementation. The advantage of the use of transfer optics
is the possibility to tune the focal size as well as the pitch of the foci in the
focal plane. Table 6.1 shows the compilation of transfer optics used. The values
of f1 and f2 refer to the implemented setup depicted in Fig. 6.17. Before
the conical refraction crystal was put into place the combination of lenses and
their resulting focal plane was investigated. An experimental image of the focal
plane of a two-dimensional array of foci is shown in Fig. 6.20. An array of
Gaussian foci is present in the focal plane creating a set of red-detuned trapping
potentials for ultra-cold atoms. The pitch of the foci was initially 110µm and
is magnified by the chosen telescope. A total of three different magnifications
were implemented and will be discussed in the following section.

Fig. 6.18 shows a three-dimensional sketch of the implemented array of three-
dimensional dark foci. An incident Gaussian beam is aligned on a micro-lens
array that creates a two-dimensional array of focussed beams. The focussed
beams are guided through a conical refraction crystal with the propagation di-
rection is aligned along one of the optical axis of the crystal. The resulting
intensity distribution in the focal plane is a two-dimensional register of dark
foci.
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Figure 6.18: Three-dimensional representation of the implemented scheme. A
micro-lense array creates a two-dimensional register of foci. The
light is guided though a conical refraction crystal and an array of
dark foci is created in the focal plane.

Comparison of different magnifications

Since the obtained waist of the foci in the focal plane of the micro-lens array
did not match the required criterion of ρ0 = 0.92 it had to be magnified. The
magnification should be chosen to yield a perfect ratio of ρ0 but due to the spe-
cial properties of micro-lens array foci the expected magnification could only
be achieved approximately.
Fig. 6.19 shows the experimental measurement of the waists of various re-
imaged micro-lens foci after magnification. The underlying solid lines represent
fits of Gaussian distributions to determine the minimum waist w0 of the beam.
The implemented magnification M = 1.25 and M = 1.5 yield values of w0 too
small for the implementation of a three-dimensional dark focus. A magnifica-
tion of M = 1.78 gives a focus size of w0 = 44.8µm. The resulting pitch after
magnification is dpitch = 196µm. Table 6.1 shows the compilation of three sets
of lenses used to create the desired focal beam waist. The used magnification
for future discussion is shown bold and features a ratio of ρ0 = 0.86. The others
two magnifications yields values way above ρ0 = 1 and are not of interest for
the creation of a three-dimensional dark focus. Using too small magnifications
yields structures discussed in Sec. 4.5.2, where the ring shaped intensity distri-
bution features an additional intensity in its centre.
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Figure 6.19: Measured radial waist w(z) for three different magnifications of
the utilized micro-lens array. The experimental data has been ob-
tained without the conical refraction crystal using a CCD camera.

Magnification Focal length [mm] Waist [µm] ρ0

M f1 f2 w0

1.78 80 150 44.8 ± 2.4 0.86
1.5 100 150 30.3± 1.6 1.27
1.25 80 100 25.9± 1.3 1.48

Table 6.1: Compilation of experimental data obtained for the three different re-
imaging lens systems. The bold line shows the lens combination used
to realize a two-dimensional register of dark foci.
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Figure 6.20: Experimental image of the foci produced by the micro-lens array
and an additional transfer optic (left). Intensity distribution along
the propagation axis of the focussed beam.

Properties of the light field for the chosen magnification

The selected magnification of M = 1.78 and the achieved waist of w0 = 44.8µm
yields a Rayleigh range of zR = 7.9 mm at a wavelength of λ = 780nm. Fig.
6.20 shows the obtained intensity distribution in the focal plane (left) and along
the beam propagation axis (right). Even though the magnification of the foci
itself did not show the desired dependency as expected the magnification of the
pitch has followed the predicted behaviour. The initial pitch of dpitch = 110µm
has been increased to dpitch = 196µm. The waist of the focus in beam direction
is 19 mm and therefore above the calculated Rayleigh range of 2×zR = 15.7 mm.
The obtained properties have been validated for the surrounding foci of the
central spot.

6.3.3 Experimental implementation of a two-dimensional array of dark
foci

The characterized optical system is used to create a two-dimensional array of
dark foci. Due to the limited incident area of the conical refraction crystal some
of the foci are not passing through the crystal but are blocked by the crystal
mount. The alignment procedure of the beam path follows the alignment of
a single trap. First, each of the foci creates a pair spots with high intensity
obtained due to the birefringence of the crystal. Upon approaching the opti-
cal axis of the crystal with the beams propagation direction the circular shape
begins to emerge. This process happens simultaneously for all foci in the fo-
cal plane of the re-imaged micro-lens array. The obtained intensity distribution
is shown in Fig. 6.21. For each of the previously obtained foci in the focal

190 6 Novel three dimensional dark focus trap



plane a ring structure emerges showing a total of 10 × 8 full ring structures.
The overall structure is convoluted by the Gaussian intensity distribution of the
incident beam and the central part of the array features the highest overall in-
tensity. The distribution of the rings is aligned in a way that the central ring
shows the best possible symmetry along its azimuthal intensity distribution. As
the distance to the central trap increases asymmetries begin to show up more
strongly. This effect has been observed during the setup of the system multiple
times and can be attributed to a slight divergence of the incident beam. If the
alignment is optimized for the central dark focus and the beam is divergent,
off-centre micro-lenses experience a tilt with respect to the optical axis of the
conical refraction crystal. The tilt increases, the more the foci is distant to the
optimized focus and introduces asymmetries in the focal intensity distribution.
It is important to notice that the transfer optics used to magnify the focal plane
of the micro-lens has shown to be prone to introduce these errors and has to
be aligned very carefully. A discussion on the differences of central traps and
off-centre traps will be given later (see Sec. 6.3.4).
The pitch of the ring shaped structure is dpitch = 196±4µm. It was measured by
determining the centre of each ring structure and by calculating the distance to
the nearest neighbour in vertical and horizontal direction. This has been done
for a square of 5× 5 ring structures in the central region.
As discussed before, the polarization of the ring shaped structure is linear along
the azimuthal directions of the ring and changes along the ring. To show that
this behaviour is also valid for arrays of lenses a λ/2 waveplate was used in
order to create linear polarized light. By shifting the λ/2 plate the gap in the
intensity distribution can be moved around the ring. This process happens for
all traps simultaneously and the hole is positioned under the same angle for
each of the conical refraction rings.

6.3.4 Comparison of central traps and off-centre traps

In order to compare the performance of the trapping geometry in respect to the
performance of a single dark focus trap, two ring structures of the focal plane
were taken as a benchmark. Both ring structures were examined the same way
the single trap was examined previously in Sec. 6.1.
The beam profile along the beam propagation axis is shown in Fig. 6.22. Fig.
6.23(a) shows the intensity distribution of the central ring trap and Fig. 6.23(b)
shows the intensity distribution for an off centre trap. The trap chosen for the
analysis was the third off-centre trap to the top of the central trap. The fit of
Eq. (6.1) was used to determine the ring radius γ(z) as well as the length of
the trapping potential by joining cuts of each image together. The focal plane in
each of the plots was determined as the point of maximum ring diameter 2γ(z).
The numerical solution for the initial values of w0 = 44.8µm and ρ0 = 0.86 are
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Figure 6.21: Experimental image of a two-dimensional array of three-
dimensional dark traps. The light on the left side is blocked by the
mount of the crystal.
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Figure 6.22: Experimental images of a two-dimensional array of dark focus traps
with linear polarized light. The λ/2 waveplate is rotated by ∆ϕ =
45 ° from Fig. (a) to Fig. (b) and the created gap in the azimuthal
intensity distribution rotates accordingly.

shown in Fig. 6.23(c). In contrast to the experimental values only a single trap
is shown for the numerical solution.
The overall distribution of intensity around the focal plane is in agreement with
the numerical calculations. The density distribution shows a radial symmetric
structure near the focal plane that converges to a point where the potential is
closed. The intensity along the azimuthal direction is nearly constant for the
central trap. Since the alignment of the beam has been optimized for exactly
this trap, it should indeed be the best trap. The off-centre trap features a com-
pletely different behaviour. Instead of a rotationally symmetric profile a clear
loss of intensity at one side of the intensity distribution is observed. In the re-
gion between z = −2mm and z = 1mm the intensity is reduced significantly.
The possibility to trap atoms would be completely lost since atoms could simply
leave the ring potential without experiencing a trapping force in said direction.
Also the length of the trap in beam direction is greatly reduced. To determine
the spread of the potential in beam direction the ring radius r is used.
The ring radius γ(z) is shown in Fig. 6.24 and is obtained by fitting Eq. (6.1)
to the intensity distribution of each plane. As the single focus beam, the radius
of both, the central and the off-centre trap are below the expected radius of
44.8µm. The maximum radius of the centre trap is 43.5µm and the maximum
radius of the off-centre trap is 42.3µm. As already visible with Fig. 6.22 the
length of the trap in z direction does not match the expected width of ≈ 19 mm,
which is twice the distance of the Raman spot (see Eq. (4.13)). The extent of
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Figure 6.23: Comparison of two experimental beam profiles to the numerical
solution of Eq. (4.14). Fig. (a) shows the central trap of the Gaus-
sian intensity distribution along the axial direction. Fig. (b) shows
a trap three pitches away to the top of the central trap and Fig.
(c) shows the calculated beam profile. The values for the numerical
solution were chosen to be w0 = 44.8µm and ρ0 = 0.86.
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Figure 6.24: Radius of the trapping potential along the z direction. The radius is
obtained by fitting Eq. (6.1) to each obtained experimental image.
The solid line shows the numerical solution of Eq. (4.14). The radius
is obtained by calculating the distance of the point of maximum
intensity to the point ρ = 0 for each plane.

the off-centre trap is short by 8mm and the central trap by 4mm.
In addition to the reduced length of the potential the symmetry of the trap has
been reduced. Fig. 6.25 shows the deviation of the measured intensity distribu-
tion in respect to the numerical solution of Eq. (4.14). The central ring shaped
intensity distribution shows a mean deviation of 16 %. The mean deviation of
the outer rings distribution gives 28%. Both distributions show higher inten-
sity modulations than the single beam implementation of the three-dimensional
dark focus. In addition to the reduced longitudinal length of the structure the
difference is unexpected. Especially the position of the Raman spot has been
shown to be robust. Maybe the influences of the non-Gaussian beam profile of
a micro-lens focus is of more importance than expected.

6.3.5 Towards two-dimensional registers of atoms traps with conical
refraction

The demonstration of the two-dimensional distribution of multiple dark focus
traps has shown to be a new tool in atom optics. Instead of the expected be-
haviour unexpected problems occurred that could potentially hinder the useful-
ness of the presented system. Especially the huge dependence on the position
of the ring in the focal plane on the trap quality creates the need to further
improve the optical system. A possible solution for this problem could be the
broadening of the Gaussian beam in front of the micro-lens array in order to
minimize effects of wavefront curvature or divergence of the incident beam.
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Figure 6.25: Mean deviation of the intensity distribution from a fully rotation-
ally symmetric intensity distribution. In order to gain a symmetric
intensity distribution with equivalent intensity Eq. (6.1) has been
fitted to the measured intensity distribution.

For the future application of the two-dimensional array additional parameters
have to be adjusted. Current implementations of quantum registers aim to uti-
lize the Rydberg blockade in order to implement two gate operations [182]. To
fulfil the experimental properties a smaller pitch as well as a smaller trapping
ring radius R0 would be needed. Typical values for the distance of two traps
would be dpitch < 8µm in order experience Rydberg blockade [183]. The ring
radius should be chosen appropriately in order to create still separated traps.
In combination with an additional transfer optic an appropriate system to store
ultra-cold atoms would be realizable nevertheless.
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7 Summary and Outlook
This work has investigated novel optical potentials and the dynamics of ultra-
cold atoms and Bose-Einstein condensates in these potentials. A Bose-Einstein
condensate of 25000 87Rb atoms has been used to characterize these potentials
and to study the first experimental realisation of double Bragg diffraction.
Optical lattices are widely used for Bragg diffraction in atom optic experiments
and have shown to be a valuable tool. The first experimental implementation
of double Bragg diffraction in this work expands these possibilities to novel ap-
plications. Double Bragg diffraction not only simplifies building matter wave
beamsplitters, it is also a valuable tool for interferometric measurements. This
work could also demonstrate second and third-order double Bragg diffraction
and the implementation of highly efficient beamsplitters. In addition a Ramsey-
type interferometer with first and second-order double Bragg diffraction for
autocorrelation measurements of Bose-Einstein condensates has been demon-
strated.
For future experiments, the optical setup of the double Bragg diffraction lat-
tice should be expanded with an intensity stabilization. Day-to-day fluctuations
and fluctuations between single pulses would be reduced and the stability of
interferometric measurements will be increased. Such a system could be a valu-
able tool for Mach-Zehnder-type interferometers in combination with a toroidal
wave guide.
The ongoing experimental improvements could be advanced with the use of
a new vacuum chamber. Multiple experimental results have shown that the
current setup limits the optical access as well as the resolution of the imaging
system. Especially interferometric measurements and the detection of small
spatial structures would greatly benefit from higher resolution imaging. The
advanced planning of the new vacuum system could result in a fast transition
between the two experimental vacuum setups.
Additional work should be targeted in the improvement of the current opti-
cal potentials. Especially the lightsheet potential is an important factor in the
overall performance of the system. Because the lightsheet potential is used
with the toroidal guiding potential as well as the dark focus trap, its perfor-
mance determines the quality of the measurements in all experiments. Major
improvements of the lightsheet system solved problems caused by diffraction
and enabled the first ever observation of free expansion of an ultra-cold en-
semble of 87Rb atoms in a toroidal waveguide created with conical refraction.
The optical setup of a double-layer lightsheet based on conical refraction has
already been demonstrated, the replacement of the current lightsheet setup
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would facilitate additional trapping geometries. For example, a completely
blue-detuned trap for ultra-cold atoms could be implemented, created by the
blue-detuned dark focus and the blue-detuned double-layer lightsheet intro-
duced in Sec. 4.5.1.
In addition Sec. 4.5.2 introduced a ring shaped trapping geometry with an ad-
ditional intensity maximum in the centre of the ring. This geometry has never
been investigated before and features unique characteristics with regard to its
scalability. Competitive systems up until now need multiple light fields or com-
plex combinations of magnetic trapping potentials to achieve similar shapes.
The study of persistent current and the implementation of Josephson junctions
or SQUID-like systems would be the obvious application for these geometries.
The scalability and simplicity of conical refraction based systems makes it an
interesting system for Atomtronics - the creation of circuit-like devices with
atoms [154].
The experimental investigation of the toroidal ring guide and the dark focus
trap should be continued further. The toroidal ring guide has shown to be
a competitive implementation of a quasi one-dimensional trapping potential,
that can trap, store and guide ultra-cold atoms and BECs. The limited lifetime
can be surpassed by switching to different wavelength for both, the conical re-
fraction based potential and the lightsheet potential. Increased lifetimes would
then simplify the observations of atom optic experiments immensely due to the
increased contrast of the absorption imaging process. The possibility to guide
atoms with a momentum of up to 6ħhk in the toroidal trapping geometry has
been shown in this work. In conjunction with the implementation of highly
efficient beamsplitters for matter waves, a promising system for matter wave
interferometry has been built. Experimental problems have been discussed and
a way to further improve the system to implement a Mach-Zehnder-type inter-
ferometer has been presented. By rescaling the potential to smaller diameters
faster process times for interferometer sequences are possible. The reduced
process time also has positive impact on the atom number as well as the coher-
ence of the wave packets. Since the experimental setup allows easy switching
between multiple beam lines, different implementations of the waveguide can
be studied side by side. A smaller geometry would also aid the ongoing studies
of the dynamic loading process of the ring shaped guiding structure. After the
first successful demonstration of the loading process, the outcoupling process
should be studied in detail. Being able to load and unload wave packets on de-
mand would produce an efficient storage structure for coherent matter waves.
This structure could be expanded further to a velocity selective filter of neutral
atoms via spatial adiabatic passage [184].
The first experimental realisation of a dark focus trap created with conical
refraction should be followed by ongoing experimental characterization mea-
surements. The dark focus potential opens a completely new set of trapping
geometries, which are simple and scalable. Especially the experimental im-
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provement of the beam shape should be the focus of ongoing investigations.
Because additional setups have shown that a nearly perfect azimuthal homo-
geneous experimental implementation of a dark focus is possible, the existing
optical setup should be redesigned. The blue-detuned dark focus could also
be used as ring-shaped barrier to create disc-potentials, which are important
for the studies of turbulances [137]. A red-detuned homogeneous ring po-
tential on the other hand, would be perfectly usable for the investigation of
persistent current experiments. On top of the applications for single dark focus
potentials is the experimental realization of two-dimensional array of dark-foci.
As measurements in this work have shown, micro-lens arrays in combination
with conical refraction crystals create a scalable and simple system for quan-
tum information processing. Trying to trap atoms in these potentials would
allow to deepen the knowledge on how quantum information processing in
these potentials could be achieved. In addition, the implementation of traps
for quantum information processing could also be realized by trapping atoms
with red-detuned light at the Raman spot of the dark focus. Its properties have
not been investigated before, and could result in favourable trapping parame-
ters compared to Gaussian foci. The multitude of possible applications shows,
that conical refraction is a versatile tool that could drive forward research of
ultra-cold atoms and their properties in many different ways.
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A Rb Data

A.1 87Rb level scheme
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Figure A.1: Hyperfine structure of the D1 and D2 transition of 87Rb [52].
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A.2 87Rb properties

Name Symbol Value

Proton Count Z 37
Nucleon Count N + Z 87
Atomic Mass m 1.44160648(72)× 10−25 kg
Rel. Natural Occurence 27.83 %
Half-life t1/2 4,88× 1010 years
Nuclear Spin I 3/2
s-wave Scattering Length a (110± 4)aB [185]

D1 Transition

Wavelength(vacuum) λ 794.978851156(23) nm
Lifetime τ 27.679(27) ns
Natural Linewidth Γ1 2π× 5.7500(18)MHz
Recoil Frequency ωR 2π× 3.6325 kHz
Doppler Temperature TD 138µK

D2 Transition

Wavelength(vacuum) λ 780.241209686(13) nm
Lifetime τ 26.2348(77) ns
Natural Linewidth Γ1 2π× 6.0666(18)MHz
Recoil Frequency ωR 2π× 3.7710 kHz
Doppler Temperature TD 146µK

Table A.1: Important parameters of 87Rb. Data has been taken from [52]

A.3 87Rb in optical lattices

Order Frequency detuning (kHz) Velocity (mm/s)

n ∆ω= n× 4ωR v = n · 2vR

1 15.08 11.77
2 30.17 23.54
3 45.25 35.3
4 60.37 47.08
5 75.42 58.85
6 90.5 70.61

Table A.2: Compilation of values for Bragg and double Bragg diffraction of
87Rb. The order n corresponds to Eq. (3.1).
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B ATOMICS Experiment

B.1 Lightsheet properties

Wavelength λLS 783.55nm
Optical power 137mW
Vertical waist wz (26.2± 0.5)mW
Vertical Rayleigh range zR (2752± 42)mW
Vertical trap depth ULS/kB 1.24µK
Vertical trapping frequency ωz 2π× (169± 1.5)Hz
Horizontal waist w y (3643± 30)mW
Scattering rate ΓSC ,LS ≈ 3s−1

Table B.1: Compilation of experimental values of the lightsheet potential used
in Chpt. 5 and Chpt. 6. The values for the optical power and the
vertical trapping frequency are typical values sufficient to hold atoms
against gravity.
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B.2 Double ring potential properties

Name Symbol Value

General properties

Ratio R0/w0 ρ0 14.3

Focal plane

Poggendorff Radius ρPDR 290µm
Ring Waist w0 20.4µm

1st re-imaged plane

Poggendorff Radius ρPDR 232µm
Ring Waist w0 16.3µm

At the place of the atoms

Poggendorff Radius (measured) ρPDR (173± 2)µm
Ring Waist w0 12.2µm

Left Right

Radial Trapping frequency ωR/2π (325± 5)Hz (290± 4)Hz
Ratio Inner/Outer Ring 1:2.6 1:3.8

Table B.2: Experimental values of the double ring potential created by conical
refraction used in Chapter 5
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B.3 Dark focus beam properties

Name Symbol Value

General properties

Ratio R0/w0 ρ0 0.90

Focal plane

Ring Radius R0 38.4µm

Gaussian Focus Without Aperture w0 37.9µm
Gaussian Focus With Aperture w0 42.7µm

At the place of the atoms

Ring Waist With Aperture R0 32µm

Radial Trapping frequency ωR 2π× (283± 16)Hz

Table B.3: Experimental values of the dark focus potential created by conical
refraction used in Chapter 6
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C Conical Refraction

C.1 Overview on conical refraction crystals

Name Formula Indices of Refraction Angle source

n1 n2 n3 A

α-HIO3 α-HIO3 1.8247 1.9424 1.9664 1.57° [186]
BIBO BiB3O6 1.7664 1.7947 1.9308 1.98° [187]
BNN Ba2NaNb5O15 2.1913 2.2866 2.2869 0.16° [188]
CBO CsB3O5 1.5241 1.5461 1.5798 1.01° [189]
CTA CsTiOAsO4 1.8642 1.8791 1.9387 0.90° [190]
DLAP C4H7D12N4PO7 1.5003 1.5647 1.5719 0.79° [191]
KB5 KB5O8· 4H2O 1.4168 1.4303 1.482 1.05° [192]
KGW KGd(WO4)2 2.02 2.06 2.11 1.00° [122]
KTA KTiOAsO4 1.7938 1.7997 1.8850 0.72° [193]
KTP KTiOPO4 1.7494 1.7577 1.8463 0.89° [194]
KN KNbO3 2.2909 2.2476 2.1425 1.72° [195]
LBO LiBO5 1.5699 1.5699 1.6116 0.72° [196]
LCB La2CaB10O19 1.6730 1.6738 1.7273 0.23° [197]
LFM LiCOOH·H2O 1.4564 1.5832 1.6367 2.98° [198]
LGS LiGaS2 2.1221 2.1649 2.1671 0.26° [199]
LGSe LiGaSe2 2.2992 2.3576 2.3595 0.25° [199]
LIS LiInS2 2.1557 2.1950 2.2026 0.45° [200]
LISe LiInSe2 2.3345 2.3810 2.3888 0.46° [201]
LRB4 LiRbB4O7 1.5070 1.5309 1.5386 0.51° [202]
NdGdMO Nd:Gd2(MoO4)3 1.8253 1.8258 1.8765 0.15° [203]
NbKTP Nb:KTiOPO4 1.7512 1.7611 1.8594 1.02° [204]
NdGdCOB Nd:GdCa4O(BO3)3 1.69212 1.7183 1.7269 0.50° [205]
RTA RbTiOAsO4 1.8159 1.8235 1.8983 0.75° [206]
RTP RbTiOPO4 1.7795 1.7892 1.8766 0.93° [207]
YCOB YCa4O(BO3)3 1.6734 1.7044 1.7149 0.61° [208]

Table C.1: Compilation of birefringent crystals offering two optical axis [209].
Index of refraction is given by the Sellmeier equation for each crystal,
the temperature of T = 293K, and the wavelength of 780nm. The
opening angle is calculated using Eq. (4.9).
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D Computer-operated laboratory
monitoring system

To successfully operate multiple experiments with high-precision lasers one
needs well defined environmental conditions. Important factors include tem-
perature, air pressure, and humidity. Day to day fluctuations can disturb and
even destroy measurements and experimental hardware. To keep variations as
small as possible and to maintain constant working conditions air conditioning
and air dehumidifiers are used. In addition to controlling these parameter a
monitoring system was developed and implemented successfully in each of the
laboratories in the APQ group at the TU Darmstadt.
The system offers a simple and small setup and can be installed easily. In ad-
dition to the four setups in the main laboratories a reference system has been
installed outside of the building.
An overview of the used hardware and software will be shown as well as a
short manual and installation instructions for additional units. First important
observations are discussed.

D.1 Hardware

By using a RaspberryPi [210] we ensure that our system is small and energy ef-
ficient. We use Raspbian [211] as operating system. Raspbian is a Debian [212]
Linux [213] distribution specifically optimized for RaspberryPi. The system it-
self is designed to be small and its current consumption is less than 5 W. The
Tinkerforge measurement system is connected via USB and the used compo-
nents from are:

• Master Brick 2.0 is connected to the RaspberryPi via USB and serves as a
host for the sensor bricklets

• Temperature Bricklet is connected to the master bricklet and measure the
temperature with an accuracy of 0.5 K in a range from −40 °C to 125 °C.
Not to be confound with the IR Temperature Bricklet

• Humidity Bricklet is connected to the master bricklet and measures the
relative humidity in steps of 0.1%

• Barometer Bricklet is connected to the master bricklet and measures the
air pressure with a resolution of 0.012 mbar in the range of 10mbar to
1200mbar
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Figure D.1: Schematic of the data acquisition setup. A python script connects
to the master brick via USB. The master brick provides an interface
to the three bricklets and the obtained data is saved to a MySQL
database. The user can view the gathered information by connect-
ing to the RaspberryPi with a standard browser over LAN.

Fig. D.1 shows a schematic of the installed system. Each of the bricklets con-
nected to the master brick which is connected by with the RaspberryPi via USB.
A python script running on the RaspberryPi connects to the master brick, reads
the relevant data and writes it into the database. The user can connect to the
RaspberryPi via standard web browser and the frontend of the system shows
data put into graphs on a website.

D.2 Software

D.2.1 Setup of a new monitoring system

To install or reinstall a new monitoring system the following steeps need to be
performed.

1. Copy a boot image of Raspbian on the SD card.
A current version of Raspbian can be found at https://github.com/
debian-pi/raspbian-ua-netinst. This step has to be made on a differ-
ent PC that features an SD card reader. The provided image is a netinstall
package, which means the installation process need an active internet con-
nection on the RaspberryPi to download additional files. A tutorial on how
to prepare the SD card is provided at the github repository for linux and
windows systems.

2. Boot the new RaspberryPi for the first time and make sure that network
access is available.
The system needs to be connected to the internet in order to download
additional files and will install itself on the SD card automatically. In prin-
ciple the system is configurable over SSH out of the box, but a keyboard
and monitor can also be used to complete the installation.
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3. Create user with appropriate username/password combination
The standard user name was chosen to be ’pi’ and the password can be
chosen freely.

4. Install necessary packages of the operating system:
In order to procide the monitoring systems basic software infrastructure
the following packages have to be installed:

apt−get i n s t a l l vim python−yaml python−mysqldb mysql−s e r v e r l i b u s b −1.0−0 l ibudev0 python
python−qt4 python−qt4−g l python−qwt5−qt4 python−opengl subver s ion i p t a b l e s

5. Each monitoring setup should be provided with a static IP to simplify the
day-to-day usage. To set a fixed IP in the APQ network the following en-
tries in ’/etc/network/interfaces’ need to replace the DHCP configuration:

auto eth0
i f a c e eth0 i n e t s t a t i c
address 1 9 2 . 1 6 8 . 1 . xxx
netmask 255.255.255.0
network 192 .16 8 .1 . 0
broadcast 192.168.1 .255
gateway 1 92 .1 68 .1 .1

6. Install NodeJS
NodeJS is used as the webserver for the frontend representation of data:

# Load nodejs from the nodejs server

wget http : / / nodejs . org / d i s t / v0 . 1 0 . 4 / node−v0 .10.4− l i n u x−arm−p i . t a r . gz
# unpack and copy nodejs to the appropriate directory

t a r xvz f node−v0 .10.4− l i n u x−arm−p i . t a r . gz
cp −R node−v0 .10.4− l i n u x−arm−p i /* / opt /node/
# register nodejs and npm globally in raspbian

l n −s / opt /node/ bin /node / us r / bin /node
l n −s / opt /node/ bin /npm / usr / bin /npm
# install pm2

npm i n s t a l l −g pm2

to redirect http port 80 to nodejs default port (3000) insert into
/etc/rc.local:

i p t a b l e s −A PREROUTING −t nat − i eth0 −p tcp −−dport 80 − j REDIRECT −−to−port 3000

7. Fetch software from SVN repository
The software is hosted on the APQs internal SVN server.

# cd into user directory

cd ~
# checkout source code from SVN

svn co https : / / 1 3 0 . 8 3 . 3 . 1 6 8 / svn / repos / pions / trunk / . /
# cd webserver directory

cd webserver
# install node packages

npm i n s t a l l

8. Install TinkerForge software

D.2 Software 213



dpkg − i t i n k e r f o r g e / b r i c k d _ l i n u x _ l a t e s t _ a r m h f . deb

9. Create MySQL User and Database

-- connet to mysql

mysql −u root −p
-- create database and user

CREATE DATABASE s e n s o r s ;

and import mysql schema into the newly created database

# import mysql schema definitions

mysql −u root −p s e n s o r s < t i n k e r f o r g e / s c r i p t s / schema . s q l

insert bricklet ids and types in database

-- insert temperature bricklet

INSERT INTO s e n s o r s ( id , sensor_u id , name , u n i t _ i d , node_id , room_id , c a l l b a c k _ p e r i o d )
VALUES ( 1 , ’ *** b r i c k l e t i d *** ’ , ’ temp ’ , 1 , 1 , ***ROOM ID *** , 60000)

-- insert humidity bricklet

INSERT INTO s e n s o r s ( id , sensor_u id , name , u n i t _ i d , node_id , room_id , c a l l b a c k _ p e r i o d )
VALUES ( 1 , ’ *** b r i c k l e t i d *** ’ , ’ humid ’ , 1 , 1 , ***ROOM ID *** , 60000)

-- insert humidity bricklet (if installed)

INSERT INTO s e n s o r s ( id , sensor_u id , name , u n i t _ i d , node_id , room_id , c a l l b a c k _ p e r i o d )
VALUES ( 1 , ’ *** b r i c k l e t i d *** ’ , ’ baro ’ , 1 , 1 , ***ROOM ID *** , 60000)

create user and grant priviliges

CREATE USER ’ p i ’@ ’ l o c a l h o s t ’ IDENTIFIED BY ’ ***PASSWORD*** ’ ;
GRANT ALL PRIVILEGES ON s e n s o r s . * to ’ p i ’@ ’%’ i d e n t i f i e d by ’ ***PASSWORD*** ’ ;

10. Install CronJobs

@reboot / us r / bin /pm2 s t a r t /home/ p i / webserver /app . j s
@reboot / us r / bin /pm2 web
@reboot s l e e p 60 && exec /home/ p i / t i n k e r f o r g e / s c r i p t s / sensorDaemon . py

11. The system is now configured appropriatly and should be rebooted

In order to ensure stable and secure operation third party software should be
updated regularly. This creates the need to update the manual to the appro-
priate version number for each software change. Software updates should be
distributed over the central version control system.

D.2.2 Overview of the installed systems

Table D.1 gives an overview over the currently installed monitoring setups.

D.3 Export data via command line

In the event of supply voltage loss the RaspberryPi automatically reboots once
supply voltage is regained. The data acquisition script is automatically started
by the operating system and gathers a new set of data every 60 seconds.
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Room ID IP Brick ID Bricklet ID

192.168.1 Master Temp Humid Baro

Neon 1 .81 5VH6Cv dB3 eDj -
GSI 2 .82 6DcNJe dzq eD3 -

Outdoor 3 .83 68VPvs dSj fSW g1w
Atomics 4 .84 6qzTf1 dSb fQk -

Quips 5 .85 6R61eW e1L fSY -

Table D.1: Compilation of the currently installed monitoring systems at the dif-
ferent experiments.

SELECT UNIX_TIMESTAMP ( date ) , value INTO OUTFILE ’ /tmp/ data . c s v ’ FIELDS TERMINATED BY ’ , ’
OPTIONALLY ENCLOSED BY ’ " ’ ESCAPED BY ’ \\ ’ ESCAPED BY ’ \n ’ FROM sensor_data WHERE s e n s o r _ i d
= ’ 1 ’ AND date > ’ 2014−03−01 00:00 :00 ’ ;

The created file can be copied from the RaspberryPi to another computer via
SCP [214] or SFTP [215] (for example with FileZilla [216].

D.4 First experimental observations

Fig. D.2 shows the first experimental observation made with the newly in-
stalled monitoring system. The temperature as a function of time is shown as
well as the frequency of a stabilized laser system. The laser system is used for
high precision spectroscopy of tellurium as well as Rydberg excitation of 87Rb
atoms [217].
The laser frequency is shown in reverse direction to show the observed corre-
lation between the temperature and the stabilized frequency. Most likely the
temperature dependence originates from the used accusto-optical modulators,
used in the laser system. The decoupling of the system from the laboratory
temperature is currently being researched.
In addition the quality of fibre couplings has shown to have a huge temperature
dependence and is currently being monitored.
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Figure D.2: Temperature and laser frequency as a function of time. The tem-
perature and the frequency show a strong correlation which most
likely originates from the accusto-optical modulators used in the op-
tical setup.
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