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1. Grundlagen

In diesem Praktikumsversuch soll der Polarisationszustand von Licht mittels Stokes-Formalismus vollstdndig bestimmt werden.
Polarisation ist eine Eigenschaft von transversalen Wellen, die unter anderem in der Optik das Interferenz-, Reflexions- und Trans-
missionsverhalten von Licht beeinflusst und damit sowohl in der Theorie als auch in der Praxis eine wichtige Rolle spielt. Fiir eine
vollstdndige Analyse wird ein Formalismus bendétigt, der in der Lage ist, nicht nur vollstdndig polarisiertes Licht, sondern ebenso
teilweise polarisiertes Licht zu beschreiben. Ein entsprechender Formalismus wurde 1852 von G.G. Stokes [10] entwickelt. Er
charakterisiert den Polarisationszustand durch vier direkt messbare Parameter.




1.1. Polarisation

Anfang des 19. Jahrhunderts stellten Fresnel und Arago durch Interferenzexperimente fest, dass es sich bei Licht um rein transversale
Wellen handeln muss. Aus den Maxwellgleichungen folgt in Vakuum die Wellengleichung:
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Aus der Wellengleichung folgt, dass sich ebene in z-Richtung propagierende Wellen als Uberlagerung zweier orthogonaler Komponenten
darstellen lassen:

—

E(z,t) = Ex(2,t)€s + Ey(z,t)€, mit

E.(z,t) =Eos cos(wt — kz) (1a)
Ey(z,t) =FEoy cos(wt — kz + 0) (1b)

Fiir die Phasenverschiebung 6 = 0 zwischen der x- und der y-Komponente oszilliert der E-Feldvektor in einer Ebene. Man spricht in
diesem Fall von linearer Polarisation. Fiir 6 = % und E. = E, beschreibt der E-Feldvektor eine Kreisschraube um die z-Achse, deren
Projektion auf die x-y-Ebene einen Kreis ergibt. Dieses wird als zirkular polarisiertes Licht bezeichnet. Je nach Phasenverschiebung
ergibt sich eine Rechts- oder Linksschraube. Nach allgemeiner Konvention wird der Drehsinn aus Richtung des Detektors betrachtet.
Bei § # 7 oder E, # E, wird die Polarisation als elliptisch bezeichnet, denn die Projektion des E-Feldvektors beschreibt dabei eine
Ellipse.

1.1.1. Polarisationsellipse

Durch Elimination der Zeit- und Ortsabhéngigkeit aus den Gleichungen (1) ergibt sich eine Ellipsengleichung:
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Eine ausfiihrliche Diskussion der Eigenschaften dieser Polarisationsellipse findet sich bei Collet [3]. Eine Reihe der wichtigen
Eigenschaften werden im Folgenden zusammengetragen. Fiir 6 = 0 ergibt sich eine Linie mit einer von den Amplituden der
Schwingungen der E-Feldkomponenten bestimmten Steigung:
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Fir § = 5 und Eo. = Eoy = Eo ergibt sich ein Kreis:
E; N By |
By E§

Eine Ellipse mit den Halbachsen a und b ist durch ihre Orientierung ), ihre Elliptizitdt y und den Winkel « charakterisiert. Die
Elliptizitét gibt hierbei das Verhaltnis der beiden Halbachsen der Ellipse an. Die Definition der Winkel ist in Abb. 1 dargestellt.
Es gelten fiir (—7/4 < x, 4 < 7/4) die folgenden Beziehungen:

2Eos Eoy cos(9)

(3a)
ng - Egu

tan(2y) =

tan(x) = g (3b)

Zur experimentellen Bestimmung des Polarisationszustandes auf Basis der Parameter der Polarisationsellipse kann das Licht mit
einer Kombination aus einem Polarisator und einem 2 -Plittchen gemaR Tabelle 1 analysiert werden.

1.1.2. Stokes-Formalismus

Um die charakteristischen Parameter der Polarisationsellipse zu bestimmen, ist es notwendig, die Zeitabhangigkeit des Feldvektors,
der mit einer Frequenz von ca. 10'® Hz oszilliert, zu eliminieren. Mit der Intensitét wird ein zeitliches Mittel iiber die Quadrate der
Amplituden gemessen. Hierdurch kann zwar zwischen linear- und zirkular polarisiertem Licht unterschieden werden (siehe Tabelle
1). Der Drehsinn und der Grad der Polarisation bleiben allerdings verborgen.




Abbildung 1: Polarisationsellipse fir Eo, = 3,Eo, = 2und § = 60°
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Tabelle 1: Analyse der Polarisationszustdnde nach Jenknis/White [6]




Bei unpolarisiertem Licht existiert kein zeitlich konstantes Phasen- oder Amplitudenverhltnis. Es kann als Uberlagerung vieler
kurzer unterschiedlich polarisierter Wellenziige aufgefasst werden und unterscheidet sich in der Projektion im zeitlichen Mittel nicht
von zirkular polarisiertem Licht. Eine Uberlagerung von polarisiertem und unpolarisiertem Licht erscheint wie elliptisch polarisiertes
Licht.

Um unpolarisiertes Licht mathematisch zu beschreiben, gewann Stokes 1852 vier direkt messbare Gro3en, indem er die nicht ohne
weiteres zuganglichen zeitlich verdnderlichen E-Feldterme in der Polarisationsellipse durch ihre zeitlichen Mittelwerte ersetzte. Dies
fihrt auf die Gleichung [3, S.34f.]:

(Ege + Eby)* — (Eoe — Egy)? — (2Bos Eoy cos(8))* = (2Eoz Eoy sin(5))?

Die vier Stokes-Parameter lassen sich nun folgendermaf3en identifizieren:

So = Eo, + Eg, (4a)
Si1 = Eg, — Eg, (4b)
So = 2Fo. Eoy cos(d) (4c)
S3 = 2Foz Eoy sin(d) (4d)
S =57+ 53453 (4e)

Die letzte Gleichung gilt in dieser Form fiir vollstédndig polarisiertes Licht. Die Gesamtintensitat ist in jedem Fall durch S, gegeben. Fiir
nicht vollstdndig polarisiertes Licht wird sie zu einer Ungleichung, die den Grad der Polarisation (Degree Of Polarisation) quantifiziert:

S2 4+ G2 4 §2
S2> % 4 52 4 52 pop = YL 2208
0

Es ist im Hinblick auf eine Beschreibung von unpolarisiertem Licht sowie fiir den Miiller-Matrix-Formalismus praktisch, die Stokes-
Parameter in einem Spaltenvektor, dem Stokes-Vektor, anzuordnen. Auch wenn es sich im mathematischen Sinn nicht um einen Vektor
handelt, kann gezeigt werden [3, S. 52f.], dass sich die Stokes-Vektoren von unabhingigen Lichtstrahlen zu einem resultierenden
Stokes-Vektor addieren lassen. So lésst sich unter anderem teilpolarisiertes Licht als Summe von vollstdndig unpolarisiertem und
vollstédndig polarisiertem Licht beschreiben:

So Sy St

S A R e (5)
Sa S3 SE
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teilpolarisiert unpolarisiert  polarisiert

mit S§ = (1 —DOP)Sp, S} =S5y =54=0 und S, =DOPS,, SV'=25;, S{=2S, St=s5°

Die einzelnen Komponenten des Stokes-Vektors S lassen sich jeweils mit bestimmten Polarisationszustdnden identifizieren. Wahrend
So die Gesamtintensitét angibt, gibt S den Anteil linear horizontal oder vertikal polarisierten Lichts an, S> den um +45° polarisierten
Anteil und S5 den links- bzw. rechtsdrehend zirkular polarisierten Anteil.

1 1 1 1 1 1
—1 1 0 0 0 0
SO=0| , S)=lo |y SI)=h|; | SANI=5h|_;| SO=0Dh]| , S(©) =1 |,
0 0 0 0 —1 1

Des Weiteren lassen sich einige Identititen herleiten, mit denen die elliptischen Parameter aus den Stokes-Parametern bestimmt
werden konnen:

1
- . 53 | cos(2x) cos(2¢)
tan(2¢) = 35, sin(2x) = S S= cos(2) sin(2¢))
sin(2x)

Der in Abhéngigkeit der elliptischen Parameter dargestellte Stokes-Vektor erinnert stark an die Transformationsformel, die Kugelkoor-
dinaten in karthesische Koordinaten umwandelt. Die Darstellung des Polarisationszustandes als Punkte auf einer Kugeloberfléche,
wobei die x-,y- und z-Koordinaten 51,52 und S3 entsprechen, wird Poincaré Darstellung genannt und die entsprechende Kugel
Poincaré-Sphére (siehe Abb. 2).

1.1.3. Miiller-Matrix-Formalismus

Der Miiller-Matrix-Formalismus ermdglicht es, die Auswirkungen von polarisationsoptischen Komponenten auf einen einfallenden
Stokes-Vektor und durch Berechnung des Matrixproduktes mathematisch zu bestimmen. Der einfallende Lichtstrahl mit dem Stokes-




Abbildung 2: Poincaré Sphare: Die Punkte auf der Kugeloberflache konnen sowohl durch die Stokes-Parameter als auch durch die
elliptischen Parameter dargestellt werden.
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Abbildung 3: Definition der Koordinatenachsen und Drehwinkel fiir die Berechnung der Miiller-Matrix gedrehter Elemente. Abbildung
aus [3, S.80]. Der Drehwinkel « ist hier als 8 bezeichnet.

Vektor S wird durch eine Polarisationsoptik mit der Miiller-Matrix M in den resultierenden Stokes-Vektor S’ umgewandelt:

!
S0 Moo Mo1 Moz Mo3 So
!
" M-S bzw. Si| | mwo mi1 miz mas S1
- M- [ - .
S2 M20 Mol M2z  Ma3 S2
!
S3 m3o M31 M3z Ma33 S3

Miiller-Matrizen lassen sich fiir alle polarisationsoptischen Komponenten aufstellen. Fiir Komponenten, die den Polarisationszustand
nicht dndern, entspricht die Miiller-Matrix einer Einheitsmatrix. Im Folgenden werden einige fiir diesen Versuch wichtige Miiller-
Matrizen zusammengestellt.

1. Miiller-Matrix fiir einen idealen Polarisator mit Durchlassrichtung entlang der x-Achse, der die y-Komponente des elektrischen
Feldes vollstandig ausloscht:

1
Mpolfz - 5

SO ==
OO ==
o O OO
o O O O

2. Miiller-Matrix fiir einen Verzogerer, dessen schnelle Achse in y-Richtung orientiert eine Phasenverschiebung von § zwischen der
x- und der y-Komponente erzeugt:

0 0 0

1 0 0

0 cos(d) —sin(9)

0 sin(d) cos(9)

Mverz (5) -

[N

3. Miiller-Matrix fiir einen Rotator, der die orthogonalen Komponenten jeweils um einen Winkel « rotiert:

1 0 0 0
0 cos(2c) sin(2a) O
0 —sin(2a) cos(2a) O
0 0 0 1

Mrot (Ot) ==

Aus diesen drei Matrizen lassen sich Matrizen fiir viele polarisationsdndernde Komponenten bestimmen. So lasst sich z.B. die
Miiller-Matrix fiir eine um « gegeniiber dem Laborkoordinatensystem rotierte Verzogerungsplatte (Blickrichtung entgegen der
Strahlpropagationsrichtung, siehe Abb. 3) wie folgt bestimmen:

M'ue'rz (057 6) = M’I‘Dt(_a)M’US’I‘Z (6)Mr0t(a)

Die zweite Rotation in Gegenrichtung ist hierbei notwendig, da der Rotator das Koordinatensystem um seine Drehachse dreht, die
Polarisation aber weiterhin im urspriinglichen Koordinatensystem betrachtet werden soll.

Wird in die fiir My, (o, 6) ermittelte Matrix fiir § 180°eingesetzt, so ergibt sich eine Matrix, die der eines Rotators, der um den
doppelten Winkel dreht, &dhnelt:




10 0 0
on _ |0 cos(4B8) sin(4B) 0
Mverz (ﬁ? 180 ) - 0 sin (4/8) —COSs (4/8) 0 (6)
0 0 0 -1

1.1.4. Doppelbrechung

Beim Ubergang einer elektromagnetischen Welle in ein anisotropes Medium wird die Welle je nach Symmetrie des Kristalls in
zwei oder mehr Komponenten zerlegt, die unterschiedlich gebrochen werden. Im Folgenden wird von einem einachsigen Kristall
ausgegangen. Die Zerlegung erfolgt in einen Strahl, der orthogonal zur optischen Achse polarisiert ist, und einen Strahl, der parallel
zur optischen Achse polarisiert ist. Ersterer wird analog zur Brechung in isotropen Medien nach dem Snellius’schen Brechungsgesetz
gebrochen und wird daher als “ordentlicher Strahl” bezeichnet. Der andere Strahl wird als “aulserordentlicher Strahl” bezeichnet. Der
Brechungsindex des aulierordentlichen Strahls hangt von seiner Ausbreitungsrichtung relativ zur optischen Achse ab.

In optisch anisotropen Materialien schwingen die Oszillatoren im Allgmeinen nicht parallel zum E-Feldvektor, da der Brechungsindex
und damit die Ausbreitungsrichtung richtungsabhingig ist. Eine anschauliche Analogie bietet ein mechanisches Modell, in dem ein
Massepunkt zwischen Federn verschiedener Federkonstanten aufgehéngt ist. Die Federkonstanten sind die mechanischen Analogi
zu den Brechungsindices. Durch die Richtungsabhingigkeit des Brechungsindex sind Phasenfronten mit dem Normalenvektor k
nicht mehr parallel zur Ausbreitungsrichtung mit Poyntingvektor S = £oc®>E x B als Normalenvektor. Wahrend S noch orthogonal
zu E ist, ist k orthogonal zu D. Die Verschiebungsdichte D und Feldstirke E sind durch die elektrische Feldkonstante ¢, und die
Dielektrizitatskonstante ¢’, die in anisotropen Medien ein Tensor ist, verkniipft. Es gilt folgende Beziehung (hier formuliert fiir ein
Hauptachsensystem):

. [z 00 . (n? 0 0 B
D=cegE=(0 e 0 |eE=|0 ni 0 |k
0 0 &3 0 0 n?

Fiir einen einachsigen Kristall gilt n, = n, # n.. Das sogenannte Brechungsindex-Ellipsoid ist gegeben durch
— 4+ 4+ = =1. @

Es beschreibt die Richtungsabhéngigkeit des Brechungsindex (siehe Abb. 4a): Fiir eine Welle, deren Ausbreitungsrichtung fiir den
auBerordentlichen Strahl durch k gegeben ist, gibt die Linge der Strecke in der Richtung von D vom Nullpunkt zum Schnittpunkt
mit dem Ellipsoid den Brechungsindex n, des aulerordentlichen Strahls an [4]. Der Brechungsindex no des ordentlichen Strahls ist,
wie in der zweidimensionalen Darstellung in Abb. 4b zu sehen ist, nicht von der Ausbreitungsrichtung abhingig.

1.2. Lichtquellen

1.2.1. Lichtemittierende Dioden und kantenemittierende Halbleiterlaser

Lichtemittierende Dioden (LED) und Halbleiterlaser spielen heutzutage eine tragende Rolle bei vielen technischen Anwendungen wie
einfachen Beleuchtungen, in der Kommunikation, wo Glasfaserkabel eine immer wichtigere Rolle in der Informationsiibermittlung
einnehmen, und vielen weiteren Anwendungen. Die Griinde fiir die vielfaltige Anwendbarkeit liegen unter anderem in ihrer geringen
Grof3e, ihren niedrigen Herstellungskosten und ihrer hohen Effizienz. Die Funktionsweise von LEDs und Halbleiterlasern besteht
prinzipiell in der strahlenden Rekombination von Elektronen-Lochpaaren in der Raumladungszone eines pn-Ubergangs.

Ein pn-Ubergang entsteht, wenn ein p-dotierter Halbleiter, in dem Lécher die Majorititsladungstriger bilden, und ein n-dotierter
Halbleiter, in dem Elektronen die Majoritédtsladungstriger bilden, in Kontakt gebracht werden. Die Majoritatsladungstréger diffundieren
in Richtung der anderen Schicht und rekombinieren an der Grenzschicht, bis sich die Fermi-Energien der beiden Materialien
angeglichen haben (siehe Abb. 5a). Es entsteht eine Verarmungs- oder Raumladungszone, in der keine freien Ladungstréager existieren.
Wird eine Spannung in Durchlassrichtung angelegt, dass heil3t die n-dotierte Schicht wird mit dem negativen Pol der Spannungsquelle
und die p-dotierte Schicht wird mit dem positiven Pol der Spannungsquelle verbunden, so steigt die Ladungstrégerdichte in der
n-dotierten Schicht. Die neu hinzugekommenen Ladungstréger diffundieren bis zur Verarmungszone, wo sie mit einem Loch
rekombinieren (siehe Abb. 5b). Bei dieser Rekombination wird Energie frei, die betragsmaf3ig der Grof3e der Bandliicke entspricht.
Wird diese Energie in Form von Photonen frei, so emittiert die Diode Licht, dessen Wellenldnge von der Grof3e der Bandliicke abhéngt.

Weil3e LEDs lassen sich entweder durch Integration mehrer unterschiedlicher Dioden in einem Bauelement konstruieren oder
dadurch, dass man eine blaue LED mit einem oder mehreren Lumineszenzfarbstoffen beschichtet, die das blaue Licht absorbieren und
danach Licht héherer Wellenldngen emittieren.

Kanten-Emitter-Laser (engl.: edge emitting Laser, EEL) funktionieren prinzipiell sehr &hnlich wie die LEDs [7]. Kanten-Emitter-Laser
haben im Gegensatz zu LEDs einen Resonator, der im einfachsten Fall (siche Abb. 6) durch die Kanten, die bei der Spaltung der
Wafer entstehen, realisiert ist. Bis es durch stimulierte Emission zur Rekombination kommt, werden die Photonen zwischen Kanten
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Abbildung 4: Quelle: Demtréder [4]
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Abbildung 5: Energiebander in einem pn-Ubergang ohne (a) bzw. mit angeleger Spannung (b) [7]
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Abbildung 6: Schematische Darstellung eines einfachen Kanten-Emitter-Laser, der nur aus einem p- und einem n-dotierten Halbleiter
besteht. Die Emission findet durch die teilreflektierenden Kanten statt [7].

des Lasers, die poliert werden und ca. 30 % des Strahls reflektieren und wie ein Fabry-Perot-Resonator funktionieren, hin und her
reflektiert. Die hier geschilderte Grundkonstruktion kann duch Doppel-Hetero-Strukturen, fiir deren Entwicklung u.a. Herbert Kromer
mit dem Nobelpreis ausgezeichnet wurde, effzienter gestaltet werden. Durch die unterschiedlichen Materialien kann dafiir gesorgt
werden, dass die aktive Zone einen besonders hohen Brechungsindex hat, woduch die Photonen durch Totalreflexion in der aktiven
Zone gehalten werden. Diese Art von Laser wird auch Wellenleiter (engl.: Waveguide) genannt.

1.2.2. VCSEL

Neben den Kantenemittern nehmen oberfdchenemittierende Halbleiterlaser mit vertikalem Resonator(engl.: vertical-cavity-surface-
emitting-laser, VCSEL) eine immer wichtigere Rolle ein. Der Aufbau von VCSELn unterscheidet sich in einigen Aspekten deutlich
von dem der Kantenemitter [7]. Im Gegensatz zu Kantenemittern erfolgt die Emission nicht parallel zum pn-Ubergang, sondern
senkrecht dazu und wird an der Oberflache ausgekoppelt. Dies bietet den prinzipiellen Vorteil, dass VCSEL auf Wafern in Arraystruktur
hergestellt und direkt auf dem Wafen ankontaktiert sowie getestet werden konnen. Es ist nicht notwendig, den Wafen erst zu zersédgen
und die Kanten zu spalten. Die Herstellung wird hierdurch so giinstig, dass die Herstellungskosten fiir einen VCSEL im einstelligen
Centbereich liegen. Ein weiterer Vorteil von VCSELn ist die kreisrunde astigmatismusfreie Emissionscharakteristik, die unter anderem
das Einkoppeln in Glasfasern erleichtert.

Bei VCSELn ist die aktive Schicht dufBerst diinn. Sie besteht aus Quantenfilmen, die sich zwischen zwei DBR-Spiegeln (Distributed-
Bragg-Reflector) befinden, die den Resonator bilden (siehe exemplarische Darstellung in Abb. 7). Der Resonator ist im Gegensatz zu
Kantenemittern vertikal ausgerichtet und sehr kurz. Die DBR-Spiegel bestehen aus vielen Schichten unterschiedlicher Brechungsindices,
deren Dicke ein Viertel der emittierten Wellenldnge betrdgt. Da bei Reflexionen ein Phasensprung stattfindet, interferieren die
reflektierten Photonen im Resonator konstruktiv. Durch diese Konstruktion wird eine Reflektivitét von iiber 99% erreicht, aufgrund
der die extrem kurze Resonatorlédnge in VCSELn auch notwendig ist, um eine stimulierte Emission zu erzielen. Die Oxidapertur in der
Peripherie der aktiven Schicht des VCSELs zwingt zum einen den Strom, vom elektrischen Ringkontakt aus durch die Mitte der aktiven
Schicht zu flieBen. Zum anderen wird durch einen hohen Brechungsindexsprung auch das Licht in transversale Richtung gefiihrt.

Durch die extrem kurze Resonatorlédnge, die etwa im Bereich einer Wellenlénge liegt, existiert in der Regel nur eine einzige
longitudinale Mode. Hierdurch wird unter anderem ein sehr geringer Schwellstrom, also der Strom, bei dem die Besetzungsinversion
zustande kommt und die stimulierte Emission {iberwiegt, erreicht [8]. Die emittierte Leistung steigt nach Uberschreiten der Schwelle
néherungsweise linear an, bis sie ein Maximum erreicht und danach aufgrund thermischer Effekte wieder abfillt. Thermische Effekte
fiihren dazu, dass sich die Lange des Resonators dndert, was auch eine Verschiebung der Wellenldnge zur Folge hat. Bei zu grof3en
Wellenldngen nimmt die Effizienz des Resonators ab. Die starke Temperaturabhéngigkeit des Resonators ist in erster Linie in seiner
geringen Linge begriindet.

Neben der Longitudinalmode entstehen auch Transversalmoden. Insbesondere entstehen bei grofen Aperturdurchmessern viele
Transversalmoden héherer Ordnung, deren Intensitdt am Rand des Oxidrings besonders hoch ist. Hierdurch wird im Nah- und
Fernfeld eine ringférmige Intensitétsverteilung sichtbar.

Durch die Kreissymmetrie des VCSELs ist es nicht moglich, bestimmte Polarisationsrichtungen durch das Design des Resonators
zu bevorzugen, wie es bei Kantenemittern moglich ist. Die Richtung ist in der Praxis nicht vollstdndig beliebig, sondern durch die
Kristallstruktur, thermische Einfliisse, Doppelbrechung und weitere Effekte eingeschrénkt, sodass lineare Polarisationszustédnde
beobachtet werden konnen. Die Richtung dieser Polarisationszusténde ist jedoch hochgradig instabil und kann sich auch im Betrieb
dndern [9]. Man spricht in diesem Fall von einem Polarisationsswitch. Eine Kontrolle der Polarisationsrichtung ist beispielsweise
durch das Aufbringen einer Gitterstruktur moglich.
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Abbildung 7: Schematischer Aufbau eines VCSEL (Quelle: Diplomarbeit von Andreas Molitor)

2. Aufbau

Fiir den Versuch stehen eine Reihe von Komponenten zur Verfiigung, mit der verschiedene Polarisationszustdnde erzeugt und
analysiert werden kénnen. Die Komponenten kénnen auf héhenverstellbaren Reitern auf einer Schiene bewegt werden. Bei jeglicher
Handhabung der Komponenten ist darauf zu achten, die Optiken nicht zu beriihren.

2.1. Komponenten

2.1.1. Polarisatoren

Glan-Thompson-Polarisationsprismen bestehen aus zwei zu einem Quader verkitteten doppelbrechenden Prismen, deren optische
Achse parallel zur Eintrittsfliche liegt. Die Winkel der Prismen und der Brechungsindex des Kittes sind so gewéhlt, dass der ordentliche
Strahl an der Grenzflache der Prismen total reflektiert und dann an den speziell beschichteten Au3enflachen absorbiert wird und der
auflerordentliche Strahl ohne Ablenkung wieder austritt (siehe Abb. 8).

Ein Maf fiir die Giite eines Polarisators ist das Ausloschungsverhaltnis I/ Imax. Dabei ist I, die Intensitét, die gemessen wird,
wenn linear polarisiertes Licht senkrecht zur durchlassenden Richtung des Polarisators eingestrahlt wird und I'ma.x entsprechend die
Intensitét, wenn es parrallel dazu eingestrahlt wird.

Glan-Thompson-Polarisationsprismen zeichnen sich durch ein besonders hohes Ausléschungsvermégen von 1075-107" {iber einen
weiten Spektralbereich aus, eignen sich jedoch nicht fiir hohe Strahlintensititen.

- Z1 e
=

Abbildung 8: Schemaskizze eines Glan-Thompson-Polarisators (Quelle: Datenblatt des Polarisators)
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Abbildung 9: Verzdgerung in Einheiten von 7 als Funktion der Wellenladnge fiir ein achromatisches Verzégerungsplattchen (Quelle:
Datenblatt)

2.1.2. Verzogerungsplatten

Verzogerungsplatten bestehen aus einem doppelbrechenden Material, das so in den Strahlengang gebracht wird, dass die optische
Achse senkrecht zur Ausbreitungsrichtung steht. Das Strahlenbiindel wird in einen ordentlichen und einen au3erordentlichen Teilstrahl
aufgespalten, die mit verschiedenen Geschwindigkeiten, aber in gleicher Richtung durch das Material propagieren. Fiir eine Dicke d
des Verzogerungsplattchens ergibt sich fiir die Phasenverschiebung ¢ zu

_ 2nd

=73

(Na — 10)

Die zu realisierende Dicke der Platten, um einen Phasenunterschied von 7 im sichtbaren Wellenldngenbereich zu erzeugen, ist zu
gering, um sie herstellen und handhaben zu konnen. Um dieses Problem zu losen, kann entweder eine Dicke verwendet werden,
die eine Phasenverschiebung von § = (2k + 0.5)7 erzeugt. Man spricht dann von Verzégerungsplatten k-ter Ordnung. Eine weitere
Moglichkeit ist die Kombination zweier paralleler Platten, deren optische Achsen senkrecht zueinander sind. In diesem Fall ist nicht
die Gesamtdicke, sondern die Differenz der Dicken der beiden Platten entscheidend:

_ 27T(d1 — d2)

’ )

(”a - ne)
Derartige Platten werden Verzégerungsplatten nullter Ordnung (zero order) bzw. zusammengesetzte Verzogerungsplatten nullter
Ordnung (compound zero order) genannt.

Die so konstruierten Verzégerungsplatten sind stark wellenlingenabhingig. Ahnlich wie bei der Verwendung von unterschiedlich
stark brechenden Glésern in achromatischen Linsensystemen lassen sich durch Verwendung von mehreren unterschiedlichen dop-
pelbrechenden Materialien fiir die beiden Platten achromatische Verzogerungsplatten herstellen. Fiir Verzogerungsplatten nullter
Ordnung, die aus zwei Platten a und b verschiedener Materialien bestehen, ergeben sich zwei Wellenldngen A\, und )., fiir die der
beabsichtigte Phasenunterschied erreicht wird. Die Dicken d, und ds lassen sich dann wie folgt bestimmen [1]:

2

6= )\—T(da(nan = 7ox1) — db(ax1 — Nort))
2

5 = ﬂ-(da(na)\g — noxz) - db(na)\Q - nok?))

A2

Fiir Wellenldngen, die in der Ndhe von \; und ), liegen, ergeben sich jedoch, wie in Abb. 9 beispielhaft fiir ein %—Pléittchen
gezeigt, bereits leichte Abweichungen von der gewiinschten Verzégerung. Neben der Wellenlédnge beeinflussen auch Temperatur,
Interferenzerscheinungen und der Einfallswinkel das Verzogerungsverhalten. Die Abhéngigkeit der Phasenverschiebung vom Einfalls-
winkel kann hierbei auch ausgenutzt werden, um die Phasenverschiebung von Verzégerungsplatten fiir die jeweilige Wellenlénge
anzupassen. Das kann notig sein, wenn z.B. zirkular polarisiertes Licht mit hoher Genauigkeit erzeugt werden muss. Eine Rotation um
die schnelle Achse bewirkt eine Verkleinerung der Phasenverschiebung und eine Rotation um die langsame Achse eine VergroRerung.
Eine Ubersicht iiber die méglichen auftretenden Probleme wird z.B. von Hale [5] gegeben.

Die beiden im Versuch verwendeten achromatischen Verzégerungsplatten bestehen aus Quarz und MgF». Die Anderung des

Gangunterschiedes betragt laut Herstellerangabe ca. + Glr';?2 52

Babinet-Soleil-Kompensator Ein Babinet-Soleil-Kompensator ist ein Verzogerer, der eine variable Phasenverschiebung erzeugt.
Der prinzipielle Aufbau &hnelt dem eines zusammengesetzten Verzégerungsplattchens nullter Ordnung, wobei eine der beiden
Platten, deren optische Achsen orthogonal zueinander sind, durch zwei Keile ersetzt wurde (siehe Abb. 10). Diese Keile kénnen
iibereinandergeschoben werden, was eine Anderung der Dicke und damit eine Anderung der Phasenverschiebung zur Folge hat. Da
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die Phasenverschiebung wellenldngenabhéngig ist, muss die Skala fiir jede Wellenlédnge von A.U. auf Wellenldngendifferenzen bzw.
Phasendifferenzen kalibriert werden.

ol ~

Abbildung 2: Die Richtung der optischen Achsen im SOLEIL schen Kompensator.

Abbildung 10: Quelle: Anleitungsblatt Polarisation und Doppelbrechung

(a) Ansicht von vorne (b) Ansicht von oben

Abbildung 11: Fotos des Babinet-Kompensators mit Nonius-Skala von vorne und von oben. Die Trommelskala dient zur Einstellung
der Verschiebung der beiden keilformigen Platten gegeneinander.

2.1.3. Interferenzfilter

Um spektral aufgeloste Messungen durchfiihren zu konnen, stehen im Versuch vier Bandpassfilter zur Verfiigung, die als Interferenzfilter
ausgefihrt sind.

Mit Interferenzfiltern 13sst sich ein spektral besonders schmaler Transmissionsbereich realisieren. Sie funktionieren nach dem Prinzip
eines Fabry-Perot-Interferometers und bestehen aus vielen Schichten dielektrischen Materials unterschiedlicher Brechungsindices und
unterschiedlicher Dicke, die die einfallenden Lichtstrahlen jeweils teilweise reflektieren und transmittieren und durch konstruktive
bzw. destruktive Interferenz dafiir sorgen, dass nur ein bestimmter Bereich um die Zentralwellenldnge transmittiert wird. Die
Halbwertsbreite des Transmissionsbereichs der im Versuch verwendeten Filter betragt jeweils (10 + 2)nm. Die Zentralwellenldngen
sind in folgender Tabelle zusammengestellt:
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Filter  Aengral in Nm

1 488
2 543,5
3 633
4 694,3

Die Filter sind am Aufbau entsprechend nummeriert.

2.1.4. Linsen

Sowohl beim VCSEL als auch bei der LED handelt es sich um divergente Lichtquellen. Zur Kollimation und Fokussierung der
Lichtquellen stehen drei unterschiedliche Linsen mit Brennweiten von 19 mm, 60 mm und 80 mm zur Verfiigung. Die Linse mit der
Brennweite von 19 mm ist am Rand des Reiters angebracht, sodass eine Positionierung nahe an einer Lichtquelle ungeachtet des
breiten Reiters moglich ist.

2.1.5. Drehwinkelaufnehmer

Je ein Polarisator und ein Verzogerungspléttchen sind in einem Drehwinkelaufnehmer montiert. Mittels einer Reflexionslichtschranke,
unter der eine in 5°-Schritten in 72 stark und weniger stark reflektierende Bereiche eingeteilte Kreisscheibe (siehe Abb. 12) gedreht
wird, wird bei jeder steigenden und fallenden Flanke der detektierten Spannung ein Signal generiert. Die Software liest, sobald sie
ein Signal vom Drehwinkelaufnehmer erhélt, einen Leistungswert vom Detektor. Somit lésst sich halbautomatisch die Intensitat als
Funktion des Drehwinkels aufnehmen.

0L2

Abbildung 12: Foto des im Versuch verwendeten Drehwinkelaufnehmers mit der in verschieden stark reflektierende Zonen eingeteilten
Kreisscheibe. Eingebaut ist ein \/4-Platte, markiert ist die Richtung der schnellen Achse.

Bei der Nutzung ist zu beachten, dass ein zu schnelles Drehen aufgrund der Antwortzeit des Detektors dazu fithren kann, dass der
eingelesene Leistungswert nicht der dem Winkel zugehorige ist. Als Anhaltspunkt fiir die Geschwindigkeit, mit der gedreht werden
darf, kann die Schwankung der ermittelten Stokes-Parameter in Abhdngigkeit von der Drehgeschwindigkeit dienen. Bei zu schnellem
Drehen kommt es hier zu auffilligen Schwankungen. Fiir die Anzahl der Werte, iiber die die Detektorelektronik mittelt, sollte ein
verhéltnismal3ig kleiner Wert von z.B. 100 eingestellt werden, um eine hinreichende Drehgeschwindigkeit zu erlauben.

Bei der Drehrichtung ist zu beachten, dass die schnelle Achse mit dem linken Rand der ausgezeichneten reflektierenden Flache zur
Deckung gebracht wurde.

2.1.6. Lichtquellen

Fiir den Versuch stehen ein VCSEL VC670M-TO46FW-2 mit einer Wellenlénge von 670 nm und eine weil3e LED M57L5111 (Spektrum
siehe Abb.13) zur Verfiigung. Fiir den VCSEL sind Justagebrillen vorhanden. Auf3erdem besteht die Moglichkeit, ihn mit einem
ND-Filter (OD=0,4) abzuschwichen. Die grundlegenden Bestimmungen zum Laserschutz sind zu beachten (siehe Anhang A).
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Abbildung 13: Spektrum der M57L5111 LED; Quelle: Datenblatt

2.1.7. Stromquelle

Als Stromquelle dient eine ILX Lightwave LDX-3412. Es handelt sich hierbei um eine spezielle Stromquelle fiir Diodenlaser und LEDs,
die den Strom oder die Leistung sehr genau auf einen eingestellten Wert regelt und die Spannung entsprechend anpasst. Es lassen
sich Strome zwischen 0 und 200mA einstellen. Aul3erdem besteht die Moglichkeit, ein Limit einzustellen, um ein versehentliches
Einstellen zu hoher Stréme zu verhindern. Ein Foto der vorhandenen Bedienelemente ist in Abb. 14 zu sehen.

BN OPEN CKT
El LIMIT

LMt MODE
POWER C .

. . . DISPLAY
0 200

Abbildung 14: Frontansicht der ILX Stromquelle mit Kennzeichnung der Kndpfe

Das Gerat wird wahrend des Versuchs nicht ein- und ausgeschaltet. Stattdessen wird der Drehregler auf Null heruntergedreht und
der Output (Knopf B) deaktiviert.

2.2. Messverfahren

2.2.1. Grundlegende Justage

Vor jedem Versuch muss der Aufbau justiert werden. Dabei miissen je nach Aufgabe die Lichtquellen auf den Detektor kollimiert bzw.
fokussiert werden.

Je nach verwendeter Lichtquelle bieten sich verschiedene Linsen oder Kombinationen von Linsen an, um zum einen eine mdglichst
hohe Intensitédt auf dem Detektor zu erzielen und zum anderen moglichst ebene Wellenfronten zu erzeugen. Letzeres ist wichtig, da
die Form der Wellenfronten Einfluss auf die Wirkung der polarisationsmodifizierenden Optiken hat.

Je nach Messmethode ist auch eine Ausrichtung der Achsen der Polarisationsoptiken erforderlich, die die durch die Verwendung
der Skalen erzielbare Einstellgenauigkeit iibersteigt. In diesem Fall kann der Umstand, dass fiir bestimmte Stellungen der Achsen
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zueinander Intensitdtsminima oder -maxima zu erwarten sind, genutzt werden.

2.2.2. Bestimmung der Stokes-Vektoren mittels Fourieranalyse

Es existieren verschiedene Verfahren zur Bestimmung der Stokes-Parameter. Eine Beschreibung verschiedener Verfahren einschlie3lich
ihrer Vor- und Nachteile ist z.B. bei Collet [3] zu finden. Die folgende Beschreibung des Verfahrens, das im Versuch mehrfach zur
Anwendung kommt, stiitzt sich auf ein Paper von H.G. Berry und A.E. Livingston [2], in dem eine sehr allgemeine und umfassende
Beschreibung des Verfahrens geliefert wird.

Verwendet wird eine Verzégerungsplatte, die eine Verzogerung von ¢ erzeugt und mit der x-Achse den Winkel 3 einschlief3t, und
ein Polarisator, der mit der x-Achse den Winkel « einschlief3t und zwischen dem Detektor und der Verzogerungsplatte positioniert ist.
Durch Multiplikation der entsprechenden Miillermatrizen erhélt man folgenden Ausdruck fiir die resultierende Sy-Komponente und
damit fiir die Intensitat:

Ir(a, B,0) = %(S’o + (S1cos(28) 4+ Sz sin (28)) cos (2a — 28) +
((S2 cos (28) — S1sin (28)) cos (§) — Sssin(d)) sin (2a — 23)) 8)

Dieser Ausdruck kann durch das Anwenden von Additionstheoremen in die Form einer Fourierreihe gebracht werden:

Ir(a, B,5) :% (so + % (51 cos(2a) + Sa sin(2a)) (1 + cos(8))
— S3sin(0) sin(2a — 250) cos(2/3)
+ S3 cos(2a — 2fp) sin(9) sin(25)

+ % (81 cos(2a — 4Bo) — Sz sin(2a — 460)) (1 — cos(8)) cos(43)
+% (S1 sin(2a — 480) + S2 cos(2a — 480)) (1 — cos(8)) sin(4ﬂ))

I7(B) = ¢ + @ cos(28) + 5@ sin(28) + ¢ cos(48) + s¥ sin(43) ©

Hier wurde auflerdem die Substitution 8 — 5 + By verwendet, mit der ein Anfangswinkel 3, in die Rechnung eingeht, relativ zu
dem der Winkel 8 gemessen wird. Dies ist bei der Umsetzung relevant, wenn der Anfangswinkel einer experimentellen Unsicherheit
unterliegt. Rotiert man die Verzégerungsplatte eine gerade Anzahl N gleich grof3er Winkel und nimmt fiir jede der Winkelpositionen
die Intensitét I(3) auf, so kann man die Fourierkoeffizienten mittels diskreter Fourieranalyse bestimmen:

o_ 1y <2>_22N <4)_22N
= ; Ir; U= 2 Ir; cos(28;) =5 2 I7; cos(45;)
2 _ 2% : w2 ,
s =5 igzl It sin(25;) s = ;:1 I7;sin(45;)

In diesem Versuch ist N = 72 durch die Anzahl der Segmente des Drehwinkelaufnehmers der )\/4-Platte gegeben. Mit §; ist
hierbei die Winkelposition und mit 7r; die Intensitét fiir den i-ten Messwert bezeichnet. Die Stokes-Paramter lassen sich aus den
Fourierkoeffizienten dann wie folgt berechnen (Man beachte, dass das Paper von Berry Fehler enthdlt):.

S1 :ﬁ(&) cos(2a — 460) + s sin(2a — 460)) (10a)

S2 2#05(5)(5(4> cos(2a — 480) — ¢V sin(2a — 460)) (10b)
252 —2¢3

Ss :sin(é) cos(2a — 200) - sin(9) sin(2ac — 260) (100)

So =2 — 2%2223%(&“ cos(4a — 480) + s sin(4a — 460)) (10d)

Dabei ist zu berticksichtigen, dass in diesem Versuchsaufbau « = 0 und im Idealfall auch 8y = 0 gelten, so dass der erste Teil
der Gleichung fiir S5 verwendet werden sollte. Beim analysieren der Messdaten bietet es sich an, die Stokesparameter auf Sy zu
normieren.

Hier féllt auf, dass die Frequenzen, die den Fourierkoeffizienten, aus denen die Stokes-Parameter S; und S, bestimmt werden,
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zugrunde liegen, doppelt so hoch sind wie die Frequenzen der Fourierkoeffizienten, die S5 zugrunde liegen. Dieser Umstand erm6glicht
es, die linear und zirkular polarisierten Anteile besonders gut trennen zu kdnnen und zeichnet diese Methode unter anderem aus.

Ein weiterer Vorteil dieser Methode ist, dass sie sich hervorragend automatisieren lésst. So existieren kommerziell erhéltliche
Systeme, bei denen schnell rotierende Verzégerungsplatten zum Einsatz kommen (z.B. Thorlabs PAX Series Polarimeters; hier rotiert
das %—Pléittchen mit 30 Hz).

3. Aufgaben

3.1. Vorbereitung

* Machen Sie sich mit den Richtlinien zum Laserschutz (Anhang A) vertraut. Drucken Sie sie aus und bringen Sie sie mit zum

Versuch. Machen Sie sich auerdem mit der Funktionsweise und den physikalischen Prinzipien der verwendeten Elemente und
mit dem Stokes-Formalismus vertraut.

Erklaren Sie kurz die Idee des im Aufgabentext von Aufgabe 3 beschriebenen Messverfahrens und die Bedeutung der einzelnen
Schritte.

In Aufgabe 4 sollen Sie rechts- und linkszirkulares Licht herstellen. Berechnen Sie, wie Sie die Drehwinkel eines Linearpolarisators
und einer idealen \/4-Platte zur z-Achse einstellen miissen, um mit diesen beiden Elementen die gewiinschte Polarisation zu
erzeugen.

Die Gleichungen (3) gelten nur fiir (—7/4 < x,% < 7/4). Wie miissen die Gleichungen fiir Ellipsen angepasst werden, deren
langen Halbachse sehr steil steht, also einen Winkel von weniger als 45° mit der y-Achse einschlie3t?

3.2.

Durchfiihrung

. Nehmen Sie eine P-I-Kennlinie der LED auf. Stellen Sie dazu das Limit an der Stromquelle auf 53 mA und messen Sie von

OmA bis 50 mA in 5 mA-Schritten. Beriicksichtigen Sie bei dieser und allen weiteren Aufgaben Umgebungslicht und fiihren Sie
entsprechende Untergrundmessungen durch.

. Bestimmen die das Ausléschungsverhéltnis der Linearpolarisatoren. Wéhlen Sie den Abstand zwischen den Polarisatoren und

zum Leistungsmessgerét so, dass Sie in Aufgabe 3 noch den Babinet-Soleil-Kompensator, die A/4-Platte und das Filterrad
einfiigen konnen. Tipp: Es bietet sich an, das Filterrad nach dem zweiten Polarisator einzufiigen.

An vorderer Stelle wird der Polarisator mit der Nonius-Skala eingefiigt. Die Durchlassrichtung des hinteren Polarisators wird in
z-Richtung orientiert und im Verlauf des gesamten Versuchs nicht mehr veréndert. Der vordere Polarisator wird nun so rotiert,
dass keine Intensitdt mehr transmittiert wird. Da hier eine hohe Genauigkeit wichtig ist, wird mit der Detektorelektronik {iber
1000 Werte gemittelt.

. Bestimmen Sie mit den Filtern fiir die verschiedenen Wellenldngen die Phasenverzogerung des achromatischen Verzégerungs-

plattchens mit dem Babinet-Soleil-Kompensator.
Gehen Sie folgendermal3en vor:

a) Zuerst wird der Kompensator zwischen den beiden Polarisatoren in den Strahlengang gebracht. Im Allgemeinen fallt nach
dem Einbringen des Kompensators wieder Licht auf den Detektor.

b) Der Kompensator wird nun rotiert, bis am Detektor ein Intensitdtsminimum gemessen wird.

¢) Der Kompensator wird nun unter Verwendung der Nonius-Skala um 45° in eine Position rotiert, so dass Sie die Trommel
gut erreichen und ablesen kénnen.

d) Fiir die zu untersuchenden Wellenldngen werden alle drei Einstellungen der Trommelskala bestimmt, fiir die ein In-
tensitdtsminimum erzeugt wird. Es bietet sich an, zundchst mit dem Auge ein Intensitdtsminimum zu finden und erst
danach den Detektor zu verwenden. Achten Sie darauf, den Winkel des Kompensators dabei nicht unbemerkt zu verstellen.
Mit der Trommelskala diirfen Sie unter keinen Umstdnden den Wertebereich von 0 bis 55 verlassen, da sonst der
Kompensator zerstort wird! Beim Vorliegen eines Intensitdtsminiums ist die Phasenverschiebung zwischen der z- und
der y- Komponente ein ganzzahliges Vielfaches von 27. Mit den aufgezeichneten Werten kann so in der Auswertung die
Trommelskala kalibriert werden.

e) Der Filter 4 ist noch ausgewahlt und der Babinet-Soleil-Kompensator auf das dritte Minimum eingestellt. Das Vorgehen
zur Vermessung der \/4-Platte ist nun dhnlich wie bei der Kalibrierung des Babinet-Soleil-Kompensators: Die \/4-Platte
mit der Nonius-Skala wird zwischen den ersten Polarisator und den Babinet-Soleil-Kompensator in den Strahlengang
gestellt. Im Allgemeinen féllt nach dem Einbringen der A\/4-Platte wieder Licht auf den Detektor. Sie wird nun rotiert,
bis am Detektor ein Intensitdtsminimum gemessen wird, und anschliefend unter Verwendung der Nonius-Skala um 45°

16



gedreht. Fiir die zu untersuchenden Wellenlédngen werden wieder die Einstellungen der Trommelskala bestimmit, fiir die
ein Intensitdtsminimum erzeugt wird. Aus der Verschiebung der Minima relativ zu den Minima ohne die \/4-Platte und
dem Kalibrierungsfaktor konnen sie die Verzogerung der Platte fiir die verschiedenen Wellenlédngen bestimmen.
4. Stellen Sie Licht der folgenden Polarisationszustdnde her:
- Lineare Polarisation: vertikal und unter 45° zur Horizontalen
— Rechts- und linkszirkulare Polarisation

Charakterisieren Sie die Polarisationszustdnde mit Hilfe des Stokes-Formalismus. Nutzen Sie hierfiir die LED und den 694,3 nm-
Filter. Verwenden Sie bei der Auswertung auerdem Thre Erkenntnisse aus der Voraufgabe iiber die tatséchliche Verzogerung
der \/4-Platte. Beachten Sie bei der Bestimmung der Drehwinkel der Elemente die Winkeldefinition in Abb. 3. Bei den Lambda-
Platten zeigt die Markierung auf der Fassung die Richtung der schnellen Achse an, bei den Polarisatioren die Durchlassrichtung.

5. Vermessen Sie zuerst die Polarisation des Lichts der LED. Vermessen Sie nun den Polarisationszustand, der entsteht, wenn das
Licht der LED durch die Brille aus dem 3D-Kino tritt. Untersuchen Sie die Propagationsrichtung, wie sie im 3D-Kino vorliegt
(d.h. das Licht propagiert von der Leinwand zum Auge) und auch die umgekehrte Propagationsrichtung (d.h. vom Auge zur
Leinwand).

6. Nehmen Sie eine P-I-Kennlinie des VCSELSs bis 5 mA auf.

Zum Wechsel der Lichtquelle wird
. zuerst der Strom vollstindig herunter gedreht (Knopf A),
. der Output deaktiviert,
. 30 Sekunden gewartet,

. die alte Lichtquelle an der Steckverbindung vom Gerit getrennt,

1
2
3
4
5. das Limit (Knopf C) neu eingestellt,
6. die neue Lichtquelle angeschlossen,
7. der Output aktiviert und

8

. der gewiinschte Strom eingestellt (Knopf A).
Mit angeschlossener Lichtquelle darf auf keinen Fall das Limit verdndert oder der Ausschalter betitigt werden!

Andernfalls fiihrt die entstehende Stromspitze und mit sehr hoher Wahrscheinlichkeit zur sofortigen Zerstorung der Lichtquelle!

Stellen Sie an der Stromquelle eine Limit von 5,3 mA ein. Messen Sie von 0 mA bis 1,2mA in Schritten von 0,2 mA. Messen
Sie dann bis 2,2 mA weiter in Schritten von 0,1 mA. Oberhalb von 2,2mA bis 5 mA kénnen Sie die Schritte wieder auf 0,2 mA
vergrofdern.

Beachten Sie die Vorschriften zum Laserschutz!

7. Bestimmen Sie den Polarisationszustand des VCSELs unter Nutzung des Stokes-Formalismus in Abhéngigkeit des Stroms.
Messen Sie die Polarisation bei 0,4mA, 0,8mA und 1,2mA. Messen Sie im Bereich der Laserschwelle (von 1,2 mA bis 2,2 mA)
alle 0,1 mA und anschlieend noch bei 3mA, 4mA und 5mA.
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3.3.

Auswertung

Zur Auswertung aller Aufgaben gehort eine ausfiihrliche Dokumentation des Versuchsaufbaus mit Begriindung und dessen Justage
und Kalibration. Zu den Ergebnissen ist eine Betrachtung der Messunsicherheiten und eine ausfiihrliche Diskussion der Ergebnisse
durchzuftihren.

Auswertung der einzelnen Aufgaben:

1:

2:

Plotten Sie die Kennlinie der LED und interpretieren sie deren Verlauf.

Berechnen Sie das Ausloschungsverhéltnis des Linearpolarisators und die Unsicherheit des Ergebnisses.

: Bestimmen Sie fiir die untersuchten Wellenldngen den Kalibrierungsfaktor ~, mit dem sich die Skaleneinheiten in die Phasen-

verschiebung in Radiant umrechnen lassen. Bestimmen Sie fiir die untersuchten Wellenlédngen die Verzégerung der \/4-Platte.
Mitteln Sie jeweils iiber die drei vorliegenden Werte und schitzen Sie die Unsicherheit ab.

: Stellen Sie fiir die betrachteten Polarisationszustédnde jeweils die ideale Intensitédtsverteilung und die gemessene Verteilung in

Polardiagrammen gegeniiber und erliutern sie den Intensititsverlauf. Vergleichen Sie auch die erwarteten Polarisationsellipsen
mit den gemessenen Ellipsen, die Sie anhand der ermittelten Stokes-Parameter plotten. Fiihren Sie eine Fehlerbetrachtung fiir
die Stokes-Parameter durch. Falls Sie fiir die Stokes-Parameter unrealistische Werte erhalten (z.B. einige Parameter oder der
DOP sind grofRer als Eins), untersuchen Sie, ob ein systematischer Fehler von S, die Ursache sein kann.

: Stellen Sie die gemessenen Intensitdten mit der 3D-Brille in Polardiagrammen dar und berechnen Sie die Stokes-Parameter.

Plotten Sie auch die Polarisationsellipsen und interpretieren Sie das Ergebnis. Wie funktioniert die Brille?

: Plotten und erlautern Sie die Kennlinie der Laserdiode.

: Berechnen Sie die Stokes-Parameter und die Polarisationsellipse und verwenden Sie dazu einen sinnvollen Wert fiir die

tatsachliche Verzogerung § der \/4-Platte bei der Laserwellenlidnge. Stellen Stokes-Parameter, Polarisationsellipsen und
Polardiagramme in Abhéngigkeit des Pumpstroms dar. Erldutern Sie das Ergebnis.
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A. Richtlinien zum Laserschutz der Abteilung A des F-Praktikums

Wichtige Punkte zum Laserschutz

Der Laserschutz spielt in unseren Labors eine sehr zentrale Rolle. Ganz allgemein gilt: Im
Umgang mit Lasern ist der gesunde Menschenverstand nicht zu ersetzen! Einige
spezielle Hinweise werden im folgenden angefiihrt.

1.
2.
3.

10.

11.

12.

13.

Die Laserschutzvorschriften sind immer zu beachten.
Kopf niemals auf Strahlhéhe. Daher nie im Sitzen am Lasertisch arbeiten.

Richtige Schutzbrille aufsetzen; Wellenldnge und Leistung miissen bei der Wahl
beriicksichtigt werden. Bitte beim Betreuer oder Laserschutzbeauftragten, oder an den
Aushingen an den Labortiiren informieren!

Achtung: praktisch alle Laser fiir Laboranwendungen sind mindestens Klasse 3, also von
vornherein fiir die Augen gefahrlich, ggf. auch fiir die Haut — evtl. auch hiefiir
Schutzmafinahmen ergreifen

Zur Justage kann der Laserstrahl mittels Wandlerkarten sichtbar gemacht werden. Zu
beachten ist: Diese halten keine sehr hohen Leistungen aus und besitzen im allgemeinen
eine reflektierende Oberflache. Achtung deshalb vor Reflektionen! Auch Kameras
besitzen eine Zerstorschwelle!

Spiegel und sonstige Komponenten nie in den ungeblockten Laserstrahl einbauen! Vor
Einbau immer {iberlegen, in welche Richtung der Reflex geht! Diese Richtung zunichst
blocken, bevor der Strahl wieder frei gegeben wird.

Nie mit reflektierenden Werkzeugen im Strahlengang hantieren! Unkontrollierbare
Reflexe! Vorsicht ist z.B. auch mit BNC-Kabeln geboten, die in den Strahlengang
gelangen konnten!

Gleiches gilt auch fiir Uhren und Ringe. Diese vorsichtshalber ausziehen, wenn Sie mit
den Handen im Strahlengang arbeiten.

Auch Leistungsmessgerite konnen Reflexe verursachen! Unbeschichtete Silizium-
Fotodioden reflektieren iiber 30% des Lichtes!

Achtung im Umgang mit Strahlteilerwiirfeln! Diese haben immer einen zweiten
Ausgang! Ggf. abblocken!

Warnlampen bei Betrieb des Lasers anschalten und nach Beendigung der Arbeit wieder
ausschalten

Dafiir sorgen, dass auch Dritte im Labor die richtigen Schutzbrillen tragen, oder sich
auflerhalb des Laserschutzbereiches befinden

Filtergldaser in Laserschutzbrillen diirfen grundsdtzlich nicht aus- oder umgebaut
werden!!!

In besonderem Maf3e auf Beistehende achten.

Hiermit erkldre ich, dass ich die vorstehenden Punkte gelesen und verstanden habe. Ich bestitige,
dass ich eine Einfiihrung in den Umgang mit Lasern sowie eine arbeitsplatzbezogene Unterweisung
erhalten habe.

Name:

Arbeitsgruppe:

Unterschrift: Datum:
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A Historical Note

At the midpoint of the nineteenth century the wave theory of light developed by
Augustin Jean Fresnel (1788-1827) and his successors was a complete triumph.
The wave theory completely explained the major optical phenomena of interfer-
ence, diffraction, and polarization. Furthermore, Fresnel had successfully applied
the wave theory to the problem of the propagation and polarization of light in
anisotropic media, that is, crystals. A further experiment was carried out in 1851
by Armand Hypolite Louis Fizeau (1819-1896), who showed that the speed of
light was less in an optically dense medium than in a vacuum, a result predicted
by the wave theory. The corpuscular theory, on the other hand, had predicted
that in an optically dense medium the speed of light would be greater than in a
vacuum. Thus, in practically all respects Fresnel’s wave theory of light appeared
to be triumphant.

By the year 1852, however, a crisis of quite proportions was slowly simmer-
ing in optics. The crisis, ironically, had been brought on by Fresnel himself 35
years earlier. In the year 1817 Fresnel, with the able assistance of his colleague
Dominique Frangois Arago (1786-1853), undertook a series of experiments to
determine the influence of polarized light on the interference experiments of
Thomas Young, (1773-1829). At the beginning of these experiments Fresnel and
Arago held the view that light vibrations were longitudinal. At the end of their
experiments they were unable to understand their results on the basis of lon-
gitudinal vibrations., Arago communicated the puzzling results to Young, who
then suggested that the experiments could be understood if the light vibrations
were transverse, consisted of only two orthogonal components, and there was
no longitudinal component. Indeed, this did make some, but not all, of the re-
sults comprehensible. At the conclusion of their experiments Fresnel and Arago
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summarized their results in a series of statements that have come down to us as
the four interference laws of Fresnel and Arago.

All physical experiments are described in terms of verbal statements from
which mathematical statements can then be written (e.g., Kepler’s laws of plan-
etary motion and Newton’s laws of motion). Fresnel understood this very well.
Upon completing his experiments, he turned to the problem of developing the
mathematical statements for the four interference laws. Fresnel's wave theory was
an amplitude description of light and was completely successful in describing com-
pletely polarized light, that is, elliptically polarized light and its degenerate states,
linearly and circularly polarized light. However, the Fresnel-Arago experiments
were carried out not with completely polarized light but with another state of
polarized light called unpolarized light. In order to describe the Fresnel-Arago
experiments it would be necessary for Fresnel to provide the mathematical state-
ments for unpolarized light, but much to his surprise, on the basis of his amplitude
formulation of light, he was unable to write the mathematical statements for un-
polarized light! And he never succeeded. With his untimely death in 1827 the
task of describing unpolarized light (or for that matter any state of polarized light
within the framework of classical optics) along with providing the mathematical
statements of the Fresnel-Arago interference laws passed to others. For many
years his successors were no more successful than he had been.

By 1852 35 years had elapsed since the enunciation of the Fresnel-Arago
laws and there was still no satisfactory description of unpolarized light or the
interference laws. It appeared that unpolarized light, as well as so-called partially
polarized light, could not be described within the framework of the wave theory
of light, which would be a crisis indeed.

The year 1852 is a watershed in optics because in that year Sir George Gabriel
Stokes (1819-1903) published two remarkable papers in optics. The first appeared
with the very bland title, “On the Composition and Resolution of Streams of
Polarized Light from Different Sources,” a title that appears to be far removed
from the Fresnel-Arago interference laws; the paper itself does not appear to
have attracted much attention. It is now, however, considered to be one of the
great papers of classical optics. After careful reading of his paper, one discovers
that it provides the mathematical formulation for describing any state of polarized
light and, most importantly, the mathematical statements for unpolarized light: the
mathematical statements for the Fresnel-Arago interference laws could now be
written. Stokes had been able to show, finally, that unpolarized light and partially
polarized light could be described within the framework of the wave theory of
light.

Stokes was successful where all others had failed because he developed a
highly novel approach for describing unpolarized and partially polarized light. He
abandoned the fruitless attempts of his predecessors to describe unpolarized light
in terms of amplitudes and, instead, resorted to an experimental definition of
unpolarized light. In other words, he was led to a formulation of polarized light
in terms of measured quantities, that is, intensities (ohservables). This was a com-
pletely unique point of view for the nineteenth century. The idea of observables
was not to reappear again in physics until the advent of quantum mechanics in
1925 by Werner Heisenberg (1901-1976) and later in optics with the observable
formulation of the optical field in 1954 by Emil Wolf (1922- ).
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Stokes showed that his intensity formulation of the polarized light could be
used to describe not only unpolarized and partially polarized light but completely
polarized light as well. Thus, his formulation was applicable to any state of
polarized light. His entire paper is devoted to describing in all the detail of mid-
nineteenth-century algebra the properties of various combinations of polarized
and unpolarized light. Near the end of his paper Stokes introduced his discovery
that four parameters, now known as the Stokes polarization parameters, could
characterize any state of polarized light. Unlike the amplitude formulation of the
optical field, his parameters were directly accessible to measurement. Further-
more, he then used these parameters to obtain a correct mathematical statement
for unpolarized light. The stage had now been set to write the mathematical
statements for the Fresnel-Arago interference laws.

At the end of Stoke’s paper he turns, at long last, to his first application, the
long awaited mathematical statements for the Fresnel-Arago interference laws.
In his paper he states, “Let us now apply the principles and formulae which
have just been established to a few examples. And first let us take one of the
fundamental experiments by which MM. Arago and Fresnel established the laws
of interference of polarized light, or rather an analogous experiment mentioned by
Sir John Herschel” Thus, with these few words Stokes abandoned his attempts to
provide the mathematical statements for the Fresnel-Arago laws. At this point
Stokes knew that to apply his formulation to the formulation of the Fresnel-Arago
interference laws was a considerable undertaking. It was sufficient for Stokes to
know that his mathematical formulation of polarized light would explain them.
Within several more pages, primarily devoted to correcting several experiments
misunderstood by his colleagues, he concluded his paper.

This sudden termination is remarkable in view of its author’s extraordinary
effort to develop the mathematical machinery to describe polarized light, culmi-
nating in the Stokes polarization parameters. One must ask why he brought his
paper to such a rapid conclusion. In my opinion, and this shall require further
historical research, the answer lies in the paper that immediately follows Stoke’s
polarization paper, published only two months later. Its title was, “On the Change
of the Refrangibility of Light.”

In the beginning of this Historical Note it was pointed out that by 1852 there
was a crisis in optics over the inability to find a suitable mathematical description
for unpolarized light and the Fresnel-Arago interference laws. This crisis was
finally overcome with the publication of Stokes’ paper on polarized light in 1852.
But this next paper by Stokes dealt with a new problem of very disconcerting
proportions. It was the first in a series of papers that would lead, 75 years
later, to quantum mechanics. The subject of this second paper is a topic that
has become known as the fluorescence of solutions. It is a monumental paper
and was published in two parts. The first is a 20-page abstract! The second is
the paper itself, which consists of nearly 150 pages. After reading this paper it
is easy to understand why Stokes had concluded his paper on the Fresnel-Arago
interference laws. He was deeply immersed in numerous experiments exploring the
peculiar phenomenon of fluorescence. After an enormous amount of experimental
effort Stokes was able to enunciate his now famous law of fluorescence, namely,
that the wavelength of the emitted fluorescent radiation was greater than the
excitation wavelength; he also found that the fluorescence radiation appeared to
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be unpolarized. Stokes was never able to find the reason for this peculiar behavior
of fluorescence or the basis of his law. He would spend the next S0 years searching
for the reason for his empirical law until his death in 1903. Ironically, in 1905, two
years after Stoke’s death, a young physicist by the name of Albert Einstein (1879-
1955) published a paper entitled “On a Heuristic Point of View Concerning the
Generation and Conversion of Light” and showed that Stokes’ law of fluorescence
could be easily explained and understood on the basis of the quantum hypothesis
of Max Planck (1858-1947). It is now clear that Stokes never had the slightest
chance of explaining the phenomenon of fluorescence within the framework of
classical optics. Thus, having helped to remove one of the last barriers to the
acceptance of the wave theory of light, Stoke’s investigations on the nature of light
had led him to the discovery of the first law ever associated with the quantum
phenomenon. Unknowingly, Stokes had stumbled onto the quantum nature of
light. Thirty-five years later, in 1888, a similar chain of events was repeated when
Heinrich Hertz (1857-1894), while verifying the electromagnetic field theory of
James Clerk Maxwell (1831-1879), the ultimate proof of the truth of the classical
wave theory of light, also discovered a new and unexplainable phenomenon, the
photoelectric effect. We now know that this too can be understood only in terms
of the quantum theory. Science is filled with ironies.

Within two months of the publication in March 1852 of his paper on polar-
ized light, in which the formulation of classical optics appeared to be complete,
with the May 1852 publication of his paper on fluorescence, Stokes went from
complete triumph to complete dismay. He would constantly return to the subject
of fluorescence for the remainder of his life, always trying but never succeeding
in understanding the origin of his law of fluorescence.

Stoke’s great paper on polarization was practically forgotten because by the
mid-nineteenth century classical optics was believed to be complete and physicists
had turned their attention to the investigation of the electromagnetic field and the
statistical mechanics of molecules. His paper was buried in the scientific literature
for nearly a century. Its importance was finally recognized with its “discovery” in
the 1940s by the Nobel laureate Subrahmanya Chandrasekhar (1910- ) who used
the Stokes parameters to include the effects of polarized light in the equations of
radiative transfer.

In this book we shall see that the Stokes polarization parameters provide a
rich and powerful tool for investigating and understanding polarized light and its
interaction with matter. The use of these parameters provides a mathematical
formulation of polarized light whose power is far greater than was ever imagined
by their originator and serves as a tribute to his genius.
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where
A=acoséd B =asind (40)

Another form for (37) is to express coswyt and sinwgf in terms of exponents; that
is,

eiwot i e-i' wih

e 41a)
cos wylt 2 {

. eiwd o e—l'upl

sinwyt = —-Tb—— (4"3)

Substituting (41a) and (41b) into (39) and grouping terms leads to
x(t) = Ce"™ + De™¥ (42a)

where

A-iB  _A+iB (42b)

2 2
and C and D are complex constants. Thus, we see that the solution of the
harmonic oscillator can be written in terms of purely real quantities or complex
quantities.
The form of (35a) is of particular interest. The differential equation (33a)
clearly describes the amplitude motion of the harmonic oscillator. Let us r_etain
the original form of (33a) and multiply through by dx/dt = v, 50 we can write

dv dx
o PR o 43
™ dt @
We now integrate both sides of (43), and we are led to
mv? —kx?
—_ = 44
5 5~ TE (44)

where C is a constant of integration. Thus, by merely carrying out a formal
integration we are led to a new form for describing the motion of the harmonic
oscillator. At the beginning of the cighteenth century the meaning of (44) was not
clear. Only slowly did physicists come to realize that (44) describes the motion of
the harmonic oscillator in a completely new way, namely the description of mation
in terms of energy. The terms mv?/2 and —kx?/2 correspond to the kinetic energy
and the potential energy for the harmonic oscillator, respectively. Thus, early on
in the development of physics a connection was made between the amplitude
and energy for oscillatory motion. The energy of the wave could be obtained by
merely squaring the amplitude. This point is introduced because of its bearing
on Young's interference experiment, specifically, and on optics, generally. The
fact that a relation exists between the amplitude of the harmonic oscillator and
its energy was taken directly over from mechanics into optics and was critical for
Young's interference experiment. In optics, however, the energy would become
known as the intensity.

The Wave Equafion in Classical Optics 11

2.2.5. A Note on the Equation of a Plane
The equation of a plane was stated in (11) to be

s +r = constant (11)

We can show that (11) does indeed describe a plane by referring to Figure 2.
Inspecting the figure, we see that r is a vector with its origin at the origin of the
coordinates, so,

r=xi+yj+zk (45)
and i, j, and k are unit vectors. Similarly, from Figure 2 we see that
s=sdi+sj+sk (46)

Suppose we now have a vector ry along s and the plane is perpendicular to s.
Then OP is the vector r —r,, and is perpendicular to s. Hence, the equation of
the plane is

s-(r—r) =0 (47)
or
s.r=¢( (48)

where ¢ = s-r, is a constant. Thus, the name plane-wave solutions arises from the
fact that the wave front is characterized by a plane of infinite extent.

2.3. YOUNG’S INTERFERENCE EXPERIMENT

In the previous section we saw that the developments in mechanics in the eigh-
teenth century led to the mathematical formulation of the wave equation and the
concept of energy.

Around the year 1800, Thomas Young performed a simple, but remarkable,
optical experiment known as the two-pinhole interference experiment. He showed
that this experiment could be understood in terms of waves; the experiment gave
the first clear-cut support for the wave theory of light. In order to understand
the pattern which he observed, he adopted the ideas developed in mechanics
and applied them to optics, an extremely novel and radical approach. Until the
advent of Young’s work, very little progress had been made in optics since the
researches of Newton (the corpuscular theory of light) and Huygens (the wave
theory of light). The simple fact was that by the year 1800, aside from Snell’s
law of refraction and the few things learned about polarization, there was no
theoretical basis on which to proceed. Young's work provided the first critical
step in the development and acceptance of the wave theory of light.

The experiment carried out by Young is shown in Figure 3. A source of
light, o, is placed behind two pinholes 5; and s,, which are equidistant from
o. The pinholes then act as secondary monochromatic sources which are in
phase, and the beams from them are superposed on the screen I at an arbitrary
point P. Remarkably, when the screen is then observed, one does not see a

—————
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Figure 3 Young's interference experiment.

uniform distribution of light. Instead, a distinct pattern consisting of bright bands
alternating with dark bands is abserved. In order to explain this behavior, Young
assumed that each of the pinholes, 5, and s,, emitted waves of the form

u = Lgy sin(wt = "dl) (493')
Uy = Ugy sin(wt — ki) (49b)

At the source plane A, I, and I, are zero. The pattern is observed on the plane
Oxy normal to the perpendicular bisector of §75; and with the x axis parallel to
515;. The separation of the pinholes is d, and a is the distance between the line
joining the pinholes and the plane of observation ¥. For the point P(x,y) on the
screen, Figure 3 shows that

d ¥
z;=42+y2+( _5) (502)
d 2
2 = g2 +y2+(x+ ;) (50b)
Thus,
B-1}=2d (51)

Equation (51) can be written as

(=1 +1;) =2xd (52)
Now if x and y are small compared to a, then I; + 1, ~ 2a. Thus,

L-l=Al= J-LE (53)

At this point we now return to the wave theory. The secondary sources s;
and s, are assumed to be equal, 50 Uy, = ugy = uy. In addition, the assumption
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is made that the optical disturbances #, and u, can be superposed at P(x,y) (the
principle of coherent superposition), so

u(t) =uy +u,
g [sin(wt — ki) + sin(wt —kI,)] (54)

I

A serious problem now arises. While (54) certainly describes an interference
behavior, the parameter of time enters in the term wf. In the experiment the
observed pattern does not vary over time, so the time factor cannot enter the
final result. This suggests that we average the amplitude u(¢) over the time of
observation T. The time average of u(t) written as (u(t)), is then defined to be

T u(t)dt
(uw) = Jlim f“}:% (550)
T
= Jim_ % j; u(t)dt (55b)

Substituting (54) into (55) yields

T
(u(t)) = Tlim / [sin{wt —kl,) + sin(wt —kl;)]d!t (56)
—os Jo
Using the trigonometric identity
sin(wt — kl) = sin(wt) cos(kl) — cos(wt ) sin(kl) (57)
and averaging over one cycle (56) yields
(u(t)) = 0 (58)

This is not observed. That is, the time average of the amplitude is calculated to
be zero, but observation shows that the pattern exhibits nonzero intensities. At
this point we must abandon the idea that the interfere:ce phenomenon can be
explained only in terms of amplitudes u(t). Another idea must now be borrowed
from mechanics. Namely, the optical disturbance must be described in terms of
squared quantities, analogous to energy, u?(t). But this, too, contains a time
factor, Again, a time average is introduced, and a new quantity, I, called the
intensity in optics, is defined:

I'= (X)) = lim % fu ) w3(t)dt (59)

Substituting u?(t) = (u, sin(wt —kl))? into (59) and averaging over one cycle yields

T
I = (@) = lim % f ul sin®(wt — kl)dt
1]

2
u
= -29- =0 (60)

—————————————————————ee T ooy
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Thus, the intensity is constant over time; this behavior is observed.
The time average of u?(t) is now applied to the superposed amplitudes (54).
Squaring u?(r) yields

u?(t) = ud[sin®(wt —kl,) + sin’(wt — ki)
+ 2sin(wt — kl) sin(wt — ki;)] (61)

The last term is called the interference. Equation (13) can be rewritten with help
of the well-known trigonometric identity

2sin{wt — kI,) sin(wt — kl,)
= cos(k[l, — 14]) — cos(2wt — k[I; +1,]) (62)
Thus, (61) can be written as

u?(r) = ul[ sin®(wt — ki) + sin’(wt — kl,)

+ cos(k[l, — [,]) — cos(2wt — k[l +1,])] (63)
Substituting (63) into (59), we obtain the intensity on the screen to be
I = (u¥(t)) = 2I,[1 + cosk(l, — )] (64a)
or
-1
I = 4, cos® [l%—l—)] (64b)
where, from (33),
xd
5 w A=t 53
L1, = (53)

Equation (64b) is Young’s famous interference formula. \;Ve note that from (60)
we would expect the intensity from a single source to be u/2 = Iy, so the intensity
from two independent optical sources would be 2I. Equation (64a) (or (64b))
shows a remarkable result. Namely, when the intensity is observed from a single
source in which the beam is divided, the observed intensity varies between 0
and 4[,; the intensity can be double or even zero from that expected from two
independent optical sources! We see from (64b) that there will be maximum
intensities (41,) at

x= 5‘—33'; n=0,1,42,... (652)
and minimum intensities (null) at
x=‘;_’\(2”2+1) a0 (65b)

Thus, in the vicinity of O on the plane ¥ an interference pattern consisting of
bright and dark bands are aligned parallel to the OY axis (at right angles to the
line 575 joining the two sources).
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Young’s experiment is of great importance because it was the first step in
establishing the wave theory of light and was the first theory to provide an expla-
nation of the observed interference pattern. It also provides a method, albeit one
of low precision, of measuring the wave length of light by measuring d, a and
the fringe spacing according to (65a) or (65b). The separation Ax between the
central bright line and the first bright line is, from (65a),

A
Ax =x,—xp= = (66)
The expected separation on the observing screen can be found by assuming the
following values:

a =100 em d=01cm
A=5x10"em  Ax=005cm=05mm (67)

The resolution of the human eye at a distance of 25 cm is, approximately, of the
same order of magnitude, so the fringes can be observed with the naked eye.

Young's interference gave the first real support for the wave theory. How-
ever, aside from the important optical concepts introduced here to explain the
interference pattern, there is another reason for discussing Young’s interference
experiment. Around 1818, Fresnel and Arago repeated his experiments with po-
larized light to determine the effects, if any, of polarized light on the interference
phenomenon. The results were surprising to understand in their entirety. To ex-
plain these experiments it was necessary to understand the nature and properties
of polarized light. Before we turn to the subject of polarized light, however, we
discuss another topic of importance, namely, the reflection and transmission of a
wave at an interface separating two different media.

2.4, REFLECTION AND TRANSMISSION OF A WAVE AT AN
INTERFACE

The wave theory and the wave equation allow us to treat an important prob-
lem, namely, the reflection and transmission of wave at an interface between
two different media. Specifically, in optics, light is found to be partially reflected
and partially transmitted at the boundary of two media characterized by different
refractive indices. The treatment of this problem was first carried out in me-
chanics, however, and shows how the science of mechanics paved the way for the
introduction of the wave equation into optics.

Two media can be characterized by their ability to support two different
velocities v, and v,. In Figure 4 we show an incident wave coming from the left
which is partially transmitted and reflected at the interface (boundary).

We saw earlier that the solution of the wave equation in complex form is

u(x) = Ae=* 4 getitx (68)
where k = wfv. The time factor exp(iwt) has been suppressed. The term Ae—
describes propagation to the right, and the term Be™* describes propagation
to the left. The fields to the left and right of the interface (boundary) can be

e — |
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x<0 / x>0

Figure 4 Reflection and transmission of a wave at the interface between two media.

described by a superposition of waves propagating to the right and left, that is,
uy(x) = Ae™** + Be***  x <0 (69a)
Uy(x) = Ce™ ™ + De** x>0 {(69b)

where k| = wfv, and k; = w/v,.
We must now evaluate A, B, C, and D. To do this, we assume that at the
interface the fields are continuous—that is,

Uy (x) le=0= #2(¥) k=0 (70)

and that the slopes of u;(x) and u,(x) are continuous at the interface—that is,
the derivatives of u,(x) and u,(x), so

Ouy(x) | _ 9uy(x)
a ax

We also assume that there is no source of waves in the medium to the right of
the interface. This means that the wave which appears to the left of the interface
is due only to reflection of the incident wave. This requires that we set D=0in
(69b).

Applying these conditions to (69a) and (69b) we easily find

()

x=0 x=0

A+B=C (72a)
k,A —k,B = k,C (72b)

We solve for B and C in terms of the amplitude of the incident wave, 4, and
find

= (ke 73a)
B_(kl+kz)A (

- [ 73b
e- (g )4 .
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The B term is associated with the reflected wave in (69a). If k; = k,, then (73a)
and (73b) show that B = 0 and C = A; that is, there is no reflected wave, and we
have complete transmission as expected.

We can write (69a) as the sum of an incident wave w;(x) and a reflected wave

U (x):

(%) = u;(x) +u,(x) (74a)
and we can write (69b) as a transmitted wave:

Uy(x) =u,(x) (74b)

The energies corresponding to w;(x), u,(x), and u,(x) are then the squares of these
quantities. We can use complex quantities to bypass the formal time-averaging
procedure and define the energies of these waves to be

£ = 1,00} (x) (75a)
£ =, () (x) (75b)
£, = (o) (x) (750)

The principle of conservation of energy requires that

E=E+E (76)
The fields w;(x), u,(x), and u,(x) from (69a) and (69b) are

u;(x) = Ae~¥ (772)

u,(x) = Be**¥ (77b)

u,(x) = Cetk=x (77¢)

The energies corresponding to (77) are then substituted in (76), and we find

Ar=pryC? (78a)

2 2
()5

The quantities (B/A)* and (C/A)* are the normalized reflection and transmission
coefficients, which we write as R and T, respectively. Thus (78b) becomes

or

R+T=1 (79a)
where
_ (ki—k; :
- (83%)
T= 2, )2 79¢
ky + ks, (R
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from (73a) and (73b). Equation (79b) and (79¢) can be seen to satisfy the

conservation condition (79a). o
The coefficients B and C show an interesting behavior, which is as follows.

From (73a) and (73b) we write

-B_ - 1—k2ﬂ€1 (303)
A 1+kyky
c ... 2 (80b)
A 1+klk

where
ky _whvy _ V1 (80c)

Now if v, = 0, that is, there is no propagation in the second medium, (80c)
becomes

im 2= Mag (81)

v—0 k vy

With this limiting value, (81), we see that (80a) and (80b) become
m—] =gl (82a)

0 (82b)

RO W

Equation (82a) shows that there is a 180° (= rad) phase reversal upon reflection.
Thus, the reflected wave is completely out of phase with the incident wave, and
we have total cancellation. This behavior is described by the term standing waves.
We now derive the equation which specifically shows that the resultant wave does
not propagate.

The field to the left of the interface is given by (69a) and is

uy(x,1) = € (Ae*¥ + Be¥¥)  x <0 (83)

where we have reintroduced the (suppressed) time factor exp(iwt). From (82a)
we can then write

g, 1) = A€ (¢ — &%) (84)
= Aeilwt—hm) _ ggilwt +hix) (84b)
=u_(x,1) —uy(x,t) (84c)

where

u_(x,t) = Ae'tr k) (84d)
u, (x,1) = Ae' k) (84e)
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The phase velocity v, of a wave can be defined in terms of amplitude as

_ _ (Bu/or)
v, (Buldx) (85)
Applying (85) to (84d) and (B4e), respectively, we find that
v(-)=7 (86a)
Vp(+) = Zki (86b)

so the total velocity of the wave is
v=vp(—j+vp(+)=0 (87)

Thus, the resultant velocity of the wave is zero according to (87); that is, the wave
does not propagate and it appears to be standing in place. The equation for the
standing wave is given by (84a), which is written as

u,(x,t) = 24e™* sin(k,x) (88)
It is customary to take the real part of (88)
u(x,t) = 24 cos(wt ) sin(kx) (89)

where we have dropped the subscript 1. We see that there is no propagator
wt —kx, so (89) does not describe propagation. We emphasize that the argument
or term wt —kx describes the propagation of a wave. This is easily seen by setting

wt — kx = constant (90)

Equation (90) is set to a constant value because the velocity of the wave is
determined by a point on the wave which moves with a constant velocity, so the
amplitude at this point is also constant. We now differentiate (90),

wdt —kdx =0 ©1)
S0
dx w
o o ¢

and the phase velocity v, is constant as required.

Thus, we see that the wave equation and wave theory lead to a correct
description of the transmission and reflection of a wave at a boundary. While this
behavior was first studied in mechanics in the eighteenth century, it was applied
with equal success to optics in the following century. It appears that this was first
done by Fresnel, who derived the equations for reflection and transmission at an
interface between two media characterized by refractive indices n; and n,. We
shall not derive Fresnel’s equations but merely refer the reader to the references
at the end of this chapter for their derivation. We shall use Fresnel’s equations

e————————— 0 ——
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later, however, when we discuss the change in polarization of light at an optical
interface. ) ‘

With this material on the wave equation behind us, we can now turn to the
study of one of the most interesting properties of light, its polarization.
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3.1. INTRODUCTION

Christian Huygens was the first to suggest that light was not a scalar quantity
based on his work on the propagation of light through crystals; it appeared that
light had “sides” in the words of Newton. This vectorial nature of light is called
polarization. If we follow mechanics and equate an optical medium to an isotropic
elastic medium, it should be capable of supporting three independent oscillations
(optical disturbances): w,(r,t), u,,(r,t), and u (r,t). Correspondingly, three in-
dependent wave equations are then required to describe the propagation of the
optical disturbance, namely,

1 8, (r,1)

2 =
Vau(rt) = o —4;

I =2X,y,2Z (1)
where v is the velocity of propagation of the oscillation and r = r(x,y,z). In a
Cartesian system the components u,(r,¢) and u,(r,{) are said to be the transverse
components, and the component u, (r,t) is said to be the longitudinal component.
Thus, according to (1) the optical field components should be

U (ryt) = ug  cos(wt — k- r + &) (22)
U, (r,1) = g, cos(wt —k -1+ §,) (2b)
u,(r,t) = ug, cos(wt —k-r+4,) (2¢)

In 1818 Fresnel and Arago carried out a series of fundamental investigations
on Young's interference experiment using polarized light. After a considerable
amount of experimentation they were forced to conclude that the longitudinal

21
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component (2¢) did not exist. That is, light consisted only of the transverse
components (2a) and (2b). If we take the direction of propagation to be in the z
direction, then the optical field in free space must be described only by

Uy (Z,1) = Uge cos(wt — kz + &) (3a)
Uy (z,t) = ug, cos(wt —kz + &) (3b)

where ug, and ug, are the maximum amplitudes and 6, and §, are arbitrary phases.
There is no reason, a priori, for the existence of only transverse components on
the basis of an elastic medium (the “ether” in optics). It was considered to be a
defect in Fresnel’s theory. Nevertheless, in spite of this Egs. (3a) and (3b) were
found to satisfactorily describe the phenomenon of interference using polarized
light.

The “defect” in Fresnel's theory was overcome by the development of a new
theory, which we now call Maxwell’s electrodynamic theory and his equations.
One of the immediate results of solving his equations was that in free space only
transverse components arose; there was no longitudinal component. This was one
of the first triumphs of Maxwell’s theory. Nevertheless, Maxwell’s theory took
nearly 40 years to be accepted in optics due, in large part, to the fact that up to
the end of the nineteenth century it led to practically nothing that could not be
explained or understood by Fresnel’s theory.

Equations (3a) and (3b) are spoken of as the polarized or polarization com-
ponents of the optical field. In this chapter we consider the consequences of these
equations. The results are very interesting and lead to a surprising number of
revelations about the nature of light.

3.2. THE INSTANTANEOUS OPTICAL FIELD AND THE
POLARIZATION ELLIPSE

In previous sections we pointed out that the experiments of Fresnel and Arago led
to the discovery that light consisted only of two transverse components. The com-
ponents were perpendicular to each other and could be chosen for convenience
to be propagating in the z direction. The waves are said to be “instantaneous” in
the sense that the time duration for the wave to go through one complete cycle is
only 10~1 sec at optical frequencies. In this chapter we find the equation which
arises when the propagator is eliminated between the transverse components. In
order to do this we show in Figure 1 the transverse optical field propagating in
the z direction.
The transverse components are represented by

Ex (Z,f) = E&( CGS(T + ﬁx) (43)
E,(z,t) = Ey cos(7 + 6,) (4b)
where 7 = wt — xz is the propagator. The subscripts x and y refer to the compo-
nents in the x and y directions, E,, and E,, are the maximum amplitudes, and &,

and é, are the phases, respectively. As the field propagates, E.(z,t) and E,(z,1)
give rise to a resultant vector. This vector describes a locus of points in space,
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Figure 1 Propagation of the transverse optical ficld.

and the curve generated by those points will now be derived. In order ta do this
(4a) and (4b) are written as

g = cosToosd, —sinvsind, (52)

% = cosTcosd, —sinrsiné, (5b)
Hence,

E% sind, — g—; siné, = cosrsin(§, - &) (6a)

j?; cos b, — % cosé, = sintsin(é, — 6,) (6b)

Squaring (6a) and (6b) and adding gives

o N R S ot 2 ‘—E-” cosé =sin’é
EL TEL CEaEy %)

6=6,—6 (7b)

_ Equation (7a) is recognized as the equation of an ellipse and shows that at any
instant of time the locus of points described by the optical field as it propagates
is an ellipse. This behavior is spoken of as optical polarization, and (7a) is called
the polarization ellipse. In Figure 2 the ellipse is shown inscribed within a rectangle
whose sides are parallel to the coordinate axes and whose lengths are 2Eq, and
2Ey,. ;
We now determine the points where the ellipse is tangent to the sides of the
rectangle. For convenience we write E, and E, simply as x and y and Eg, and
Eg, as a and b, respectively. We then write (7a) as

a%y? — (2abx cos§)y + b*(x? —a’sin® ) = 0 (8)

————
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Figure 2 An elliptically polarized wave and the polarization ellipse.

The solution of this quadratic equation (8) is
bxt;os& i bs;né(az _x2yln ©)

At the top and bottom of the ellipse where it is tangent to the rectangle the slope
is dy/dx =y' = 0. We now differentiate (9), set y' = dy/dx = 0, and find that

y =

x = tacosé (10a)
Substituting (10a) into (9), the corresponding values of y are found to be
y=+b (10b)

Similarly, by considering (9) where the slope is y' = oo on the sides of the
rectangle, the tangent points are

x=-a [lla]
y = +bcosé (11b)

Equations (10) and (11) show that the maximum length of the sides of the ellipse
are x = 4a and y = +b. The ellipse is tangent to the sides of the rectangle at
(4a,+bcosé) and (+acosé,+b), or in terms of Eg and Ey, (£Eq, £Ey, cosd)
and (+E,, cos §, £E;,), respectively. We also see that (10) and (11) show that the
maximum value of x and y are £a and +b or Ey, and Eg, respectively.

In Figure 2 the ellipse is shown touching the rectangle at points A, B, C, and
D, the coordinates of which are

A: + Eqg, cos 6, +Ey, (12a)
B + Eq, +Eg cosb (12b)
G —Eg cosé, —Ey, (12c)
D —Ey, —Eg, cosé (12d)
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The presence of the “cross term” in (7a) shows that the polarization ellipse
is, in general, rotated, and this behavior is shown in Figure 2 where the ellipse is
shown rotated through an angle . More will be said about this later.

It is also of interest to determine the maximum and minimum areas of the
polarization ellipse which can be inscribed within the rectangle. We see that along
the x axis the ellipse is tangent at the extrema x = —a and x = +a. The area of
the ellipse above the x axis is given by

+a
A= ydx (13)
-a
Substituting (9) into (13) and evaluating the integrals, we find that the area of
the polarization ellipse is

A = wabsind (14)
or, in terms of the original parameters,
A = wEwE,, siné (15)

Thus, the area of the polarization ellipse depends on the lengths of the major and
minor axes, Eq, and Ey,, and the phase shift § between the orthogonal transverse
components. We see that for § = /2 the area is 7E( E,, whereas for 6 = 0 the
area is zero. The significance of these results will soon become apparent.

In general, completely polarized light is elliptically polarized. However, there
are certain degenerate forms of the polarization ellipse which are continually
encountered in the study of polarized light. Because of the importance of these
special degenerate forms we now discuss them as special cases in the following
chapter. These are the cases where either Ey or E,, is zero or equal and/or
where § = 0, «/2, or = radians.

3.3. SPECIALIZED (DEGENERATE) FORMS OF THE
POLARIZATION ELLIPSE

The polarization ellipse (7a) degenerates to special forms for different values of
Ey, Ey, and 6. We now consider these special forms.

1. Eﬂ7 = 0. In this case E (z,f) is zero so we must refer to (4). We then
have

E, (z,t) = Eg, cos(t + 6,) (16a)
E, (z,t)=0 (16b)

In this case there is an oscillation only in the x direction. The light is then said to
be linearly polarized in the x direction, and we call this linear horizontally polarized
light. Similarly, if Eq, = 0 and E, (z,1) # 0, then we have a linear oscillation along
the y axis, and we speak of linear vertically polarized light.

2. § =0 or =. Equation (7a) reduces to

E.E L,EE _

Eﬁ,+E§,i2Em Eoy_o an

—
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Equation (17) can be written as

2

E,  E

2% 4 L] =
(Em E.,y) : (18)

whence
E,

= gl o8 15

E, i(E&r)Ex (19)

Equation 19 is recognized as the equation of a straight line with slope +(E,,/E,,)
and zero intercept. Thus, we say that we have linearly polarized light withwslo‘;e
+(Ey,/E). The value § = 0 yields a negative slope, and the value 6 =17 a positive
slope. If Eq, = E;,, then we see that

By (20)

The polsitivt_: value is said to represent linear +45° polarized light, and the negative
values i5 said to represent linear —45° polarized light.
3. 6 =n/2 or 3n/2. The polarization ellipse reduces to

) + E’Z =1
B B @n
This is the standard equation of an ellips i
 is th pse. Note that § = 7/2 or § = 35
the identical polarization ellipse. . e
4. E;. = E =Ey and § = n/2 or § = 3r/2. The polarizati ips
e oy . polarization ellipse now
E + Eyz =1
.Equa‘tion (22) c?escribes the equation of a circle. Thus, for this condition the light
Is said to be right or left circularly polarized (6 = /2 and 3r/2, respectively).
f&gam, Wwe note that (22) shows that it alone cannot determine if the value of §
is /2 or 3n/2.
Finally, in the previous chapter we showed that the izati
rea
P area of the polarization

A = nEyE,g, sin§ (23)

We see that for § = 0 or = the area of the polarization ellipse is zero, which is
m.be e.xpccted for linearly polarized light. For § = #/2 or 3m/2 the a;ea of the
ellipse Is a maximum; that is, 7EqEy,. It is important to note that even if the
phase shift between the orthogonal components is #/2 or 37/2, the light is, in
gex:lﬂra], elliptically polarized. Furthermore, the polarization ellipse shows lhz;t it
Is in the standard form as given by (21).

For the more restrictive condition where the orthogonal amplitudes are equal
8o that E,, = Ey, = E, and therefore we have a circle (23) becomes

=  E?
A =rEj 24)
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which is, of course, the area of a circle.

The previous special forms of the polarization ellipse are spoken of as being
degenerate forms of the polarization ellipse. We can summarize these results
by saying that the degenerate states of the polarization ellipse are (1) linearly
horizontal or vertically polarized light, (2) linear +45° or —45° polarized light,
and (3) right or left circularly polarized light.

Aside from the fact that these degenerate states appear quite naturally as
special cases of the polarization ellipse, there is a fundamental reason for their
importance: they are relatively easy to create in an optical laboratory and can be
used to create “null-intensity” conditions. Polarization measurements, which are
based on null-intensity conditions enable very accurate measurements to be made.

3.4. THE ELLIPTICAL PARAMETERS OF THE POLARIZATION
ELLIPSE

The polarization ellipse has the form

2 E! 2EE, cosé
E_)lf i _; — XY sints (25)
E3, TEL T EuE,

where é = §, — §,. In general, the axes of the ellipse are not in the Ox and
Oy directions. In (25) the presence of the “product” term E.E, shows that it
is actually a rotated ellipse; in the standard form of an ellipse the product term
is not present. In this section we find the mathematical relations between the
parameters of the polarization ellipse, Eq,, E,,, and ¢ and the angle of rotation
¥, and another important parameter, x, the ellipticity angle.

In Figure 3 we show the rotated ellipse. Let Ox and Oy be the initial,
unrotated, axes, and let Ox' and Oy’ be a new set of axes along the rotated
ellipse. Furthermore, let ¢ (0 <4 < x) be the angle between Ox and the direction
Ox' of the major axis.

The components E; and E, are related by

(26a)

' i, o1 [}
E, =E_cosy +E},:.mqu

Figure 3 The rotated polarization ellipse.
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E; = -E, siny + Ey cos (26b)

If 2a and 2b (a > b) are the lengths of the major and minor axes, respectively,
then the equation of the ellipse in terms of Ox' and Oy’ can be written as

E; = acos(t + §') (27a)
E; = tbsin(r + §') (27b)

where 7 is the propagator and § is an arbitrary phase. The + sign describes the
two possible senses in which the end point of the field vector can describe the
ellipse. The form of (27) is chosen because it is easy to see that it leads to the
standard form of the ellipse, namely,

E2 . E?
ot tr =1 (28)

We can relate @ and b in (27) to the parameters E,, and E,, in (25) by
recalling that the original equations for the optical field are

E-T:, = (‘.OS(T + 51) (293}
E
% = cos(7 +4,) (29b)

We then substitute (27) and (29) into (26), expand the terms, and write
a(cosTcosé’ —sinTsind") = Eg, (coscosé, —sinrsiné,) cosy
+ Egy(cos 7 cos 6, — sin7siné, )siny (30a)
xb(sin7cosd’ + cos7sind') = —Eq, (cosTcos é, — sinrsiné,) sinyp
+ Egy(cos 7 cosd, —sinTsin g, ) cosy (30b)

Equating the coefficients of cost and sin+ leads to the following equations:

acosé' = Ey, cosé, cosy + Ey, cos 6y siny (31a)
asiné’ = Eq,siné, cosy + Eg, siné, siny (31b)
+bcosé' = Eg, siné, siny — Eq, siné, cosip (31c)
xbsiné' = Eg, cosé, siny — E, cos g, cas v (31d)

Squaring and adding (31a) and (31b) and using § = d, — &, we find
a* = Ej cos® ¢ + EJ sin’ ) + 2E o E,, cosipsinipcosé (32a)
Similarly, from (31c) and (31b) we find that

b* = Ef sin’  + E§, cos? — 2E E3, cossin i cos § (32b)
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Hence,
a® +b* =E}, +E}, (33)

Next, we multiply (31a) by (31c), (31b) by (31d), and add. This gives

+ab = EqEg, siné (34
Further, dividing (31d) by (31a) and (31c) by (31b) leads to
(Ef — E§,)sin2y = 2E,Eg, cosé cos 2y (352)
or
2EqEq, cosé 35b
tan2p = ———— (35b)
E; —E},

which relates the angle of rotation ¢ to Ey,, Eg, and é.

We note that in terms of the phase 6, 1 is equal to zero only for § = 90° or
270°. Similarly, in terms of amplitude, only if E, or Egy is equal to zero is ¥
equal to zero. .

An alternative method for determining v is to transform (25) directly to (28).
To show this we write (26a) and (26b) as

E, =E,cosy —E siny (36a)

E, = E;siny + Ejcos¢ (36b)
Equation (36) can be obtained from (26) by solving for E, and_Ey or, equivalently,
replacing v by —, E, by E{, and E, by E;. Upon substituting (?t’m) and (36b)
into (25), the cross term is seen to vanish only for the condition given by (35).

It is useful to introduce an auxiliary angle & (0 < @ < 7/2) for the polarization
ellipse defined by

tana = —= (37)
Then (35) is easily shown by using (36) to reduce to

2EqEy, " 2tana
= = S R (38)
tan 2y Eé{Eé’ cos é e co

which then yields

tan 2y = (tan2a)cosé (39)
We see that for § = 0 or « the angle of rotation is

¥ = ta (40)

For § = n/2 or 37/2 we have ¢ = 0, so the angle of rotation is also zero.
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Another important parameter of interest is the angle of elliptici is i
PPhion gle of ellipticity, x. This is

i 2 &
x= = -2 <x< (41)

N
FN|

We see t.‘ha‘t for linearly polarized light b = 0, so x = 0. Similarly, for circularly
pa!arfz_ed light b = a, so x = +=x/4. Thus, (41) describes the extremes of the
c]hpnq_ty of the polarization ellipse.

Using (33), (34), and (37), we easily find that

+2ab _ 2EnE, | 2 :
T E%, +E§y siné = (sin 2a)sin § (42)

Next, using (41) we easily see that the left side of (42) red i
ey 1igia (42) reduces to sin2y, so we

sin2y = (sin2a)siné (43)

which is the relation between the ellipticity of the polarization ellipse and the
parameters Eq,, Eo, and § of the polarization ellipse.
We note that only for § = /2 or 3x/2 does (43) reduce to

X = ta (44)

which is to be expected.

'[‘he_ results that we have obtained here will be used again, so it is useful to
is_ummanzc them. The elliptical parameters E,,, Ey,, and é of the polarization el-
ipse are related to the orientation angle ¢ and ellipticity angle y i
s pticity angle y by the following

tan 2y = (tan2a)cosé 0<v<nm (45a)

sin2y = (sin2a)sind - g <x< % (45b)
where 0 < a < #/2 and

a®+b* = E} +E}, (45¢)

tana = % (45d)

tany = in (45¢)

Wfa Emphasize thatl the polarization ellipse can be described either in terms of the
:)Iflcnta]:lan agd ellipticity angles ) and x on the left sides of (45a) and (45b) or
e major and minor axes Ej, and E;, and the phase shift § on the right si
(45a) and (45b). y . L
Finally, a .fewt words must be said on the terminology of polarization. Two
cases of polarization are distinguished according to the sense in which the end
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point of the field vector describes the ellipse. It seems natural to call the polariza-
tion right-handed or left-handed according to whether the rotation of E and the
direction of propagation form a right-handed or left-handed screw. The traditional
terminology, however, is just the opposite and is based on the apparent behavior
of E when viewed face on by the observer. In this book we shall conform to the
traditional, that is, customary usage. Thus, the polarization is right-handed when
to an observer looking in the direction from which the light is coming, the end
point of the electric vector would appear to describe the ellipse in the clockwise
sense. If we consider the value of (4) for two time instants separated by a quarter
of a period, we see that in this case siné > 0, or by (45), 0 < x < /4. For left-
handed polarization the opposite is the case; i.e., to an observer looking in the
direction from which the light is propagated, the electric vector would appear to
describe the ellipse counterclockwise; in this case siné < 0, so that —m/4 < y <.
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The Stokes Polarization
Parameters

4.1. INTRODUCTION

In Chapter 3 we saw that the elimination of the propagator between the trans-
verse components of the optical field led to the polarization ellipse. Analysis
of the ellipse showed that for special cases it led to forms which can be inter-
preted as linearly polarized light and circularly polarized light. This description
of light in terms of the polarization ellipse is very useful because it enables us
to describe by means of a single equation various states of polarized light. How-
ever, this representation is inadequate for several reasons. As the beam of light
propagates through space, we find that in a plane, transverse to the direction
of propagation, the light vector traces out an ellipse or some special form of
an ellipse, such as a circle or a straight line, in a time interval of the order
of 10~ sec. This period of time is clearly too short to allow us to follow the
tracing of the ellipse. This fact, therefore, immediately prevents us from ever ob-
serving the polarization ellipse. Another limitation is that the polarization ellipse
is only applicable to describing light which is completely polarized. It cannot be
used to describe either unpolarized light or partially polarized light. This is a
particularly serious limitation because in nature light is very often unpolarized or
partially polarized. Thus, the polarization ellipse is an idealization of the true
behavior of light; it is only correct at any given instant of time. These limitations
force us to consider an alternative description of polarized light in which only
observed or measured quantities enter. We are, therefore, in the same situation
as when we dealt with the wave equation and its solutions, neither of which can
be observed. We must again turn to using average values of the optical field
which in the present case requires that we represent polarized light in terms of
observables.
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In 1852, Sir George Gabriel Stokes (1819-1903) discovered that the polar-
ization behavior could be represented in terms of observables. He found that
any state of polarized light could be completely described by four measurable
quantities now known as the Stokes polarization parameters. The first parameter
expresses the total intensity of the optical field. The remaining three parameters
describe the polarization state. Stokes was led to his formulation in order to pro-
vide a suitable mathematical description of the Fresnel-Arago interference laws
(1818). These laws were based on experiments carried out with an unpolarized
light source, a quantity which Fresnel and his successors were never able to char-
acterize mathematically. Stokes succeeded where others had failed because he
abandoned the attempts to describe unpolarized light in terms of amplitude. He
resorted to an experimental definition, namely, unpolarized light is light whose
polarization state is unaffected by its propagation through a wave plate or polar-
izer or both. Stokes also showed that his parameters could be applied not only to
unpolarized light but to partially polarized and completely polarized light as well,
Unfortunately, Stokes’ paper was forgotten for nearly a century. Its importance
was finally brought to the attention of the scientific community by the Nobel lau-
reate S. Chandrasekhar in 1947, who used them to formulate the radiative transfer
equations for the scattering of partially polarized light. The Stokes parameters
have been a prominent part of the optical literature on polarized light ever since.

We saw earlier that the amplitude of the optical field cannot be observed.
However, the quantity which can be observed is the intensity, which is derived by
taking a time average of the square of the amplitude. This suggests that if we
take a time average of the unobserved polarization ellipse we will be led to the
observables of the polarization ellipse. When this is done, as we shall show shortly,
we obtain four parameters which are exactly the Stokes parameters. Thus, the
Stokes parameters are a logical consequence of the wave theory. Furthermore,
the Stokes parameters give a complete description of any polarization state of
light. Most important, the Stokes parameters are exactly those quantities which
are measured. Aside form this important formulation, however, when the Stokes
parameters are used to describe physical phenomena, e.g., the Zeeman effect, one
is lead to a very interesting representation. Originally, the Stokes parameters were
used only to describe the measured intensity and polarization state of the optical
field. But by forming the Stokes parameters in terms of a column matrix, the
so-called Stokes vector, we are led to a formulation in which we obtain not only
measurables but observables which can be seen in a spectroscope. As a result, we
shall see that the formalism of the Stokes parameters is far more versatile than
originally envisioned and possesses a greater usefulness than is commonly known.

4.2. THE DERIVATION OF THE STOKES POLARIZATION
PARAMETERS

We consider a pair of plane waves which are orthogonal to each other at a point
in space, conveniently taken to be z = 0, and not necessarily monochromatic to
be represented by the equations

E (t) = Eg(t)cos[wt + 6.(¢)] (1a)
E,(£) = Ey,(t)cos [wt +6,(1)] (1b)
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t) and E, (t) are the instantaneous amplitudes, w is the instantaneous
::;:;f ggcﬁuency, [ayn(d)'sx(r) and §,(f) are the instantaneous phase fac;]nrs. A;
all times the amplitudes and phase factors fluctuate slowly compared to the ra;ln
vibrations of the cosinusoids. The explicit remuvat_ of‘the term wt bem;een ]( a{
and (1b) yields the familiar polarization ellipse, which is valid, in general, only a

a given instant of time:

2
E’:‘!U) + E).(I) - 2E"(t)Ey[r) cosé(t) = sinzé(t) 2)
E2() T EL()  Ew(Ey(®)
where 8(t) = 6,(¢) — 6.(¢).
Fﬂr(n'l}onogtsromat,;c radiation, the amplitudes and phases are constant for all
time, so (2) reduces to

EX(t) . E}(1) 2E.(E,(1) p— 3)
E%, Eﬁy EgEy

While Eg,, Eg,, and & are constants, E, and E, continue to bt? imp}écitly d::pdc:‘;:lc?;
on time, as we see from (1a) and (1b). Hence, we have written E,(t) an (

in (3). In order to represent (3) in terms of the observables of the opu_cal field
field, we must take an average over the time of observation. ].35causc this is a long
period of time relative to the time for a single oscillation, this can be taken to be
infinite. However, in view of the periodicity of Ex{{) and Ey(r),‘we need avecr‘age
(3) only over a single period of oscillation. The time average is represented by

the symbol (---}, and so we write (3) as

(E) + (EO) _ HEWE®) cosé = sin’§ (4a)
E2 Ej, EyE,,
where
' . S
EOE®) = Jim 2 [ E@OE®d ij=xy ()
Multiplying (4) by 4E{ Ej,, we see that
4E} (EX(1)) + 4E3, (E3(0)) — BEq Eqy (EL(1)E, (1)) cosé
= (2Eq Ey, sin 6)? (5)
From (la) and (1b), we then find the average values of (5) using (4b) are
a2 ] b ] 6
(EX1) = 5B (6a)
. 6b
(E}) = 3B (6b)
. 6
(E(DE,(1)) = iEuxEuy cos & (6c)
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Substituting (6a), (6b), and (6¢) into (5) yields
2ERE}, + 2ELE}, — (2Eq Ey, cos8)? = (2EqEq, sin 6)? @)
Since we wish to express the final result in terms of intensity this suggests

that we add and subtract the quantity E4, +Eg, to the left-hand side of (7); doing

this leads to perfect squares. Upon doing this and grouping terms, we are led to
the following equation:

(E +E§,) — (E} — E} ) — (2E4 Ey, cos6)* = (2EE,, sin6)* (8)

We now write the quantities inside the parentheses as

Sy = Eg +Ej, (9a)
S, = Eg, - Ej, (9b)
5, = 2’4‘i‘€h‘rﬁ",}r cosé (9¢c)
S3 = 2EyEy,siné (9d)

and then express (8) as
5t =8} +583+53 (10)

The four equations given by (9) are the Stokes polarization parameters for a
plane wave. They were introduced into optics by Sir George Gabriel Stokes in
1852. We see that the Stokes parameters are real quantities, and they are simply
the observables of the polarization ellipse and, hence, the optical field. The first
Stokes parameter Sy is the total intensity of the light. The parameter S, describes
the amount of linear horizontal or vertical polarization, the parameter 5, describes
the amount of linear +45° or —45° polarization, and the parameter S5y describes
the amount of right or left circular polarization contained within the beam; this
correspondence will be shown shortly. We note that the four Stokes parameters
are expressed in terms of intensities, and we again emphasize that the Stokes
parameters are rea/ quantities.

If we now have partially polarized light, then we see that the relations given
by (9) continue to be valid for very short time intervals, since the amplitudes and
phases fluctuate slowly. Using Schwarz’s inequality, one can show that for any
state of polarized light the Stokes parameters always satisfy the relation

Si>8t+82+82 (11)

The equality sign applies when we have completely polarized light, and the
inequality sign when we have partially polarized light or unpolarized light.

In Chapter 3, Eq. (35) we saw that orientation angle ¢ of the polarization
ellipse was given by

2EE,, cosé

tan 2y = 2 _ 2 (12)
[Camat ™
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Inspecting (9) we see that if we divide (9¢) by (9), ¥ can be expressed in terms
of the Stokes parameters:

tan2y = —= (13)
Similarly, from (42) and (43) in Chapter 3 the ellipticity angle x was given by

ZEEuEm siné (14)

sin2y = Eﬁ\. +E%t_,r

Again, inspecting (9) and dividing (9d) by (9a), we can see that y can be expressed
in terms of the Stokes parameters:

" A (15)
sin2y = S,

The Stokes parameters enable us to describe the degree of polarization P for
any state of polarization. By definition,

R ﬁ+s§ +8H2
- o

I
i i s 5 ization components and I, is

where I, is the intensity of the sum of the Po]anzanon c
the tota]mintensily of the beam. The value of P = 1 corresponds to completely
polarized light, P = 0 corresponds to unpolarized light, and 0 < P < 1 corresponds
to partially polarized light. _ . ]

pTD ob{a?n the Stokes parameters of an optical bean'], one must always take a
time average of the polarization ellipse. However, llhe time-averaging process can
be formally bypassed by representing the (real) optical amplitudes, (1a) and (1b),
in terms of complex amplitudes,

0<P<1 (16)

ot

E,(t) = Eq exp[i(wt + &,)] = & exp(iwt) (17a)
EJ,(I) = Euy exp {i(uf + b‘y)} = f,'Lba exp(iwt) (17b)
where
&y = Eq exp(idy) (17¢)
and
(17d)

&y = Ey, exp(is,)
are complex amplitudes. The Stokes parameters for a plane wave are now
obtained from the formulas

. 18a
Sy = E,E; +E,E; (182)
" ” (18b)
S, =E,E; -E,E; it
1
Sy =E.E;+ E Ey 9
(18d)

Sy =i(E.E; —E,E})
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We shall use (18), the complex representation, henceforth, as the defining
equations for the Stokes parameters. Substituting (17¢) and (17d) into (18) gives

Sy = E}, +Ej, (19a)
S, =E} -E} (19b)
S; =2EyEg, cosé (19c)
S3 = 2EgE siné (19d)

which are the Stokes parameters obtained formally from the polarization ellipse
9.

As examples of the representation of polarized light in terms of the Stokes
parameters, we consider (1) linear horizontal and linear vertical polarized light,
(2) linear +45° and linear —45° polarized light, and (3) right and left circularly
polarized light.

Linear Horizontal Polarized Light (LHP)
For this case Eg, = 0. Then, from (19) we have

5, =EL (20a)
5y = Eg, (20b)
S,=4 (20c)
Sy=10 (20d)

Linear Vertical Polarized Light (LVP)
For this case Ey, = 0. From (19) we have

Sy = Ej, (21a)
S, =-E}, (21b)
5, =10 (21c)
S3=0 (21d)

Linear +45° Light (L + 45)

The conditions to obtain L + 45 polarized light are Ey, = Eg, = E and 6 = 0°.
Using these conditions and the definition of the Stokes parameters (19), we find
that

So = 2E} (22a)
S;=0 (22b)
S, =2E} (22¢)
S;=0 (22d)
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Linear —45° Light (L — 45)
The conditions on the amplitude are the same as for L + 45 light, but the phase
difference is § = 180°. Then from (19) we see that the Stokes parameters are

Sy = 2E} (23a)
S;=0 (23b)
5, = —2E} (23c)
S3=0 (23d)

Right Circularly Polarized Light (RCP)
The conditions to obtain RCP light are Ey, = Ey, = E, and é = 90°. From (19)
the Stokes parameters are then

S, =2E¢ (24a)
$,=0 (24b)
S,=0 (24c)
8, =2E} (24d)

Left Circularly Polarized Light (LCP)

For LCP light the amplitudes are again equal, but the phase shift between the
orthogonal, transverse components is § = 270°. The Stokes parameters from (19)
are then

Sy = 2E} (25a)
5;=0 (25b)
§;=0 (25¢)
Sy = ~2E} (25d)

Finally, the Stokes parameters for elliptically polarized light are, of course, given
by (19).

Inspection of the four Stokes parameters suggests that they can be arranged in
the form of a column matrix. This column matrix is called the Stokes vector. This
step, while simple, provides a formal method for treating numerous complicated
problems involving polarized light. We now discuss the Stokes vector.

4,3. THE STOKES VECTOR

The four Stokes parameters can be arranged in a column matrix and written as

Sy
Sl
S‘Z
S3

§= (26)
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The column matrix (26) is called the Stokes vector. Mathematically, it is not a
vector, but through custom it is called a vector. Equation (26) should correctly
be called the Stokes column matrix. The Stokes vector for ell:ptlcally polarized
light is then written from (19) as

E} +Ej,
E} - E},

2E\Eq, cosd
2EyEy, siné

@n

Equation (27) is also called the Stokes vector for a plane wave.
The Stokes vector for linearly polarized light and circularly polarized light are
readily found from (27). We now derive these Stokes vectors,

Linearly Horizontally Polarized Light (LHP)
For this case Eg, = 0, and we find from (27) that

1
S=1 . 28
-0} (28)
0
where I = EZ is the total intensity.
Linearly Vertically Polarized Light (LVP)
For this case Ey, = 0, and we find that (27) reduces to
1
s=1,| 29
o o @9
0
where, again, [, is the total intensity.
Linear +45° Polarized Light (L + 45)
In this case E,, = E,, = E, and é = 0, so (27) becomes
1
0
S=1I, q (30)
0

where [, = 2E3.
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Linear —45° Polarized Light (L — 45)
Again, Ey. = Ey, = E;, but now § = 180°. Then (27) becomes

(31)

and I, = 2EZ.
Right Circularly Polarized Light (RCP)
In this case Eq = E,, = Ey and § = 90°. Then (27) becomes

(32)

- o o ~

and I, = 2E}.
Left Circularly Polarized Light (LCP)

Again, we have E; = E,, but now the phase shift § between the orthogonal
amplitudes is & = 270° (or —90°. Equation (27) then reduces to

1

0
S=1I 33
of o (33)
and Iy = 2E}.
We also see from (27) that if § = 0° or 180°, then (27) reduces to
E}, +Ej,
2 2
Eo ~Eq (34)
+E g Ey,
0

We recall that the ellipticity angle x and the orientation angle ¢ for the
polarization ellipse are given, respectively, by

sin2y = % TT X< % (352)
0
tan 2y = % 0<y<nr (35b)

We see that S, is zero, so the ellipticity angle y is zero and, hence, (34) is the
Stokes vector for linearly polarized light. The orientation angle according to (35b)
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ﬂ:EmEn},
tan 21 = H (36)

The form of (34) is a useful representation for linearly polarized light. An-
other useful representation can be made by expressing the amplitudes E, and
Ey, in terms of an angle. To show this, we first rewrite the total intensity Sy as

S=E} +E} =E} (37)
Equation (37) suggests Figure 1. From Figure 1 we see that
Ey =Ejcosa (38a)

Eo=Ejsina  0<a< (38b)

]

The angle « is called the auxiliary angle; it is identical to the auxiliary angle
used to represent the orientation angle and ellipticity equations summarized ear-
lier. Substituting (38) into (34) leads to the following Stokes vector for linearly
polarized light:

cos 2a

S=1
8l sin2a (39

0

where I = E} is the total intensity. Equation (38) can also be used to represent
the Stokes vector for elliptically polarized light, (27). Substituting (38) into (27)

AEoy

= Egx

Figure 1 Resolution of the optical field components.
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gives
1
5
S o Iu COS Zcx (40)

sin 2a cos §

sin2asiné

It is customary to write the Stokes vector in normalized form by setting I, = 1.
Thus, (40) is written merely as

1
cos 2a
sin 2a cos §
sin2arsiné

(41)

The orientation angle i and the ellipticity angle y of the polarization ellipse
are given by (35a) and (35b). Substituting §,, S,, and §; into (41) into (35a) and
(35b) gives

tan2y = tan2acosd (42a)

sin2y = sin2asiné (42b)

which are identical to the relations we found earlier.

The use of the auxiliary angle a enables us to express the orientation and
ellipticity in terms of a and §. Expressing (42) in this manner shows that there
are two unique polarization states. For a = 45°, (42) reduces to

1
0
S = (43)
cos é

sind

Thus, the polarization ellipse is expressed only in terms of the phase shift §
between the orthogonal amplitudes. The orientation angle ¢ is seen to be always
45°, The ellipticity angle, however, (43b) is

sin2y = sind (44)

s0 x = 6/2. The Stokes vector (43) expresses that the polarization ellipse is rotated
45° from the horizontal axis and that the polarization state of the light can vary
from linearly polarized (§ = 0, =) to circularly polarized (§ = 90°, 270°).
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Another unique polarization state occurs when § = 90° or 270°. For this
condition (41) reduces to

1

S= cos 2a 45
= % (43)

+ sin 2«

We see that we now have a Stokes vector and a polarization ellipse which depends
only on the auxiliary angle o. From (42a) the orientation angle ¢ is always zero.
However, (42b) and (45) show that the ellipticity angle x is now given by

sin2y = +sina (46)

s0 x = *a/2. In general, (46) shows that we will have elliptically polarized light.
For a = +90° and —90° we obtain right and left circularly polarized light. Sim-
ilarly, for @ = 0° and 180° we obtain linearly horizontal and vertical polarized
light.

The Stokes vector can also be expressed only in terms of S;, ¥, and x. To
show this we write (35a) and (35b) as

Sy =S tan2y (47a)

8y = §psin2y (47b)
In Section 4.2 we found that

S} =5 +53+5% (48)
Substituting (47a) and (47b) into (48), we find that

§) = 8pcos2x cos 2y (49a)

8, = Sycos2ysin 2y (49b)

Sy = S;sin2y (49¢)

Arranging (49) in the form of a Stokes vector, we have

1

cos 2y cos 24

5=5, (50)

cos 2y sin 2y
sin 2y
The Stokes parameters (49) are almost identical in form to the well-known equa-
tions relating Cartesian coordinates to spherical coordinates. We recall that the
spherical coordinates r, 8, and ¢ are related to Cartesian coordinates x, y, and z
by
x =rsinficosg¢ (51a)
y =rsinfsing (51b)
z =rcosd (31c)
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Comparing (51) with (49), we see that the equations are identical if the angles
are related by

6 = 90° - 2 (52a)
6=2p (52b)

In Figure 2 we have drawn a sphere whose center is also at the center of the
Cartesian coordinate system. We see that expressing the polarization state of an
optical beam in terms of y and 4 allows us to describe its ellipticity and orienta-
tion on a sphere; the radius of the sphere is taken to be unity. The representation
of the polarization state on a sphere was first introduced by H. Poincaré in 1892
and is, appropriately, called the Poincaré sphere. However, at that time, Poincaré
introduced the sphere in an entirely different way, namely, by representing the
polarization equations in a complex plane and then projecting the plane onto
a sphere, a so-called stereographic projection. In this way he was led to (49).
He does not appear to have known that (49) were directly related to the Stokes
parameters. Because the Poincaré sphere is of historical interest and is still used
to describe the polarization state of light, we shall discuss it in detail later. It is
especially useful for describing the change in polarized light when it interacts with
polarizing elements.

The discussion in this chapter shows that the Stokes parameters and the
Stokes vector can be used to describe an optical beam which is completely polar-
ized. We have, at first sight, only provided an alternative description of completely
polarized light. All of the equations derived here are based on the polarization
ellipse given in Chapter 3, that is, the amplitude formulation. However, we have
pointed out that the Stokes parameters can also be used to describe unpolarized

Figure 2 The Poincaré representation of polarized light on a sphere.
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and partially polarized light, quantities which cannot be described within an am-
plitude formulation of the optical field. In order to extend the Stokes parameters
to unpolarized and partially polarized light, we must now consider the classical
measurement of the Stokes polarization parameters.

4.4, THE CLASSICAL MEASUREMENT OF THE STOKES
POLARIZATION PARAMETERS

The Stokes polarization parameters are immediately useful because, as we shall
now see, they are directly accessible to measurement. This is due to the fact that
they are an intensity formulation of the polarization state of an optical beam.
In this section we shall describe the measurement of the Stokes polarization
parameters. This is done by allowing an optical beam to pass through two op-
tical elements known as retarder and polarizer. Specifically, the incident field is
described in terms of its components, and the field emerging from the polariz-
ing components is then used to determine the intensity of the emerging beam.
Later, we shall carry out this same problem by using a more formal but power-
ful approach known as the Mueller matrix calculus. In the following chapter we
shall also see how this measurement method enables us to determine the Stokes
parameters for unpolarized and partially polarized light,

We begin by referring to the Figure 3, which shows an incident optical beam
incident on a polarizing element called a retarder. This polarizing element is then
followed by another polarizing element called a polarizer. The components of the
incident beam are

E,(t) = Ege'®e™ (53a)
E,(t) = Ep e (53b)

In Section 4.2 we saw that the Stokes parameters for a plane wave written in
complex notation could be obtained from

Sy = E,E; +E,E; (54a)
S, = E.E} —E,E; (54b)
42
Y
w2

ﬁ x

retarder polarizer

Figure 3 Measurement of the Stokes polarization parameters.
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S, =E,E; +E,E} (54c)
8y = i(E,E; —E,E}) (54d)

where i = /=1 and the asterisk represents the complex conjugate.

In order to measure the Stokes parameters the incident field propagates
through a phase-shifting element which has the property that the phase of the
x component (E,) is advanced by ¢/2 and the phase of the y component E, is
retarded by /2, written as —¢/2. The components E} and EJ emerging from the
phase-shifting element component are then

E! = E,¢'%? (55a)
- —igf2
E)=E, e (55b)

The optical component which behaves in this manner is called a retarder in optics;
it will be discussed in more detail later.

Next, the field described by (55) is incident on a component which is called
a polarizer. It has the property that the optical field can only pass along an axis
known as the transmission axis. Ideally, if the transmission axis of the polarizer
is at an angle ¢ only the components of E; and E; can be transmitted perfectly
along the transmission axis; they are attenuated completely at any other angle.
A polarizing element which behaves in this manner is called a polarizer. This
behavior is described in Figure 4. The component of E] along the transmission
axis is Ej cos6. Similarly, the component of Ej is E}sing. The field transmitted
along the transmission axis is the sum of these components so the total field E
emerging from the polarizer is

E =E, cosf + E, sind (56)
Substituting (55) into (56), the field emerging from the polarizer is

E =E,e'*" cos6 + E,e™"*?sing (57)

A E

. EX‘

Figure 4 Resolution of the optical ficld components by a polarizer.
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The intensity of the beam is defined by
I=E.E* (58)

Taking the complex conjugate of (57) and forming the product in accordance with
(58), the intensity of the emerging beam is

1(6,4) = E,E} cos’§ + E,E; sin’ 8
+EJE,e~'*sin6cosf + E,E e sin 6 cosd (59)

Equation (59) can be rewritten by using the well-known trigonometric half-angle
formulas

1+ cos26

cos? § = 5 (60a)
—cas?
it g O “2"”“8 (60b)
. sin 26
sinflcosd = (60c)

Using (60) in (59) and grouping terms, we find that the intensity I(#, ¢) becomes
] * - * *
1(6,¢) = 5 [(E.E; + E,E;) + (E,E; —E,E;)cos28
+ (ELE; + E,E})cos¢sin26 +i(EE; — E E7)sinfsin 29} (61)

The terms within brackets are exactly the Stokes parameters given in (54).
It was first derived by Stokes and is the manner in which the Stokes parameters
were first introduced in the optical literature. Replacing the terms in (61) by
those in (54), we arrive at

1
I1(6,4) = 3 [Sg + S,cos28 + 5, cos@sin28 + Sy sind sin 26) (62)

Equation (62) is Stokes’ famous intensity formula for measuring the four Stokes
parameters. Thus, we see that the Stokes parameters are directly accessible to
measurement; that is, they are observable quantities.

The first three Stokes parameters are measured by removing the retarder
(¢ = 0°) and rotating the transmission axis of the polarizer to the angles & = 0°,
+45°, and +90°, respectively. The final parameter, §,, is measured by reinserting
a so-called quarter-wave-plate retarder (¢ = 90°) into the optical path and setting
the transmission axis of the polarizer to § = 45°. The respective intensities are
then found from (62) to be, respectively,

10°,0°) = %[50 +5,] (63a)
1(45°,0°) = %[sn 5] (63b)

I(90°,0°) = %[SU—SI] (63c)
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1(45°,90°) = %[sn * 5a) (63d)

Solving (63) for the Stokes parameters, we have

Sp = 1(0°,0°) +1(90°,0°) (64a)
S, = I(0°,0°) —1(90°,0°) (64b)
S, = 21(45°,0°) — 1(0°,0°) —1(90°,0°) (64c)
S, = 20(45°,90°) — I1(0°,0°) —I(90°,0°) (64d)

Equation (64) is really quite remarkable. In order to measure the Stokes
parameters it is necessary to measure the intensity at four angles. We must
remember, however, that in 1852 there were no devices to measure the intensity
guantitatively. The intensities can be measured quantitatively only with an optical
detector. But when Stokes introduced the Stokes parameters, such detectors did
not exist. The only optical detector was the human eye (retina), a detector
capable of measuring only the null or greater-than-null state of light, and so the
above method for measuring the Stokes parameters could not be used! Stokes
did not introduce the Stokes parameters to describe the optical field in terms of
observables as is sometimes stated. The reason for his derivation of (62) was not
to measure the Stokes polarization parameters but to provide the solution to an
entirely different problem, namely, a mathematical statement for unpolarized light.
We shall soon see that (62) is perfect for doing this. It is possible to measure all
four Stokes parameters using the human eye, however, by using a null-intensity
technique. This method is described in Section 6.4.

Unfortunately, after Stokes solved this problem and published his great paper
on the Stokes parameters and the nature of polarized light, he never returned to
this subject again. By the end of his researches on this subject he had turned his
attention to the problem of the fluorescence of solutions. This problem would
become the major focus of his attention for the rest of his life. Aside from Lord
Rayleigh in England and Emil Verdet in France, the importance of Stokes” paper
and the Stokes parameters was not fully recognized, and the paper was, practically,
forgotten for nearly a century by the optical community. Fortunately, however,
Emil Verdet did understand the significance of Stokes’ paper and wrote a number
of subsequent papers on the Stokes polarization parameters. He thus began a
tradition in France of studying the Stokes parameters. The Stokes polarization
parameters did not really appear in the English-speaking world again until they
were “rediscovered” by S. Chandrasekhar in the late 1940s when he was writing
his monumental papers on radiative transfer. Previous to Chandrasekhar no one
had included optical polarization in the equations of radiative transfer. In order
to introduce polarization into his equations, he eventually found Stokes’ original
paper. He immediately recognized that because the Stokes parameters were an
intensity formulation of optical polarization they could be intreduced into radiative
equations. It was only after the publication of Chandrasekhar’s papers that the
Stokes parameters reemerged. They have remained in the optical literature ever
since.

We now describe Stokes’ formulation for unpolarized light.
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4,5, THE STOKES PARAMETERS FOR UNPOLARIZED AND
PARTIALLY POLARIZED LIGHT

The intensity J(f,¢) of a beam of light emerging from the retarder/polarizer
combination was seen in the previous section to be

1
I(6,6) = 5 [So+S1C0526 + S5in20 o5 ¢ + S35in265in 9] (65)

where S, §,, S,, and §, are the Stokes parameters of the incident beam, and
6 is the rotation angle of the transmission axis of the polarizer, and ¢ is the
phase shift of the wave plate, respectively. By setting 8 to 0°, 45°, and 90° and
¢ to 0° or 90°, all four Stokes parameters can then be measured. However, it
was not Stokes’ intention to merely cast the polarization of the optical field in
terms of the intensity rather than the amplitude. Rather, he was interested in
finding a suitable mathematical description for unpolarized light. Stokes, unlike
his predecessors and his contemporaries, recognized that it was impossible to
describe unpolarized light in terms of amplitudes. Consequently, he abandoned
the amplitude approach and sought a description based on the observed intensity.

To describe unpolarized light using (65), Stokes observed that unpolarized
light had a very unique property, namely, its intensity was unaffected by (1) ro-
tation of a linear polarizer (when a polarizer is used to analyze the state of
polarization, it is called an analyzer) or (2) the presence of a retarder. Thus, for
unpolarized light the only way the observed intensity [ (6, ¢) could be independent
of 8, ¢ was for (65) to satisfy

1
1(6,6)= 35S, (66a)
and
§;=8;=8=10 (66b)

Equations (66a) and (66b) are the mathematical statements for unpolarized light.
Thus, Stokes had finally provided a correct mathematical statement. From a
conceptual point of view S;, §,, and S describe the polarizing behavior of the
optical field. Since there is no polarization, (66a) and (66b) must be the correct
mathematical statements for unpolarized light. Later, we shall show how (66) is
used to formulate the interference laws of Fresnel and Arago.

In this way Stokes discovered an entirely different way to describe the po-
larization state of light. His formulation could be used to describe completely
polarized light and completely unpolarized light as well. Furthermore, Stokes had
been led to a formulation of the optical field in terms of measurable quantities,
the Stokes parameters, so-called observables. This was a very unique point of
view for nineteenth-century optical physics. The representation of radiation phe-
nomena in terms of observables would not reappear again in physics until 1925
with the discovery of the laws of quantum mechanics by W. Heisenberg.

The Stokes parameters described in (65) arise from an experimental configu-
ration. Consequently, they were associated for a long time with the experimental
measurement of the polarization of the optical field. Thus, a study of classical
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optics shows that polarization was conceptually understood with ‘the nonobservable
polarization ellipse, whereas the measurement was made in terms of intensities,
the Stokes parameters. In other words, there were twa distinct ways to describe
the polarization of the optical field.

We have seen, however, that the Stokes parameters are actually a consequence
of the wave theory and arise naturally from the polarization ellipse. It is only
necessary to transform the nonobservable polarization ellipse to the observed
intensity domain, whereupon we are led directly to the Stokes parameters. Thus,
the Stokes polarization parameters must be considered as part of the conceptual
foundations of the wave theory.

For a completely polarized beam of light we saw that

St =8}+83+53% (67)
and we have just seen that for unpolarized light
5:>0 (68)

Equations (67) and (68) represent extreme states of polarization. Clearly, there
must be an intermediate polarization state. This intermediate state is called par-
tially polarized light, Thus, (67) can be used to describe all three polarization
conditions by writing it as

Si>sti8+83 (69)

ks

For perfectly polarized light “>” is replaced by “=;” for unpolarized light “>” is
replaced by “>” with §; = S, = §3 = (; and for partially polarized light “>” is
replaced by “>.”

An important quantity which describes these various polarization conditions
is the degree of polarization P. This quantity can be expressed in terms of the
Stokes parameters. To derive P we decompose the optical field into unpolarized
and polarized portions which are mutually independent. Then, and this will be
proved later, the Stokes parameters of a combination of independent waves are
the sums of the respective Stokes parameters of the separate waves. The four
Stokes parameters, Sy, Sy, S», and S, of the beam are represented by S. The
total intensity of the beam is then §;. We subtract the polarized intensity (51 +
5% + SH'® from the total intensity S, and we obtain the unpolarized intensity.
Thus, we have

5@ =8, —1/8% + 5% +53,0,0,0 (70a)

and

5 = /52 + 52 + 52,5,,5,,5, (70b)

where S0 represents the unpolarized part and S%) represents the polarized part.
The degree of polarization P is then defined to be

Lg \/Si+53+53

P=

_pol _ 0<P<1 (M)
[lcul Sﬂ
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Thus, P = 0 indicates that the light is unpolarized, P = 1 that the light is
(completely) polarized, and 0 < P < 1 that the light is partially polarized.

The use of the Stokes parameters to describe polarized light rather than the
amplitude formulation enables us to deal directly with the quantities measured in
an optical experiment. Thus, we carry out the analysis in the amplitude domain
and then transform the amplitude results to the Stokes parameters, using the
defining equations. When this is done, we can easily relate the experimental results
to the theoretical results. Furthermore, when we obtain the Stokes parameters, or
rather the Stokes vector, we shall see that we are led to a description of radiation
in which the Stokes parameters not only describe the measured quantities but can
be used to truly describe the observed spectral lines in a spectroscope. In other
words, we shall arrive at observables in the strictest sense of the word.

4.6. ADDITIONAL PROPERTIES OF THE STOKES
POLARIZATION PARAMETERS

Before we proceed to apply the Stokes parameters to a number of problems of
interest, we wish to discuss a few of their additional properties. We saw earlier
that the Stokes parameters could be used to describe any state of polarized light.
In particular, we saw how unpolarized light and completely polarized light could
be written in terms of a single Stokes vector. The question remains as to how
we can represent partially polarized light in terms of the Stokes parameters and
the Stokes vector. To answer this question, we must establish a fundamental
property of the Stokes parameters, the property of additivity whereby the Stokes
parameters of two completely independent beams can be added. This property
is another way of describing the principle of incoherent superposition. We now
prove this property of additivity.

We recall that the Stokes parameters for an optical beam can be represented
in terms of complex amplitudes by

So=E,E} +E,E} (72a)
Sy =E\E; +E,E} (72b)
S, =E,E} + E,E} (72¢)
S3 =i(E,Ey - EE}) (72d)

Consider now that we have two optical beams each of which is characterized by
its own set of Stokes parameters represented as §™ and S,

S§) = ELE} + EE;, (73a)

sV =E.E} -E, E}, (73b)

§§" = EEj, + E\Ej, (73¢)

§§0 = i(E\E}, - Ey\Ef) (73d)
and

SE) = EpEj, + Ey E3, (74a)
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P = B, Ef, — B, B3, (740)
S:(f) = Ey Ej +EyE3, (74c)
S = i(ExE3, - E5EL,) (74d)

The superscripts and subscripts 1 and 2 refer to the first and second beams,
respectively. These two beams are now superposed. Then by the principle of
superposition for amplitudes the total field in the x and y direction is

E,=E, +E; (75a)

E,=E, +E, (75b)
We now form products of (75a) and (75b) according to (72):

E.E; = (Ey +Ep)(Ey + Ex)’

= E E}, +EyES + EyEl + EpElL (76a)
EE} = (Ey + Ey)E,, + Ey)’

= B Ej, + Ey E3, + Ey Ei, + EyE3, (76b)
EE} = (Ey + E)(E, +Ey)’

= ELE}, + E4E} + ExE} + ExEj (76¢)
E.E: = E,E}, +Ey E}, + E E3, +EyE3, (76d)

Let us now assume that the two beams are completely independent of each
other with respect to their amplitudes and phase. We describe the degree of
independence by writing an overbar on the products of E, and E,, that is, E,EZ,

E E*, etc., so

i
EEf ij=xy (77
Since the two beams are completely independent, we express this behavior by
EEy=EE5 =0 ] (783)
E,E; #0 (78b)
EGE; #0  ij=x,)y (78¢)

The value of zero in (78a) indicates complete independence. On the other hand,
the nonzero value in (78b) and (78¢) means that there is some degree of depen-
dence. Operating on (76a) through (76b) with an overbar and using the conditions
expressed by (78), we find that

EE} =E.E}, + ExE}, {7e)
EE; =EE;, +E,E3 (79b)
EE; =E,E}, +E,.E3, (79)

E,Ef = E, E}, +E5,E5, (79d)



=
a

i ) BT
.pr. |

T HT\-’)']‘

v

—

b s

P L2

54 Chapfer 4

We now form the Stokes parameters according to (72), drop the overbar because
the noncorrelated terms have been eliminated, and group terms. The result is

So = EE; + E\E} = (EyEY, + EE}) + (EpEj, + EyE3) (80a)
S, =E,E; —~EE} = (ELE}, —EE}) + (EyE; — EpEj) (80b)
S, =E,E; + E,E; = (E,E] + E,EL,) + (EE}, + EE3) (80c)
Sy =i(E.E; + E\E) =i(EE], + E\EL) +i(EyE3 + EyE3) (80d)
From (73) and (74) we see that we can then write (80) as
Sy = _5-31) 4 SE'?J (81a)
5, = 5O 4 5O (81b)
Sy = 5P + 50 819
S; =50 + 5P (81d)

Thus, the Stokes parameters of two completely independent optical beams can
be added and represented by the Stokes parameters of the combined beams. In
terms of the Stokes vector, that is, column matrices, we can write (81) as

sy [8) (o
s g 5@
s: = sﬁn . ﬁn (82)
53 s s
or simply
§=5M+ s (83)

so the Stokes vectors, S¥, i = 1,2, are also additive.
As a first application of this result, (82), we recall that the Stokes vector for
unpolarized light is

0
0
0

S=1, (84)

We also saw that the Stokes vector could be written in terms of the orientation
angle ¥ and the ellipticity y as
1
cos 2y cos 2t
§ =1, e (85)
cos 2y sin 2y
sin2y
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Thus, we see from (82) that we can write (84), using (85), as

1 1 1
I 0 . cos 2y cos 24 B, Iy | —cos 2y cos 24 (86)
’lo 2 cos 2y sin 29 2 | —cos2ysin2y
0 sin2y — §in2y

We can also express (82) in terms of beams (72) and (73) using (85) as

1 1 1

I, 0 _I cos 2y, cos 2t 4 Iy cos2y, c?sw;z (89)
0 2 | cos2y,sin2y, 2 | cos2y,sin2yy,
0 sin 2y, sin 2y,

Comparing the Stokes parameters in the second column in (87) with (86), we see
that

cos2y,cos 2y, = — €08 2, COS 21, (88a)
cos 2y, sinty, = —cos 2y, sin 2¢, (88b)
sin2y, = —sin 2y, (88¢c)

From (88c) we can write

sin2x, = sin(=2x,) (89a)
or

X2 ==Xy (89b)

Thus, the ellipticity of beam 2 is opposite to beam 1. We now substitute (89b)
into (88a) and (88b) and we have

cos 2iby = — cos 2y, (90a)
sin2y, = —sin 2, (90b)
Equation (90a) and (90b) can only be satisfied if
2 =24y — (91a)
or
™

Yoty + 5 (91b)

Thus, the polarization ellipse for the second beam is oriented 90° (7/2) from the
first beam. The conditions (89b) and (92b)

X2 = =X (89b)

b=+ 3 (91b)
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are said to describe two polarization ellipses of oppose polarization. Thus, un-
polarized light is a superposition or mixture of two beams of equal intensity and
opposite polarization. As special cases of (86) we see that unpolarized light can
be decomposed into (independent) beams of linear and circular polarized light;
that is,

1 1 1
ol r,|1| 5|-1
lo| =2 |0|*2]| o (922)
0 0 0
1 1 1
o] lol. L] @
Glal=alel®s] s (92b)
0 0 0
1 1 1
0 K lol. 4 0
I = 0 8
of 2 lol* 2| o (92¢)
0 1 =

Of course, the intensity of each beam is half the intensity of the unpolarized
beam.

We now return to our original problem of representing partially polarized
light in terms of the Stokes vector. We call that the degree of polarization P is
defined by

\/S3+53+ 53

Py L2 TR BERET (93)
SEI

This equation suggests that partially polarized light can be represented by a su-
perposition of unpolarized light and completely polarized light by using (82). A
little thought shows that if we have a beam of partially polarized light, which we
can write as

s= (94)

Equation (94) can be written as

Sy Sy Sy
s, 0 s,

S = =(l1-P +P 0<P<1 95
S3 ( ) 0 Sa == (93)
S5 0 S5

The Stokes Polarization Parameters 57

The first Stokes vector on the right side of (95) represents unpolarized light,
and the second Stokes vector represents completely polarized light. For P = 0,
unpolarized light, (93) reduces to

5= (96a)

s = (96b)

We note that §; on the left side of (95) always satisfies

55>/ +83+57 (97a)

whereas S, in the Stokes vector associated with P on the right side of (95) always
satisfies

So = 1/S} + 82 + 82 (97b)

Another representation of partially polarized light in terms of P is the decom-
position of a beam into two completely polarized beams of opposite polarizations,
namely,

8, PS, PS,
Sy | LAER |y | AP | S 0<P<1 (98a)
5, P | s, P | =8,
53 S“ _53

where

PSy =[S} + 53+ 53 (98b)

Thus, partially polarized light can also be decomposed into two oppositely
polarized beams.

While we have restricted this discussion to two beams, it is easy to see that
we could have described the optical field in terms of n beams, that is, extended
(83) to

S = S(]) + 5(2] o 5(3} ST S{“}
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n
=Y sO  i=1..,n (99)
i=l

We have not done this for the simple reason that, in practice, dealing with two
beams is sufficient. Nevertheless, the reader should be aware that the additivity
law can be extended to n beams. Lastly, we note that for partially polarized light
the intensities of the two beams is given by

1 1 3
s = 380-5\/st+ 53+ 53 (100a)
@ _ 1 1 2 2 2
50 " ES‘)“’ E Si 'I'Sé' +53 (100'})

Only for unpolarized light are the intensities of the two beams equal. This is also
shown by (98a).

It is of interest to express the parameters of the polarization ellipse in terms
of the Stokes parameters. To do this, we recall that

So=Eg +Ej, =1, (101a)
S, = E§, — E§, = Iy cos2a : (101b)
Sy =2E Ey cosé = [ysin2acosé (101c)
§3 = 2EyEy, siné = Iysin2asiné (1014)

We can then write (101) as

2 _ SotS,
E; = S (102a)
)
Ej = _02—1 (102b)
e
coséd = 3Eg Ey (102c)
A
g = 1
sin Eop (102d)
We recall that the instantaneous polarization ellipse is
E? EE 2E.E, e
E&: G % — m cosd = sin” ¢ (103)
Substituting (102) into the appropriate terms in (103) gives
2 2
2E? 2E; 45,E.E, 83 (104)

So+S, S-S, S52-52 SI-§2
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where we have used E&\.Egy = (83— S%)/4 from (102a) and (102b). Multiplying
through (104) by (53 — $7)/53 then yields

28y~ SE? | 2So +S)E]  4S,EE, _

=1 105
57 53 57 G
We now write (105) as
Ax? —2Cxy + 2By? = 1 (1062)
where
2(5,-S5
4= X 059 1) (106b)
3
2(Sy + S
. (Sas2 V) (106¢)
3
25,
=t 106d
c 57 (106d)

and for convenience we have setx = E, andy = E,.
We can now find the orientation and ratio of the axes in terms of the Stokes
parameters (106). To do this we first express x and y in polar coordinates:

X = pcosg (107a)

y = psing (107b)
Substituting (107a) and (107b) into (106) we find

Ap®cos® ¢ — 2Cp°sin g cos ¢ + Bp® sin®¢ = 1 (108)
Using the half-angle formulas for cos® ¢ and sin” ¢, (108) then becomes

Ap*(1 + cos2¢) Bp*(1-cos2¢) _ i

—Cpsi 109
5 Cp=sin2¢ + 5 (109)
‘We now introduce the parameter L defined in terms of p as
2
e 110
p (110)
substitute (110) into (109), and write
L=(A+B)—2Csin2¢ + (A —B)cos2¢ (111)

The major and minor axes of the ellipse correspond to maximum and min-
imum values of p, respectively, whereas L is a minimum and maximum, (110).
The angle ¢ where this maximum and minimum occur can be found in the usual
way by setting dL/d¢ = 0 and solving for ¢. We, therefore, have from (111)

dL

g = 4Ccos26—2(A - B)sin2g =0 (112)
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= tan2¢ = —— (113)

Solving for ¢, we find that

=1 o G
= — ty i 1 114
oo tan > oy (114)
To find the corresponding maximum and minimum values of L in (111), we
must express sin2¢ and cos2¢ in terms of 4, B, and C. We can find unique
expressions for sin2¢ and cos2¢ from (113) by constructing the right triangle in
Figure 5. We see from the right triangle that (113) is satisfied by

sin2¢ = '2—C (115a)
V(2C) + (A4 - B)?
cos2¢ = #—q (115b)
V(2C) + (A —B)?
or
2
i -
v (2C) + (A — B)*
~(4 - B)
cos2p = —e—r="——— 115d
*= Jacr+@a-5y (1153)
Substituting (115a) and (115b) inta (111) yields
Ingx = (A + B) + 1/ (2C)* + (4 - BY (116a)
and, similarly, substituting (115¢) and (115d) into (111) yields
Lo = (A +B)—/(2C)* + (A4 - BY® (116b)

We have written “max™ and “min” on L in (116a) and (116b) to indicate that

(A-B)

Figure 5 Right triangle corresponding to Equation (113).
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these are the maximum and minimum values of L. We also note that (115a) and
(115b) are related by

sin2¢y; = —sin2g, (117a)
and (115b) and (115d) by
cos2¢, = —cos2g, (117b)

We see that (115a) and (115b) are satisfied by setting

’ T
Gy =y + 3 (118)
Thus, the maximum and minimum lengths, that is, the major and minor axes, are

at ¢, and ¢, + 90°, respectively, which is exactly what we would expect. We thus
see from (110) that

™5 (1192)
2
Pooas = T— (119b)

The ratio of the square of the lengths of the major axis to the minor axis is
defined to be
P
R= o (120)
Prin

so from (116a) and (116b) we have

R A+B)-OCF +A-B}

(4 +B)+/(2C)* + (4 -B)*

(121)

We can now express (121) in terms of the Stokes parameters, (106b), (106¢) and
(106d) and we find that (121) becomes

o Y S 2
So+4/S}+ 53

Thus, we have found the relation between the length of the major and minor
axes of the polarization ellipse and the Stokes parameters. This can be expressed
directly by using (119) and (106) or as a ratio R given by (122).

Not surprisingly there are other interesting relations between the Stokes pa-
rameters and the parameters of the polarization ellipse. These relations are
fundamental to the development of the Poincar€ sphere, so we shall discuss them
in Chapter 11.
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=tan2¢ = —— (113)

Solving for ¢, we find that

-1 3 2¢
= — tan —
¢ 3 A-EB (114)
To find the corresponding maximum and minimum values of L in (111), we
must express sin2¢ and cos2¢ in terms of A, B, and €. We can find unique
expressions for sin2¢ and cos2¢ from (113) by constructing the right triangle in
Figure 5. We see from the right triangle that (113) is satisfied by

. _ -2C
sin2¢ = —(ZC)'! A5 (115a)
A-B
7 N i AR
cos2¢ GCr T A=B) (115b)
or
; _ 2C
sin2¢ = —V/Z-ZC)T;‘(—/T—‘?)E (115¢c)
cos2¢ = i —0) (115d)

(2CY + (A - B)?

Substituting (115a) and (115b) into (111) yields
I = (A +B) +,/(2C)* + (4 - B)? (116a)
and, similarly, substituting (115¢) and (115d) into (111) yields

Lo = (A +B) = \/(2C) + (4 - B)? (116b)

We have written “max” and “min” on L in (116a) and (116b) to indicate that

(A-B)

Figure 5 Right triangle corresponding to Equation (113).
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these are the maximum and minimum values of L. We also note that (115a) and
(115b) are related by

sin2¢; = —sin 2d, (117a)
and (115b) and (115d) by
€os2¢, = —c0824, (117b)

We see that (113a) and (115b) are satisfied by setting

y T
¢ = ¢y + 5 (118)
Thus, the maximum and minimum lengths, that is, the major and minor axes, are
at ¢, and ¢, + 90°, respectively, which is exactly what we would expect. We thus

see from (110) that

2
pﬁ'n'n = T2 (1193)
E 2
Pl = — (119b)

The ratio of the square of the lengths of the major axis to the minor axis is
defined to be
P
Rom —Dax (120)
Prmin

so from (116a) and (116b) we have

Ro A+B)-(2C) +(A-B) (121)

(4 + B) ++/(2C)* + (4 — B)*

We can now express (121) in terms of the Stokes parameters, (106b), (106¢) and
(106d) and we find that (121) becomes

So— /5% + 82
Rt N enm (122)
Sg+ /S + 53

Thus, we have found the relation between the length of the major and minor
axes of the polarization ellipse and the Stokes parameters. This can be expressed
directly by using (119) and (106) or as a ratio R given by (122).

Not surprisingly there are other interesting relations between the Stokes pa-
rameters and the parameters of the polarization ellipse. These relations are
fundamental to the development of the Poincaré sphere, so we shall discuss them
in Chapter 11.
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The Mueller Matrices for
Polarizing Components

=
=

5.1. INTRODUCTION

In the previous chapters we have concerned ourselves with the fundamental prop-
erties of polarized light. In this chapter we now turn our attention to the study
of the interaction of polarized light with elements which can change its state of
polarization and see that the matrix representation of the Stokes parameters leads
to a very powerful mathematical tool for treating this interaction. In Figure 1 we

Ay i e

incident beam
polarizing element
il | emerging beam

Figure 1 Interaction of a polarized beam with a polarizing element.
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show an incident beam interacting with a polarizing element and the emerging
beam. In Figure 1 the incident beam is characterized by its Stokes parameters
S;, where i = 0, 1, 2, 3. The incident polarized beam interacts with the polarizing
medium, and the emerging beam is characterized by a new set of Stokes parame-
ters S}, where, again, i =0, 1, 2, 3. We now assume that S] can be expressed as
a linear combination of the four Stokes parameters of the incident beam by the
relations

Sg = mggSy +mySy + MpSy + MpySsy (1a)
S1 =m Sy +my Sy +mpSy +mpS, (1b)
85 = myyS; +mySy +mpS; + S, (1c)
84 = myySy + My Sy + MypS, + My (1d)

Equation (1) can be written in terms of the Stokes vector (Stokes column matrix).
In matrix form (1) is written as

I
So Mgy Mg Mg My Sy
I
1] | "0 My My Mg 5y @)
2 My My My My || S
1
S3 My my My my | \S3

Equation (2) can be simply represented as a matrix equation, namely,
§'=M-S ©)

The 4 x 4 matrix in (2) is known as the Mueller matrix. It was introduced by
H. Mueller during the early 1940s. While Mueller appears to have based his 4 x 4
matrix on a paper by F. Perrin and a still earlier paper by P. Soleillet, his name
is firmly attached to it in the optical literature. Mueller’s important contribution
was that he, apparently, was the first to describe polarizing components in terms
of his Mueller matrices. Remarkably, Mueller never published his work on his
matrices. Their appearance in the optical literature was due to others, such as
N. G. Park III, who published Mueller’s ideas along with his own contributions
and others shortly after the end of the Second World War.

In nature, when an optical beam interacts with matter its polarization state
is almost always changed. In fact, this appears to be the rule rather than the
exception. The polarization state can be changed by (1) changing the amplitudes,
(2) the phase, or (3) the direction of the orthogonal field components. An optical
element which changes the orthogonal amplitudes unequally is called a polarizer
or diattenuator. Similarly, an optical device which introduces a phase shift be-
tween the orthogonal components is called a retarder; other names used for the
same device are wave plate, compensator, or phase shifter. Finally, if the optical
device rotates the orthogonal components of the beam through an angle § as it
propagates through the element, it is called a rotator. These effects are easily
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understood by writing the transverse field components for a plane wave:

E,(z,t) = Eq cos(wt — rz + &) (4a)
E,(z,t) = Ey, cos(wf — Kz + 6,) (4b)

Equation (4) can be changed by varying the amplitudes, Eq, or Ey, or the phase,
6, or &, and, finally, the direction of E,(z,¢) and E,(z,t). The corresponding
devices for causing these changes are the polarizer, retarder, and rotator. The
use of the names polarizer and retarder arose, historically, before the behavior of
these polarizing elements was fully understood. The preferable names would be
diattenuator for a polarizer and phase shifter for the retarder. All three polarizing
elements change the polarization state of an optical beam.

In the following sections we derive the Mueller matrices for these polarizing
elements. We then apply the Mueller matrix calculus to a number of problems of
great interest and see its great utility.

5.2. THE MUELLER MATRIX OF A POLARIZER

A polarizer is an optical element which attenuates the orthogonal components of
an optical beam unequally; that is, a polarizer is an anisotropic attenuator; the
two orthogonal transmission axes are designated p, and p,. Recently, it has also
been called a diattenuator. If the orthogonal components of the incident beam
are attenuated equally, then the polarizer becomes a neutral density filter. We
now derive the Mueller matrix for a polarizer.

In Figure 2 a polarized beam is shown incident on a polarizer along with the
emerging beam. The components of the incident beam are represented by E, and
E,, respectively. After the beam emerges from the polarizer the components are
E, and Ej, and they are parallel to the original axes. The fields are related by

E,=pE, 0<p,<1 (5a)
E,=pE, 0<p,<1 - (5b)
Ey

Y

Figure 2 The Mueller matrix of a polarizer with attenuation coefficients p, and p,.
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The factors p, and p, are the amplitude attenuation coefficients along its or-
thogonal transmission ‘axes. For no attenuation or perfect transmission along an
orthogonal axis p,(py) = 1, whereas for complete attenuation p,(p,) = 0. If one
of the axes has an absorption coefficient which is zero so that there is no trans-
mission along this axis, the polarizer is said to have only a single transmission
axis.

The Stokes polarization parameters of the incident and emerging beams are,
respectively,

Sy =E,E; + EE} (6a)
S, =E,E; —-EE} (6b)
S, =EE; +EE; (6¢c)
Sy =i(E,Ey —E\E;) (6d)
and
Sy =E;E +EE} (7a)
S} =EJE;' —EE} (7b)
S3 = E,E," + EJE; (7c)
Sy =i(E.E)* —EJE;") (7d)
Substituting (5) into (7) and using (6), we then find
Sh pi+py pi-py 0 0\ (s
Si|_1|pi-p} pitp; O 0 5, ®
55 2 0 0 2pp, 0 Sy
54 0 0 0 2pp,) \S:

The 4 x 4 matrix in (8) is written by itself as

pit+p; pi-p; 0 0

Mel B Bty ¥ D 0<p,, <1 ©)
<Psy <
2| o 0 2p, O
0 0 0  Zpp,

Equation 9 is the Mueller matrix for a polarizer. In general, the existence of the
mgy term shows that the polarization of emerging beam of light will be elliptically

polarized.
For a neutral density filter p, = p, = p and (9) becomes

0

M =p? (10)

= == I = I
o o = o
o o o
el — ]
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which is a unit diagonal matrix. Equation (10) shows that the polarization state
is not changed by a neutral density filter, but the intensity of the incident beam
is reduced by a factor of p?. This is the expected behavior of a neutral density
filter, since it only affects the magnitude the intensity and not the polarization
state. According to (10), the emerging intensity I’ is then

I'=p%I (11)

where I is the intensity of the incident beam.

Equation (9) is the Mueller matrix for a polarizer which is described by
unequal attenuation along the p, and p, axes. An ideal linear polarizer is one
which has transmission along only one axis and no transmission along the other
axis. This behavior can be described by first setting, say, p, = 0. Then (9) reduces
to

(12)

(o]
= D = =
[= =
[ T e Y e N = |
o o oo

Equation (12) is the Mueller matrix for an ideal linear polarizer which polarizes
only along the x axis. It is most often called a linear horizontal polarizer. It would
be a perfect linear polarizer if the transmission factor p, was unity (p, = 1). Thus,
the Mueller matrix for an ideal perfect linear polarizer with its transmission axis
in the x direction is

(13)

o

[ B e B
=T = R
oo oo
oo oo

We note that the maximum intensity of the emerging beam which can be obtained
is only 50% of the original intensity. Thus, the use of an ideal polarizer reduces
the intensity by a factor of 1/2; it is the price we pay for obtaining perfectly
polarized light. It is called a linear polarizer because it affects a linearly polarized
beam in a unique manner as we shall soon see.

In general, all polarizers are described by (9). However, there is only one
known natural material which comes close to approaching the perfect ideal polar-
izer described by (13), and this is calcite. A synthetic material known as Polaroid
is also used as a polarizer. It performance is not as good as calcite, but its cost is
very low in comparison to natural calcite polarizers, e.g., a Glan-Thompson prism.
Nevertheless, there are a few types of Polaroid which perform extremely well as
“ideal” polarizers. We shall discuss the topic of calcite and Polaroid polarizers in
a separate chapter.
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If an ideal polarizer is used in which the role of the transmission axes is
reversed, that is, p, = 0 and p, = 1, then (9) reduces to

(14)

—

|

p—

—
oo o o
oo oo

which is the Mueller matrix for a linear vertical polarizer. o
Finally, it is convenient to rewrite the Mueller matrix, (9), of a polarizer in
terms of trigonometric functions. This can be done by setting

pt+p; =p (15a)
and
py =pcosa p, =psina (15b)
Substituting (15) into (9) yields
1 cos 2a 0 0
A= % mjlza :I sin02a g 0%
1] 0 0 sin2a

where 0 < & < 90°. For an ideal perfect linear polarizer p = 1. For a linear hori-
zontal polarizer a = 0, and for a linear vertical polarizer a = 90°. The usefulness
of the trigonometric form of the Mueller matrix, (16), will appear later.

The reason for calling (13) a linear polarizer is due to the fqllm_wng fac_:t.
Suppose we have an incident beam of arbitrary intensity and polarization so 1ts
Stokes vector is

S |9 [¢%)

We now matrix multiply (17) by (13) or (14), and we can write

S 1 41 0 0\ (S,
(l_1]#1 100]]s ()
ss|72[ 0o o0o0o0]]s,
s! 0 00 0/\S,
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Carrying out the matrix multiplication in (18), we find

5 1
5|1 +1
s | = 260D | 7 (19)
S} 0

Inspecting (19), we see that the Stokes vector of the emerging beam is always
linearly horizontally (+) or vertically (—) polarized. Thus, an ideal linear po-
larizer always creates linearly polarized light regardless of polarization state of
the incident beam. The simple fact is, however, that because the factor 2p,p,
in (9) is never zero there is no known perfect linear polarizer and all polarizers
create elliptically polarized light. While the ellipticity may be small and, in fact,
negligible, there is always some present.

The above behavior of linear polarizers allows us to develop a test to deter-
mine if a polarizing element is actually a linear polarizer. If a linear polarizer
is used to create linearly polarized light, we call it a generator. If it is used to
analyze polarized light, it is called an analyzer. The test to determine if we have
a linear polarizer is shown in Figure 3. In the test we assume that we have a
linear polarizer and set its axis in the horizontal (H) direction. We then take
another polarizer and set its axis in the vertical (V) direction as shown in the
figure. The Stokes vector of the incident beam is S, and the Stokes vector of the
beam emerging from the first polarizer (horizontal) is

5'=MyS (20)

Next, the §' beam propagates to the second polarizer (vertical), and the Stokes
vector §” of the emerging beam is now

§" = M,S' = MyM,,S = MS (1)

where we have used (20). We see that M is the Mueller matrix of the combined
vertical and linear polarizer,

M =My M, (22)

s My

Figure 3 Testing for a linear polarizer.
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where M;; and M,, are given by (13) and (14), respectively. This result, (21) and
(22), shows that we can relate the Stokes vector of the emerging beam to the
incident beam by merely matrix-multiplying the Mueller matrix of each component
and finding the resulting Mueller matrix. In general, the matrices do not commute.
We now carry out (22) and write, using (13) and (14),

1100 1 -1 00 0000
1|1 100]]-1 100 0000
-t - 3
M=%1000 0 0 000 0000 23)
0000 0 000 0000

Thus, we obtain a null Mueller matrix and, hence, a null output intensity regard-
less of the polarization state of the incident beam. The appearance of a mull
Mueller matrix (or intensity) occurs only when the linear polarizers are in the
crossed polarizer configuration. Furthermore, the null Mueller matrix always arises
whenever the polarizers are crossed, regardless of the angle of the transmission
axis of the first polarizer.

5.3. THE MUELLER MATRIX OF A RETARDER

A retarder is a polarizing element which changes the phase of the optical beam.
Strictly speaking, its correct name is phase shifter. However, historical usage has
led to the alternative names retarder, wave plate, and compensator. Retarders
introduce a phase shift of ¢ between the orthogonal components of the incident
field. This is accomplished by causing a phase shift of +¢/2 along the x axis and
a phase shift of —¢/2 along the y axis. In optics these axes are referred to as the
fast and slow axes, respectively. In Figure 4 we show the incident and emerging
beam and the retarder. The components of the emerging beam are related to the

incident beam by
E!(z,t) = e"¥IE, (2,1) (24a)
Ey

Ex hEy‘

= %

\

Figure 4 Propagation of a polarized beam through a retarder.
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El(z,1) = e 7*E,(z,1) (24b)

Refeljn'n_g again to the definition of the Stokes parameters (6) and (7) and
substituting (24a) and (24b) into these equations, we find that

Si=5, (25a)
si=85, _ (25b)
S5 = 5,co8¢ — §35in¢ (25¢)
53 = S,sin¢g + Sycos9 (25d)

Equation 25 can be written in matrix form as

8 10 0 0 So
si| o1 o o 5
S5 ~ 10 0 cos¢g —sing Sy (29
S3 0 0 sing cosg S,

Note that for an ideal phase shifter (retarder) there is no loss in intensity; that
is, S§§ = Sy
The Mueller matrix for a retarder with a phase shift ¢ is, from (26),

10 0 0
01 0 0
M=
0 0 cos¢ —sing @7
0 0 sing cos¢

There are two special cases of (27) which appear often in polarizing optics. These
are the cases for quarter-wave retarders (¢ = 90°) and half-wave retarders (¢ =
180°), respectively. For a quarter-wave retarder (27) becomes

1 00 0
010 0
M =
000 -1 @8
0 0 1 0

The quarter-wave retarder has the property that it transforms a linearly polarized
beam with its axis at +45° or —45° into a right or left circularly polarized beam,
respectively. To show this property, consider the Stokes vector for a linearly
polarized +45° beam,

1
0
+1
0

S=1I, (29)
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Matrix-multiplying (29) with (28) yields

(30)
+1

which is the Stokes vector for right (left) circularly polarized light. The transfor-
mation of linearly polarized light to circularly polarized light is an important
application of quarter-wave retarders. However, circularly polarized light is
obtained only if the incident linearly polarized light is oriented at £45°.

On the other hand, if the incident light is right (left) circularly polarized light,
then matrix-multiplying (30) by (28) yields

€2

which is the Stokes vector for linear —45° or +45° polarized light. The quarter-
wave retarder can be used to transform linearly polarized light to circularly
polarized light or circularly polarized light to linearly polarized light.

The other important type of wave retarder is the half-wave retarder (¢ =
180°). For this condition (28) reduces to

10 0 0
o1 0 0
= 32
- 00 -1 0 -
00 0 -1

A half-wave retarder is characterized by a diagonal matrix. The terms my, =
mqy = —1 reverse the ellipticity and orientation of the polarization state of the
incident beam. To show this formally, we have initially

s= (33)

We also saw previously that the orientation angle ¢ and the ellipticity angle x is
given in terms of the Stokes parameters:

a2y = % (342)

sin2y = S—’- (34b)
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Matrix-multiplying (33) and (32) gives

So Sy
5] S
8= S'l = Sl (35)
2 =2
53 =53
where
Si
tan 2y’ = S—f (36a)
1
!
sin2y' = % (36b)

Substituting (35) into (36) yields

an2y' = 252 = _tan2y (37a)
Sl
2yt = 28w g2y (37b)
So
Hence,
P =90 —3 (38a)
X =90+ (38b)

Half-wave retarders also possess the property that they can rotate the polarization
ellipse. This important property shall be discussed later in the chapter on the
rotation of a polarizer and retarder.

5.4. THE MUELLER MATRIX OF A ROTATOR

The final way to change the polarization state of an optical field is to allow a
beam to propagate through a polarizing element which rotates the orthogonal
field components E,(z,7) and E,(z,f) through an angle 8. In order to derive the
Mueller matrix for rotation, we consider Figure 5. The angle # describes the
rotation of E, to E; and of E, to Ej. Similarly, the angle 4 is the angle between
E and E,. In the figure the point P is described in the E}, E} coordinate system
by

E] = Ecos(f —6) (39a)
E, = Esin(8 - 6) (39b)

In the E,E, coordinate system we have

E,=Ecosf (40a)
Ey = Esinfg (40b)
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Figure 5 Rotation of the optical field components by a rotator.

Expanding the trigonometric functions in (39) gives

E} = E(cos #cosd + sin fsin 6) (41a)
E;, = E(sin 3 cos# — sinf cos 3) (41b)

Collecting terms in (41) using (40) then gives

E;=E,cos8 +E,siné (42a)

- i 42
E = —E,sind + E,cosf (42b)
Equations (42a) and (42b) are the amplitude equations for rotation. In order to

find the Mueller matrix we form the Stokes parameters for (42) as before and
find the Mueller matrix for rotation:

1 0 0 0
0 cos2¢ sin28 0
0 —sin26 cos26 0
0 0 0 1

M= (43)

We note that a physical rotation of # leads to the appearance of 26 in (43) rather
than @ because we are working in the intensity domain; in the amplitude domain
we would expect just 6.

Rotators are primarily used to change the orientation angle of the polarization
ellipse. To see this behavior, suppose the orientation angle of an incident beam
is ¢. Then we can write

tan 2y = g—z (44)
1

For the emerging beam we have a similar expression with the variables in (44)
replaced with primed variables. Using (43) we see that the orientation angle ¥’
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is then
—5,sin26 + 5, cos 26
7 1 2
W S, cos28 + S,sin26 (49)

Equation (44) is now written as

S, =8,tan2y (46)
Substituting (46) into (45), we readily find that

tan 2y’ = tan(2y — 26) (47)
50

W=v-8 (48)

Equation (48) shows that a rotator merely rotates the polarization ellipse of the
incident beam; the ellipticity remains unchanged. The sign is negative in (48)
because the rotation is clockwise. If the rotation is counterclockwise, that is, 8 is
replaced by —# in (43), then we find

Wt d (49)

In the derivation of the Mueller matrices for a polarizer, retarder, and rotator,
we have assumed that the axes of these devices are aligned along the E, and E,
(or x,y axes), respectively. In practice, we find that the polarization elements
are often rotated. Consequently, it is also necessary for us to know the form of
the Mueller matrices for the rotated polarizing elements. We now consider this
problem.

5.5. THE MUELLER MATRICES FOR ROTATED POLARIZING
COMPONENTS

To derive the Mueller matrix for rotated polarizing components, we refer to
Figure 6. The axes of the polarizing component are seen to be rotated through an
angle @ to the x' and y' axes. We must, therefore, also consider the components
of the incident beam along the x' and ¥' axes. In terms of the Stokes vector of
the incident beam, S, we then have

§' = Mg(28) -8 (50)

where Mg(26) is the Mueller matrix for rotation and §' is the Stokes vector of
the beam whose axes are along x' and y'.

The §' beam now interacts with the polarizing element characterized by its
Mueller matrix M. The Stokes vector S” of the beam emerging from the rotated
polarizing component is

S"=M-S'-‘=M-MR(29)vS (51)

where we have used (50). Finally, we must take the components of the emerging
beam along the original x and y axes as seen in Figure 6. This can be described
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M (26)

incident beam
rotated polarizing
component y
emerging beam

Figure 6 Derivation of the Mueller matrix for rotated polarizing components.

by a counterclockwise rotation of " through —# and back to the original x,y
axes, SO

S" = Mp(—26) 5"
= [Mg(—26)-M -Mg(26))-S (52)

where Mp(—28) is, again, the Mueller matrix for rotation and §" is the Stokes
vector of the emerging beam. Equation (52) can be written as

s = M(26)-S (53)
where
M(260) = Mp(—20)-M -Mp(26) (54)

Equation (54) is the Mueller matrix of a rotated polarizing component. We recall
that the Mueller matrix for rotation Mg(26) is given by

0 0 0
cos2f sin28 0
—sin2f cos26 0
0 0 1

Mg(26) = (35)

=T I = R

The rotated Mueller matrix expressed by (54) appears often in the treatment
of polarized light. Of particular interest are the Mueller matrices for a rotated
polarizer and a rotated retarder. The Mueller matrix for a rotated “rotator” is also
interesting, but in a different way. We recall that a rotator rotates the polarization
ellipse by an amount 6. If the rotator is now rotated through an angle a, then one
discovers, using (54), that M (26) = M(26); that is, the rotator is unaffected by a
mechanical rotation. Thus, the polarization ellipse cannot be rotated by rotating
a rotator! The rotation comes about only by the intrinsic behavior of the rotator.
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It is possible, however, to rotate the polarization ellipse mechanically by rotating
a half-wave plate, as we shall soon demonstrate.

The Mueller matrix for a rotated polarizer is most conveniently found by
expressing the Mueller matrix of a polarizer in angular form, namely,

1: cos 2a 0 0
" p_z cos 2a 1 0 0
M 2 0 0 sin 2o 0 §40)
0 0 0 sin 2a

Carrying out the matrix multiplication according to (54) and using (55), the
Mueller matrix for a rotated polarizer is

1 cos 2a cos 26 cos 2a sin 26 0
ar = 1| cos2acos28 cos?26 +sin2asin®28  (1—sin2a)sin26cos26 0
2 | cos2asin26 (1—sin2a)sin20cos26  sin® 26 + sin 2acos® 24 0

0 0 0 sin 2a

(57

In (57) we have set p? to unity. We note that a linear vertical polarizer, a neutral
density filter, and a linear vertical polarizer correspond to « = 0°, 45°, and 90°,
respectively.

The most common form of (57) is the Mueller matrix for an ideal linear
horizontal polarizer (a = 0°). For this value (57) reduces to

1 cos 24 sin 28 0
M,(26) 1 | cos28 cos? 26 sin26cos28 0 o
o 2 | sin20 sin20cos20  sin*26 0 (58)
0 0 0 0

In (58) we have written Mp(26) to indicate that this is the Mueller matrix for a
rotated ideal linear polarizer. The form of (58) can be checked immediately by
setting # = 0 (no rotation). Upon doing this, we obtain the Mueller matrix of a
linear horizontal polarizer:

1100

. 1l1 100
M) =310 00 0 (39)

0000

One can readily see that for § = 45° and 90° Eq. (58) reduces to the Mueller
matrix for an ideal linear +45° and vertical polarizer, respectively. The Mueller
matrix for a rotated ideal linear polarizer, (58), appears often in the generation
and analysis of polarized light.
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Next we turn to determining the Mueller matrix for a retarder or wave plate.
We recall that the Mueller matrix for a wave plate is given by

10 0 0
01 0 0
= (60)
By 0 0 cos¢g —sing
0 0 sing coso

From (54) the Mueller matrix for the rotated wave plate, (60) is found to be

1 0 0 0

0 cos®28 +cos¢sin®28 (1 —cos¢)sin26cos26  sinsin26
0 (1- cosg¢)sin2écos2f sin®26 + cos ¢ cos® 20 —sin ¢ cos 28
0 —singsin28 sin ¢ cos 24 cos ¢

Mc(ﬂs:ze) =

(61)
For 6 = 0°, (61) reduces to (60) as expected. There is a particularly interesting
form of (61). This is for a phase shift of ¢ = 180°, a so-called half-wave plate.
For ¢ = 180° (61) reduces to

0 0 0
cos 46 sindd 0
sin4d —cosd48d O

0 0 -1

M, (180°,48) = (62)

oc o -

Equation (62) looks very similar to the Mueller matrix for rotation My(28), (35),
which we write simply as Mp,

1 0 0 0
1 cos2f sin28 0

= 63

Mp 0 —sin268 cos28 0 L
0 0 0 1

However, (62) differs from (63) in some essential ways. The first is the ellipticity.
The Stokes vector of an incident beam is

§= (64)
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Matrix-multiplying (64) with (63) yields the Stokes vector §':

8y
S 260 + S,sin 26
1::'cns o sin )
—8,5in28 + §, cos 24
S

s =

The ellipticity angle ' is

S hY .
in2x' = =2 3= 66
sin 2y s 5, sin2y (66)
Thus, the ellipticity is not changed under true rotation. Matrix-multiplying (64)
and (62), however, yields a Stokes vector §':

Sy
S;cos4f + 5, sin 48
g=1 "' ; 67
—8,sin4f — §, cos 46 (€7
_53
The ellipticity angle x' is now
I _g!
sin2y' = % - S—S‘l = —sin2y (68)
0 0
Thus,
X' =x+90° 69
X

so the ellipticity angle y of the incident beam is advanced 90° by using a rotated
half-wave plate.

The next difference is for the orientation angle ¢'. For a rotator, (63), the
orientation angle associated with the incident beam, 1, is

tan 2y = ifj‘ (70)

so we immediately find from (70) and (65) that

sin 24> cos 26 — sin 21 cos 2y

[ -
tan2y = cos 2i cos 28 + sin 24 sin 26 w
whence
P=yp—9 )

Equation (72) shows that a mechanical rotation in @ increases i by the same
amount and in the same direction (by definition, a clockwise rotation of # in-
creases). On the other hand, for a half-wave plate the orientation angle ¢, (67),
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S, sin4f — 5, cos4f
il — 1 z
L 8§, cos 46 + S, sin4d (73)

Substituting (71) into (73), we find

s« SRt
50

P2l g (75a)
and

¥'=—(v-20) (75b)

Comparing (75b) with (72), we see that rotating the half-wave plate clockwise
causes ' to rotate counterclockwise by an amount twice that of a rotator. Because
the rotation of a half-wave plate is opposite to a true rotator, it is called a
pseudorotator. When a mechanical rotation of ¢ is made using a half-wave plate,
the polarization ellipse is rotated by 2¢ and in a direction opposite to the direction
of the mechanical rotation. For a true mechanical rotation of § the polarization
ellipse is rotated by an amount § and in the same direction as the rotation.

This discussion of rotation of half-wave plate is more than academic, however.
Very often manufacturers sell half-wave plates as polarization rotators. Strictly
speaking, this belief is quite correct. However, one must realize that the use of a
half-wave plate rather than a true rotator requires a mechanical mount with twice
the resolution. That is, if we use a rotator in a mount with, say, 2 of resolution,
then in order to obtain the same resolution with a half wave plate a mechanical
mount with 1' of resolution is required. The simple fact is that doubling the
resolution of a mechanical mount can be very expensive in comparison with using
a true rotator. The cost for doubling the resolution of a mechanical mount can
easily double, whereas the cost increase between a quartz rotator and a half-wave
plate is usually much less. In general, if the objective is to rotate the polarization
ellipse by a known fixed amount, it is better to use a rotator rather than a
half-wave plate.

The use of a half-wave plate as a “rotator” is very useful. Another important
property of half-wave plates is that it can be used to reverse the polarization state.
In order to illustrate this behavior, consider that we have an incident beam which
is right or left circularly polarized. Its Stokes vector is

(76)
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Matrix-multiplying (76) with (62) yields (we set 6 = 0° in (62)),

n
¥l

We see that we again obtain circularly polarized light but opposite to its original
state; that is, right circularly polarized light is transformed to left circularly po-
larized light, and vice versa. Similarly, if we have incident linear +45° polarized
light, the emerging beam is linear —45° polarized light. It is this property of
reversing the ellipticity and the orientation, manifested by the negative sign in the
my, and ms,, that also makes half-wave plates very useful.

Finally, we consider the Mueller matrix of a rotated quarter-wave plate. We
set ¢ = 90° in (62) and we have

1 0 0 0
) 0 cos? 26 sin26cos2d  sin24
M,_(90°,20) = : s (78)
0 sin26cos2d sin” 26 —cos26
0 —sin 248 cos 28 0

Consider that we have an incident linearly horizontally polarized beam, so its
Stokes vector is (f; = 1)

1
o = 79
’ (19)
0
We multiply (79) by (78), and we find the Stokes vector S is
1
cos® 26
§'=
sin 26 cos 26 ()
—sin26

We see immediately from (80) that the crientation angle ' and the ellipticity
angle x' of the emerging beam are given by

tan 2y’ = tan26 (Bla)
sin2y' = —sin26 (81b)

Thus, the rotated quarter-wave plate has the property that it can be used to
generate any desired orientation and ellipticity starting with an incident linearly
horizontally polarized beam. However, we can only select one of these parameters;
we have no control over the other parameter. We also note that if we initially
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have right or left circularly polarized light the Stokes vector of the output beam
is

1

. sin 26 )
B Fcos28

0

which is the Stokes vector for linearly polarized light. While it is well known
that a quarter-wave retarder can be used to create linearly polarized light, (82)
shows that an additional variation is possible by rotating the retarder, namely, the
orientation can be controlled.

Equation (80) shows that we can generate any desired orientation or ellipticity
of a beam, but not both. This leads to the question of how we can generate an
elliptically polarized beam of any desired orientation and ellipticity regardless of
the polarization state of an incident beam.

5.6. THE GENERATION OF ELLIPTICALLY POLARIZED
LIGHT

In the previous section we derived the Mueller matrices for a rotated polarizer
and a rotated retarder. We now apply these matrices to generating an elliptically
polarized beam of any desired orientation and ellipticity. In order to do this we
refer to Figure 7. In the figure we show an incident beam of arbitrary polarization.
The beam propagates first through an ideal polarizer rotated through an angle 8
and then through a retarder, with its fast axis along the x axis. The Stokes vector

incident
beam
rotated
pelarizer
retarder elliptically
polarized beam

Figure 7 The generation of elliptically polarized light.
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of the incident beam is

5= (83)

It is important that we consider the optical source to be arbitrarily polarized.
At first sight, for example, we might wish to use unpolarized light or linearly
polarized light. However, unpolarized light is surprisingly difficult to generate,
and the requirement to generate ideal linearly polarized light calls for an excellent
linear polarizer. We can avoid this problem if we consider that the incident beam
is of unknown but arbitrary polarization. Our objective is to create an elliptically
polarized beam of any desired ellipticity and orientation and which is totally
independent of the polarization state of the incident beam.
The Mueller matrix of a rotated ideal linear polarizer is

1 cos 24 sin 26 0
1 | cos28 cos® 26 sin2fcos28 0

e 2 | sin26 sin26cos28 sin? 26 0 &9
0 0 0 0

Matrix-multiplying (83) by (84) yields

1

1 . cos 28
S§'= 3 (S, + S;cos28 + §,5in28) sin20 (85)
0
The Mueller matrix of the retarder or compensator (nonrotated) is

10 0 0
01 0 0

M, = T (86)
0 0 cos¢g -—sing
0 0 sing cos ¢

Matrix-multiplying (85) by (86) then gives the Stokes vector of the beam emerging
from the retarder,

1
"o cos 26 87
o 1® cos ¢ sin 26 (872)

sin ¢ sin 26
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where
I(6) = % (Sg + S, cos26 + S, sin 26) (87b)

Equation (87a) is the Stokes vector of an elliptically polarized beam. We imme-
diately find from (87a) that the orientation angle 3 (we drop the double prime)
is

tan 24 = cos ¢ tan26 (88a)
and the ellipticity angle x is
sin2y = singsin 24 (88b)

We must now determine the 6 and ¢ which will generate the desired values
of ¥ and x. We divide (88a) by tan 26 and (88b) by sin 26, square the equations,
and add. The result is

cos 26 = + cos 2y cos 2¢ (89)
To determine the required phase shift ¢, we divide (88b) by (88a):

sin2y
tan 2y

= tan ¢ cos 26 (90)

Solving for tan ¢ and using (89), we easily find that

_ tan2y
e sin 2y oD

Thus, (89) and (91) are the equations for the angles # and ¢ to which the
polarizer and the retarder must be set in order to obtain the desired ellipticity
and orientation angles x and .

We have thus shown that using only a rotated ideal linear polarizer and a
retarder we can generate any state of elliptically polarized light. There is a final
interesting fact about (89) and (91). We write (89) and (91) as a pair in the form

cos 26 = £ cos 2y cos 2y (92a)
tan2y = sin 2y tan ¢ (92b)

Equations (92a) and (92b) are recognized as equations arising from spherical
trigonometry for a right spherical triangle. In Figure 8 we have drawn a right
spherical triangle. The orientation angle 2¢ and the ellipticity angle 2y are plotted
on the equator (zero latitude) and the longitude, respectively.

The angle 2y (the orientation of the polarization ellipse) is plotted on the
equator, and the angle 2y (the ellipticity of the polarization ellipse) is plotted
on the longitude. If a great circle is drawn from point 4 to point B, the length
of the arc AB is given by (92a) and corresponds to 26 as shown in the figure.
Similarly, the phase ¢ is the angle between the arc AB and the equator; its value
is given by (92b). We see from Figure 8 that we can easily determine # and ¢

The Mueller Matrices for Polarizing Compenents 89

A

Figure 8 A right spherical triangle drawn on the surface of a sphere.

by (1) measuring the length of the arc AB and (2) the angle between the arc AB
and the equator on a sphere.

The polarization equations (92a) and (92b) are intimately associated with
spherical trigonometry and a sphere. Furthermore, we recall from Section 4.3
that when the Stokes parameters were expressed in terms of the orientation angle
and the ellipticity angle they led directly to the Poincaré sphere. In fact, (92a) and
(92b) describe a spherical triangle which plots directly onto the Poincaré sphere.
Thus, we see that even at this early stage in our study of polarized light there is a
strong connection between the equations of polarized light and its representation
on a sphere. In fact, one of the most remarkable properties of polarized light is
that there is such a close relation between these equations and the equations of
spherical trigonometry. In Chapter 11, the Poincaré sphere, these relations will
be discussed in depth. Finally, in order to provide the reader with background
material on right spherical triangles a brief discussion of the fundamentals of
spherical trigonometry is presented at the end of Section 11.2.
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Methods for Measuring
o : the Stokes Polarization
Parameters

6.1. INTRODUCTION

= We now turn our attention to the important problem of measuring the Stokes
polarization parameters. In Chapter 7 we shall also discuss the measurement
of the Mueller matrices. The first method for measuring the Stokes parame-
ters is due to Stokes and is probably the best known method; this method was
p— discussed in Section 4.4. There are other methods for measuring the Stokes
parameters. However, we have refrained from discussing these methods un-
til we had introduced the Mueller matrices for a polarizer, a retarder, and a
rotator. The formalism of the Mueller matrix calculus and the Stokes vector al-
lows us to treat all of these measurement problems in a very simple and direct
manner. While, of course, the problems could have been treated using the am-
plitude formulation, the use of the Mueller matrix calculus greatly simplifies the
analysis.
In theory, the measurement of the Stokes parameters should be quite simple.
However, in practice there are difficulties. This is due, primarily, to the fact that
while the measurement of Sy, §,, and S, is quite straightforward, the measurement
of §3 is more difficult. In fact, as we pointed out, before the advent of optical
detectors it was not even possible to measure the Stokes parameters using Stokes’
measurement method (Section 4.4). It is possible, however, to measure the Stokes
parameter using the eye as a detector by using a so-called null method; this is
discussed in Section 6.4. In this chapter we discuss Stokes’ method along with
f other methods, which includes the circular polarizer method, the null-intensity
method, the Fourier analysis method, and the method of Kent and Lawson.

91
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6.2, THE CLASSICAL MEASUREMENT METHOD—THE
QUARTER-WAVE RETARDER POLARIZER METHOD

The Mueller matrices for the polarizer (diattenuator), retarder (phase shifter), and
rotator can now be used to analyze various methods for measuring the Stokes pa-
rameters. A number of methods are known. We first consider the application of
the Mueller matrices to the classical measurement of the Stokes polarization pa-
rameters using a quarter-wave retarder and a polarizer. This is the same problem
that was treated in Section 4.4; it is the problem originally considered by Stokes
(1852). The result is identical, of course, with that abtained by Stokes. However,
the advantage of using the Mueller matrices (or, as it is sometimes called, the
Mueller calculus) is that a formal method can be used to treat not only this type
of problem but other polarization problems as well.

The Stokes parameters can be measured as shown in Figure 1. An optical
beam is characterized by its four Stokes parameters §;, S, S,, and S;. The
Stokes vector of this beam is represented by

The Mueller matrix of a retarder with its fast axis at 0° is

1 0 0 0
01 0 0
- 2
W 0 0 cos¢ —sing @
0 0 sing cos¢
&

incident beam

retarder

linear polarizer

detector plane

Figure 1 Classical measurement of the Stokes parameters.
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The Stokes vector S’ of the beam emerging from the retarder is obtained by
matrix multiplication of (2) and (1), so

Sy

S

§'m 1 3)
S,cos¢— Sysing

S,sing + Sy cos4

The Mueller matrix of an ideal linear polarizer with its transmission axis set at
an angle 6 is

1 cos 26 sin 24 0
cos 28 cos? 26 sin2fcos26 0

sin26 sin20cos28  sin’28 0
0 0 0 0

1
M= 4)

The Stokes vector S” of the beam emerging from the linear polarizer is found
by matrix multiplication of (4) and (3). However, we are only interested in the
intensity I", which is the first Stokes parameters 5y of the beam incident on
the optical detector shown in Figure 1. Multiplying the first row of (4) with
(3), we then find the intensity of the beam emerging from the quarter-wave
retarder-polarizer combination to be

I(8,¢)= % [Sg + Sy cos 28 + sin 26(S; cos ¢ — S5 sin ¢)]
- % [Sy + $, ¢0s 26 + S, 5in 20 cos ¢ — S, sin 20sin 8] )

Equation (5) is Stokes” famous intensity relation for the Stokes parameters. The
Stokes parameters are then found from the following conditions on # and ¢:

Sy = 1(90°,0°) + I(90°,0°) (62)
S, = I(90°,0°) —I(90°,0°) (6b)
S, = 2I(45°,0°) = S, (6¢)
Sy = S — 21(45°,90°) (6d)

In practice, S, S, and S, are easily measured by removing the quarter-wave
plate (¢ = 90°) from the optical train. In order to measure S; however, the
wave plate must be reinserted into the optical train with the linear polarizer set
at 8§ = 45°, This immediately raises a problem because the wave plate absorbs
some optical energy. In order to obtain an accurate measurement of the Stokes
parameters the absorption factor must be introduced, ab initio, into the Mueller
matrix for the wave plate. The absorption factor which we write as p must be
determined from a separate measurement and will then appear in (5) and (6).
We can easily derive the Mueller matrix for an absorping wave plate as follows.
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The field components E, and E, of a beam emerging from an absorbing
retarder in terms of the incident field components E, and E, are

E! = E e*i#g—ox (72)
E, = E g Wg™% (7b)

where a, and o, are the absorption coefficients. We can also express the
exponential absorption factors in (7) as

P =™ (8a)
py=e€"% (8b)

Using (7) and (8) in the defining equations for the Stokes parameters and the
Moueller matrix in Section 5.2, we find the Mueller matrix for an anisotropic
absorbing retarder:

P +E; PPy 0 0
am=1|BE-0} pitp} 0 0 ©
2 0 0 2p.p,cosg  —2p.p,sing
0 0 2p.pysing  2p.p, cosg

Thus, we see that an absorbing retarder behaves simultaneously as a polarizer and
a retarder. If we again use the angular representation for the polarizer behavior,
then we can write (9) as

1 cos 2y 0 0
2 | cos2 1 0 0
M=2 ? ) e (10)
2 0 0 sin2ycos¢ —sin2ysing
0 0 sin2ysing  sin2+ycos ¢

where p? +p] = p?. We note that for y = 45° we have an isotropic retarder; that
is, the absorption is equal along both axes. If p? is also unity, then (9) reduces
to an ideal phase retarder.

The intensity of the emerging beam [ (#, ¢) is obtained by multiplying the first
row of (4) by (10), and the result is

2
I(6,¢)= ‘% [(1 + cos2)S, + (cos 2y + cos26)S,
+ (sin 2+ cos ¢ sin 26)S, + (sin 27 sin ¢ 5in 26)S,] (11)

If we were now to make all four intensity measurements with a quarter-wave
retarder in the optical train, then (11) would reduce for each of the four
combinations of # and ¢ = 90° to

Sy = %[I(UP,(P) +1(90°,0°)] (12a)
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S = lE,LzD’(0°‘,0°')—1(90".'1"’)] (12b)

8y= 52-51[4?, 0°) - S, (12¢)
2 o o

Sy =5g— E1(45 ,90°) (12d)

Thus, each of the intensities in (12) are reduced by p?, and this has no effect on
the final value of the Stokes parameters with respect to each other. Furthermore,
if we are interested in the ellipticity and the orientation, then we take ratios of
the Stokes parameters S4/S, and S,/S; and the absorption factor p? cancels out.
However, this is not exactly the way the measurement is made. Usually, the first
three intensity measurements are made without the wave plate present, so the first
three parameters are measured according to (6). The last measurement is done
with a quarter-wave retarder in the optical train, (12d), so the equations are

Sy = I(90°,0°) + I (90°,0°) (13a)
S, = 1(90°,0°) —I(90°,0°) (13b)
S, = 21(45°,0°) = S, (13c)
8y =8~ ;-2-1(4?,90“') (13d)

Thus, (13d) shows that the absorption fact p? enters in the measurement of the
fourth Stokes parameters S5, It is therefore necessary to measure the absorption
factor p?. The easiest way to do this is to place a linear polarizer between an
optical source and a detector and measure the intensity; this is called I, Next,
the retarder with its fast axis in the horizontal x direction is inserted between
the linear polarizer and the detector. The intensity is then measured with the
polarizer generating linearly horizontal and linear vertical polarized light, respec-
tively (see (11)). Dividing each of these measured intensities by J and adding the
results gives p?. Thus, we see that the measurement of the first three Stokes Pa-
rameters is very simple, but the measurement of the fourth parameter §4 requires
a considerable amount of additional effort.

It would therefore be preferable if a method could be devised whereby the
absorption measurement could be ecliminated. A method for doing this can be
devised, and we now consider this method.

6.3. THE MEASUREMENT OF THE STOKES PARAMETERS
USING A CIRCULAR POLARIZER

The problem of absorption by a retarder can be completely overcome by using a
single polarizing element, namely, a circular polarizer; this will be defined shortly.
The beam is allowed to enter one side of the circular polarizer, whereby the
first three parameters can be measured. The circular polarizer is then flipped
180°, and the final Stokes parameter is measured. A circular polarizer is made
by cementing a quarter-wave retarder to a linear +45° polarizer. This ensures
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that the retarder and polarizer axes are always fixed with respect to each other.
Furthermore, because the same optical path is used in all four measurements,
the problem of absorption vanishes; the four intensities are reduced by the same
amount.

To measure all four Stokes parameters with a circular polarizer, we first
construct a circular polarizer. This is done by using a linear polarizer with its
transmission axis set at +45°, followed by a quarter-wave plate with its axis at 0°.
This configuration is shown in Figure 2.

The Mueller matrix for the polarizer-wave plate combination is

100 0 1010
11010 0 0000

M=z 14
210 00 =1]]101 0 (14a)
001 0 0000

and
1010

M_lnouu i
2100 00 (14h)
1010

Equation (14b) is the Mueller matrix of a circular polarizer. The reason for calling
(14b) a circular polarizer is that regardless of the polarization state of the incident
beam the emerging beam is always circularly polarized. This is easily shown by
assuming the Stokes vector of an incident beam is

linear polarizer

at 45° quarter-wave plate

Figure 2 Construction of a circular polarizer using a linear polarizer and a quarter-wave
plate.
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Matrix multiplication of (15) and (14b) then yields

§'= (S +53) (16)

I =
S 2 e

which is the Stokes vector for right circularly polarized light (RCP). Thus, regard-
less of the polarization state of the incident beam, the output beam is always right
circularly polarized. Hence, the name circular polarizer. Equation (14b) defines
a circular polarizer.

Next, consider that the quarter-wave plate-polarizer combination is “flipped”;
that is, the linear polarizer now follows the quarter-wave plate. The Mueller matrix
for this combination is obtained with the Mueller matrices in (14b) interchanged;
we note that the axis of the linearly polarizer when it is flipped causes a sign
change in the Mueller matrix (see Figure 1). Then

1 0 -10\/100 0
11o o o ofllo1o0 o
= 17
M 10 1 0lloaa < (¥78)
0 0 0 0/\loo1 o
50
1 00 1
) 0
iml] ® ¢ (17b)
100 -1
0 00 0

Equation (17b) is the matrix of a linear polarizer. That (17b) is a linear polarizer
can be easily seen by matrix-multiplying (17b) and (15):

1

1 0
§'=3S0-5) | (18)

0

which is the Stokes vector for linearly —45° polarized light. Regardless of the
polarization state of the incident beam, the final beam is always linear +45°
polarized. It is of interest to note that in the case of the “circular” side of the
polarizer configuration, (16), the intensity varies only with the linear component,
§,, in the incident beam. On the other hand, for the “linear” side of the polarizer,
(18), the intensity varies only with S5, the circular component in the incident beam.

The circular polarizer is now placed in a rotatable mount. We saw earlier
that the Mueller matrix for a rotated polarizing component, M, is given by the
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relation
M(28) = Mp(—20)MMy(26) (19)
where Mg(26) is the rotation Mueller matrix,

0 0
cos26 sin2f
—sin28 cos2f
0 0

Mpg(26) = (20)

(=T = =
-0 o o

and M (26) is the Mueller matrix of the rotated polarizing element. The Mueller
matrix for the circular polarizer with its axis rotated through an angle ¢ is then
found by substituting (14b) into (19). The result is

1 —sin26 cos2d 0

1|0 0 0 0
MZO=310 o o o 1)

1 —sin28 cos280 0

where the subscript C refers to the fact that (21) describes the circular side of
the polarizer combination. We see immediately that the Stokes vector emerging
from the beam of the rotated circular polarizer is, using (21) and (15),

1
Sc = 5(So—S15in26 + 5, cos26) (22)

| = =

Thus, as the circular polarizer is rotated, the intensity varies but the polarization
state remains unchanged, that is, circular. We note again that the total intensity
depends only on the linear components, §; and §5, in the incident beam.

The Mueller matrix when the circular polarizer is flipped to its linear side is,
from (17b) and (19),

1 00 1
1 sin2d 0 0 sin2f
M, (26)= =
1(20) 2| —cos28 0 0 —cos2f 23)
0 0 0 0

where the subscript L refers to the fact that (23) describes the linear side of the
polarizer combination. The Stokes vector of the beam emerging from the rotated
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linear side of the polarizer, (23) and (13), is

1
sin 26
—cos 26
0

S, = %(so +585) 24)

Under a rotation of the circular polarizer on the linear side, (24) shows that the
polarization is always linear. The total intensity is constant and depends only on
the circular component Sy in the incident beam.

The intensities detected on the circular and linear sides are, respectively, from
(22) and (24),

I-(8) = %(SO — §,sin28 + S5, cos 29) (25a)

1,6)= 5(So+55) (25b)

The intensity on the linear side, (25b), is seen to be independent of the rotation
of polarizer. This fact allows a simple check when the measurement is being
made. If the circular polarizer is rotated and the intensity does not vary, then
one knows the measurement is being made on I, the linear side.

In order to obtain the Stokes parameters, we first use the circular side of the
polarizing element and rotate it to 8 = 0°, 45°, and 907, respectively, and then
flip it to the linear side. The measured intensities are then

1c(0) = 5(So+52) (262)
Ic(45) = 5 (S0 5)) (26b)
Ic(90°) = 5(S0 - 52) (26¢)

1,(07) = 5(Sy+52) (264)

The I, value is conveniently taken to be 6 = 0°. Solving (26) for the Stokes
parameters finally yields

So = 1c(0°) + 1£(90°) (27a)
Sy = 8o — 20(45°) (27b)
§; = 107 —1(90°) (27¢)
Sy = 20, (0°) = S, (27d)

Equation (27) is similar to the classical equations for measuring the Stokes pa-
rameters, (6), but the intensity combinations are distinctly different. The use of
a circular polarizer to measure the Stokes parameter is simple and accurate be-
cause (1) only a single rotating mount is used, (2) the polarizing beam propagates
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through the same optical path so the problem of absorption losses can be ig-
nored, and (3) the axes of the wave plate and polarizer are permanently fixed
with respect to each other.

6.4. THE NULL-INTENSITY METHOD

In previous sections the Stokes parameters were expressed in terms of measured

o intensities. These measurement methods, however, are suitable only for use with

~ quantitative detectors. We pointed out earlier that before the advent of solid-state

detectors and photomultipliers the only available detector was the human eye. It

can only measure the presence of light or no light (a null intensity). It is possible,

as we shall now show, to measure the Stokes parameters from the condition of a

f— null-intensity state. This can be done by using a variable retarder (phase shifter)

followed by a linear polarizer in a rotatable mount. Devices are manufactured

= which can change the phase between the orthogonal components of an optical

beam. They are called Babinet-Soleil compensators, and they are usually placed

T in a rotatable mount. Following the compensator is a linear polarizer which is

also placed in a rotatable mount. This arrangement can be used to obtain a null
intensity. In order to carry out the analysis, the reader is referred to Figure 3.

The Stokes vector of the incident beam to be measured is

1y

it

5= (28)

%A

1(8,9)

retarder rotatable linear

polarizer

Figure 3 Null intensity measurement of the Stokes parameters.

*‘
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The analysis is simplified considerably if the e, 6 form of the Stokes vector derived
in Section 4.3 is used:

1

cos2a

=] 29
8 sin2acosé (=

sin 2aesin &

The axis of the Babinet-Soleil compensator is set at 0°. The Stokes vector of the
beam emerging from the compensator is found by multiplying the matrix of the
nonrotated compensator (Section 5.3) with (29):

1 0 0 0 1
S =1 01 0 0 cos 2a (30)
%o o cos¢ —sing sin2a cosd
0 0 sing cosg sin 2a sind

Carrying out the matrix multiplication in (30) and using the well-known
trigonometric sum formulas, we readily find

1

cos 2a
§' =1 31
’ sin 2a cos(¢ + &) 1)

sin 2a sin(¢ + &)

Two important observations on (31) can be made. The first is that (31) can be
transformed to linearly polarized light if S5 can be made to be equal to zero.
This can be done by setting ¢ + & to 180°. If we then analyze S’ with a linear
polarizer, we see that a null intensity can be obtained by rotating the polarizer;
at the null setting we can then determine «. This method is the procedure that
is almost always used to obtain a null intensity. The null-intensity method works
because ¢ in (30) is simply transformed to ¢+ 6 in (31) after the beam propagates
through the compensator (retarder). For the moment we shall retain the form of
(31) and not set ¢ + § to 180° (= radians). The function of the Babinet-Soleil
compensator in this case is to transform elliptically polarized light (28) to linearly
polarized light.

Next, the beam represented by (31) is incident on a linear polarizer with its
transmission axis at an angle §. The Stokes vector §" of the beam emerging from
the rotated polarizer is now

1 cos 26 sin26 0 1
w_ Tg | cOS 20 cos? 26 sin26cos28 0 cos 2a
S=3 sin26 sin20cos20  sin°20 0 | | sin2acos(¢ + &)
0 0 0 0 sin2assin(¢ + &)

(32)
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where we have used the Mueller matrix of a rotated linear polarizer, Section 5.5.
We are interested only in the intensity of the beam emerging from the rotated
polarizer; that is, S; = I(#,¢). Carrying out the matrix multiplication with the
first row in the Mueller matrix and the Stokes vector in {32) yields

I1(6,¢)= % [1+ cos 28 cos2a + sin 28 sin 2a cos(¢ + 6))] (33)
We now set ¢ + § = 7 in (33) and find

I(8,7—&)= %[1 + cos 26 cos 2a — sin 26 sin 2a] (34a)
which reduces to

I(f,m—8)= J;_u[l + cos2(8 + a)] (34b)

The linear polarizer is rotated until a null intensity is observed. At this angle
8+ a = 7/2, and we have

r(%ua,ﬂ_a)-_-o (35)

The angles § and & associated with the Stokes vector of the incident beam are
thus found from the conditions

d=n—q (36a)
= % -6 (36b)

Equations (36a) and (36b) are the required relations between a and & of
the Stokes vector (31) and ¢ and 6, the phase setting on the Babinet-Soleil
compensator and the angle of rotation of the linear polarizer, respectively.

From the values obtained for « and § we can determine the corresponding
values for the orientation angle ¢ and the ellipticity x of the incident beam. We
saw in Eqg. (42) in Section 4.3 that y» and y could be expressed in terms of a and
4, namely,

tan 2y = tan 2acos 6 (37a)
sin2y = sin2asiné (37b)

Substituting (36) into (37), we see that ¢ and x can be expressed in the terms of
the measured values of 8 and ¢:

tan2y = tan 28 cos ¢ (38a)
sin2y = sin2fsin ¢ (38b)

Remarkably, (38) is identical to (37) in form. It is only necessary to take the
measured values of § and ¢ and insert them into (38) to obtain ¢ and y. Equa-
tions (37a) and (37b) can be solved in turn for o and & following the derivation
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given in Section 5.6, and we have

cos2a = +cos 2y cos 2y (39a)
t
i DAY (39%)
sin 29p

The procedure to find the null-intensity angles 6 and ¢ is first to set the
Babinet-Soleil compensator with its fast axis to 0° and its phase angle to 0°.
The phase is then adjusted until the intensity is observed to be a minimum. At
this point in the measurement the intensity will not necessarily be zero, only a
minimum, as we see from (34b),

1(6,x - 6) = 2_0[1 + c0s 2(8 + a)] (34b)

Next, the linear polarizer is rotated through an angle 8 until a null intensity
is observed; the setting at which this angle occurs is then measured. In theory
this completes the measurement. In practice, however, one finds that a small
adjustment in phase of the compensator and rotation angle of the linear polarizer
are almost always necessary to obtain a null intensity. Substituting the observed
angular settings on the compensator and the polarizer into Eqgs. (38) and (39),
we then find the Stokes vector (29) of the incident beam. We note that (29) is a
normalized representation of the Stokes vector if [ is set to unity.

6.5, FOURIER ANALYSIS USING A ROTATING
QUARTER-WAVE RETARDER

Another method for measuring the Stokes parameters is to allow a beam to prop-
agate through a rotating quarter-wave retarder followed by a linearly horizontal
polarizer; the retarder rotates at an angular frequency of w. This arrangement is
shown in Figure 4.

The Stokes vector of the incident beam to be measured is

5= (40)

The Mueller matrix of the rotating quarter-wave retarder, (78) in Section 5.5 is

1 0 0 0
0 cos*26  sin28cos28  sin26
M= oo (41)
0 sin28cos28 sin” 24 —cos 28
0 sin 28 cos 24 0




i |

104 Chapter 6

rotating retarder

linear polarizer detector

Figure 4 Measurement of the Stokes parameters using a rotating quarter-wave retarder
and a linear polarizer.

where 8 = we. Multiplying (41) with (40) yields

SD
§,c0s? 26 + S, sin 26 cos 26 + S, sin 28
s=|"! ¢ . $ (42)
§,sin26 cos 26 + S, sin“ 26 — S, cos 24

8ysin26 + 5, cos 26

The Mueller matrix of the linear horizontal polarizer is

(43)

b =
[ = = B ST Y
(=T
S o oc o
oo o o

The Stokes vector of the beam emerging from the rotating quarter-wave plate—
polarizer combination is then found from (42) and (43) to be

5= % (Sq + S cos? 20 + S, sin 26 cos 26 + S5 sin 26) (44)

= i = R
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The intensity S§ = I'(6) is
1(8) = % (Sy + S, cos?28 + S, 5in 28 cos 28 + S5 sin 26) (45)
Equation 45 can be rewritten by using the trigonometric half-angle formulas:
1(6) = % [(sn+ %) + 'Z—'cos49+ %sin49+53sin28 (46)

Replacing 8 with wt, (46) can be written as

I(8)= %[A + Bsin 2wt + C cosdwt + D sin dwt] - (47a)
where

A=5,+ 3 (47)

B=s, (47c)

C= % (47d)

D= 523 (47¢)

Equation (47a) describes a truncated Fourjer series. It shows that we have a
de term (4), a double frequency term (B), and two quadruple frequency terms
in quadrature (C and D). The coefficients are found by carrying out a Fourier
analysis of (47a). We easily find that (8 = wt)

2n
A= ]—] 1(8)dé (48a)
T Jo
3 2r
B= _/ 1(8)sin26d8 (48b)
™ Jo
) 2w
C= ;—f I(6)cos40d6 (48c)
vJo
2 po
= 2 [ 1(6)sin40ds (484)
T Jo

Solving (47) for the Stokes parameters gives

Sp=A—-C (49a)
S, =2C (49b)
S, =2D (49¢)
S, =B (49d)
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In practice, the quarter-wave retarder is placed in a fixed mount which can
be rotated and driven by a stepper motor through N steps. Equation (47a) then
becomes, with wt = nf; (; is the step size),

L(§) = % [4 + Bsin2n§, + C cosdné; + Dsin4dn] (50a)

and

=

i
Z|e
M=

=
I

I(n6) (50b)

I(né;)sin2nf; (50c)

. ]

I
Z| =
Mz

1

I(n;) cosdnf (50d)

9]

I
z| =
M=

=
Il
-

D= I(n6))sin4n, (50¢)

Z|~
M=

=
Il

As an example of (50), consider the rotation of a quarter-wave retarder
that makes a complete rotation in 16 steps, so N = 16. Then the step size is
6; = 2x/N = 2n/16 = 7/8. Equation (50) is then written as

e T

A=33 (nZ) (51a)
1 16 T ks

B= Zml (ng)sin( 74') (51b)
1 & 7 i

C= 1 E[ (n-g)cos (!’I ‘i) (Slc)
i T T

D=33.1(ng)en(~3) (51

Thus, the data array consists of 16 measured intensities /) through Iy, We have
written each intensity value as I (nm/8) to indicate that the intensity is measured
at intervals of 7/8; we observe that when n = 16 we have I(27) as expected. At
each step the intensity is stored to form (51a), multiplied by sin(n=/4) to form
B, cos(nn/2) to form C and sin(n7/2) to form D. The sums are then performed
according to (51), and we obtain 4, B, C, and D. The Stokes parameters are
then found from (49) using these values.
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6.6. THE METHOD OF KENT AND LAWSON

In Section 6.4 we saw that the null-intensity condition could be used to determine
the Stokes parameters and, hence, the polarization state of an optical beam. The
null-intensity method remained the only practical way to measure the polarization
state of an optical beam before the advent of photodetectors. It is fortunate that
the eye is so sensitive to light and can easily detect its presence or absence. Had
this not been the case, the progress made in polarized light would surely not
have been as rapid as it was. One can obviously use a photodetector as well as
the eye, using the null-intensity method described in Section 6.4. However, the
existence of photodetectors allows one to consider an extremely interesting and
novel method for determining the polarization state of an optical beam.

In 1937, C. V. Kent and J. Lawson proposed a new method for measuring
the ellipticity and orientation of a polarized optical beam using a Babinet-Soleil
compensator and a photomultiplier tube (PMT). They noted that it was obvious
that a photomultiplier could simply replace the human eye as a detector, and then
used to determine the null condition. However, Kent and Lawson went beyond
this and made several importation observations. The first was that the use of
the PMT could obviously overcome the problem of eye fatigue. They also noted
that, in terms of sensitivity (at least in 1937) for weak illuminations, determining
the null intensity was as difficult with a photomultiplier tube as with the human
eye. They observed that the PMT really operated best with full illumination. In
fact, because the incident light at a particular wavelength is usually much greater
than the laboratory illumination the measurement could be done with the room
lights on. They now noted that this property of the PMT could be exploited
fully if the incident optical beam whose polarization was to be determined was
transformed not to linearly polarized light but to circularly polarized light. By then
analyzing the beam with rotating linear polarizer, a constant intensity would be
obtained when the condition of circularly polarized light was obtained or, as they
said, “no modulation.” From this condition of “no modulation” the ellipticity and
orientation angles of the incident beam could then be determined. Interestingly,
they detected the circularly polarized light by converting the optical signal to an
audio signal and then used a headphone set to determine the constant-intensity
condition.

It is worthwhile to study this method because it enables us to see how pho-
todetectors provide an alternative method for measuring the Stokes parameters
and how they can be used to their optimum, that is, in the measurement of polar-
ized light at high intensities. The measurement is described by the experimental
configuration in Figure 5. In Figure 5 the Stokes vector of the incident elliptically
polarized beam to be measured is represented by

5= (52)

The primary use of a Babinet-Soleil compensator is to create an arbitrary
state of elliptically polarized light. This is accomplished by changing the phase

e e |
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incident beam Babinet-Soleil analyzer photomultiplier
compensator

Figure 5 The measurement of the ellipticity and orientation of an elliptically polarized
beam using a compensator and a photodetector.

and orientation of the incident beam. We recall from Section 5.5 that the Mueller
matrix for a rotated retarder is

1 0 0 0
M (2y) = 0 cos®2v + cos ¢51n2 29  (1—cosg)sin2~vcos2y  singsin2y
0 (1-cosg)sin2ycos2y sin® 2 + cos ¢ cos® 2y —singcos2y
0 — sin ¢ sin 2+ sin ¢ cos 2+ cos ¢
(53)

where v is the angle that the fast axis makes with the horizontal x axis and ¢ is
the phase shift. In terms of a matrix equation we see from Figure 5 and (52) and
(53) that

S'=M,(27)S (54)

The beam emerging from the Babinet-Soleil compensator is then found by
multiplying (52) by (53)

Sq
F Sy(cos? 2y + cos ¢ sin” 29) + §5(1 —cos ¢) sin®y cos 2y + S48in ¢ sin 2+
S;1(1— cos¢)sin2ycos2y + 5.‘2(51112 27 + cos ¢ cos® 2v) — S, sin ¢ cos 2y
—5,5ingsin2y + S,sin¢dcos2y + S, cos ¢
(55)
For the moment let us assume that we have elliptically polarized light incident
on a rotating ideal linear polarizer. The Stokes vector of the beam incident on
the rotating linear polarizer is represented by

1
cos 2a
= 56
o sin 2a cos § &%

sin2asiné
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The Mueller matrix of the rotating linear polarizer is

1 cos 26 sin 26 0
cos26  cost28  sin26cos26 0O
sin20 sin20cos26  sin®20 0

0 0 0 0

. 57

The Stokes vector of the beam emerging from the rotating analyzer is found by
multiplying (56) and (57):

1
cos 28

sin 26
0

S'= % [1 + cos2a cos 26 + sin2a cos & sin 26] (58)

Thus, as the analyzer is rotated we see that the intensity varies, that is,
modulated. We now note that if the intensity is to be independent of the rotation,
that is, the angle #, then we must have

cos2a =0 (59a)
sin2acosé = 0 (59b)

We immediately see that (59a) and (59b) are satisfied if 2a = 90° (or 270°).
Substituting these values in (56), we have

(60)

L — I — I

which is the Stokes vector for right circularly polarized light. There are only two
states of polarized light which lead to a constant intensity when a linear polarizer
is rotated, namely, incident unpolarized light and circularly polarized light. In
fact, rotating a linear polarizer is an excellent test for determining if the incident
light is circularly polarized. In order to test for unpolarized light we need only
rotate a polarizer followed by a wave plate; if the intensity remains constant, then
the light is unpolarized. To test further to see if the light is circularly polarized,
we see from (58) that if the light is circularly polarized (2a = 90° and & = 90%)
the intensity remains constant as the linear polarizer is rotated.

In order to obtain circularly polarized light, the Stokes parameters in (55)
must satisfy the conditions

Sp =38y (61a)
S = §,(cos® 2y + cos ¢ sin® 24) + S,(1 — cos ¢) sin 2~ cos 2y
+ Sysingsin2y =0 (61b)
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5,(1—cos¢)sin2ycos2y + .‘.i'z{sin.2 27 + cos ¢ cos? 27)
— S(singcos2y) =0 (61c)
—8,(singsin2y) + Sy(sin ¢ cos2y) + Syc08¢ = 5 (61d)

We must now solve these equations for S, S,, and S5 in terms of v and ¢ (S, is
unaffected by the wave plate). While it is straightforward to solve (61), the algebra
is surprisingly tedious and complicated. Fortunately, the problem can be solved
in another way, because we know the transformation equation for describing a
rotated compensator.

To solve this problem, we take the following approach. According to Figure 5,
the Stokes vector of the emerging beam §' is related to the Stokes vector of the
incident beam § by the equation

§' = M(27)S 2)

where M_(2v) is given by (53) above. We recall that M, (2+) is the rotated Mueller
matrix for a retarder, so (69) can also be written as

§' = [M(~27)- M- M(27)]-$ (63a)
where
1 0 0 0
0 cos2y sin2y 0
M(2y)= 63b
(27 0 —sin2y cos2y 0 el
0 0 0 1
and
1 0 0 0
0 1 0 0
- 63
M, 0 0 cos¢g —sing (63¢)
0 0 sing cos¢

We now transform (63a) to right circularly polarized light and write (63a) with
the Stokes vector of the incident beam written out as

§'=M(-27)-M.-M2y) | . | = (64)

—_ O e

We have chosen S’ to be the right circularly polarized light. While we could
immediately invert (64) to find the Stokes vector of the incident beam, it is

Methods for Measuring the Stokes Polarization Parameters 111

simplest to find S in steps. Multiplying both sides of (64) by M (2y), we have

S, 1 1
s 0 0
M, -M(2 Tl =M(2 = 65
eM@n | & =men | =] (65)
5 1 1
Next, we multiply (65) by M to find
So 1 1
S 0 0
M(2 V]l =M = 66
@ |, & 1 sin ¢ (66)
S; 1 cos ¢
Finally, (66) is multiplied by M (—2v), and we have
So 1 1
S 0 —sin2ysing
=M(-2 = 67
S, (=21) sing cos2ysing (©7)
S, cos¢ cos ¢

Thus, the Stokes parameters of the incident beam in terms of the settings 4 and
¢ are, according to (67),

Sp=1 (68a)
S, = —sin2ysing¢ (68b)
S, = cos2ysing (68c)
83 = cos ¢ (68d)

We can check to see if (67) is correct. We know that if ¢ = 0°, that is, the
retarder is not present, then the only way S’ can be right circularly polarized is
if the incident beam S is right circularly polarized. Substituting ¢ = 0° into (67),
we find

(69)

—_ O O e

which is the Stokes vector for right circularly polarized light.

The numerical value of the Stokes parameters can be determined directly
from (68). However, we can also express the Stokes parameters in terms of o
and § in (56) or in terms of the orientation and ellipticity angles ¥ and x. Thus,
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we can equate (56) to (67) and write The Stokes vector corresponding to (75) is then

1
So 1 1 5
: : _ cos 2
A - cos 2a ” —stqf.Tslnei (70) S, = P (76)
A sin2a cosé cos 2ysing e
Sy sin2asiné cos ¢ sin &y sm

where Sy indicates that this is the Stokes vector in the notation of Kent and

or, in terms of the orientation and cllipticity angles, Lawson. Another difference in the notation of Kent and Lawson is that they used
=~ a to represent the phase shift and ¢ to represent the azimuth of the compensator.
B Sp 1 1 Thus, we see that our notation is transformed to their notation in the following
‘ AT _ | cos 2xcos2y - —sin2ysing ™) way:
oo S, " | cos 2xsin2y cos2ysing
% . ey
= Ss sin2y cos ¢
> §—= A
= We now solve for § in terms of the measured values of v and ¢. Let us first
consider (70) and equate the matrix elements T—9
¢ —a )
cos2a = +sin2ysing (72a) -
Using these transformation equations, we see that (74) transforms to
! sin2a cosé = cos2ysin¢ (72b)
cos2y = +sin2¢sina 783
il sin2a sin§ = cos ¢ (72¢) i ¢ (78a)
cotA = cos 24 tan o (78a)
In (72a) we have written 4 to include left circularly polarized light. We divide
(72b) by (72¢) and find cos A = cot2¢ cot 2y (78b)
# coté = cos2~tan ¢ (73a) which are the equations actually given by Kent and Lawson. We shall, however,

remain with the notation used in the development of this chapter in order to
remain consistent throughout this book.

Thus, by measuring v and ¢, the angular rotation and phase of the Babinet—
Soleil compensator, respectively, we can determine the azimuth a and phase § of
the incident beam. We also pointed out that we can use v and ¢ to determine the
ellipticity x and orientation ¢ of the incident beam from (71). Equating terms in
(71) we have

Similarly, we divide (72b) by (72a) and find
cosd = =+ cot 2y cot 2a (73b)

‘We can group the results by renumbering (72a) and (73) and write

cos2a = =+ sin2ysin ¢ (74a) €08 2x €08 29 = = sin 2y sin ¢ (792)
coté = cos2ytang (74b) cos2x sin2y = cos2ysing (79b)
cosd = 4 cot 2y cot 2a (74c) sin2y = cos¢ (79¢)

Equations 74 are the equations of Kent and Lawson. However, our results appear Dividing (79b) by (79a), we find

to differ from theirs only because of notation. Kent and Lawson expressed the

incident field components by tan 2y = +cot2y (80)
E, = cosye~id (752) Squaring (79a) and (79b) and adding gives
E, =siny (75b) cosZx = sing (81)

L |
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Dividing (79¢) by (81) then gives

tan2y = cot¢ (82)
We renumber (80) and (81) as the pair

tan 2y = + cot 2y (83a)

tan2y = cot¢ (83b)
We can rewrite (83a) and (83b) as

tan2y = = tan(90° — 27) (84a)

tan2y = tan(90° — ¢) (84b)
50

P e oy (85a)

x =45 - % (85b)

We can check (85a) and (85b). We know that a linear +45° polarized beam of
light is transformed to right circularly polarized light if we have a quarter-wave
retarder. In terms of the incident beam ¢ = 45° and x = 0°. Substituting these
values in (85a) and (85b), respectively, we find that 4 = 0° and ¢ = 90° for the
retarder. This is exactly what we would expect using a quarter-wave retarder with
its fast axis in the x direction (see (63c)).

While nulling techniques for determining the elliptical parameters are very
common, we see that the method of Kent and Lawson provides a very interesting
alternative. We emphasize that nulling techniques were developed long before the
appearance of photodetectors. Nulling techniques continue to be used because
they are extremely sensitive and require, in principle, only an analyzer. Neverthe-
less, the method of Kent and Lawson has a number of advantages, foremost of
which is that it can be used in ambient light and with high optical intensities. The
method of Kent and Lawson requires the use of a Babinet-Soleil compensator
and a rotatable polarizer. However, the novelty and potential of the method and
its full exploitation of the quantitative nature of photodetectors should not be
overlooked.

6.7. SIMPLE TESTS TO DETERMINE THE STATE OF
POLARIZATION OF AN OPTICAL BEAM

In the laboratory one often has to determine if an optical beam is unpolarized,
partially polarized, or completely polarized. If it is completely polarized, then
we must determine if it is elliptically polarized or linearly or circularly polarized.
In this section we consider this problem. Stokes’ method for determining the
Stokes parameters is a very simple and direct way of carrying out these tests
(Sections 4.4).

We recall that the polarization state can be measured using a linear polarizer
and a quarter-wave retarder. If a polarizer made of calcite is used, then it
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transmits satisfactorily from 0.2 micron to 2.0 micron, more than adequate for
visual work and into the near infrared. Quarter-wave retarders, on the other
hand, are designed to transmit at a single wavelength, e.g., HeNe laser radiation
at 0.628 micron. Therefore, the quarter-wave retarder should be matched to the
wavelength of the polarizing radiation. In Figure 6 we show the experimental con-
figuration for determining the state of polarization. We emphasize that we are not
trying to determine the Stokes parameters quantitatively but merely determining
the polarization state of the light.

We recall from Section 6.2 that the intensity I(6,¢) of the beam emerging
from the retarder-polarizer combination shown in Figure 6 is

d
1(8,9) = 3[So + Sy cos26 + S cos ¢ 5in 260 — Sysin 6 5in 26] (86)

where # is the angle of rotation of the polarizer and ¢ is the phase shift of the
retarder. In our tests we shall set ¢ to 0° (no retarder in the optical train) or 90°
(a quarter-wave plate in the optical train). The respective intensities according to
(86) are then

1

1(6,0°) = 7[Sq + 5, cos 26 + S, sin26) (87a)
1

1(8,90°) = 3[So + Sy c0s20 — S 5in2] (87b)

The first test we wish to perform is to determine if the light is unpolarized
or completely polarized. In order to determine if it is unpolarized, the retarder
is removed (¢ = 0°), so we use (87a). The polarizer is now rotated through 180°.
If the intensity remains constant throughout the rotation, then we must have

S;=S,=0 and S;#0 (88)

If the intensity varies so (88) is not satisfied, then we know that we do not have
unpolarized light. If, however, the intensity remains constant, then we are still
not certain if we have unpolarized light because the parameter S; may be present.

16, ¢)

quarter-wave plate polarizer

Figure 6 Experimental configuration to determine the state of polarization of an optical
beam.
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We must, therefore, test for its presence. The retarder is now reintroduced into
the optical train, and we use (87b):

1(6,90°) = %[So + S, cos 26 — 555in 26] (87b)
The polarizer is now rotated. If the intensity remains constant, then

§;=8;=0 and S;#0 (89)
Thus, from (88) and (89) we see that (86) becomes

1(6,4)= 55, ©0)

which is the condition for unpolarized light.

If neither (88) or (89) is satisfied, we then assume that the light is elliptically
polarized; the case of partially polarized light is excluded for the moment. Before
we test for elliptically polarized light, however, we test for linear or circular
polarization. In order to test for linearly polarized light, the retarder is removed
from the optical train and so the intensity is again given by (87a)

1(6,0°) = %[so + 5, 00826 + 5, sin 26] (87a)

We recall that the Stokes vector for elliptically polarized light is

1

2
o A W (91)

sin2acos b

sin2asin é

Substituting §, and S, in (91) into (87a) gives
1(6,0°) = %[1 + c0s 2ce c0s 28 + sin 2a cos § sin 28] (92)

The polarizer is again rotated. If we obtain a null intensity, then we know that
we have linearly polarized light because (87a) can only become a null if § = 0°
or 180°, a condition for linearly polarized light. For this condition we can write
(92) as

1(6,0°) = %[1 + cos(2a — 26)] (93)

which can only be zero if the incident beam is linearly polarized light. However,
if we do not obtain a null intensity, we can have elliptically polarized light or
circularly polarized light. To test for these possibilities, the quarter-wave retarder
is reintroduced into the optical train so the intensity is again given by (87b):

A
2

I(6,90°) = =[Sy + S, c0s 26 — S, 5in 26] (87b)
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Now, if we have circularly polarized light, then S, must be zero so (87b) will
become

1(6,90°) = 5 [So~ S35in20] 94)

The polarizer is again rotated. If a null intensity is obtained, then we must have
circularly polarized light. If, on the other hand, a null intensity is not obtained,
then we must have a condition described by (87b), which is elliptically polarized
light.

To summarize, if a null intensity is not obtained with either the polarizer by
itself or with the combination of the polarizer and the quarter-wave retarder, then
we must have elliptically polarized light.

Thus, by using a polarizer-quarter-wave retarder combination, we can test for
the polarization states. The only state remaining is partially polarized light. If
none of these tests described above is successful, we then assume that the incident
beam is partially polarized.

To be completely confident of the tests, it is best to use a high-quality calcite
polarizer and a quartz quarter-wave plate. It is, of course, possible to make these
tests with Polaroid and mica quarter-wave plates. However, these materials are
not as good, in general, as calcite and quartz and there is less confidence in the
results,

If we are certain that the light is elliptically polarized, then we can consider
(86) further. Equation (86) is

1(6,¢) = %[S‘J + 5, c0s 26 + §,¢0s ¢ 5in 26 — S3sin ¢sin24) (86)

We can express (86) as

1(8,8) = %[S‘J + 8§, 0828 + (S, cos¢ — Sysing)sin 26] (95)
or
I1(8,¢) =[A + Bcos28 + Csin26] (96a)
where
Sy
= 2 96b
A= (96b)
S,
=T 961
B 2 (96¢c)
C= S,c05¢ ; Sysing (96d)
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For an elliptically polarized beam given by (91), I, is normalized to 1, and we
write
1
o cos 2a 97)
sin2a cosé
sin 2a sin §

so from (96) we see that

1
A= 3 (98a)
B = cos2a (98b)
2
_ cos(¢ + 8)sin 2a (98¢)
2
The intensity (96a) can then be written as
fas % [1+ cos 2a c0s 26 + sin 2arcos( + 6)sin 26] (98d)

We now find the maximum and minimum intensities of (98d) by differentiating
(98d) with respect to 6 and setting df (6)/d@ = 0. The angles where the maximum
and minimum intensities occur are then found to be

c _~C
1 = — = —
an2f3 B B (99)
Substituting (99) into (96a), the corresponding maximum and minimum intensity

are, respectively,

I(max) =A + VB2 + C? (100a)
I(min) =4 — VBT + C2 (100b)

From (88) we see that we can then write (100) as

I'(max, min) = % [1 + 1/ cos? 2a + sin 2a cos?($ + a‘)] (101)

Let us now remove the wave late from the optical train so that ¢ = 0°; we
then have only a linear polarizer which can be rotated through 8. Equation (101)
then reduces to

I(max, min) = % [] + Vcos? 2a + sin® 2a cos? 6] (102)
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For linearly polarized light § = 0° or 180°, so (97) becomes

1
cos e
§S= 103
+ sin 2 (16

0

and (102) becomes
I{max, min) = %[] +1] (104)

The corresponding angles for the maximum and minimum intensities are seen
from (98) and (99) to be 6 = « and @ = —a, respectively. Thus, linearly polarized
light always gives a maximum intensity of unity and a minimum intensity of zero
(null).

Next, if we have circularly polarized light, & = 90° or 270° and a = 45°, as is
readily shown by inspecting (97). For this condition (102) reduces to

I(max, min) = %[1:|:0]= % (105)

so the intensity is always constant and reduced to 1/2. We also see that if we
have only the condition § = 90° or 270°, then (97) becomes

1
cos2
S= * (106)
0
+sin 2o
which is the Stokes vector of an elljpse in a standard form, that is, unrotated.
The corresponding intensity is, from (101),

I(max, min) = % [1+ cos2a] (107)
Similarly, if @ = +45° and & is not equal to either 90° or 270°, then (97) becomes
1
0
S = (108)
cos b
sin§
and (102) reduces to
I(max, min) = %{1 + cos 6] (109)

This final analysis confirms the earlier results given in the first part of this
chapter. We see that if we rotate a linear polarizer and we observe a null intensity
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1(8)

0
o =] 27

Figure 7 Intensity plot of an elliptically polarized beam for & = /6 and § = /3.

at two angles over a single rotation, we have linearly polarized light; if we observe
a constant intensity, we have circularly polarized light; and if we observe maximum
and minimum (non-null) intensities, we have elliptically polarized light.

In Figures 7 and 8 we have plotted the intensity as a function of the rotation
angle of the analyzer. Specifically, in Figure 7 we show the intensity for the
condition where the parameters of the incident beam described by (97) are a = n/6
(30°) and 6 = =/3 (60°); the compensator is not in the wave train, so ¢ =0

L(e),E(@),C(8)

o
o -] R

Figure 8 Plot of the intensity for a linearly polarized beam, an elliptically polarized
beam, and a circularly polarized beam.
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According to (97), the Stokes vector is

1

12
s=| % (110)

3/4

The intensity expected for (110) is seen from (98d) to be

I1(8) = % [1 + %msZB-A—ﬁsinza‘] (111)

The plot of (111) is given in Figure 7.

We see from (110) that the square root of the sum of the squares §, Sy,
and S5 is equal to unity as expected. Inspecting Figure 8, we see that there is a
maximum intensity and a minimum intensity. However, because there is no null
intensity we know that the light is elliptically polarized, which agrees, of course,
with (110).

In Figure 8§ we consider an elliptically polarized beam such that « = /4 and
of arbitrary phase 6. This beam is described by the Stokes vector given by (108):

1
o 108
cosé (108)

sind
The corresponding intensity for (108), according to (98d), is
I= é—[l+cus§sin28] ; (112)

Specifically, we now consider (108) for § = 0, 7/4, and #/2. The Stokes vectors
corresponding to these conditions are, respectively,

5(0) = s( ) - (113)

L R =
——
|
p —
|
SI=Sl= e =
S
L — R =B ]

The Stokes vectors in (113) correspond to linear +45° polarized light, elliptically
polarized light, and right circularly polarized light, respectively. Inspection of
Figure 8 shows the corresponding plot for the intensities given by (112) for each
of the Stokes vectors in (113). The linearly polarized beam gives a null intensity,
the elliptically polarized beam gives maximum and minimum intensities, and the
circularly polarized beam yields a constant intensity of 0.5.
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7.1. INTRODUCTION

In the previous chapter we described a number of methods for measuring and
characterizing polarized light and, especially, the Stokes polarization parameters.
: We now turn our attention to measuring the characteristics of the three major
polarizing components, namely, the polarizer (diattenuator), wave plate and ro-
tator. For a polarizer it is necessary to measure the attenuation coefficients of
the orthogonal axes, for a wave plate the relative phase shift, and for a rotator
the angle of rotation. It is of practical importance to make these measurements.
Before proceeding with any experiment in which polarizing elements are to be
used, it is good practice to determine if they are performing according to their
specifications. This characterization is also necessary because over time polariz-
ing components change: e.g., the optical coatings deteriorate, and in the case of
Polaroid the material becomes discolored. In addition, one finds that, in spite
of one’s best laboratory controls, quarter-wave and half-wave retarders which op-
erate at different wavelengths become mixed up. Finally, the quality control of
manufacturers of polarizing components is not perfect, and imperfect components
are sold.

The characteristics of all three types of polarizing elements can be determined
by using a pair of high-quality calcite polarizers which are placed in high-resolution
angular mounts; the polarizing element being tested is placed between these two
polarizers. A practical angular resolution is 0.1° (6' of arc) or less. High-quality
calcite polarizers and mounts are expensive, but in a laboratory where polarizing
components are used continually their cost is well justified.
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7.2. THE MEASUREMENT OF THE ATTENUATION
COEFFICIENTS OF A POLARIZER (DIATTENUATOR)

A linear polarizer is characterized by its attenuation coefficients p, and p, along
its orthogonal x and y axes. We now describe the experimental procedure for
measuring these coefficients. The measurement configuration is shown in Fig-
ure 1. In the experiment the polarizer to be tested is inserted between the two
polarizers as shown. The reason for using two polarizers is that the same config-
uration can also be used to test wave plates (retarders) and rotators. Thus, we
can have a single, permanent, test configuration for measuring all three types of
polarizing components.

The Mueller matrix of a polarizer (diattenuator) with its axes along the x and
y directions is

pi+p} pi-p; O 0

1 sl e
M=l|B-H By 00 0<py <1 M
2 0 0 2pp, 0
0 0 0 Zppy,

It is convenient to rewrite (1) as

A B 0 0
B A 0 0
M. = 2
»~l0o 0 cC 0 )
0 ¢ 0 C
where
1 5
A= E(Pf +p;) (2b)
1
B= E(Pf -p}) (2c)

Generating polarizer test polarizer analyzing polarizer

Figure 1 Experimental configuration to measure the attenuation coefficients p. and p,
of a polarizer (diattenuator).
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Cc=30pp) (20)

In practice, while we are interested only in determining p? and p}z., it is useful to
measure p,p, as well, because a polarizer satisfies the relation

A*=B24+C? 3
as the reader can easily show from (2). Equation (3) serves as a useful check on

the measurements. The optical source emits a beam characterized by a Stokes
vector

5= 4

In the measurement the first polarizer, which is often called the generating polarizer,
is set to +45°. The Stokes vector of the beam emerging from the generating
polarizer is then

®)

LT T = N

where Iy = (1/2)(Sy +S,) is the intensity of the emerging beam. The Stokes vector
of the beam emerging from the test polarizer is found to be, after multiplying
(2a) and (5),

()

o 0 W

The polarizer before the optical detector is often called the analyzing polarizer or
simply the analyzer. The analyzer is mounted so that it can be rotated to an angle
a, The Mueller matrix of the rotated analyzer is

1 cos 2ax sina 0
1 | cos2a cos® 2a sin2acos2a 0
M, =1 ‘ 3 ©)
2 | sin2a sin2acos2a sin” 2a 0
0 0 0 0
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The Stokes vector of the beam incident on the optical detector is then seen
from multiplying (7) by (6) to be

1
5= Ty A + Bcos2a + Csin2a) o (8)
=2 “ sin2a
0
and the intensity of the beam is
I(a) = %(A + B cos 2a + Csin 2a) (9)

By rotating the analyzer to a = 0°, 45°, and 90°, (9) yields the following
equations:

1(0°) = %”(A +B) (10a)
1(45°) = %"(A +C) (10b)
1(90°) = %D(A - B) (10¢)

Solving for 4, B, and C, we then find

i I(0°) +1(90°) (1)
Iy
B= I(0°)—1(50°) (11b)
Iy
C=ZI(4S)—I(D)—I(9(J) (110)
Iy
which are the desired relations, From (2) we also see that
pi=A+B (12a)
p;=A-B (12b)
so that we can write (10a) and (10c) as
2 o 40) (13a)
Iy
21(90%)
2 (13b
%==T )

Thus, it is only necessary to measure [0°) and 1(90“}, the intensities in the x
and y directions, respectwe}y, to obtain px and p The intensity I, of the beam

emerging from the generating polarizer is measured without the polarizer under
test and the analyzer in the optical train.
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It is not necessary to measure C. Nevertheless, experience shows that the
additional measurement of I(45°) enables one to use (3) as a check on the
measurements.

In order to determine p? and p§ in (13) it is necessary to know I,. However,
a relative measurement of pJ/p; is just as useful. We divide (12b) by (12a) and
we obtain

2 o

2 - (1)

p;  1(0°)

We see that this type of measurement does not require a knowledge of I;. Thus,
measuring I (0°) and /(90°) and forming the ratio (14) yields the relative value
of the absorption coefficients of the polarizer.

In order to obtain 4, B, and € and then p? and p- in the method dcscnbed
above, an optical detector is required. However, the magmtude of p? and p can
also be obtained using a null-intensity method. To show this we write (3) again:

A*=pB*+C? 3)
This suggests that we can write

B =Acos~y (15a)

C =Asiny (15b)

Substituting (15a) and (15b) into (9), we then have

I(a) = ﬁ[]—i—cus(?a—’r]] (16a)
and

tany = 5 _ (16b)
where (16b) has been obtained by dividing (15a) by (15b).

We see that I(a) leads to a null intensity at

g = 90° + 1 ¢%)

2

where a,, is the angle at which the null is observed. Substituting (17) into (16b)

then yields

(18)

c
E = tan 2anull

Thus by measuring v from the null-intensity condition, we can find B/4 and C/A
from (15a) and (15b), respectively. For convenience we set A = 1, respectively.
Then we see from (12) that

pi=1+B (19a)

py=1-B (19b)
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The ratio C/B in (18) can also be used to determine the ratio p,/p,, which
we can then square to form pZ/pZ. From (2)

1
B= (!} 29)
1
C=5(p,) (2d)
Substituting (2b) and (2c) into (18) gives
2Py
tan2a, = 53 (20)
null PE =2 pyz
The form of (20) suggests that we set
Py =pcosf  p,=psinf (21a)
S0
sin2f
tan2a,,,; = c0s28 =tan2f (21b)
and
B = ayy (21c)

This leads immediately to

Py _ tanp = tan(apy) (222)
Px

or, using (17),
Py _ 2 (7 22b
- e (2) (22b)

Thus, the shift in the intensity, (16a), enables us to determine pﬁfpﬁ directly from
~. We always assume that p;,‘pﬁ < 1. A neutral density filter is described by
p? = p} so the range on pJ/p; limits v to

90° < 4 < 180° (22¢)

For p}/p? = 0, an ideal polarizer, v = 180°, whereas for plip} = 1, a neutral
density filter y = 90° as shown by (22b). We see that the closer the value of v
is to 180°, the better is the polarizer. As an example, for commercial Polaroid
HN22 at 0.550 microns p/p? = 2 x 107%/0.48 = 42 x 10~° so from (22b) we see
that v = 179.77° and a,,, = 179.88°, respectively; the nearness of 4 to 180° shows
that it is an excellent polarizing material.

The parameters 4, B, and C can also be obtained by Fourier-analyzing (9),
assuming that the analyzing polarizer can be continuously rotated over a half or
full cycle. Equation (9) is

I

I(e) = E“(A + Bcos2a + Csin2a) )
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From the point of view of Fourier analysis A describes a dc term, and B and C
describe second-harmonic terms in quadrature. It is only necessary to integrate
over half a cycle, that is, from 0° to =, in order to determine 4, B, and C. We
easily find that

2 L
=— [ 1 23

A =5 4 (a)da (23a)
4 L

B= —f I(a)cos2ada (23b)
wly Jo
4 [ :

C= —[ I(a)sin2ada (23c)
?Tfn 0

Throughout this analysis we have assumed that the axes of the polarizer
being measured lie along the x and y directions. If this is not the case, then the
polarizer under test should be rotated to its x and y axes in order to make the
measurement. The simplest way to determine rotation angle § is to remove the
polarizer under test and rotate the generating polarizer to 0° and the analyzing
polarizer to 90°, respectively.

Finally, another method to determine 4, B, and C is to place the test polarizer
in a rotatable mount between polarizers in which the axes of both are in the y
direction. The test polarizer is then rotated until a minimum intensity is observed
from which 4, B, and C can be found. The Stokes vector emerging from the
generating y generating polarizer is

§=2 (24)

The Mueller matrix of the rotated test polarizer (2a) is

A B cos 26 Bsin 24 0
M= Bcos20 Acos?26 + Csin20 (A —C)sin26cos28 0 25)
Bsin26 (A—C)sin20  Asin*26+ Ccos*26 0
0 0 0 0
The intensity of the beam emerging form the y analyzing polarizer is
I
I(8)= ?"[(A+C]—2.Bcus2.9+ (A—C}COSZZS] (26)

Equation (26) can be solved for its maximum and minimum values by dif-
ferentiating F(#) with respect to 6 and setting dI(#)/dé = 0. We then
find

sin26[B — (A — C)cos26] =0 (27)

e ———————————— e
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The solutions of (27) are

sin28 =0 (28a)

and
B
cos2f = 1-C (28b)
For (28a) we have # = 0° and 90°. The corresponding value of the intensities are
then, (26),

1(0°) = ;—O[A -B] (29a)
1(90°) = %"[A +B] (29b)

The second solution (28b), upon substitution into (26), leads to I(#) = 0. Thus,
the minimum intensity is given by (29a) and the maximum intensity by (29b). In
view of the fact that both the generating and analyzing polarizer are in the y
direction, this is exactly what one would expect. We also note in passing that at
6 = 45°, (26) reduces to

1(45°) = %"[A +C) (29¢)

We can again divide (29) through by I, and then solve (29) for 4, B, and C.

We see that several methods can be used to determine the absorption coef-
ficients of the orthogonal axes of a polarizer. In the first method we generate a
linear +45° polarized beam and then rotate the analyzer to obtain 4, B, and C of
the polarizer being tested. This method requires a quantitative optical detector.
However, if an optical detector is not available, it is still possible to determine
A, B, and C by using the null-intensity method; rotating the analyzer until a
null is observed leads to 4, B, and C. On the other hand, if the analyzer can
be mounted in a rotatable mount which can be stepped (electronically), then a
Fourier analysis of the signal can be made and we can again find 4, B, and C.
Finally, if the transmission axes of the generating and analyzing polarizers are
parallel to one another, conveniently chosen to be in the y direction, and the test
polarizer is rotated, then we can also determine 4, B, and C by rotating the test
polarizer to 0°, 45°, and 90°.

7.3. THE MEASUREMENT OF THE PHASE SHIFT OF A
RETARDER

There are numerous occasions when it is important to know the phase shift of
a retarder. The most common types of retarders or wave plates are quarter-
wave plates and half-wave plates. These two types are most often used to
create circularly polarized light and to rotate or reverse the polarization ellipse,
respectively.

Two methods can be used for measuring the phase shift using two linear
polarizers following the experimental configuration given in the previous section.
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In the first method a wave plate is placed between the two linear polarizers
mounted in the “crossed” position. The transmission axes of the first polarizer
and second polarizer are in the x and y directions, respectively. By rotating the
wave plate, the direction (angle) of the fast axis is rotated and, as we shall soon
see, the phase can be found, The second method is very similar to the first except
that the wave plate is rotated to = 45°. In this position the phase can also be
found. We now consider both methods.

For the first method we refer to Figure 2. It is understood that the correct
wavelength must be used; that is, if the wave plate is specified for, say 6328 A,
then the optical source should emit this wavelength. In the visible domain calcite
polarizers are, as usual, best. However, high-quality Polaroid is also satisfactory,
but its optical bandpass is much more restricted. In Figure 2 the transmission axes
of the polarizers (or diattentuators) are in the x and y directions, respectively.
The Mueller matrix for the wave plate rotated through an angle 8 is

0 0 0
M(4,8) = cos? 26 + cosqbsin2 260 (1—cosg)sin2fcos26  singsin26
’ (1 — cos @) sin 28 cos 26 sin® 26 + cos ¢pcos” 28 —sin ¢ cos 26

—singsin2d sin ¢ cos 268 cos ¢

(==l = =

(30)
where the phase shift ¢ is to be determined. The Mueller matrix for an ideal
linear polarizer is

1 xx1 0 0
1|1 1 0 0
My 2 0 0 00 (1)
0 0 0 0
x <2
+#2
Y
Generating
Polarizer Wave Plate Analyzing
Polarizer

Figure 2 Crossed polarizer method to measure the phase of a wave plate.
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where x and y correspond to + and — in (31). The Mueller matrix for Figure 2
is then

M = M,M(,6)M, (32)

Carrying out the matrix multiplication in (32) using (30) and (31) then yields

1 1 00
) Ao -1 00

M = 2 (1-cosg)(1 - cos46) G g (33)
0 0 00

Equation (33) shows that the polarizing train behaves as a pseudopolarizer. The
intensity of the optical beam on the detector is then

1(6,¢) = %“(1 —cos ¢)(1 — cos4d) (34)

where [, is the intensity of the optical source,

Equation (34) immediately allows us to determine the direction of the fast
axis of the wave plate; ideally it should be at # = 0°. When the wave plate is
inserted between the crossed polarizers, the intensity on the detector should be
zero, according to (34), at 6 = 0°. If it is not zero, the wave plate should be
rotated until a null intensity is observed. After this angle has been found, the
wave plate is rotated 45° according to (34) to obtain the maximum intensity. In
order to determine ¢, it is necessary to know I,. The easiest way to do this is to
rotate the x polarizer (the first polarizer) to the y position and remove the wave
plate; both linear polarizers are then in the y direction. The intensity I, on the
detector is then

Ip= 2 (35)

so (34) can be written as
1(8,6) = I(1—cos $)(1 — cos48) (36)

The wave plate is now reinserted into the polarizing train. The maximum intensity,
I(8, ¢), takes place when the wave plate is rotated to & = 45°. At this angle (36)
is solved for ¢, and we have

1(45°,¢)

| [
¢=cos [1 I,

The disadvantage of using the cross-polarizer method is that it requires that we
know the intensity of the beam, I;, entering the polarizing train. This problem
can be overcome by another method, namely, rotating the analyzing polarizer and
fixing the wave plate at 45°. We now consider this second method.

The experimental configuration is identical to the first method except that
the analyzer can be rotated through an angle a. The Stokes vector of the beam

! 7
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emerging from the generating polarizer is

1

AR
S = 2 | o (38)

0

Matrix multiplication of (38) and (30) yields
1
gt = Iy cos® 26 + C(?S $sin® 26 39)
2 | (1—cos¢)sin26cos26
—sing¢sin28

We assume that the fast axis of the wave plate is at § = 0°. If it is not, the
wave plate should be adjusted to & = 0° by using the crossed polarizer method
described in the first method; we note that at 8 = 0°, (39) reduces to

(40)

O O = =

so that the analyzing polarizer should give a null intensity when it is in the y
direction. Assuming the wave plate’s fast axis is now properly adjusted, we rotate
the wave plate counterclockwise to # = 45°. Then (39) reduces to

1
I cos ¢
i
S 2 0 (41)
—sing

This is a Stokes vector for elliptically polarized light. The conditions ¢ = 90° and
180° correspond to right circularly polarized light and linearly vertically polarized,
respectively. We note that the LVP state arises because for ¢ = 180° the wave
plate behaves as a pseudorotator. The Mueller matrix of the analyzing polarizer
is

1 cos2a sin2a 0

M($) 1 | cos2a cos” 2a sin2acos2a 0 i
2 | sin2a sin2acos2a  sin®2a 0 (“42)

0 0 0 0
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The Stokes vector of the beam emerging from the analyzer is then

1

S= 1%(1 + cos ¢ cos 2a) Z?;;: (43)
0
so the intensity is
I(a, ) = J%"(1 + cos ¢ cos 2a) (44)
In order to find ¢, (44) is evaluated at « = 0° and 90°, respectively, so
1(0°,¢) = %{1 + cos ¢) (45a)
1(90°,¢) = %(1 — cos¢) (45b)

Equation (45a) is divided by (45b) and solved for cos¢:

1(0°,6) - 1(50°,6) (46)

COSO = [T, 8) + 1(90°, )

We note that in this method the source intensity need not be known.

We can also determine the direction of the fast axis of the wave plate in a
“dynamic” fashion. The intensity of the beam emerging from the analyzer when
it is in the y position is (see (39) and (42))

]

I = y [1- (cos2 20 + cos ¢ sin” 26)] (47a)

y

where 8 is the angle of the fast axis measured from the horizontal x axis. We
now see that when the analyzer is in the x position

I = %‘3[1 + (cos?26 + cos ¢ sin® 26))] (47b)
Adding (47a) and (47b) yields
I
I +1, = (48a)

Next, subtracting (47a) from (47b) yields

IL-1I,= % (cos® 26 + cos ¢ sin® 26) (48b)

We see that when # = 0 the sum and difference intensities (48) are equal. Thus,
one can measure [, and /, continuously as the wave plate is rotated and the
analyzer is flipped between the horizontal and vertical directions until (48a) equals
(48b). When this oceurs, the amount of rotation which has taken place determines
the magnitude of the rotation angle of the fast axis from the x axis.
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4
&P &2
W
w2
“‘ +A/2
450

Linear +459 Wave Plate Babinet-Soleil Linear -45°
Polarizer Compensator Polarizer

Figure 3 Measurement of the phase shift of a wave plate using a Babinet-Soleil
compensator.

Finally, if a compensator is available, the phase shift can be measured as
follows. Figure 3 shows the measurement method. The compensator is placed
between the wave plate under test and the analyzer. The transmission axes of
the generating and analyzing polarizers are set at +45° and +135°, that is, in the
crossed position, respectively.

The Stokes vector of the beam incident on the test wave plate is

1
_h |0
s=2| (49)
0
The Mueller matrix of the test wave plate is
10 0 0
01 0 0
M= 5
0 0 cos¢g —sing ?%
0 0 sing cos¢
Matrix-multiplying (50) by (49) yields
1
_l 0
i 2 | cos¢ 1)
sin¢
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The Mueller matrix of the Babinet-Soleil compensator is

0 0

0

1 0 0 2)
0 cosA -—sinA
0

sinA  cosA

[ = = N =]

Multiplying (52) by (51) yields the Stokes vector of the beam incident on the
linear —45° polarizer:

1
s=lf O (53)
2 | cos(A+¢)
sin(A + ¢)

Finally, the Mueller matrix for the ideal linear polarizer with its transmission axis
at —45°(+135°) is

1 0 -1 0

11 o o 0o 0 54)
Mwigli o 0
0 0 0 0

Multiplying the first row of (54) by (53) gives the intensity on the detector, namely,
I(A+¢)= %o[l—cos(&+¢)] (55)
We see that a null intensity is found at
A =360°—¢ (56)

from which we then find ¢.

There are still other methods to determine the phase of lhle wave plate, and
the techniques developed here can provide a useful starting pomt. However, the
methods described here should suffice for most problems.

7.4. THE MEASUREMENT OF THE ROTATION ANGLE OF A
ROTATOR

The final type of polarizing element which we wish to characterize is a rotator.
The Mueller matrix of a rotator is

0 0
cos2  sin2d
—sin2f cos2d
0 0

(7

=T — I —
-0 o o

.,
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p
p

Linear Vertical Rotator Analyzing
Polarizer Polarizer

Figure 4 Measurement of the rotation angle 0 of a rotator.

The angle # can be determined by inserting the rotator between a pair of polar-
izers in which the generating polarizer is fixed in the y position and the analyzing
polarizer can be rotated. This configuration is shown in Figure 4.

The Stokes vector of the beam incident on the rotator is

1

-1
0 (58)

0

)
I
ns

The Stokes vector of the beam incident on the analyzer is then found by matrix-
multiplying (57) by (58):

1

I — cos 26
§'=2L 59
2 sin24 69
0
The Mueller matrix of the analyzer is
1 cos 2o sin 2o 0
1 | cos2a cos? 2a sin2acos2a 0
M=z] . ; . 2 (60)
2 | sin2a sin2acos2a  sin“2a 0
0 0 0 0

The intensity of the beam emerging from the analyzer is then seen from (59) and
(60) to be

I(Q) = {Tofi = COS{?C\' + 26)1 {61)




—
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The analyzer is rotated and, according to (61), a null intensity will be observed at
a=180°-4¢ (62a)
or, simply,
6=180° - a (62b)

Another method for determining the angle  is to rotate the generating polar-
izer sequentially to 0°, 45°, 90° and 135°. The rotator and the analyzing polarizer
are fixed with their axes in the horizontal direction. The intensities of the beam
emerging from the analyzing polarizer for these four angles are then

1(0°) = %(1 + c0s26) (63a)
1(45°) = j;—"(1 + sin26) (63b)
1(90°) = %,(] — c0s26) (63¢)
I(135°) = %’(1 — sin26) (63d)
Subtracting (63¢) from (63a) and (63d) from (63b) yields
(%) c0s28 = I(0°) — I(90°) (64a)
(%’) sin@ = I(45%) — I(135°) (64b)

Dividing (64b) by (64a) then yields the angle of rotation 4,
6 = tan™![(J(45°) — I (135°))/(1 (0°) — I (90°))] (65)

In the null-intensity method an optical detector is not required, whereas in
this second method a photodetector is needed. However, one soon discovers that
even a null measurement can be improved by several orders of magnitude below
the sensitivity of the eye by using an optical detector-amplifier combination.

Finally, as with the measurement of wave plates other configurations can be
considered. However, the two methods described here should, again, suffice for
most problems.
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8

Mueller Matrices for
Reflection and
Transmission

8.1. INTRODUCTION

In previous chapters the Mueller matrices were introduced in a very formal man-
ner. The Mueller matrices were derived for a polarizer, retarder, and rotator in
terms of their fundamental behavior; their relation to actual physical problems
was not emphasized. In this chapter we apply the Mueller matrix formulation to
a number of problems of great interest and importance in the physics of polar-
ized light. One of the major reasons for discussing the Stokes parameters and
the Mueller matrices in these earlier chapters is that they provide us with an
excellent tool for treating many physical problems in a much simpler way than
is usually done in optical textbooks. In fact, one quickly discovers that many of
these problems are sufficiently complex that they preclude any but the simplest to
be considered without the application of the Stokes parameters and the Mueller
matrix calculus.

One of the earliest problems encountered in the study of optics is the
behavior of light which is reflected and transmitted at an air-glass interface.
Around 1808, E. Malus discovered, quite by accident, that unpolarized light be-
came polarized when it was reflected from glass. Further investigations were
made shortly afterward by D. Brewster, who was led to enunciate his famous
law relating the polarization of the reflected light and the refractive index of
the glass to the incident angle now known as the Brewster angle; the practical
importance of this discovery was immediately recognized by Brewster’s contem-
poraries. Consequently, the study of the interaction of light with glass and
its reflection and transmission as well as its polarization is a topic of great
importance.
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