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Bearbeiten Sie die Aufgaben zur Vorbereitung. 
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Einleitung 

Nichtlineare optische Prozesse haben eine große Bedeutung in der modernen Optik. Durch die 

spontane parametrische Fluoreszenz (engl. spontaneous parametric down-conversion, SPDC) 

lassen sich (verschränkte) Photonenpaare erzeugen. Damit kann eine Vielzahl von 

Quanteneffekten experimentell beobachten werden, welche den Vorstellungen der klassischen 

Physik widersprechen. Ein Experiment von Hong, Ou und Mandel hat als erstes die 

Interferenzfähigkeit der beiden Photonen demonstriert. Dabei trifft jeweils ein einzelnes Photon 

auf die zwei Eingänge (a und b) eines Strahlteilers. Dort werden sie mit jeweils 50 % 

Wahrscheinlichkeit in einen der beiden Ausgänge (c und d) transmittiert oder reflektiert. Die 

quantenphysikalische Wellenfunktion eines Photons am Eingang a bzw. Eingang b kann dabei 

formal beschrieben werden mit 

 

𝑎̂†|0〉𝑎|0〉𝑏 = |1〉𝑎|0〉𝑏 ≡ |1, 0〉𝑎𝑏 ≡ |1〉𝑎     bzw.    𝑏̂†|0〉𝑎|0〉𝑏 = |1〉𝑏  . 

 

Die Operatoren 𝑎̂† bzw. 𝑏̂† wirken auf die Vakuumzustände |0〉𝑎  bzw. |0〉𝑏  mit jeweils null 

Photonen und erzeugen die Einzelphotonenzustände |1〉𝑎 bzw. |1〉𝑏. Für Erzeugungsoperatoren 

von Photonen gilt (𝑎̂†)𝑛|0〉 =  √𝑛! |𝑛〉.      
Für die Wirkung des Strahlteilers auf die einzelnen Photonen ergibt sich  

 

|1〉𝑎  
𝑆𝑡𝑟𝑎ℎ𝑙𝑡𝑒𝑖𝑙𝑒𝑟
→           

1

√2
 (𝑐̂† + 𝑖𝑑̂†)|0〉𝑐|0〉𝑑 = 

1

√2
 (|1〉𝑐|0〉𝑑 + 𝑖|0〉𝑐|1〉𝑑)   

 und   |1〉𝑏  
𝑆𝑡𝑟𝑎ℎ𝑙𝑡𝑒𝑖𝑙𝑒𝑟
→           

1

√2
 (𝑖|1〉𝑐|0〉𝑑 + |0〉𝑐|1〉𝑑) . 

 

Dabei sind 𝑐̂† und  𝑑̂†  die Erzeugungsoperatoren, welche auf die Vakuumzustände |0〉𝑐  und 

|0〉𝑑 der Ausgänge wirken. Für die reflektierten Komponenten gibt es eine Phasenverschiebung 

von 𝜋/2  in der komplexen Wellenfunktion und die einzelnen Photonen treten jeweils mit 

gleicher Wahrscheinlichkeit in nur einem der beiden Ausgänge auf. Für ein Photonenpaar 

|1〉𝑎|1〉𝑏 an beiden Eingängen des Strahlteilers erhält man 

 

 |1〉𝑎|1〉𝑏  
𝑆𝑡𝑟𝑎ℎ𝑙𝑡𝑒𝑖𝑙𝑒𝑟
→          

1

2
 (𝑐̂† + 𝑖𝑑̂†) (𝑖𝑐̂† + 𝑑̂†)|0〉𝑐|0〉𝑑                                                         

                                      = 
1

2
(𝑖𝑐̂†

2
⏟
𝐼.

+ 𝑐̂†𝑑̂†⏟
𝐼𝐼.

− 𝑑̂†𝑐̂†⏟
𝐼𝐼𝐼.

+ 𝑖𝑑̂†
2

⏟
𝐼𝑉.

) |0〉𝑐|0〉𝑑 .     

Es entstehen vier Terme die den vier möglichen Wegen der Photonen entsprechen (siehe 

Abbildung 1). 

  

 

Abbildung 1: Die vier Möglichkeiten für zwei Photonen einen Strahlteiler zu verlassen.   
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Für ununterscheidbare Photonen gilt [𝑐̂†, 𝑑̂†] = 0 und es ergibt sich 

 

|1〉𝑎|1〉𝑏  
𝑆𝑡𝑟𝑎ℎ𝑙𝑡𝑒𝑖𝑙𝑒𝑟
→           

1

2
 (𝑖𝑐̂†

2
+ 𝑖𝑑̂†

2
) |0〉𝑐|0〉𝑑 = 

𝑖

√2
 (|2〉𝑐|0〉𝑑 + |0〉𝑐|2〉𝑑) . 

 

Die Möglichkeiten II. und III. treten also nicht auf. Es werden daher immer nur zwei Photonen 

an einem der beiden Ausgänge des Strahlteilers gemessen.  

 

In diesem Versuch wird mit einer Photonenquelle und einer Strahlteilerfaser ein Hong-Ou-

Mandel Interferometer aufgebaut und die Koinzidenzrate gemessen. Aus der beobachteten 

Interferenz sollen die Unterscheidbarkeit der Photonen und die Kohärenzlänge bestimmt 

werden. Außerdem wird der optische Wegunterschied einer Wellenplatte gemessen und die 

Konversionseffizienz der spontanen parametrischen Fluoreszenz bestimmt.  

Experimenteller Aufbau 

 

Der Aufbau des Versuchs besteht aus drei Komponenten:  

1. Photonenpaarquelle 

2. Hong-Ou-Mandel Interferometer 

3. Elektronische Kontroll- und Ausleseeinheit  

1. Photonenpaarquelle 

Der Aufbau der Photonenquelle ist in Abbildung 2 dargestellt. Als Pumplaser dient eine 

Laserdiode, welche sich in einem Gehäuse mit einem Anschluss für die Stromversorgung (1) 

befindet.  

WICHTIG: Plötzliche Stromänderungen und Spannungsentladungen können die Laser-

diode zerstören. Die Stromversorgung muss daher immer angeschlossen sein! Außerdem 

soll die Laserdiode nicht berührt werden! 

 

Das emittierte Licht mit etwa 405 nm Wellenlänge wird durch Spiegel umgelenkt und mit 

verschiedenen Linsen kollimiert. Doppelbrechende Kompensationskristalle (2) kompensieren 

eine zeitliche Unterscheidbarkeit zwischen vertikal und horizontal polarisierten Photonen für 

weitere, hier nicht relevante, Versuche. In dem nichtlinearen BBO-Kristall (3) findet eine 

spontane parametrische Fluoreszenz des Typ I statt. Dadurch entstehen mit einer geringen 

Wahrscheinlichkeit Photonenpaare bei einer Wellenlänge von etwa 810 nm, welche unter einem 

bestimmten Öffnungswinkel austreten. Zum Schutz gegen die Laserstrahlung befindet sich eine 

Schutzabdeckung über der Lichtquelle. Ein Filter blockt den Strahl des Pumplasers und lässt 

nur die einzelnen frequenzkonvertierten Photonenpaare nach außen. Diese werden mit Spiegeln 

umgelenkt und jeweils in eine polarisationserhaltende Einmodenfaser eingekoppelt (5). Davor 

können noch Bandpassfilter (4) in den Strahlgang gestellt werden. Außerdem ist das Aufsetzen 

von Langpassfiltern auf die Einkoppler möglich. 
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Abbildung 2: Aufbau für die Erzeugung von Photonenpaaren: 
 (1) Laser, (2) Kompensationskristalle, (3) BBO-Kristall, (4) Bandpassfilter, 
 (5) Optische Fasern mit Einkopplung und Langpassfiltern. 

 

WICHTIG: Beim Umgang mit den optischen Fasern dürfen die Endflächen nicht berührt 

werden, da diese sonst beschädigt werden könnten. Insbesondere muss auf das korrekte 

Anschließen der Fasern (siehe Abbildung 3) geachtet werden. Außerdem sollen die 

Schutzkappen aus Kunststoff verwendet werden, wenn die Fasern nicht angeschlossen sind. 

  

Abbildung 3: Zum Anschluss der Faser muss der Positionierungsschlüssel des Fasersteckers mit 
der Führungsnut des Faseranschlusses übereinstimmen. Danach kann über Drehung des Gewindes 
der Stecker festgeschraubt werden.     
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2. Hong-Ou-Mandel Interferometer 

Abbildung 4 zeigt den Aufbau des Interferometers. Die Photonen aus den beiden mit A und B 

gekennzeichneten Fasern werden ausgekoppelt (4) und legen eine freie Wegstrecke zurück 

bevor sie wieder in Fasern eingekoppelt (5) werden. Diese Länge ist für einen der Wege fest 

(2). Für den anderen Weg (1) kann die Länge mit einer Mikrometerschraube (3) mit einer 

Genauigkeit von wenigen µm verstellt werden. Die eingekoppelten Photonen durchlaufen eine 

Strahlteilerfaser (6) mit einem Verzweigungsverhältnis von 50 % und können dann an den 

beiden Ausgängen gezählt werden. 

 

Abbildung 4:  Optischer Aufbau des Hong-Ou-Mandel-Interferometers: 
 (1) Variable Weglänge, (2) Feste Weglänge, (3) Mikrometerschraube, 
 (4) Faserauskoppler, (5) Fasereinkoppler, (6) Strahlteilerfaser. 

3. Elektronische Auslese- und Kontrolleinheit 

Das Frontdisplay der Kontrolleinheit ist in Abbildung 5 gezeigt. Rechts befindet sich die 

Detektionseinheit (3), welche zwei Lawinenphotodioden für den Nachweis einzelner Photonen 

besitzt. Hier müssen die optischen Fasern angeschlossen werden. Mit dem Schlüsselschalter (1) 

wird die Kontrolleinheit eingeschaltet. Mit dem Schalter Laser on/off (2) wird der Laser ein- 

und ausgeschaltet. Die Steuerung und Anzeige aller Funktionen erfolgt über ein Touch Panel. 

Mit dem Drehgeber (4) können Werte wie Laserstrom und Integrationszeit verändert werden. 

Über das oberste Symbol der Menüspalte (5) werden Warnungen angezeigt und die Kontroll-

optionen (6) für den Laser erreicht.  

WICHTIG: Den Schlüsselschalter niemals ausschalten, während der Laser an ist. 

Vor dem Ein- und Ausschalten des Lasers ist der Laserstrom auf null zurückzustellen.  

Der Laserstrom sollte immer nur langsam verändert werden. 
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Abbildung 5: Elektronische Auslese- und Kontrolleinheit: (1) Schlüsselschalter, 
 (2) Ein-/Ausschalter Laser, (3) Detektormodul, (4) Drehgeber, (5) Menüspalte, 
 (6) Laserstrom, (7) Zählraten, (8) Messoptionen. 

Über das mittlere Menüsymbol wird die Anzeige für die Zählraten der Einzelphotonen und der 

Koinzidenzen (7) ausgewählt. Als Messoptionen (8) gibt es die Möglichkeit zwischen 

kontinuierlicher Messung (Go) und Einzelmessung (SiS). Außerdem kann die Integrationszeit 

eingestellt werden. 

Versuchsdurchführung & Auswertung 

WICHTIG: Dokumentieren Sie immer alle Messergebnisse der einzelnen Aufgaben! Die 

Messdaten sind am Ende des Versuchs vom Betreuer unterzeichnen zu lassen. 

 

Die während der Versuchsdurchführung aufgenommenen Messwerte sind im Original in die 

Auswertung einzufügen! Trennen Sie die Auswertung der Messwerte von der 

Versuchsdurchführung! Es muss nachvollziehbar sein, wie die Auswertungsergebnisse aus 

den Messdaten erhalten wurden! 

Aufgaben zur Vorbereitung: 

1. Quantenphysikalische Interpretation 

Bei der Erklärung des Hong-Ou-Mandel Effekts wird manchmal argumentiert, dass zwei 

einzelne Photonen miteinander interferieren würden. Korrigieren Sie diese Aussage in 

Übereinstimmung mit der Quantenphysik.  

2. Hong-Ou-Mandel Interferenz mit Elektronen 

Interferenzexperimente können nicht nur mit Photonen durchgeführt werden, sondern auch mit 

anderen Quantenobjekten. Was würde sich beispielsweise verändern, wenn in diesem 

Experiment Elektronen verwendet würden? Beschreiben Sie qualitativ die zu erwartende 

Interferenzstruktur und begründen Sie diese mathematisch. 

3. Kontrast der Hong-Ou-Mandel Interferenz 

Berechnen Sie den Kontrast der Hong-Ou-Mandel Interferenz für zwei identische Photonen, 

wenn die Polarisation eines der beiden Photonen mit einer Wellenplatte um einen Winkel α 

gedreht wird.  
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Messaufgaben: 

1. Inbetriebnahme und Messung der Konversionseffizienz 

Nehmen Sie die Photonenquelle unter Anleitung des Betreuers in Betrieb. Schließen Sie dazu 

die Ausgänge der Fasern A und B an die Detektionseinheit an und vergewissern Sie sich, dass 

das Kabel für die Stromversorgung des Lasers korrekt angeschlossen ist. Schalten Sie dann das 

Kontrollmodul an und warten Sie einige Minuten bis die Lämpchen für Stromversorgung und 

Temperatur an der Detektionseinheit verlöschen. Danach schalten Sie den Laser ein und 

erhöhen den Laserstrom langsam auf 39.1 mA. Überprüfen Sie anschließend die Justage der 

Spiegel und Fasereinkoppler vorsichtig darauf, dass an beiden Detektoren eine ähnlich hohe 

Zählrate gemessen wird und maximieren Sie die Koinzidenzrate. Bei der Justage dürfen die 

Zählraten zu keinem Zeitpunkt komplett auf die Untergrundrate absinken, da sonst ein 

Rückstellen auf den vorherigen Justagezustand, auch für den Betreuer, extrem aufwendig ist. 

Nehmen Sie nun die Einzelphotonenzählrate für beide Kanäle sowie die Koinzidenzrate bei 

einer Integrationszeit von 10 s auf. Führen Sie weiterhin eine Untergrundmessung mit 

geblockten Stahlen durch. 

2. Justage des Interferometers 

 

WICHTIG: Direkte Einstrahlung des Laserlichts in die Einzelphotonenzähler könnte die 

Detektoren zerstören. Deshalb darf der zweite Ausgang des Strahlteilers während der 

Justage mit dem Justierlaser nicht an die Detektionseinheit angeschlossen sein. 

 

 

Abbildung 6: Justierlaser mit abgedecktem Faseranschluss links. 

Stellen Sie mit dem Justierlaser (Abbildung 6) sicher, dass Licht von beiden Armen des 

Interferometers in den Strahlteiler eingekoppelt wird. Schließen Sie dazu wie in Abbildung 7 

dargestellt den Justierlaser an einen der beiden Ausgänge des Strahlteilers ((6) in Abbildung 4) 

an und verbinden Sie den anderen Ausgang jeweils mit einem der durch A oder B 

gekennzeichneten Faserauskoppler ((4) in Abbildung 4). Beobachten Sie mit einem Stück 

Papier die Position der Strahlen und versuchen Sie diese auf der gesamten freien Wegstrecke 

des Interferometers zu überlagern. Dazu können die Schrauben für horizontale und vertikale 

Einstellung an den Aus- und Einkopplern ((4) und (5) in Abbildung 4) verwendet werden. Dann 

wiederholen Sie dies für den anderen Arm des Interferometers.  
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Abbildung 7: Justage eines Arms des Interferometers. An den Auskopplern C und D entstehen 
schwache Reflexe, die in entgegengesetzter Richtung durch die Strahlteilerfaser 
laufen und bei B ausgekoppelt werden. 

Danach werden die Fasern (A bzw. B) von der Photonenquelle an den entsprechenden 

Faserauskoppler des Interferometers (A bzw. B) angeschlossen. Beobachten Sie am anderen 

Ende der Fasern ((5) in Abbildung 2), ob das Licht des Justierlasers die Fasern verlässt 

(entfernen Sie hierfür vorsichtig die Langpassfilter) und optimieren Sie dies gegebenenfalls 

durch leichtes Verstellen der Schrauben von Aus- und Einkopplern des Interferometers ((4) und 

(5) in Abbildung 4).   

Anschließend entfernen Sie den Justierlaser und verbinden die Ausgänge des Interferometers 

mit dem Zählmodul. Blockieren Sie jeweils einen der beiden Strahlen  und beobachten Sie die 

Einzelphotonenzählraten. Optimieren Sie diese nochmal durch Verstellen der Schrauben der 

Faserkoppler ((4) und (5) in Abbildung 4) bis im Vergleich zu den in Aufgabe 1 gemessenen 

Zählraten mindestens eine Einkoppeleffizienz von 60 % erreicht ist.  

(Die Winkeleinstellungen von Ein- und Auskoppler sind miteinander verknüpft. Jede Änderung 

der vertikalen oder horizontalen Ausrichtung  des Auskopplers führt zu einem Abfall der 

Zählrate, was durch eine entsprechende Änderung in der gleichen Richtung für den Einkoppler 

ausgeglichen werden muss, damit die Rate wieder ein Maximum erreicht. Durch iteratives 

Optimieren in beiden Richtungen sollte die beste Einstellung gefunden werden können.)  

3. Beobachtung der Hong-Ou-Mandel Interferenz 

 Zum Versuchsaufbau gehört eine λ/2-Platte, welche sich in einer rotierbaren Halterung 

befindet. Bestimmen Sie mit dem Polarisator die Lage der optischen Achsen der 

λ/2- Platte und stellen Sie diese unter einem Winkel von 𝚯 = 𝟎°  zwischen der 

horizontalen Richtung und einer gewählten optischen Achse in den Strahlengang eines 

der beiden Photonenpfade.  

 Setzen Sie die zwei Bandpassfilter in die Strahlengänge ein. Durch leichtes Verkippen 

kann die Zentralwellenlänge der Filter auf die Wellenlänge der Photonen abgestimmt 

werden, indem der Verkippungswinkel auf hohe Koinzidenzrate optimiert wird.  

Beobachten Sie die Koinzidenzzählrate, während Sie die freie Weglänge mit der 

Grobeinstellung der Mikrometerschraube verändern. Sobald es einen deutlichen 

Einbruch (<50%) der Koinzidenzrate gibt, ziehen Sie die Feststellschraube an und 

bestimmen mit der Feineinstellung den Bereich, in dem das Minimum der 

Koinzidenzrate sichtbar ist. Setzen Sie die Integrationszeit auf 10 s und messen Sie die 

Koinzidenzrate im Einzelmodus in Abhängigkeit der relativen Wegänderung alle 2,5 
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µm innerhalb eines Bereichs, der das Minimum großzügig abdeckt. Notieren Sie einmal 

während dieser Messung die Einzelphotonenzählraten. 

 Entfernen Sie die Bandpassfilter und stellen Sie die λ/2-Platte auf 𝚯 = 𝟎° zwischen 

gewählter optischer Achse und horizontaler Richtung. Bestimmen Sie wieder die Lage 

des Minimums der Koinzidenzrate und vermessen Sie dieses nun in Schritten von 

0,5 µm. Notieren Sie auch hier einmal die Einzelphotonenzählraten. (Eventuell müssen 

Sie den Bereich für das Minimum erneut suchen, benutzten Sie dazu jedoch nur die 

Feineinstellung der Mikrometerschraube und notieren Sie die Positionen, so dass Sie 

die relativen Wegänderungen zwischen den einzelnen Messreihen nachher vergleichen 

können.)  

 Wiederholen Sie diese Messung unter einem Winkel der von 𝚯 = 𝟐𝟎° , 𝚯 = 𝟒𝟎° und 

𝚯 = 𝟗𝟎°   zwischen der horizontalen Richtung und der zuvor gewählten optischen 

Achse der λ/2- Platte. Notieren Sie dabei jeweils einmal für jede Messreihe die 

Einzelphotonenzählraten. 

 Drehen Sie die λ/2-Platte von 𝚯 = 𝟎° bis 180° in Schritten von 10° und führen Sie 

jeweils eine Koinzidenzmessung an der Position des Minimums durch, welche Sie 

zuvor jeweils grob bestimmen. Die maximale Koinzidenzrate außerhalb der Interferenz-

struktur und die Einzelphotonenzählraten sollen ebenfalls notiert werden.  

 

Auswertung: 

1. Konversionseffizienz der spontanen parametrischen Fluoreszenz 

Die Ausgangsleistung des Pumplasers beträgt 𝑃405 nm = (14,28 ± 0,04) mW. Berechnen Sie 

die Konversionseffizienz für den Prozess der spontanen parametrischen Fluoreszenz und 

vergleichen Sie mit Literaturwerten. 

2. Hong-Ou-Mandel Interferenz 

Tragen Sie die gemessenen Interferenzstrukturen grafisch auf und passen Sie jeweils eine 

geeignete Funktion an die Messdaten an. Die Koinzidenzen werden innerhalb eines Zeitfensters 

von 30 ns registriert. Machen Sie aus den notierten Einzelphotonenraten eine Abschätzung für 

die zufälligen Koinzidenzen und korrigieren Sie die Zählraten entsprechend. Die gemessen 

Zählraten sollten einer Poissonverteilung unterliegen. Zeichnen Sie dementsprechend die 

Fehlerbalken ein.   

3. Kohärenzlänge der Photonen 

Vergleichen Sie die unter einem Winkel von Θ = 0°  für die λ/2- Platte mit und ohne 

Bandpassfilter gemessenen Interferenzstrukturen in dem Sie diese gemeinsam grafisch 

darstellen. Verwenden Sie dazu eine geeignete Normierung. Bestimmen Sie jeweils die 

Kohärenzlänge und setzten Sie diese in Beziehung mit den spektralen Eigenschaften durch 

Verwendung der Bandpassfilter. Wie groß ist die spektrale volle Halbwertsbreite ohne 

Bandpassfilter?  
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4. Unterscheidbarkeit der Photonen 

Tragen Sie die mit Θ = 0°, Θ = 20° und Θ = 40° gemessenen Interferenzstrukturen zusammen 

auf und diskutieren Sie die Unterschiede. Gleichen Sie dabei den absoluten Gangunterschied 

zwischen den einzelnen Messreihen aus in dem Sie die Lage der Minima auf den Ursprung auf 

der horizontalen Achse legen und benutzen Sie eine Normierung. Bestimmen Sie jeweils den 

Kontrast des Minimums für jede der drei Messreihen. 

Berechnen Sie außerdem den Kontrast aus den notierten maximalen und minimalen 

Koinzidenzraten für verschiedene Winkeleinstellungen der Wellenplatte. Stellen Sie die 

Abhängigkeit aller ermittelten Kontraste gemeinsam grafisch dar und passen Sie eine geeignete 

Funktion an die Messdaten an. Vergleichen Sie dies mit dem zuvor berechneten theoretischen 

Ergebnis.   

5. Optischer Wegunterschied der Wellenplatte 

Zeichen Sie die die HOM-Interferenz mit Θ = 0° und Θ = 90° gemeinsam in ein Diagramm 

ein und bestimmen Sie daraus den optischen Wegunterschied zwischen den beiden optischen 

Achsen der λ/2-Platte. Um welche Art von Wellenplatte handelt sich demnach? Diskutieren Sie 

die Unterschiede zu anderen Wellenplatten.  
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Wichtige Punkte zum Laserschutz 

 

Ganz allgemein gilt: Im Umgang mit Lasern ist der gesunde Menschenverstand nicht zu 

ersetzen! Einige spezielle Hinweise werden im Folgenden angeführt. 

 

1. Die Laserschutzvorschriften sind immer zu beachten. 

2. Halten Sie Ihren Kopf niemals auf Strahlhöhe. 

3. Die Justierbrille immer aufsetzen. 

4. Schauen Sie nie direkt in Strahl – auch nicht mit Justierbrille! 

5. Achtung: Praktisch alle Laser für Laboranwendungen sind mindestens Klasse 3, also 

von vornherein für die Augen gefährlich, ggf. auch für die Haut – evtl. auch hierfür 

Schutzmaßnahmen ergreifen. Zur Justage kann der Laserstrahl mittels eines Stücks 

Papier sichtbar gemacht werden. 

6. Auch Kameras besitzen eine Zerstörschwelle! 

7. Spiegel und sonstige Komponenten nie in den ungeblockten Laserstrahl einbauen! Vor 

Einbau immer überlegen, in welche Richtung der Reflex geht! Diese Richtung zunächst 

blocken, bevor der Strahl wieder freigegeben wird. 

8. Nie mit reflektierenden Werkzeugen im Strahlengang hantieren! Unkontrollierbare 

Reflexe! Vorsicht ist z.B. auch mit BNC-Steckern geboten, die in den Strahlengang 

gelangen könnten! Gleiches gilt auch für Uhren und Ringe. Diese vorsichtshalber 

ausziehen, wenn Sie mit den Händen im Strahlengang arbeiten. 

9. Auch Leistungsmessgeräte können Reflexe verursachen! Unbeschichtete Silizium-

Fotodioden reflektieren über 30 % des Lichtes! 

10. Achtung im Umgang mit Strahlteilerwürfeln! Diese haben immer einen zweiten 

Ausgang! Ggf. abblocken! 

11. Warnlampen bei Betrieb des Lasers anschalten und nach Beendigung der Arbeit wieder 

ausschalten. 

12. Dafür sorgen, dass auch Dritte im Labor die richtigen Schutzbrillen tragen, oder sich 

außerhalb des Laserschutzbereiches befinden. 

13. Filtergläser in Laserschutzbrillen dürfen grundsätzlich nicht aus- oder umgebaut 

werden! 

14. In besonderem Maße auf Beistehende achten. 

15. Optiken (Linsen, Spiegel etc.) nicht direkt mit den Fingern berühren! 

 

 

Hiermit erkläre ich, dass ich die vorstehenden Punkte gelesen und verstanden habe. Ich 

bestätige, dass ich eine Einführung in den Umgang mit Lasern sowie eine arbeitsplatzbezogene 

Unterweisung erhalten habe. 

 

Name:        

Unterschrift:      Datum: 
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Abstract

The Hong–Ou–Mandel interferometer is an optical device that allows us to
prove the quantum nature of light experimentally via the quantum amplitude
superposition of two indistinguishable photons. We have implemented this
experiment as an advanced undergraduate laboratory experience. We were able
to overcome well-known difficulties using techniques reported recently by
Thomas et al (2009 Rev. Sci. Instrum. 80 036101).

(Some figures may appear in colour only in the online journal)

1. Introduction

Recent advances in quantum information have led to a revival of quantum mechanics and

its application in new technologies such as cryptogtraphy, teleportation and computation.

New demonstrations with single photons have led to an appreciation of the fundamental

properties of quantum mechanics and single-photon experiments are now included in quantum

mechanics instruction. A series of these experiments developed for the undergraduate

laboratory has successfully emphasized these fundamentals through direct experimentation.

Experiments such as proof for the existence of the photon [1], the quantum eraser [2] and

quantum non-realism and nonlocality [3] deliver results that embody almost 100 years of

discussion on the quantum nature of fundamental particles and light.

This paper presents the implementation of a landmark experiment in quantum optics in the

undergraduate laboratory: the Hong–Ou–Mandel (HOM) interference experiment [4]. Many

preceding investigations (see Pfleegor and Mandel [5–8]) aimed to show how Dirac’s statement

[9] about the quantum origin of interference is valid. This says that a photon can interfere

only with itself, but two different photons do not produce interference. It is now known that

interference of single photons exists [10], and it can be proven even in an undergraduate

laboratory [2]. However, Pfleegor and Mandel showed that two photons from different sources

0143-0807/12/061843+08$33.00 c© 2012 IOP Publishing Ltd Printed in the UK & the USA 1843
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Figure 1. The possible outcomes when an individual photon is incident on a beam splitter. If the

beam splitter is 50 : 50, then the probability of the photon being transmitted or reflected is 50%.

can still interfere. The HOM experiment shows that the interference of two photons occurs

when they are indistinguishable. Moreover, there is a subtlety that is worth emphasizing: two

photons do not interfere in a classical way, but rather it is the quantum mechanical amplitudes

for finding them that interfere.

We used this experiment in the context of our graduate and advanced undergraduate

quantum optics courses. At the graduate level, it represents one of the possible special projects

on a compulsory course (Laboratorio Avanzado) within the Master’s degree program, where the

student not only treats fundamental quantum principles in an experiment, but also manipulates

apparatuses and uses more sophisticated devices and technologies.

This paper is divided into three sections. The first section gives a theoretical description

of quantum interference for two photons in a 50 : 50 beam splitter, in particular we indicate

that it is dangerous to say that interference occurs ‘between’ two photons, because it leads to

the misconception that in classical interferometers photons would interfere with each other

and not with themselves. The second section discusses the experiment and the final section

discusses the results and how we used the experiment in the curriculum.

2. Quantum description of a beam splitter and the interference of two photons

We begin by considering a single-photon incident on a 50–50 beam splitter. If initially one

photon travels to the right but not ‘down’, i.e. coming from above in figure 1, it can be described

in the photon number representation by the Fock state, or photon occupation state:

|ψi〉 = |1〉R|0〉D, (1)

where the subindices R and D refer to the mode of the light traveling to the right and down,

respectively. In this problem the mode of the light where none is traveling ‘down’ may

appear trivial or unnecessary, but the use of the ‘vacuum’ state |0〉D is an integral part of the

quantized radiation field formalism. After the beam splitter, the quantum state of the light is

in a superposition of traveling in two directions

|ψ f 〉 =
1

√
2
(|1〉R|0〉D + i|0〉R|1〉D), (2)

A phase of π/2 is introduced in the state of the reflected light as is necessary to conserve

energy [15]. From equation (2) the photon entering has a 50% probability of being transmitted,

and a 50% probability of being reflected. If a detector is placed at each of the exits the
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Figure 2. Two indistinguishable photons entering the beam splitter at the same time.

wavefunction collapses and there will be an anticorrelation, which means that either the

photon is detected on transmission or the photon is detected on reflection [2, 10–12]. That a

photon is in a superposition state of two states is mathematically simple but physically hard

to explain to a beginning student. We can also say that the state of the photon is uncertain but

balanced because it is equally possible to detect the photon coming out either way. Feynman

is particularly insightful in his explanations of this superposition [13].

We have used the more intuitive Shrödinger picture to explain this phenomenon to the

beginning student. A more rigorous and commonly used method in quantum optics uses the

Heisenberg representation, photon-number creation and anihilation operators [14]. We will

continue with our intuitive approach for the next case.

Let us now turn to the case of two photons entering the beam splitter from two separate

ports, as shown in figure 2. A critical element of this case is the indistinguishability of the

paths taken by the two photons. The pump photon produces two photons that can arrive at

the detectors in two possible ways. The indistinguishability of the possibilities makes the

quantum mechanical amplitudes interfere.

The state of the light can be represented by |1〉R|1〉D. After the beam splitter the state of

the light is obtained by applying the beam splitter action to each occupied mode, and the state

vector results, |ψ f 〉:
1

2
(|1〉R|0〉D + i|0〉R|1〉D) (|1〉D|0〉R + i|0〉D|1〉R) (3)

=
i

2
(|2〉R|0〉D + |0〉R|2〉D), (4)

where we have made the condensation |1〉R|1〉R = |2〉R, and similarly for D. The terms with

|1〉R|1〉D cancel out when the paths are indistinguishable. Thus, the interference is destructive.

Experimentally, if we put detectors at the two output ports of the interferometer we would not

get any coincidences because of the destructive interference. Conversely, when the photons

arrive at distinguishable times the paths are distinguishable, and so the light is in an incoherent

sum of two photons, each incident on the beam splitter, as in the single-photon case. That

situation would lead to no interference and photons heading to the two detectors (and hence,

coincidences) half of the time.

3. Experiment

The HOM experiment consists of generating a pair of photons and making them converge

onto the input ports of a beam splitter. Detectors placed at the output ports of the beam
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splitter detect coincidences. When the photons are indistinguishable no coincidences are

recorded. The photons for the experiment come from a single source: photon pairs produced

simultaneously by spontaneous parametric down conversion (SPDC). In order for the photons

to be indistinguishable, they have to arrive at the beam splitter at the same time within the

coherence time of the light, and be in the same polarization, spatial and momentum modes.

The HOM experiment itself is notoriously difficult to recreate, especially in a teaching, non-

research setting because of the challenge of making the momentum modes of the photons

overlap. That is, the photons after the beam splitter must be collinear. As a consequence,

alignment is difficult and tedious. Our efforts benefited from a recent paper that explains a

simple way to reach the required alignment [16]. The arrangement also includes a way to vary

the time delay between the two photons, so to shift from the case when they are distinguishable

to the case when they are indistinguishable. When the latter is achieved one observes a drop

in the coincidences, the famous ‘HOM dip’. The light is collected by lens collimators attached

to multimode fibers, which send the photons to avalanche photo diode (APD) single-photon

detectors.

The HOM interferometer (HOMI) has three fundamental parts: the source of the pairs

of photons, an interferometer and a photon detection system. The interferometer has a dual

use: it is used as an interferometer (HOMI) in the experiments, and as a Mach–Zehnder

interferometer (MZI) for the alignment of the optics.

The SPDC source used in the experiment is a type I beta–barium–borate (BBO) crystal,

pumped by a 25 mW violet laser with a 405 nm wavelength. SPDC requires conservation of

energy and momentum inside the crystal

�ωp = �ω1 + �ω2, (5)

and

�kp = �k1 + �k2. (6)

It is very important for the experiment that the laser beam be parallel to the optical table so

that the pair of photons is detected in the same horizontal plane. This type of source produces

pairs of individual photons with the same polarization and which follow symmetric trajectories

about the pump laser beam direction, hereafter called the symmetry axis. In the degenerate case

(ω1 = ω2), the two photons come out of the crystal at the same angle θ = cos−1(kp ·ki/(kpki),

i = 1, 2, but on opposite sides of the symmetry axis.

The second important part of the interferometer is the alignment of the two photons

through the HOMI with the aid of the MZI. The procedure is described in the next steps. First,

we have to identify the angle of the photons, which in this case is 5◦ from the symmetry axis.

To do this, we use the simple procedure for alignment described in [3]. This method is based

on mounting the fiber collimators on two rails that pivot just below the nonlinear crystal. This

way the collimators always face the crystal as the rail is moved. The rail positions are adjusted

roughly to obtain the maximum number of individual photon counts at the detectors. A fine

adjustment is made by maximizing the number of coincidences between the two detectors.

Once this alignment is complete we know the optimal paths of the down-converted photon

pairs. The next step is to define these paths by placing two irises on each path, as shown in

figure 3.

This is used so the trajectories of the photons can be followed by a visible laser that

sets the mirrors of the HOMI. The initial hardware design should allow the swapping of the

nonlinear crystal with a beam splitter. The latter serves as the first beam splitter of the MZI, for

use with the visible laser. The positions of the crystal and the beam splitter should be the same,

and we should be able to swap both of them without introducing any major misalignment. In

our setup we used a vertical translation stage to displace the crystal upwards, and a horizontal
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Figure 5. Normalized coincidences versus displacement in optical path (�z). Each pace produced

by the motor modifies the optical path by 2 μm. The average coincidence count rate outside the

zone of interference is around 30−1.

emerges. It is important to note that the observation of a WL interference pattern implies that

the difference in optical path is near zero. We note that for the interferometer to be aligned

both the WL fringes and the thick guide laser fringes must be present.

After the alignment is complete the fiber collimators are placed in the trajectories of the

two beams after the second beam splitter. Finally, the last step is to replace the first beam

splitter with the nonlinear crystal, converting the MZI into a HOMI.

In the third stage of our experiment the individual photons went through a wide band filter

(810 ± 10 nm) before entering the collimators connected to the APDs by an optical fiber. The

detectors generated square pulses that were 25 ns long and 3.5 V in height. These were then

sent into a photon counting board. This board can detect coincidences between four inputs

[17] within a delay interval that can be adjusted to between 30 to 2500 ns. Before taking any

data, the collectors should be aligned as before, so there is a maximum number of counts of

individual photons. If the system has been aligned correctly, then the number of coincidences

per second in a 30 ns window should be very small. This is because of the destructive HOM

interference. If the optical path difference (�z) is changed by moving the stepper-motor-driven

stage, the paths may no longer interfere and the coincidence count will grow. There should

be a minimum of coincidence counts when the destructive interference is taking place. The

individual photon counts should be almost constant because the number of interfering photons

is very small and is only altered by the pairs of photons that interfere. Figure 5 shows the

behavior of the photon coincidences at the output ports of the beam splitter. The average count

rate of coincidences far from the interference zone is 30 s−1. A Gaussian function multiplied

by a sinc function was fitted to the experimental data. The fitting function depends on the

bandwidth of the down-converted photons and the difference in optical path [18].

4. Discussion and conclusion

The HOM dip measures the coincidences of photons that come out of the beam splitter.

The minimum number of coincidences illustrates the destructive interference of quantum

mechanical amplitudes. This interference is not the same as the single-photon, due to
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Hong-Ou-Mandel interference occurs when two indistinguishable photons interfere on a beam-splitter as shown in
FIG. 1. It is named after C. K. Hong, Z. Y. Ou and L. Mandel who experimentally verified the effect in 1987 [1].

a) b) c)

FIG. 1: a) Schematic of two photons incident on a beam splitter (BS) of reflectivity η, followed by single-photon detection in
each output mode of the BS. b) Photo of real beam splitter cube (image: Beam Robotics). c) Photo of an avalanche photo
diode (APD) detector, typically used in these types of experiments (image: Menlo Systems).

To model the effect, we begin by writing down a state consisting of two photons, one in each input mode of the beam
splitter.

|ψin〉 = |1; i〉a|1; j〉b (1)

= â†i b̂
†
j |0〉 , (2)

where a and b refer to the input modes and i and j describe a property of the photons that determines their
distinguishability. These could refer to the polarization of the photon (e.g. horizontal or vertical), or the fre-
quency of the photon, or the arrival time, or the transverse spatial mode (see e.g. [2]), or many other things.
For the time being, we’re going to keep it general and not make any assumptions about their level of distinguishability.

The effect of a beam splitter with reflectivity η can be modelled with a unitary Ûbs that has the following action on
the operators:

â†i → i
√
ηâ†i +

√

1− ηb̂†i ; (3)

b̂†j →
√

1− ηâ†j + i
√
ηb̂†j ; (4)

where the factor of i accounts for the phase acquired upon reflection from the BS. After passing through the BS, the
output state is

|ψout〉 = Ûbs|ψin〉 (5)

= (i
√
ηâ†i +

√

1− ηb̂†i )(
√

1− ηâ†j + i
√
ηb̂†j)|0〉 (6)

=
(

i
√
η
√

1− ηâ†i â
†
j + (1− η)â†j b̂

†
i − ηâ†i b̂

†
j + i

√
η
√

1− ηb̂†i b̂
†
j

)

|0〉 . (7)
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FIG. 2: Four different ways for two photons to interact with a beam splitter. Note that they used a different beam-splitter
phase convention than we were using (image: Wikipedia)

We can draw a diagram representing the situation that lead to each of these four terms (FIG. 2).

Let’s consider a beam splitter with reflectivity η = 1/2 and two photons of orthogonal polarizations; H and V . This
means that the photons are distinguishable. In this scenario, the output state is

|ψout〉 =
1

2

(

iâ†H â
†
V + â†V b̂

†
H − â†H b̂

†
V + ib̂†H b̂

†
V

)

|0〉 (8)

=
i

2
|1;H〉a|1;V 〉a +

1

2
|1;V 〉a|1;H〉b −

1

2
|1;H〉a|1;V 〉b +

i

2
|1;H〉b|1;V 〉b . (9)

In HOM interference, we are interested in the coincidence probability of detecting one photon in each output port
of the BS. We can see the only terms in Equation (9) where this happens are the two middle terms. Therefore, the
coincidence probability of detecting one photon in each output mode is p = 1/2.

Now consider the same beam splitter, but two input photons with the same polarization mode H. This means that
the photons are indistinguishable. In this scenario, the output state is

|ψout〉 =
(

iâ†H â
†
H + â†H b̂

†
H − â†H b̂

†
H + ib̂†H b̂

†
H

)

|0〉 (10)

=
(

iâ†H â
†
H + ib̂†H b̂

†
H

)

|0〉 (11)

=
1√
2
|2;H〉a +

1√
2
|2;H〉b . (12)

Note that the state is normalized because (â†)n|0〉 =
√
n!|n〉. Here, the coincidence probability of detecting one

photon in each output mode is p = 0. Incidentally, the state described in Equation (12) is a two-photon N00N state
|N〉|0〉 + |0〉|N〉 where N = 2 [3].

So we see that when two identical photons interfere on a symmetric beam splitter, the amplitudes for “both trans-
mitted” and “both reflected” perfectly cancel out.

I. THE HOM DIP

In the previous section, we considered the situations where either two photons were completely distinguishable or
completely indistinguishable. However, it is possible to tune the level of distinguishability. Consider a photon that has
some sort of spectral bandwidth characterized by the spectral amplitude function φ(ω). By controlling the time delays
between these two photons, it is possible to tune their level of distinguishability. This is shown schematically in FIG. 3.

We can describe a photon with the spectral amplitude function φ(ω) as follows:

|1;φ〉 =
∫

dωφ(ω)â†(ω)|0〉 , (13)

where â†(ω) represents a creation operator acting on a single frequency mode ω. The state is normalized such that

http://en.wikipedia.org/wiki/File:HOM.png
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a)

b)

c)

direction of propagation

indistinguishable

partially distinguishable

distinguishable

FIG. 3: Schematic demonstrating how changing the time delay between two photons with the same finite bandwidth affects
their level of distinguishability.

∫

dω|φ(ω)|2 = 1. The two photon input state can therefore be written as

|ψin〉 = |1;φ〉a|1;φ〉b (14)

=

∫

dω1φ(ω1)â
†(ω1)

∫

dω2φ(ω2)b̂
†(ω2)|0〉 . (15)

We now want to introduce a time delay in one of the modes, as shown in FIG. 4. The time delay has the following
action on the creation operators:

â†(ω) → â†(ω)e−iωτ . (16)

We can therefore write the time delayed state as

|ψtd〉 =
∫

dω1φ(ω1)â
†(ω1)

∫

dω2φ(ω2)b̂
†(ω2)e

−iω2τ |0〉 . (17)

We now want to send the photons through a beamsplitter. Let’s keep it simple and restrict the reflectivity to η = 1/2.

a) b) c)

FIG. 4: a) Schematic demonstrating how a time delay is introduced in the form of a phase shift. Sliding the prism into and
out of the photon path changes the effective distance that the photon has to travel therefore changing the time delay. b)
Schematic demonstrating how the prism changes the effective path length (image: NASA). c) Photo of actual optical prisms
(image: Creator Optics).

http://www.techbriefs.com/index.php?option=com_staticxt&staticfile=/Briefs/Sept99/LAR14637.html
http://www.creatoroptics.com/E-Prisms_p.htm
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The action of the beam splitter is given by

â†(ω1) → i
1√
2
â†(ω1) +

1√
2
b̂†(ω1); (18)

b̂†(ω2) →
1√
2
â†(ω2) + i

1√
2
b̂†(ω2); (19)

where the BS acts on each frequency mode independently. This gives the output state:

|ψout〉 =
1

2

∫

dω1φ(ω1)
(

iâ†(ω1) + b̂†(ω1)
)

∫

dω2φ(ω2)
(

â†(ω2) + ib̂†(ω2)
)

e−iω2τ |0〉 (20)

=
1

2

∫

dω1φ(ω1)

∫

dω2φ(ω2)e
−iω2τ

(

iâ†(ω1)â
†(ω2) + â†(ω2)b̂

†(ω1)− â†(ω1)b̂
†(ω2) + ib̂†(ω1)b̂

†(ω2)
)

|0〉 . (21)

In the previous section, it was simple to read off the coincidence probability from the state, but here, it is a bit more
tricky so we should calculate it explicitly. We will model each detector as having a flat frequency response. The
measurement operator describing the detector in mode c = a, b is given by

M̂c =

∫

dωcĉ
†(ωc)|0〉〈0|ĉ(ωc) . (22)

The coincidence probability of getting one photon in each mode is given by

pab = Tr[|ψout〉〈ψout|M̂a ⊗ M̂b] (23)

= 〈ψout|M̂a ⊗ M̂b|ψout〉 (24)

=
1

4

∫

dω1φ
∗(ω1)

∫

dω2φ
∗(ω2)e

iω2τ 〈0|
(

iâ†(ω1)â
†(ω2) + â†(ω2)b̂

†(ω1)− â†(ω1)b̂
†(ω2) + ib̂†(ω1)b̂

†(ω2)
)

×
∫

dωa

∫

dωbâ
†(ωa)b̂

†(ωb)|0〉〈0|â(ωa)b̂(ωb)

×
∫

dω′
1φ(ω

′
1)

∫

dω′
2φ(ω

′
2)e

−iω′

2τ
(

iâ†(ω′
1)â

†(ω′
2) + â†(ω′

2)b̂
†(ω′

1)− â†(ω′
1)b̂

†(ω′
2) + ib̂†(ω′

1)b̂
†(ω′

2)
)

|0〉

(25)

=
1

4

∫

dωa

∫

dωb

(

φ∗(ωa)φ
∗(ωb)e

iωaτ − φ∗(ωa)φ
∗(ωb)e

iωbτ
)(

φ(ωa)φ(ωb)e
−iωaτ − φ(ωa)φ(ωb)e

−iωbτ
)

(26)

=
1

4

∫

dωa

∫

dωb|φ(ωa)φ(ωb)|2
(

eiωaτ − eiωbτ
)(

e−iωaτ − e−iωbτ
)

(27)

=
1

4

∫

dωa

∫

dωb|φ(ωa)φ(ωb)|2
(

2− ei(ωb−ωa)τ − ei(ωa−ωb)τ
)

. (28)

Let’s take a look at what pab looks like given photons with Gaussian spectral profiles, φ(ω) = e
−

(ω−ω0)2

4σ2

(2π)1/4
√
σ
. The

normalization was chosen such that
∫

dω|φ(ω)|2 = 1.

pab =
1

4πσ2

∫

dωae
− (ωa−ω0)2

2σ2

∫

dωbe
− (ωb−ω0)

2

2σ2

− 1

8πσ2

∫

dωae
− (ωa−ω0)2

2σ2 e−iωaτ

∫

dωbe
− (ωb−ω0)

2

2σ2 eiωbτ

− 1

8πσ2

∫

dωae
− (ωa−ω0)2

2σ2 eiωaτ

∫

dωbe
− (ωb−ω0)

2

2σ2 e−iωbτ

(29)

pab =
1

2
− 1

2
e−σ2τ2

. (30)

This is plotted in FIG. 5 a) in blue.

Let’s see what happens when we take φ(ω) =
√
σ√
π
sinc(σω). Why am I interested in this particular shape? One of the

most common methods of generating single photons relies on the process of spontaneous parametric down conversion
(SPDC). This is a nonlinear process where an intense laser beam is used to pump a nonlinear crystal. Every now-
and-then, a photon from the pump beam spontaneously “splits” into two lower energy photons which satisfy energy
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and momentum conservation with the pump photon. A pair of photons come out of the crystal, and conditional on
detecting a photon in one mode, we know that we have a photon in the other mode. This is called “heralding”. It turns
out that the spectral profile of the down-converted photons is related to the Fourier transform of the non-linearity
profile of the crystal, which for a constant nonlinearity, takes on a “top-hat”. The Fourier transform of a “top hat”
function is a sinc. Using a sinc spectral profile gives the coincidence probability

pab =
((τ − 2σ)sgn(τ − 2σ) + (2σ + τ)sgn(2σ + τ)− 2τsgn(τ))2

16σ2
, (31)

where

sgn(x) =







1 if x > 0
0 if x = 0
−1 if x < 0

. (32)

This is plotted in FIG. 5 a) in red. Even though I said that heralded single photons generated via SPDC take on a
sinc profile, it’s a bit more complicated than that. I won’t go into details about this now, but it is to do with spectral
correlations and reduced purity. I am pointing this out so you don’t get confused if you never see the red curve in
FIG. 5 a) in any real experiments.

However, we can model a realistic experiment if we take the two photons generated via SPDC and rather than
heralding on one of them, we send each one into one input mode of the beam splitter. The output state from an
SPDC source is often highly correlated in frequency and we can write it as

|ψspdc〉 =
∫

dωa

∫

dωbf(ωa, ωb)δ(ωa + ωb − ωp)â
†(ωa)b̂

†(ωb)|0〉 (33)

=

∫

dω′f ′(ω′)â†
(ωp

2
+ ω′

)

b̂†
(ωp

2
− ω′

)

|0〉 (34)

where ωp is the frequency of the pump beam, ω′ = ωa − ωp

2 , and I don’t want to go into how f(ωa, ωb) relates to
f ′(ω′). The coincidence probability will be given by

pab =
1

4

∫

dω′|f ′(ω′)|2
(

2− e−i2ω′τ − ei2ω
′τ
)

. (35)

Typically, f ′(ω′) will be the sinc of a non-linear function of ω′, but there are easily-accessible regimes where we can

approximate it be the sinc of a linear function of ω′: f ′(ω′) =
√
σ√
π
sinc(σω′). This gives the coincidence probability

pab =
1

2
− 1

4σ
((σ − τ)sgn(σ − τ) + (σ + τ)sgn(σ + τ)− 2τsgn(τ)) . (36)

This is plotted in FIG. 5 b) in red. When the down-converted photons are spectrally correlated as in Equation (34),
the shape of the HOM dip will be convolution of the spectral function with itself. One place where you can see

�3 �2 �1 1 2 3
Τ

0.1

0.2

0.3

0.4

0.5

pab

�3 �2 �1 1 2 3
Τ

0.1

0.2

0.3

0.4

0.5

pab

a) b)

FIG. 5: a) Coincidence probability using σ = 1 for Equations (30) in blue and (31) in red. b) Coincidence probability using
σ = 1 for Equations (37) in blue and (36) in red.
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experimental data for an inverse triangle like this is in a recent paper of mine [4]. The original HOM paper [1] also
used this type of source, but why didn’t they see an inverse triangle? If you look at the figure in the paper, they
have UV filters in front of the beam splitter. These filters would have had a Gaussian profile and been much more
narrow than the original sinc function, resulting in photons with a Gaussian profile. The coincidence probability for

a spectrally-correlated Gaussian function f ′(ω′) = e
−
(ω′

−ω0)
2

4σ2

(2π)1/4
√
σ

is

pab =
1

2
− 1

2
e−2σ2τ2

. (37)

This is plotted in FIG. 5 b) in blue.

One more fun fact. The visibility of the HOM dip, given by

V =
max−min

max +min
, (38)

is related to the density operators of the two photons by

V = Tr[ρ̂aρ̂b] . (39)

If the two photons are the same, i.e. ρ̂a = ρ̂b, then the visibility is equal to the purity of the photons

V = Tr[ρ̂2a] = P . (40)

Remember above when I said that the situation of heralded photons is a bit complicated due to spectral correlations?
Have a look at the two-photon state in Equation (34). This state is not only correlated in frequency, but it is also
entangled in frequency. So if we use a detector with a flat (or even just broad) spectral response, to detect one of
the photons, we will have to trace out over all frequencies to write down the state of the remaining photon. This is
going to be mixed in frequency, and a mixed state is not pure. If you are interested in this, you can read about it in
a paper I wrote a couple of years ago [5].

People go to a lot of effort to try and minimize these spectral correlations. One common way is to just filter the
crap out of the photons. This has disadvantages like reducing your count rates. It also becomes problematic if you
are trying to create higher photon number Fock states because the filters then introduce mixing in photon-number.
Another method is to try and engineer the spectral function. See for example [6]. So let’s say you have gone to all
this effort to make a state that is less mixed and you want to check its purity. One way to do this is to prepare two
of these states and then interfere them on a beam splitter and perform a HOM interference experiment. By looking
at the visibility, you can determine how pure your states are.
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We have observed an effect known as a quantum eraser, using a setup similar to one previously em-

ployed to demonstrate a violation of Bell s inequalities. In this effect, an interfering system is first ren-

dered incoherent by making the alternate Feynman paths which contribute to the overall process distin-

guishable; with our apparatus this is achieved by placing a half wave plate in one arm of a Hong-Ou-

Mandel interferometer so as to rotate the polarization of the light in that arm by 90. This adds informa-

tion to the system, in that polarization is a new parameter which serves to label the path of a given pho-

ton, even after a recombining beam splitter. The quantum "eraser" removes this information from the

state vector, after the output port of the interferometer, but in time to cause interference effects to reap-

pear upon coincidence detection. For this purpose, we use two polarizers in front of our detectors. We

present experimental results showing how the degree of erasure (which determines the visibility of the in-

terference) depends on the relative orientation of the polarizers, along with theoretical curves. In addi-

tion, we show how this procedure may do more than merely erase, in that the act of "pasting together"

two previously distinguishable paths can introduce a new relative phase between them.

PACS number(s): 03.65.Bz, 42.50.Wm, 42.50.Dv

I. IN IRODUCTION

Interference is arguably the most fundamental effect in

quantum mechanics, the Young's two-slit experiment be-

ing the canonical manifestation of complementarity. As

discussed by Bohr in his classic dialogue with Einstein, if
one tries to measure the momentum of the recoiling slits

to determine which slit the particle (e.g., photon, elec-

tron, atom, etc.) traversed, then one will observe particle-
like behavior, and no interference (wavelike behavior}

will arise. In a variant of this example, Feynman pro-

posed to "watch" the passage of an electron through a
particular slit by placing a light source immediately after
the slits and scattering photons off the electron [1]. Even

if one does not observe the scattered light, the electron
interference will be washed out (whenever the light is

scattered suSciently to carry unambiguous information

about which slit was traversed).

This loss of interference is commonly interpreted as

arising from uncontrollable, irreversible interactions of
the interfering system with the environment, which often
takes the form of a macroscopic apparatus [2]. The re-

sulting measurement "reduces" the wave function of the
interfering system, including any phase information car-
ried by the particle, thereby eliminating the possibility of
interference. In Feynman's example, scattering light off
the electron changes its center-of-mass wave function in

an uncontrollable manner, removing the phase coherence
between the two paths. While it is true that many mea-

surements are of this sort, there are situations where the
measurement process need not be so uncontrollable. In
these cases it is more helpful to view the loss of coherence
as due to an entanglement of the system wave function
with that of the measuring apparatus [3]. We will show

below how this destroys interference. We can also under-

stand all of these results in terms of Feynman's rules for

calculating probabilities: (i) Probability amplitudes of in

distinguishable paths are summed, then absolute squared,

to yield the probability; this leads to interference terms.

(ii} Probabilities of distinguishable paths are summed,

yielding no interference. Thus it is the distinguishability

of alternative paths which prevents interference. When

information exists about which way (welcher Weg) the

particle went, the paths are distinguishable, and no in-

terference is possible. Interference may be regained, how-

ever, if one somehow manages to "erase" the distinguish-

ing information. This is the central concept of the quan-

tum eraser [4]. A nice review article on this and the re-

lated ideas of complementarity recently appeared in Ref.

[5]
Scully et al. [6] discussed a simple experiment to see

this effect, in which an atom is sent through a Stern-

Gerlach interferometer [7]. Upon measurement of the
atom's passage through one arm of the interferometer,

the interference is made to vanish. This is true even if the

measuring apparatus does not change the spin state of the

atom, or affect the center-of-mass part of its wave func-

tion. Unfortunately, detailed calculations of the pro-

posed experiment made clear that it would probably not

be feasible in practice, due to the experimental diSculty
of controlling the fields to the degree necessary to observe

interference, even in the absence of a welcher 8'eg detec-

tor [8,9]. Another proposal using a two-slit type interfer-

ence of neutrons, with micromaser cavities as melcher

Weg detectors was also deemed very difficult [10]. To
date, the most promising of the proposed experiments on

particles involve the interference manifested in the quan-

tum beat phenomenon [10,11]. However, in addition to
also being rather dif5cult, though possibly feasible, these

experiments suffer the conceptual disadvantage that there

Q~1992 The American Physical Society
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are not actually spatially distinct paths as in the double-

slit versions. A somewhat different scheme with photons
using optical parametric amplifiers as me(cher 8'eg detec-
tors was also recently proposed [12]. However, only par-
tial erasure is possible, and even then the practical obsta-
cle of lack of near-unit efficiency photon detectors must

be overcome.

As described below, we have performed a comparative-

ly simple experiment involving the interference of pho-

tons, which we believe demonstrates all the salient
features of the quantum-eraser phenomenon [13]. The
melcher 8'eg information is stored in the polarization
states of the photons, which are made distinguishable by
means of a half wave plate. The erasure is performed by
means of polarizers placed before the detectors. In Sec.
II we briefly describe our setup and the two-photon light

source in our system. The nonclassical interference effect

we employ is reviewed in Sec. III, introducing the neces-

sary quantum-field-theory formalism. The loss of this in-

terference is investigated theoretically in Sec. IV, and ex-

perimental results are shown. A simple derivation of the

quantum-eraser effect is presented in Sec. V, as are exper-

imental results. We show that not only is it possible to
recover interference, but also to change the form of the

interference pattern. A comparison of our experiment

with the various proposals is made in Sec. VI, along with

a discussion of its relation to some Bell s inequalities ex-

periments and other two-photon experiments. The main

results are summarized in Sec. VII. Throughout we will

try to explain the phenomena both at an intuitive level

using Feynman's rules, and also at a more formal level,

using the established quantum field-theoretic approach to
photodetection and correlation.

II. EXPERIMENTAL SETUP

A schematic of our apparatus is shown in Fig. 1.

Highly correlated pairs of photons are produced in a non-

linear crystal via the process of spontaneous parametric

down-conversion of a uv pump beam, generated by an

argon-ion laser. The y' ' nonlinear medium is a 10-cm-

long potassium dihydrogen phosphate (KDP} crystal,
with the direction of the optic axis cut at 53 with respect

to the end faces, for type-I phase matching. The 351.1-

nm pump photons are spontaneously "split" into conju-

gate photons (conventionally denoted "signal" and
"idler" }, which are horizontally polarized. With irises (2

mm diameter) and filters (10 nm bandwidth) at our detec-

tors, we select out the nearly degenerate pairs at 702.2
nm. Each detector consists of an RCA C30902S
avalanche photodiode (APD) cooled to —18'C, whose

output is fed into an EG8cG-Ortec Model 583 constant
fraction discriminator.

This particular light source has been well studied, and

has been used previously in other investigations of funda-

mental quantum optical phenomena [14]. In one such

configuration, the Hong-Ou-Mandel interferometer [Fig.
2(a)], the two correlated photons are brought back to-

gether by means of two mirrors, so that they impinge

simultaneously on the surface of a translatable beam

splitter [15]. We measure singles and coincidence rates at
the output ports (using a Stanford Research Systems

SR400 Gated Photon Counter). As explained in the fol-

lowing section, if the beam splitter is placed such that the

two photons reach it essentially simultaneously (i.e.,
within their coherence times), interference will result, in

such a way that both photons always exit the same port
of the beam splitter. Thus a null in the coincidence rate

appears as the path length of one of the arms is slowly

scanned, even though the singles rates remain unchanged.

The width of the dip [=40 pm full width at half max-

imum (FWHM)] is determined by the filters in front of
the detectors. In practice, it was preferable to vary the

relative path length using an "optical trombone" in one

arm of the interferometer, thus avoiding the problem of
lateral walkoff associated with translating the recombin-

ing beam splitter directly. (One can show that dispersive

effects of the trombone prism have essentially no effect on

the interference dip [16].) Translation of the prism was

effected by a Burleigh Inchworm piezoelectric motion

system; a Heidenhain optical encoder yielded a position

resolution of 0.1 pm.

Argon
ion laser

KDP
cylindrical
lens

trombone
prism

P2

D1
coin c.

o
counter

)D2

FZ

FIG. 1. Schematic of experiment to observe quantum eraser. D1 and D2 are avalanche photodiodes, P1 and P2 are polarizers, F1

and F2 are bandpass filters, and HWP is a half wave plate whose optic axis is at an angle P/2 to the horizontal polarization of the

down-converted beams.
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FIG. 2. (a) Simpli5ed setup for a Hong-Ou-Mandel interferometer. (b) Feynman paths for coincidence detection.

III. HONG-OU-MANDEL INTERFERENCE

One can explain the coincidence null at zero path-

length difference using the Feynman rules for calculating

probabilities. The two indistinguishable processes [Fig.
2(b)] which lead to coincidence detection in the above set-

up are both photons being reflected at the beam splitter

and both photons being transmitted. For simplicity, sup-

pose we have a 50:50 beam splitter, and choose the ampli-

tude transmission coeScient to be real. The Feynman

amplitudes are then r X r and t X t, and the probability of
a coincidence detection is

P, =lrXr+tXtl = X + X =0,
2 2 2 2

where the factors of i come from the phase shift upon

reflection at a beam splitter. When the path-length

difFerence is greater than the coherence length of the pho-

tons (i.e., when the photon wave packets no longer over-

lap at the beam splitter), there is no such cancellation

effect and coincidence events occur one half of the time,

since each photon indiuidually has a 50% chance of being

reflected or transmitted.

More formally, we write the wave function after the

beam splitter in terms of Fock states:

and

'(tj)= f dao& (to)e ' (j =1,2) .

(4)

We have neglected polarization for the moment, which is

justified because the photons are both horizontally polar-

ized, and our detectors are polarization independent. At
zero path-length difference the integrals over frequency

contribute only an overall normalization factor [19]. We

can then understand the essence of the measurement de-

scribed by Eq. (3} by considering the reduced operator
formed by creation and annihilation operators for the

two detector modes: P, „d—:a,&2a28, . Clearly, P, „d
gives zero when it operates on Ig&a —0 as given in Eq.
(2).

When the path-length difference is greater than the

coherence length of the down-converted photons

( hx » r, ), the "transmission-transmission" and

"reflection-reflection" coincidence possibilities are in

principle distinguishable, so they do not interfere. In this

limit, we find

P, (6& »&, ) = (1)12IP„,.dl 1)lg&
1

defined in terms of creation and annihilation operators as

k)~+'(tj )
=f dto'ttj(co)e

I g &a.=p —
—,
'
[ I

I ]12&+ t 12]02 &+ i 10]22 &
—

I
I ]12& ]

~ 4

+ (5)

=—[I2&0z)+ IO&22) ],
2

(2)

P, =G' '(t) t2, t2, t) )

=(yl&', '(t, )&', '(t, )&,'+'(t, )', "(t,)lg&, (3)

where, omitting irrelevant normalization constants, the

positive- and negative-frequency field operators are

where the subscripts denote the propagation modes to the

two detectors, and the subscript of
I P ) indicates zero

path-length difference. As discussed in earlier works

[14—17], the conjugate photons actually have a relatively

broadband frequency distribution, which is determined in

practice by irises and filters in front of the detectors.

However, since we operate near degeneracy, and since we

are considering zero path-length difFerence, this generali-

zation is an unnecessary complication for our purposes.

According to the standard theory of photodetection and

photon correlation [18], the coincidence counting rate is

given by the fourth-order correlation function

(The reduction by a factor of 2 reflects the fact that we

are only considering coincidence counts, not cases where

both photons go to the same detector. )

This demonstrates the coincidence dip at zero path-

length difference to the beam splitter. Note that the

singles rate at either detector, given by

P, =G"'(t;t }=(Plk' '(t )E"+'(t )lg), does not show

this dependence on path-length difFerence. It has been

shown that as long as the visibility of the coincidence dip

is greater than 50%, no semiclassical field theory can ac-

count for the observed interference [20].

IV. LOSS OF INTERFERENCE

In the spirit of the Feynman two-slit experiment, we

ask if one can perform a "measurement" on the photons

which will yield which-way information. Of course, we

could place an APD or photomultiplier directly in one of
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the input arms of the interferometer, but then lack of
coincidence is a trivial consequence. We consider instead

what happens when a half wave plate at an angle P/2 to
the horizontal is inserted into one input arm of the inter-

ferometer, as depicted in Fig. 1 (and we adjust the trom-

bone to compensate for the optical path length of the
wave plate). The polarization of the photon in that arm

is then rotated by P, making the two Feynman paths par-

tially distinguishable, thereby reducing the amount of in-

terference. The degree to which the interference is lost

depends on the angle P, and is calculated below. In the

extreme case (P/2=45') the polarization states of the

two different photons reaching the beam splitter are or-

thogonal. The two paths are now completely distinguish-

able and the amplitudes are squared before being

summed. The result: no interference. These effects are
shown in Fig. 3(a).

In terms of our earlier formalism, we have entangled

the number-state basis wave function with polarization
information:

(6a)

where the notation H indicates that the photon reaching

detector j is horizontally polarized, and (H +P )J
indi-

250--

~ 150--
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Le

4J
Cl
C
4J

~~ 100—
~~
O
U

(a)
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A ~
ALA

A oo o o
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o
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Half wave plate angle
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FIG. 3. (a) Profile of interference dip in coincidence rate for three wave plate orientations. {Accidental coincidences have been

subtracted, and rates far from dip have been normalized to the same value. ) Note that the interference effect is seen to vanish when

the wave plate is at 45, i.e., when the input ports to the beam splitter are made distinguishable. (b) Visibility as a function of half

wave plate angle. The solid line is a fit to theory, with maximum visibility as the free parameter. The experimental points do not lie

exactly on the same curve because slight fluctuations in alignment affect the visibility.
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~y)
—i [~IHIH+P) ~IH+PIH)] (6b)

cates that the photon is polarized at an angle P to the

horizontal. We have already omitted the kets in which

both photons go to the same detector, since we are in-

terested here in coincidence rates. We introduce the fol-

lowing simplified notation:

To account for polarization, the field operators may

now be generalized to the vector operators

Sj &j ~6j H +&j pEj'p' and aj =
Bj 0' 0+Ij p'6j p where

ej H and ej. v are orthonormal polarization vectors (asso-

ciated with detector index j =1,2) in the horizontal and

vertical directions, respectively. The new reduced opera-

tor relevant for coincidence counting is then

A, ),A2=H, V

=(a) a()(a2 ag) =(&),It&),H+II i, v'tt&, v )(tie, ett2„H+II2,v&z, v

Using the expansion ~1, +~&=
~1, &cosp+IIJ~&»nk

find

P, (0)=(1(~P „„~y&,„=,=-,'sin'y .

When the path-length difference is greater than the pho-

ton coherence length, the calculation of the coincidence

rate proceeds as before:

P,(xx»r, ) = &
I~I~+~—~P'„,

~

IHI" +~)

+ ~ 1 '~1 IP'
I

I~+'IH& = (9)—

The visibility of the dip, defined as V=[P, (b,x

»r, ) P, (bx =0)—]/P, (bx »r, ), has the form cos P.
The experimental demonstration of this relationship is

shown in Fig. 3(b). The lack of perfect visibility even at
/=0 results from imperfect alignment of the system, so

that the signal and idler modes leaving the beam splitter

are already somewhat distinguishable, regardless of their

polarization.

Following Scully, Shea, and McCullen [6], one can also

approach the loss of interference in terms of the density

matrix. When the photon-propagation states are entan-

gled with the polarization states, the density matrix of
the system is enlarged. It still represents a pure state,

however, with the quantum coherence of the entangle-

ment manifested in the off-diagonal matrix elements. The
"collapse" to a mixed state occurs when we trace over the

polarization degrees of freedom, i.e., when we detect the

final propagation direction of the photons irrespective of
their polarization. In this case the reduced density matrix

has only diagonal elements, because the polarization
states ~H~ ) and

~

V. ) (which are essentially the "environ-
ment" for our purposes) are orthogonal. This is precisely
the method of decoherence recently discussed by Zurek,
although he focused on an environment which was either
"uncontrollable" or possessed a large number of degrees

of freedom [21]. In either case, the process is effectively

irreversible, which is certainly not the case in our experi-

ment, as we sha11 see presently.

V. QUANTUM ERASER

The essence of the quantum eraser can be understood

relatively easily now in Feynman s language of distingui-

shability. As we have seen, with the half wave plate at
45'(/=90') the two paths leading to coincidence detec-

tion ("reflection-reflection" and "transmission-

transmission") are distinguishable; they leave the light in

each port in a different polarization state. For this

reason, their probabilities are to be added incoherently,

and there is no interference term. What if one could erase

the information carried by the polarization, thus making

the final states indistinguishable? This is precisely what

happens when one places polarizers oriented at 45' to the

horizontal in both output ports of the interferometer.

(See Fig. 1.)
Both paths can lead to coincidence detection, and to

the same final state. Therefore their probability ampli-

tudes are added, thus reviving the Hong-Ou-Mandel in-

terference dip at equal path length. Note that the inser-

tion of a polarizer in only one of the output ports is

insuScient to erase the distinguishability of the final

states, because the photon in the other port still possesses

welcher 8'eg information. Hence the only effect of a sin-

gle polarizer is to reduce both the singles and the coin-

cidence count rate by half.

The editing accomplished with two polarizers is not

limited to erasure, as can be motivated by the following

observation. Regardless of the rest of the system, the

light in port 2 can always be broken up into its orthogo-

nal polarization components. But we just saw that with

both P1 and P2 at 45', the interference dip reappeared

(albeit attenuated by a factor of 4). Furthermore, we ar-

gued that the coincidence profile with polarizer P1 at 45

and P2 not in place was a flat line. It is clear then that if
P1 is placed at 45 and P2 is placed at —45', instead of a

dip, a peak centered at zero path-length difference will

now appear. These theoretical results are presented in

Fig. 4(a) and our data in Fig. 4(b). As shown below, this

is merely a specific instance of a more general property of
the two-photon state emitted by the interferometer. (It
should be noted that the possibility of producing a peak



7734 KWIAT, STEINBERG, AND CHIAO 45

at zero path-length difFerence greatly aids the alignment

process for the Hong-Ou-Mandel interferometer. }

We now present a simplified analysis, limiting our-

selves to the case / =90'. A more complete calculation is

presented in the Appendix. The output of the inter-

ferometer is given by a special case of the entangled state

in Eq. (6b):

(10)

where we have again dropped terms which could not lead

to coincidence counts. Detection of a photon at one port
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FIG. 4. (a) Theoretical curves showing how two polarizers at appropriately chosen angles can erase distinguishability, restoring an

interference pattern. (b) Experimental data and scaled theoretical curves (adjusted to fit observed visibility of 91%)with polarizer 1

at 45 and polarizer 2 at various angles. Far from the dip, there is no interference and the angle is irrelevant. At the dip, the nonlocal

collapse of the polarization of photon 2 causes us to observe sinusoidal variation as predicted in Eq. (13). [Normalization is the same

as in Fig. 3(a).]
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FIG. 5. Plot of coincidence rate vs relative angle of polarizers 1 and 2, corrected for accidentals. The smooth curve is a fit to

theory, with visibility as a free parameter.

with no polarizer collapses the remote photon into a

mixed state with half polarized horizontally and half po-

larized vertically. However, if a linear polarizer is placed

at an angle 8& to the horizontal in output port 1, a detec-

tion event at detector 1 corresponds to a von Neumann

projection in the subspace corresponding to that port

onto the state vector !8,) =(!1,)cos8, +!1,")sin8, }. We

are left with a pure state for the conjugate photon:

&8, !y&~,=-, (!If)cos8, —
!I, &sin8, & .

Examining output port 2 with another polarizer, we ob-

serve that the light in this mode is polarized orthogonal

to 8„the probability amplitude is
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FKx. 6. Erasure also occurs, but in a somewhat different fashion, if the two polarizers are kept at the same angle and scanned to-

wards 45'. ~ith perfect visibility, the absolute angle would affect only the count rates far from the dip (clearly, at 0' or 90 no coin-

cidences can ever be observed), and a total null would be observed at the dip because the two photons in the "singlet" state of Eq. (10)

are always orthogonal. (The data are normalized to singles and corrected for accidentals. )
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& 828i it( &a&=p &
( & 12 lcosOp+ & lp lsln82)

X(llz &cosO, —l12 &sinO, )

=
—,
'
(sinOzcosO, —cos82sinO, )

=
—,'sin(Oz —8, ) .

Thus

P, (0)=l&8,8 lg&
„

l

=
—,'sin (8 —8, ) .

(12)

(13)

VI. DISCUSSION

The relationship between our experiment and other

proposed quantum-eraser schemes is rather subtle. For
comparison, we will focus on a particular proposal by

Scully, Englert, and Walther [22], in which excited atoms

are made to interfere in a two-slit-type geometry. A mi-

cromaser cavity is placed in each of the interfering paths,

and prepared so that an atom passing through will decay

with near certainty, leaving a photon in the cavity. For
certain initial states of the cavity fields (i.e., number

states), the extra photon from the decay constitutes

welcher Weg information, and the first- order interference

effect (fringes visible in singles detection of the atoms) is

washed out. By a11owing the cavity fields to subsequently

interfere at a suitably placed detector, quantum erasure

may be accomplished. However, as the authors stressed,

this erasure is fundamentally a second-order

phenomenon, in that the fringes can only be seen by

correlating the photon counts with data stored elsewhere.

In principle the decision of whether or not to erase could

be postponed indefinitely, even beyond the time of detec-

tion of the atoms.

Our experiment differs somewhat from this proposal in

that the basic Hong-Ou-Mandel interference effect is in-

trinsically a second-order, quantum-mechanical effect.

Hence the interference dip can be revived, but depending

on the relative angle of the polarizers (see Fig. 5), it may

be phase shifted and thus reappear as a peak, or any in-

termediate form [E.quation (13) may be recognized as a

typical prediction of quantum theory when applied to
certain tests of Bell s inequalities. This is hardly a coin-

cidence, for the same nonlocal effect is responsible for
both phenomena. We will discuss the relationship be-

tween our quantum-eraser experiment and similar Bell' s

inequalities experiments in Sec. VI.]
On the other hand, when the path-length difference is

great compared with the coherence length of the photons,
the probabilities for the two different paths leading to
coincident detection add incoherently regardless of any

polarizers:

P,(»»r, ) = I-,
'

& Oi8211 i 12'& I'+ —,
'

&OiOpl 1 i"lp &
I'

=
—,
' [cos Oisin 82+sin O,cos 82]

=
—,
' [sin (82—8, )+sin (82+8, )] . (14)

This varies with absolute angle, in contrast to Eq. (13),
since horizontal and vertical components act indepen-

dently (see Fig. 6).

That is, fringes are never visible in singles detection, and

coincidence fringe visibility above 50% defies semiclassi-

cal explanation. While this puts the pre- and post-eraser

fringes on the same footing, it has a disadvantage in that

the distinguishing information we add and then erase is

carried by the same photons which are to interfere. We

maintain that this difference is not as fundamental as it

may first appear. Although our photons themselves carry
the information describing which trajectory they took,
they do so only via their polarization vectors. We erase
the information after they have already left the inter

ferometer, and without affecting their center-of-mass

wave function. In both Scully, Englert, and Walther's

proposal and the present experiment, the measurement of
which-way information consists of coupling the interfer-

ing particle's spatial wave function to the disjoint Hilbert

space describing the welcher 8'eg detection system (e.g.,
micromaser cavities or photon polarization space). While

this does not affect the spatial wave function, it does en-

large the Hilbert space in which it resides. It is the en-

largement of the Hilbert space through entanglement,

and subsequent reduction, which is the central feature of
the quantum eraser.

It is useful to consider a slight gedanken variant of our

experiment, which is in principle identical to it. We em-

ploy polarizing beam splitters, rather than simple polariz-

ers, so that both polarizations may be detected. A com-

puter then stores in one file the times of photon detection
events (regardless of polarization), and in another file the

polarizations of the detected photons. (Note that by

making a polarization-insensitive quantum nondemoli-

tion measurement before the polarizers, one could delay

the choice of polarizer orientations until after the coin-

cident detection measurement. ) Varying the orientation

of the polarizing beam splitter then affects only the

second file, and not the first; no interference is discernible

in the first file until the data are correlated with that in

the other file. As this may be performed long after the

data are originally stored, we have a "delayed-choice"

version of the quantum eraser.

Zajonc et al. have recently discussed two experiments

in connection with the quantum eraser [23]. One of the

experiments, while certainly a remarkable demonstration

of complementarity, differs fundamentally from the

quantum-eraser proposal in that it is entirely a first-order,

not a second-order, interference effect. Detection events

are never correlated with measurements on the "environ-

ment,
"

and no delayed-choice version would be possible,

even in principle. Their other result involves an interfer-

ence effect which exists only in coincidence detection, as

in our own experiment. The "'delicate' change" which

leads both to distinguishability and to erasure in their ex-

ample is the removal and reinsertion of a beam splitter in-

side the interferometer [24]. In this sense, it is not a

quantum eraser since it is the structure of the interferom-

eter itself, and not just the structure of the detection

scheme, which determines once and for all the presence

or absence of interference fringes.

Some of the results presented here have been observed

previously by other researchers, in the context of nonlo-

cal correlations and Einstein-Podolsky-Rosen experi-
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ments [25,26]. Our goal was to shift some of the focus to
the phenomenon of quantum erasure, which is another

striking aspect of quantum entanglement. The central

element in many, if not most, tests of Bell's inequalities to
date is the singlet state of the correlated photons [27].
Although our photons are not produced in such a state in

the down-conversion process, it arises when their polar-
ization states are entangled with their propagation modes

(i.e., lower or upper arm) [28]. From this perspective, the

quantum eraser and the Bell-type tests are just different

approaches to investigating and understanding the char-

acter of the entangled states. One might then argue that
some of the previous Bell-type tests were the first

quantum-eraser results. However, we believe that it is

important to demonstrate the loss of interference before

reviving it, an aspect that, to our knowledge, has not

been covered in any Bell-type experiments. Furthermore,
the general goals of the two viewpoints differ. While the
Bell's inequalities experiments seen to disprove the reality

of local hidden variable models, the quantum eraser
stresses the loss of coherence through entanglement with

the environment,
"

and the possibility of recovering that
coherence in certain circumstances.

when the two photons are superposed at a beam splitter

was made to vanish when the alternate processes leading

to coincidence counts were made distinguishable. For
this purpose a half wave plate in one arm of the inter-

ferometer served to entangle the photon spatial wave

function with the polarization subspace. Using polarizers

at the output, it was then possible to restore interference,

and even to alter its form.

One of the things the quantum eraser teaches us is that

the state involved in interference is the total physical

state, which in addition to photon spatial wave functions

may include photon polarization, or even distant atoms

with which the photons have interacted. In all realiza-

tions of the quantum eraser, the "magic" comes about

through entangling the interfering system with some oth-

er degrees of freedom. The eraser "meddles" with the in-

terference only via this entanglement, regardless of
whether the extra information is stored in states of re-

mote atoms or in the polarization components of the pho-

tonic wave functions. The process allows the introduc-

tion of an arbitrary phase between different components

of the entangled state; in this sense, the phenomenon is

better described as quantum editing.

VII. CONCLUSIONS

The quantum eraser offers an alternative perspective

on interference and loss of quantum coherence in terms

of (in)distinguishability of paths. Alternate paths are

made distinguishable by correlating them to the "envi-

ronment. "
Depending on how we reduce the resulting

enlarged Hilbert space, we may opt to retain toelcher 8'eg

information and have no interference, or to reestablish in-

distinguishability and interference. We may make this

choice long after the original interfering system has been

detected, by correlating that data with the results of par-

ticular measurements on the environment with which the

system was entangled. Of course, this demands that the

coherence of the relevant environmental states be main-

tained.

Proposed experiments using atoms or neutrons, while

intellectually engaging in principle, are at best very

diScult in practice. We have seen that it is possible to
demonstrate the essential features of the quantum eraser

using a comparatively simple arrangement involving the
correlated photons produced in spontaneous parametric
down-conversion. The interference normally present
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APPENDIX

As a preliminary to the general calculation of the

quantum eraser effect, with arbitrary orientations of the

half wave plate, polarizer P1, and polarizer P2, we write

the efFective projection operator for a polarizer at an an-

gle 8 to the horizontal, placed along the path correspond-

ing to the propagation mode index j:
P (g) i

IH+e) ( iH+Hi

=()I )cosg+)I )sing)((1 )cosg+(1 )sing},

(Al)

where we are considering only the effect on single-photon

states. It will be useful to consider the efFect of this

operator on a state of arbitrary polarization:

p .(8)~1 +&)=~1 +e)(1 +e~l +&)

=(~ lj )cosg+ ~1. )sing)(( 1j ~cosg+( I (sing)(( lj )cosP+ ~1. )sing)

=
~ 1J ) [cosg(cosg cosP+ sing sing) ]+ ~

1j ) [sing(cosg cosP+ sing sing }] . (A2)

For example, we can then examine the rate of single-event detection for a single-photon state, horizontally polarized,
passed through a polarizer:

P, =G"'(t;t)=(Q~E' '(t)E'+'(t)lg)

( 1 ~p )
.(8)(QHttIt+ttygy)p ) (8)~ 1 ) =cos 8+cos gain 8 cos 8 (A3)
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which is the result expected from Malus's law.

We now show that using a single polarizer, before detector Dl for instance, is not enough to revive the interference

dip. Using the reduced coincidence detection operator from Eq. (7), and the entangled state of the photons from (6b),

we have

P, (0)= & y~P,.„(e,)P„„P... , (e, ) ~q&,„,
'l(~'].~] H+&] .&] ~

X(tJ I +tt2 Vtt2 v)(1) '&&1, '( ][(1]1 +~& —(1 +~1 &]

=
—,'sin P(cos 8+2 cos 8 sin 8+sin 8)=—,'sin (() . (A4)

We see immediately that for /=90', when the two paths are maximally distinguishable there is no null in coincidence

for any orientation of a single polarizer at the output.
We turn now to the general case with two polarizers set at arbitrary angles 8, and Oz.

P, (0)=&Q~P„,(8, )P „(8)P, „'P„(8)P, , (8, )~tP&
„

=—'[&1 1 +&~ —&1"+&1 ~](~1 '&&1 '[)(~1 '&&1 '~)(tit & +&

x(e,'He»+@2,a, ,)()1, '&&1 '))((1, '&&1 '()-'[[1 1"'~&—(1 +~1
&]

Using Eq. (A2), one can exPand
~ P &a„o=P&,] 2(82)P,] ](8])~

1(t &a„o.After simPlifying algebra one finds

~tj&a„=o=~1] 12 &cos8,cos82sin(82 —8, )sin(()+
~ ~1] 12 &sine, sin82sin(82 —8, )sing

+ ~1] lz &cose]sil]82sin(82 —8])sing+ ~1] 12 &sine]cosezsin(82 —8])sing .

It then follows that

P, (0)= & Q~P, „'~P &
= sin (()sin (8 —8, ),

which is the more general case of Eq. (13).
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Chapter 6
Beam splitters and interferometers

6.1 Experiments with single photons

Central to the entire discipline of quantum optics, as should be evident from the
preceding chapters, is the concept of the photon. Yet it is perhaps worthwhile
to pause and ask: what is the evidence for the existence of photons? Most of us
first encounter the photon concept in the context of the photo-electric effect. As
we showed in Chapter 5, the photo-electric effect is, in fact, used to indirectly
detect the presence of photons – the photo-electrons being the entities counted.
But it turns out that some aspects of the photo-electric effect can be explained
without introducing the concept of the photon. In fact, one can go quite far with a
semiclassical theory in which only the atoms are quantized with the field treated
classically. But we hasten to say that, for a satisfactory explanation of all aspects
of the photo-electric effect, the field must be quantized. As it happens, the other
venerable “proof” of the existence of photons, the Compton effect, can also be
explained without quantized fields.

In an attempt to obtain quantum effects with light, Taylor, in 1909 [1], obtained
interference fringes in an experiment with an extremely weak source of light.
His source was a gas flame and the emitted light was attenuated by means of
screens made of smoked glass. The “double slit” in the experiment was, in fact,
a needle whose shadow on a screen exhibited the fringes of a diffraction pattern
when exposed to direct light from the source. But Taylor found that the fringes
persisted upon attenuation of the source, even down to the lowest intensities
where, one could naively conclude, on the basis of simple energy considerations,
there was at most only one photon at a time between the source and the screen.
Apparently, photons passing by the needle one at a time give rise to interference.
Presumably, this is the origin of Dirac’s famous remark [2] that “each photon
interferes only with itself, interference between two photons does not occur”. But
we now know, as discussed in Chapter 5, that a thermal source, such as the gas
flame used by Taylor, does not produce photons one-at-a-time but rather produces
them in bunches. Hence it is naı̈ve and wrong to use energy considerations alone
to determine the number of photons between the source and the screen at any
given time; there is a strong likelihood that there are two photons present, the
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p-state

Fig. 6.1. Energy-level diagram of the single photon source for the experiments of
Grangier et al. A calcium atom is irradiated by a laser, which excites the atom by
two-photon absorption to a high-lying s-state. The atom then undergoes a cascade
decay first to a p-state, emitting a photon of frequency ν1, used as the trigger
photon, and then to the original s-state emitting a photon of frequency ν2.

photon bunching effect. A laser source produces photons randomly, so even when
attenuated there is at least some chance that there may be more than one photon
between the source and the screen. To get as close as possible to having a single
photon between source and screen requires a source of antibunched photons. This
in turn requires a source consisting of only a very few atoms, ideally a single
atom.

Such a source was developed only relatively recently by Grangier et al. [3]
originally for the purpose of a fundamental test of quantum mechanics, namely a
search for violations of Bell’s inequality, and then used to demonstrate the indi-
visibility of photons. This source consists of a beam of calcium atoms irradiated
by laser light exciting the atoms to a high-lying s-state. The s-state undergoes a
rapid decay to a p-state emitting a photon of frequency ν1. Subsequently the atom
rapidly undergoes another rapid decay, this time to the ground s-state, by emit-
ting a second photon, this one having a frequency ν2 (see Fig. 6.1). The photons,
to conserve momentum, are emitted in opposite directions. In the experiment
described in Reference [3], the first photon, detected by Dtrig, was used as a “trig-
ger” to alert a set of photo-detectors placed at the outputs of a 50:50 beam splitter
upon which the second photon falls as illustrated in Fig. 6.2. The trigger tells the
photo-detectors to expect a photon to emerge from the beam splitter by “gating”
the detection electronics for a brief time interval. This eliminates spurious counts
due to photons entering the detectors from irrelevant sources. The experimental
setup, as pictured in Fig. 6.2, is such that only the particle nature of the photons
will be manifested. That is, a single photon falling on the beam splitter would
be either reflected into detector Dref or transmitted into detector Dtran, i.e. it is a
“which path” experiment and no interference effects are expected. There should
be no simultaneous counts (the counts should anti-correlated) of reflected and
transmitted photons and, because the beam splitter is 50:50, repeated runs of the
experiment should result in each of the two detectors firing approximately 50%
of the time. These expectations were confirmed by the investigators.
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Fig. 6.2. Anti-correlation
experiment of Grangier
et al. Detection of the
trigger photon alerts the
coincidence counters to
expect a photon to pass
through the beam splitter.
The beam splitter is 50:50.

E1 E3

E2

Fig. 6.3. Classical beam
splitting. A classical field
of amplitude E1 is split
into fields of amplitudes
E2 and E3.

6.2 Quantum mechanics of beam splitters

At this point we must pause and consider the beam splitter in a fully quantum-
mechanical context. In the previous chapter, we used the notion of a beam splitter
in a somewhat cavalier manner. We were able to get away with it because, for
“classical”-like light beams, coherent and thermal beams, the quantum and clas-
sical treatments of beam splitters agree. But at the level of a single or few photons,
the classical approach to beam splitting produces erroneous and quite misleading
results.

To see how classical reasoning over beam splitting goes wrong, let us consider
first a classical light field of complex amplitude E1 incident upon a lossless beam
splitter as indicated in Fig. 6.3. E2 and E3 are the amplitudes of the reflected
and transmitted beams respectively. If r and t are the (complex) reflectance and
transmittance respectively of the beam splitter, then it follows that

E2 = rE1 and E3 = tE1. (6.1)

For a 50:50 beam splitter we would have |r | = |t | = 1/
√

2. However, for the sake
of generality, we do not impose this condition here. Since the beam splitter is
assumed lossless, the intensity of the input beam should equal the sum of the
intensities of the two output beams:

|E1|2 = |E2|2 + |E3|2 (6.2)
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which requires that

|r |2 + |t |2 = 1. (6.3)

To treat the beam splitter quantum mechanically we might try replacing the
classical complex field amplitudes Ei by a set of annihilation operators âi (i =
1, 2, 3) as indicated in Fig. 6.4. In analogy with the classical case we might try
setting

â2 = r â1 and â3 = t â1. (6.4)

However, the operators of each of the fields are supposed to satisfy the commu-
tation relations[

âi , â†
j

]
= δi j , [âi , â j ] = 0 =

[
â†

i , â†
j

]
(i, j = 1, 2, 3) , (6.5)

but it is easy to see that for the operators of Eq. (6.4) we obtain[
â2, â†

2

]
= |r |2

[
â1, â†

1

]
= |r |2 ,[

â3, â†
3

]
= |t |2

[
â1, â†

1

]
= |t |2 ,[

â2, â†
3

]
= r t∗ 
= 0, etc. (6.6)

Thus the transformations in Eq. (6.4) do not preserve the commutation relations
and therefore cannot provide the correct quantum description of a beam splitter.
This conundrum is resolved as follows: in the classical picture of the beam splitter
there is an unused “port” which, being empty of an input field, has no effect on
the output beams. However, in the quantum-mechanical picture, the “unused”
port still contains a quantized field mode albeit in the vacuum state and, as we
have repeatedly seen, the fluctuations of the vacuum lead to important physical
effects. The situation with the beam splitter is no exception. In Fig. 6.5 we indicate
all the modes required for a proper quantum description of the beam splitter, â0

representing the field operator of the classically vacant input mode. Also indicated
are two sets of transmittances and reflectances, allowing for the possibility of an
asymmetric beam splitter. We now write the beam-splitter transformations for
the field operators as

3

2
^

1
^ ^

BS (Wrong!)

aa

a

Fig. 6.4. Naı̈ve, and
incorrect, quantum
mechanical depiction of a
beam splitter.

3

2a^

1a

a

^ a^

^
0

(r',t')

( )r,t
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Fig. 6.5. The correct
quantum-mechanical
depiction of a beam
splitter.

â2 = r â1 + t ′â0, â3 = t â1 + r ′â0 (6.7)

or collectively as (
â2

â3

)
=

(
t ′ r
r ′ t

) (
â0

â1

)
. (6.8)

It is easily seen that the commutation relations of Eq. (6.5) are satisfied as long
as the following relations hold:∣∣r ′∣∣ = |r | , |t | = ∣∣t ′∣∣ , |r |2 + |t |2 = 1, r∗t ′ + r ′t∗ = 0, and r∗t + r ′t ′∗ = 0. (6.9)

These relations are known as the reciprocity relations and can also be derived on
the basis of energy conservation.



6.2 Quantum mechanics of beam splitters 139

Let us examine a couple of relevant examples. The phase shifts of the reflected
and transmitted beams depend on the construction of the beam splitter [4]. If
the beam splitter is constructed as a single dielectric layer, the reflected and
transmitted beams will differ in phase by a factor of exp(± iπ/2) = ± i . For a
50:50 beam splitter, assuming the reflected beam suffers a π/2 phase shift, the
input and output modes are related according to

â2 = 1√
2

(â0 + i â1) , â3 = 1√
2

(i â0 + â1) . (6.10)

Since the transformation between input and output modes must be unitary, we
may write Eq. (6.8) as (

â2

â3

)
= Û †

(
â0

â1

)
Û (6.11)

where Û is a unitary operator. This transformation constitutes a Heisenberg pic-
ture formulation of a beam splitter. For the specific transformation represented
by Eq. (6.10), the operator Û has the form

Û = exp
[
i
π

4

(
â†

0â1 + â0â†
1

)]
, (6.12)

easily checked using the Baker–Hausdorf lemma in Eq. (6.11).
On the other hand, we may adopt the Schrödinger picture and ask the following

question. For a given input state to the beam splitter, what is the output state?
Remembering that all photon number states |n〉, hence any superposition or any
statistical mixture of such states, may be constructed by the action of n powers
of the creation operator on the vacuum, we may use Eqs. (6.7) and (6.8) to
construct the output states from the action of the transformed creation operators
on the vacuum states of the output modes, it being obvious that an input vacuum
transforms to an output vacuum: |0〉0|0〉1 → |0〉2|0〉3.

As an example, consider the single photon input state |0〉0|1〉1 which we may
write as â†

1|0〉0|0〉1. For the beam splitter described by Eq. (6.10) we find that
â†

1 = (i â†
2 + â†

3)/
√

2. Thus we may write, using that |0〉0|0〉1
BS−→ |0〉2|0〉3,

|0〉0 |1〉1
BS−→ 1√

2

(
i â†

2 + â†
3

)
|0〉2 |0〉3

= 1√
2

(i |1〉2 |0〉3 + |0〉2 |1〉3) . (6.13)

This is an important result. It says that a single-photon incident at one of the
input ports of the beam splitter, the other port containing only the vacuum, will
be either transmitted or reflected with equal probability. Of course, this is precisely
as we earlier claimed and explains why no coincident counts are to be expected
with photon counters placed at the outputs of the beam splitter, as confirmed by
the experiment of Grangier et al. [3]. Actually, because the beam splitter is well
understood, the lack of coincident counts in the above experiment may be taken as
an indication that the source is truly producing single-photon states. (Obviously,



140 Beam splitters and interferometers

the beam splitter is a passive device that neither creates nor destroys photons.
There are, of course, active devices that convert one photon into two, for example,
and we shall encounter these in the next chapter.)

One other point needs to be made about the output state of Eq. (6.13). It is an
entangled state: it cannot be written as a simple product of states of the individual
modes 2 and 3. The density operator (see Appendix A) for the (pure) state of
Eq. (6.13) is

ρ̂23 = 1

2
{|1〉2 |0〉3 2〈1| 3 〈0| + |0〉2 |1〉3 2 〈0| 3 〈1|

+ i |1〉2 |0〉3 2 〈0| 3 〈1| − i |0〉2 |1〉3 2 〈1| 3 〈0|} . (6.14)

In placing detectors in the two output beams, we are measuring the full “coher-
ence” as described by the state vector of Eq. (6.13) or equivalently the density
operator of Eq. (6.14). Suppose, on the other hand, we make no measurement of,
say, mode 3. Mode 2 is then described by the reduced density operator obtained
by tracing over the states of the unmeasured mode (see Appendix A):

ρ̂2 = Tr3ρ̂23 =
∞∑

n=0

3 〈n|ρ̂23 |n〉3

= 1

2
(|0〉2 2 〈0| + |1〉2 2 〈1|) . (6.15)

This represents merely a statistical mixture, there being no “off-diagonal” coher-
ence terms of the form |0〉〈1| or |1〉〈0|. Thus placing a detector in only one of
the output beams yields random results, 0 or 1, each 50% of the time, just as we
would expect.

Before moving on to single-photon interference, let us consider two more
examples of beam splitting. First we consider a coherent state, a classical-like
state, rather the opposite of the highly nonclassical single-photon state, incident
on the beam splitter with, again, only the vacuum in the other input port. That
is, the initial state is |0〉0|α〉1 = D̂1(α)|0〉0|0〉1 where D̂1(α) = exp(αâ†

1 − α∗â1)
is the displacement operator for mode 1. We may then, following the procedure
above, obtain the output state according to

|0〉0 |α〉1
BS−→ exp

[
α√
2

(
i â†

2 + â†
3

)
− α∗

√
2

(−i â2 + â3)

]
|0〉2 |0〉3

= exp

[(
i α√

2

)
â†

2 −
(−i α∗

√
2

)
â2

]
exp

[(
α√
2

)
â†

3 −
(

α∗
√

2

)
â3

]
|0〉2 |0〉3

=
∣∣∣∣ i α√

2

〉
2

∣∣∣∣ α√
2

〉
3

. (6.16)

Evidently we obtain the result expected for a classical light wave where the
incident intensity is evenly divided between the two output beams, e.g. half the
incident average photon number, |α|2/2, emerges in each beam. We also naturally
obtain the phase shift i = ei π/2 for the reflected wave, as expected. Finally, note
that the output is not entangled.
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Essentially everything about beam splitting with a coherent state is classical
and in that regard it is worth inserting here a note of caution. The case of a single
photon incident on the beam splitter is not obtainable as the limiting case of
an incident coherent state, i.e. for |α| small. It is easy to check that the single-
photon result of Eq. (6.13) is not obtainable in any way as a limiting case of
Eq. (6.16). This is quite obvious without doing any calculations as the former is
entangled whereas the latter is not. Entanglement cannot arise as a limiting case
of a product state. The point is, as mentioned earlier in the chapter, that attempts
at extrapolating low-field behavior from classical results are misleading and quite
wrong.

As a last example with operator transformations, we return to the strictly
quantum domain and consider the situation where single photons are simultane-
ously injected into the two input ports of our 50:50 beam splitter, the incident
state being |1〉0|1〉1 = â†

0â†
1|0〉0|0〉1. Again, following the previous procedure with

â†
0 = (â†

2 + i â†
3)/

√
2 and â†

1 = (i â†
2 + â†

3)/
√

2 we have

|1〉0 |1〉1
BS−→ 1

2

(
â†

2 + i â†
3

)(
i â†

2 + â†
3

)
|0〉2 |0〉3

= i

2

(
â†

2â†
2 + â†

3â†
3

)
|0〉2 |0〉3

= i√
2

(|2〉2 |0〉3 + |0〉2 |2〉3) . (6.17)

Apparently, the two photons emerge together such that photo-detectors placed
in the output beams should not register simultaneous counts. But unlike the case
of a single incident photon, the physical basis for obtaining no simultaneous
counts is not a result of the particle-like nature of photons. Rather, it is caused
by interference (a wave-like effect) between two possible ways of obtaining the
(absent) output state |1〉2|1〉3: the process where both photons are transmitted
(Fig. 6.6(a)) and the process where they are both reflected (Fig. 6.6(b)). Note the
indistinguishability of the two processes for the output state |1〉2|1〉3. There is a
simple and rather intuitive way of understanding this result. Recall Feynman’s
rule [5] for obtaining the probability for an outcome that can occur by several
indistinguishable processes: one simply adds the probability amplitudes of all the
processes and then calculates the square of the modulus. Assuming that our beam
splitter is described by Eq. (6.10), the reflected photons each acquire an eiπ/2 = i
phase shift. The amplitude for transmission for each photon is AT = 1/

√
2 and

the amplitude for reflection for each is AR = i/
√

2. The amplitude that both
photons are transmitted is AT · AT and that both are reflected is AR · AR. Thus
the probability of the photons emerging in both output beams is

P11 = |AT · AT + AR · AR|2 =
∣∣∣∣ 1√

2
· 1√

2
+ i√

2

i√
2

∣∣∣∣
2

= 0. (6.18)

An experimental demonstration of this effect was first performed by Hong, Ou,
and Mandel [6] and is discussed in Chapter 9.
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Fig. 6.6. Two
indistinguishable
processes with
simultaneous single
photon inputs. (a) Both
photons are transmitted.
(b) Both photons are
reflected. These processes
interfere destructively
with each other.



Chapter 9

Optical test of quantum mechanics

Over the past three decades or so, experiments of the type called Gedanken have

become real. Recall the Schrödinger quote from Chapter 8: “. . . we never exper-

iment with just one electron or atom or (small) molecule.” This is no longer

true. We can do experiments involving single atoms or molecules and even on

single photons, and thus it becomes possible to demonstrate that the “ridiculous

consequences” alluded to by Schrödinger are, in fact, quite real. We have already

discussed some examples of single-photon experiments in Chapter 6, and in

Chapter 10 we shall discuss experiments performed with single atoms and single

trapped ions. In the present chapter, we shall elaborate further on experimental

tests of fundamentals of quantum mechanics involving a small number of photons.

By fundamental tests we mean tests of quantum mechanics against the predic-

tions of local realistic theories (i.e. hidden variable theories). Specifically, we

discuss optical experiments demonstrating violations of Bell’s inequalities, viola-

tions originally discussed by Bell in the context of two spin-one-half particles [1].

Such violations, if observed experimentally, falsify local realistic hidden-variable

theories. Locality refers to the notion, familiar in classical physics, that there can-

not be a causal relationship between events with space-like separations. That is,

the events cannot be connected by any signal moving at, or less than, the speed

of light; i.e. the events are outside the light-cone. But in quantum mechanics,

it appears that nonlocal effects, effects seemly violating the classical notion of

locality in a certain restricted sense, are possible. For example, the fact that a mea-

surement on one part of an entangled system seems to instantaneously project

the other part of the system into a particular state, even though the parts may be

widely separated, is a nonlocal quantum effect. “Realism” in the context of hidden

variable theories means that a quantum system has objectively definite attributes

(quantum numbers) for all observables at all times. For example, a particle with

spin + 1/2 along the z-direction is known to be in a superposition state with spin

± 1/2 along the x-direction. The standard Copenhagen interpretation of quan-

tum mechanics holds that the particle’s spin along the x-direction is objectively

indefinite, i.e. has no particular value of spin as a matter of principle until a mea-

surement reduces the state vector to one of the possible states in the superposition.

In a hidden-variable theory, the spin along the x-axis is assumed to be definite,

213
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though unknown, and the experiment merely reveals the already existing state of

the particle. But there are two types of hidden-variable theory, local and nonlocal.

Nonlocal hidden-variable theories of the type considered by Bohm [2] reproduce

the predictions of standard quantum mechanics. But they exhibit nonlocality,

the feature of quantum mechanics that seems to have bothered Einstein even

more than the apparent lack of realism. But local hidden-variable theories do

make predictions different from those of standard quantum theory, and Bell’s the-

orem provides a way to make such tests. In this chapter, we shall discuss optical

tests of local hidden-variable theories using polarization-entangled photons.

In what follows we shall first discuss modern sources of paired and entangled

single-photon states obtained from down-conversion processes (as opposed to the

technique of cascaded emissions from atomic transitions as discussed in Chapter 6).

We then review some one- and two-photon interference experiments, introduce

the notion of the “quantum eraser” in this context, and then discuss an experi-

ment on induced quantum coherence. Next, an experiment on photon tunneling

exhibiting superluminal effects is discussed. Finally we describe two experiments

on tests of Bell’s inequalities, one involving polarization-entangled photons and

a second (Franson’s experiment) based on the time–energy uncertainty relation.

9.1 Photon sources: spontaneous parametric
down-conversion

We have already discussed, in Chapter 7, the generation of nonclassical light via

parametrically driven nonlinear media characterized by a second-order nonlinear

susceptibility χ (2). We focus on the nondegenerate case, and assuming the pump

field to be quantized, the interaction Hamiltonian takes the form

Ĥ I ∼ χ (2)âpâ†
s â

†
i + H.c., (9.1)

where we have altered our notation from Chapter 7 so that now âp is the an-

nihilation operator of the pump beam and â
†
s and â

†
i are the creation operators of

the “signal” and “idler” beams respectively. The denotations “signal” and “idler”

appear for historical reasons and have no special significance, the choice of beam

labels being somewhat arbitrary. In the simplest case, with the signal and idler

beams initially in vacuum states, a single pump beam photon, typically in the

ultraviolet spectral range, is converted into two optical photons, one in the signal

beam, the other in the idler:

|1〉p |0〉s |0〉i ⇒ âpâ†
s â

†
i |1〉p |0〉s |0〉i = |0〉p |1〉s |1〉i . (9.2)

As the signal and idler modes are initially in vacuum states, the process is “sponta-

neous”. Note that the photons produced in the signal and idler modes are assumed

to be generated simultaneously. That this is the case was demonstrated many years

ago by Burnham and Weinberg [3] who used coincidence counting with detec-

tors arranged to satisfy momentum and energy conservation and to have equal
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Down-conversion crystal 

Signal

Idler

Pump

Pump

Fig. 9.1. Type I down-conversion. Photons from the pump beam are converted into

signal and idler photons that emerge from the crystal along different directions. The

signal and idler photons have identical polarization but orthogonal to that of the

pump. The possible directions form a set of concentric cones. The light from the

different cones is of different colors, typically orange near the center to a deep red at

wider angles. The pump beam is in the ultraviolet.

time delays. The simultaneous production of signal and idler photons is key to

the applications of such parametric sources to the fundamental test of quantum

mechanics to be described. In order for the down-conversion process to go for-

ward however, certain other conditions must be satisfied. Letting ωp, ωs, and ωi

represent the frequencies of the pump, signal, and idler respectively, energy con-

servation requires that

hωp = hωs + hωi. (9.3)

Further, if kp, ks, and ki represent the respective wave numbers, then we must

have, inside the crystal,

hkp ≈ hks + hki, (9.4)

where the ≈ sign appears as the result of an uncertainty given by the reciprocal

of the length of the nonlinear medium [4]. Equations (9.3) and (9.4) are known

as the “phase matching” conditions and they can be attained in certain types of

nonlinear media, such as noncentrosymmetric crystals [5]. Only noncentrosym-

metric crystals have a nonvanishing χ (2). The most commonly used crystals are

KDP (KD2PO4) and BBO (β-BaB2O4). The connection to nonlinear optics is

given in Appendix D.

There are, in fact, two types of SPDC process. In type I, the signal and idler

photons have the same polarization but these are orthogonal to that of the pump.

The interaction Hamiltonian for this process is given by

Ĥ I = hη â†
s â

†
i + H.c., (9.5)

where the parametric approximation has been made and where η ∝ χ (2)Ep,where

Ep is the amplitude of the classical coherent field. The phase-matching condition

of Eq. (9.4) imposes a constraint such that the signal and idler photons (conjugate

photons) must emerge from the crystal on opposite sides of concentric cones

centered on the direction of the pump beam as shown in Fig. 9.1. Evidently there

are an infinite number of ways of selecting the signal and idler beams. Examples
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Fig. 9.2. (a) A

cross-section of the cones

of light emerging from a

type I down-converter.

Like symbols represent

conjugate photons

satisfying the

phase-matching

condition. Note that those

on the middle circle are

degenerate in frequency.

(b) A graphical view of the

phase-matching

condition.
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Fig. 9.3. Type II

down-conversion. The

signal and idler photons

have orthogonal

polarizations.

Birefringence effects

cause the photons to be

emitted along two

intersecting cones, one of

the ordinary (o) ray and

the extraordinary (e) ray.
are shown in Fig. 9.2. The Hamiltonian of Eq. (9.5) in practice represents a

particular “post-selection” of the momenta of the output beams.

In type II down-conversion, the signal and idler photons have orthogonal

polarizations. Because of birefringence effects, the generated photons are emitted

along two cones, one for the ordinary (o) wave and another for the extraordinary

(e) wave, as indicated in Fig. 9.3. The intersection of the cones provides a means

for generating polarization-entangled states. We use the notation |V 〉 and |H〉 to

represent vertically and horizontally polarized single-photon states. For photons

that emerge along the intersections of the cones, with photons from other parts

of the cones being excluded by screens with pinholes in front of the intersection

points, there will be an ambiguity as to whether the signal or idler photons will

be vertically or horizontally polarized, as indicated in Fig. 9.4. The Hamiltonian

describing this is given by

Ĥ I = hη

(

â
†
Vsâ

†
Hi + â

†
Hsâ

†
Vi

)

+ H.c., (9.6)

where the operators â
†
Vs, â

†
Hs, â

†
Vi, and â

†
Hi are the creation operators for pho-

tons with vertical and horizontal polarization for the signal and idler beams,
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respectively. Again, this Hamiltonian represents the post-selection obtained by

placing a screen in front of the source with pinholes located just in the regions of

the overlapping beams.

Let us take the initial state of the signal and idler modes to be represented

by |�0〉 = |{0}〉, which is the collective vacuum state for either type I or type II

down-conversion. In either case, the state vector evolves according to

|� (t)〉 = exp (−i t ĤI/h) |�0〉 , (9.7)

which we expand, since ĤI has no explicit time dependence, as

|�(t)〉 ≈ [1 − i t ĤI/h + 1
2
(−i t ĤI/h)2]|�0〉 (9.8)

to second order in time. If we consider the type I SPDC then |�0〉 = |0〉s|0〉i and

we have

|�(t)〉 = (1 − µ2/2)|0〉s|0〉i − iµ|1〉s|1〉i (9.9)

where µ = ηt. This state vector is normalized to first order in µ and we have

dropped the term of order µ2 containing the state |2〉s|2〉i. In the case of type II

SPDC with the initial state |�0〉 = |0〉Vs|0〉Hs|0〉Vi|0〉Hi, we have

|�(t)〉 = (1 − µ2/2)|0〉Vs|0〉Hs|0〉Vi|0〉Hi

−iµ
1

√
2

(|1〉Vs|0〉Hs|0〉Vi|1〉Hi + |0〉Vs|1〉Hs|1〉Vi|0〉Hi). (9.10)

We now define the vertically and horizontally polarized vacuum and single photon

states as |0〉 := |0〉V|0〉H, |V 〉 := |1〉V|0〉H, and |H〉 := |0〉V|1〉H, so that we may

write

|�(t)〉 = (1 − µ2/2)|0〉s|0〉i

−iµ(|V 〉s|H〉i + |H〉s|V 〉i).
(9.11)

The state in the second term, which when normalized reads

|�+〉 =
1

√
2

(|V 〉s|H〉i + |H〉s|V 〉i), (9.12)

is one member out of a set of four states known as Bell states. The full set of Bell

states is

|�±〉 =
1

√
2

(|H〉1|V 〉2 ± |V 〉1|H〉2), (9.13)

|�±〉 =
1

√
2

(|H〉1|H〉2 ± |V 〉1|V 〉2). (9.14)

We shall discuss these states, and their implications, in Section 9.6.

e-ray

o-ray

Fig. 9.4. The intersections

of the cones for the o-ray

and the e-ray are the

sources for polarization

entangled light. From

these points it is not

possible to tell from

which beam a photon is

obtained. The

Hamiltonian in Eq. (9.6)

describes the light taken

from both intersections.

9.2 The Hong–Ou–Mandel interferometer

In Chapter 6 we discussed what happens when twin single-photon states are

simultaneously incident at each input port of a 50:50 beam splitter: the photons
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Fig. 9.5. Labeling of the output modes of a 50:50 beam splitter with inputs from the

signal and idler beams of a type I down-converter. If single-photon states

simultaneously fall onto the beam splitter, the output does not contain the term

|1〉1|1〉2, for reasons discussed in Chapter 6.

emerge together in one output beam or the other; no single photons ever emerge in

both beams. Recall that for the input state |1〉s|1〉i one has after the beam splitter

the state

|ψBS〉 =
1

√
2

(|2〉1|0〉2 + |0〉1|2〉2), (9.15)

where we have labeled the output modes 1 and 2 in accordance with Fig. 9.5.

Detectors placed at the outputs should never register simultaneous counts. In

fact, one could take the lack of simultaneous counts as an indication that the

photons are incident on the beam splitter simultaneously. The first demonstration

of this effect was by Hong, Ou and Mandel (HOM) in a now-classic experiment

performed in 1987 [6]. In fact, the experiment was designed to measure the time

separation between the two photons striking a beam splitter. A sketch of their

experiment is given in Fig. 9.6. The nonlinear crystal is pumped to produce,

assuming type I down-conversion, twin single-photon states whose beams are

then directed to the input ports of a 50:50 beam splitter. Photon detectors are

placed at the outputs of the beam splitter and the count signals are fed into a

correlator. Changing the position of the beam splitter causes a slight time delay

between the times the photons fall onto the beam splitter. With a slight nonzero

time delay, the photons independently reflect or transmit through the beam splitter

causing both detectors sometimes to fire within a short time of each other. It can

be shown [6] that the rate of coincident detections, Rcoin, has the form

Rcoin ∼
[

1 − e−(�ω)2(τs−τi)
2
]

, (9.16)

DC Correlator
Pump

Signal

Idler

Fig. 9.6. The

Hong–Ou–Mandel

experiment. When the

path lengths are equal, no

coincident counts are

detected.
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where �ω is the bandwidth of the light and cτs and cτi are the distances that

the signal and idler photons respectively travel from the down-converter to the

beam splitter. The band width �ω incorporates the reality that the signal and

idler beams are not monochromatic, and its appearance in Eq. (9.16) results

from the assumption that the spectral distribution is Gaussian. Obviously, for

τs − τi = 0 we have Rcoin = 0. The rate of coincidence counts rises to a maximum

for |τs − τi| ≫ τcorr, where τcorr = 1/�ω is the correlation time of the photons.

The correlation time is of the order of a few nanoseconds, which is hard to measure

with conventional techniques as detectors commonly used do not often have short

enough resolving times. But this correlation time can be measured with the HOM

interferometer. The experimental results are plotted in Fig. 9.7, reprinted from

Reference [6]. Plotted here is the number of counts over an interval of 10 min

against the position of the beam splitter (essentially the time separation) with

the solid line representing the theoretical prediction. The experimental data do

not go exactly to the predicted minimum because it is not possible for the beams

precisely to overlap at the beam splitter. From the distribution of the counts, the

correlation time of the two photons can be determined to be ∼100 fs.

9.3 The quantum eraser

In the HOM experiment just described, the fact that the photons are indistin-

guishable is the key to understanding the results. Because type I SPDC is used

as the source, both photons have the same polarization. They may have slightly

different energies but the photon detectors are not really sensitive to the energy

difference. We have not needed to specify the polarization direction of the pho-

tons; it was only important that they be the same. But now suppose, for the sake

of definiteness, we take them to be horizontally polarized (see Fig. 9.8), denoting
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DC Correlator

Polarizer

Polarizer
Rotator

Signal

Idler

Pump

Fig. 9.8. A quantum erasure experiment. The rotator in the idler beam rotated the

polarization of idler photons thus marking them and yielding path information. This

destroys the quantum interference exhibited in the Hong–Ou–Mandel experiment.

Inserting polarizers in the beam after the interferometer restores quantum

interferences.

the twin single-photon states as |H〉s|H〉i. With such an input state to the beam

splitter (assumed to not affect the polarization of the photons), the output state

can be written as i(|2H〉1|0〉2 + |0〉1|2H〉2)/
√

2, where |2H〉 is a state with two

horizontally polarized photons.

Suppose we now place a rotator in, say, the idler beam, such that its polarization

is rotated by the angle θ to the horizontal, as indicated in Fig. 9.9. This transforms

the idler polarization state, to

|θ〉i = |H〉i cos θ + |V 〉i sin θ. (9.17)

The polarization state vector for a photon with polarization orthogonal to this is

given by

|θ⊥〉i = −|H〉i sin θ + |V 〉i cos θ. (9.18)

The input state to the beam splitter is now

θ
⊥ V

H

θ

θ

Fig. 9.9. The relationship

between the |θ〉, |θ⊥〉 and

|H 〉, |V 〉 polarization

vectors.

|H〉s|θ〉i = cos θ |H〉s|H〉i + sin θ |H〉s|V 〉i. (9.19)

The output state will be

|ψout(θ )〉 =
i

√
2

cos θ (|2H〉1|0〉2 + |0〉1|2H〉2)

+
1

√
2

sin θ (|H〉1|V 〉2 − |V 〉1|H〉2), (9.20)

where the terms containing the single-photon states no longer cancel each other

as the photons have different polarizations.∗ If the polarization of the idler beam

is rotated all the way to the vertical, i.e. to θ = π/2, then the output state will be

|ψout(π/2)〉 = |�−〉 =
1

√
2

(|H〉1|V 〉2 − |V 〉1|H〉2). (9.21)

* Remember that to include the polarization state of a photon we really must expand the Hilbert

space to write |H〉1 = |1〉H1 |0〉V1 , etc., so that the last term will read (|1〉H1 |0〉V1 |0〉H2 |1〉V2 −
|0〉H1 |1〉V1 |1〉H2 |0〉V2 )/

√
2, which perhaps makes it more apparent why the single-photon states

don’t cancel as before.
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There will now be only coincident counts in the detectors and neither detector,

assuming 100% efficiency, will fire alone. The “marking” of one of the beams

by the rotation of its polarization by 90◦ has the effect of removing photon indis-

tinguishability and thus it is possible to determine the path taken by each of

the photons before the beam splitter. Interestingly, in the scenario discussed, the

photon polarization is never measured. The experimenter need not know the

polarization of the photons; only the counts are measured. Evidently, the interfer-

ence can be destroyed by the mere potential of obtaining which-path information,

even if that information is never known to the experimenter. Now in the case of

one-photon input to a beam splitter, one can observe the particle-like nature of

the photon by placing detectors at the beam splitter outputs, or one can observe

the wave-like nature, with interference effects, by using a Mach–Zehnder inter-

ferometer, as we have discussed in Chapter 6, providing an example of Bohr

complementarity. Usually, it is the loss of coherence engendered by the availabil-

ity of which-path information that is ascribed to the disappearance of interference.

This “decoherence” supposedly renders the state vector into a statistical mixture

where only probabilities, and not probability amplitudes, appear. But in the case

of the two-photon interferometry experiment discussed here, there is no time,

up to the point when the photons are detected, where we do not have a pure

state.

Suppose now that a linear polarizer is placed at an angle θ1 to the horizontal

in front of the detector in output beam 1. The placing of a polarizer followed by

photon detection constitutes a von Neumann projection (see Appendix B) onto

the state vector

|θ1〉1 = |H〉1 cos θ1 + |V 〉1 sin θ1. (9.22)

That is, only photons with polarization state |θ1〉1 will be registered by the detector.

The state of Eq. (9.21) is reduced to the pure state

|ψ, θ1〉 =
|θ1〉〈θ1 |ψout(π/2)〉

〈ψout(π/2) | θ1〉〈θ1 |ψout(π/2)〉1/2

= |θ1〉(|V 〉2 cos θ1 − |H〉2 sin θ1) (9.23)

where the photon of mode 2 has a polarization orthogonal to that of the detected

photon (see Eq. (9.18)). Suppose we similarly place a polarizer at the angle θ2

to the horizontal in front of the detector for output beam 2. The probability that

there will be coincident detections of a photon polarized at angle θ1 and another

at θ2 is then

Pcoin = |〈θ1|〈θ2 |ψout(π/2)〉|2

=
1

2
sin2(θ2 − θ1). (9.24)

From this result we see that the dip in the coincident count rate can be revived,

depending on the relative angle of the polarizers. The effect of the polarizers

placed just before the detectors is to erase the information encoded onto one
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two distinguishable processes are rejected. This has the effect of post-selecting

(reducing) the two-photon output state to be

|ψ〉 =
1

2
(|S〉1|S〉2 + ei�|L1〉1|L2〉2), (9.55)

evidently another form of Bell state, where we have assumed that S1 = S2 = S

but that L1 and L2 can be adjusted as indicated in Fig. 9.14. The phase �, the

relative phase between the (S, S) and (L , L) processes, is the sum of the relative

phases acquired by the individual photons:

� = ωs� L1/c + ωi� L2/c

=
ωs + ωi

2
(� L1 + � L2) +

ωs − ωi

2
(� L1 − � L2)

≈
ωp

2
(� L1 + � L2) (9.56)

valid as � L1 − � L2 is taken to be small compared to the inverse bandwidth

of the signal and idler frequencies ωs and ωi. The frequency ωp = ωs + ωi is, of

course, the frequency of the pump field. If we now use the Feynman dictum of

adding amplitudes associated with indistinguishable processes, the probability

for coincident two-photon detection is

Pcoin =
1

4
|1 + ei�|2 =

1

2
[1 + cos �]

=
1

2

[

1 + cos
(ωp

2
(� L1 + � L2)

)]

. (9.57)

This result exhibits 100% visibility, meaning that the minimum of the probability

of coincident detection is zero. This in turn means that the photons entering

the two interferometers become anti-correlated: if one takes the short path the

other takes the long path, and vice versa. The meaning of the maximum is that

the photons become correlated in the interferometers: either both take the short

path or both take the long. No classical or hidden variable model can predict

a visibility greater that 50%. Fringes of visibility greater than 70.7% violate a

Bell-type inequality. The experiments of Kwiat et al. [27] exhibit a visibility of

80.4±0.6%. Other experimental realizations of the Franson experiment are those

of Ou et al. [28], Brendel et al. [29], and Shih et al. [30].

9.8 Applications of down-converted light to metrology
without absolute standards

Finally in this chapter, we briefly discuss the application of down-converted light

to problems of practical interest. These applications are possible because of the

tight correlations of the photons that are spontaneously emitted during the down-

conversion process as was originally shown by Burnham and Weinberg [3]. The

virtue of using down-converted light is, as we shall see, that measurements can

be performed to yield absolute results without the need of a calibrated standard.

habenberger
Rectangle



234 Optical test of quantum mechanics

Fig. 9.15. Schematic for

absolute calibration of a

photon detector.

We first discuss the determination of the absolute calibration of a photon

detector, essentially measuring its absolute quantum efficiency. A schematic of

the measurement is given in Fig. 9.15. Two identical photon detectors are placed in

the outputs of a type I down-converter. We regard detector A as the detector to be

calibrated and detector B as the trigger, though which is which is quite arbitrary.

Because the down-converter creates photons in pairs, coincident photons would

be detected in both arms for ideal detectors. The measurement of the quantum

efficiency is quite simple. Suppose that N is the number of pairs of photons

produced by the down-converter. Whenever detector B fires, the experimenter

checks to see if detector A also fires. Then the fraction of detections by B for

which there is a coincident detection by A is the measured quantum efficiency of

detector A. The method does not require knowledge of the quantum efficiency

of detector B. If there is no detection by B, the experimenter simply disregards

detector A altogether. More quantitatively, if we let the quantum efficiencies of

detectors A and B be represented respectively by ηA and ηB, then the number of

photons detected by each is NA = ηA N and NB = ηB N . The number of coincident

counts will be given by NC = ηAηB N = ηA NB. Thus ηA = NB/NC, which is

obviously independent of the quantum efficiency of detector B. The idea behind

this sort of measurement is implicit in the work of Burnham and Weinberg [3].

Migdall et al. [31] at NIST performed a test of the method in 1995, comparing

the method with a more-conventional method involving a standard, and found

good agreement.

Another metrologic application, the only other one we discuss, is to the mea-

surement of absolute radiance. This application was proposed by Klyshko [32]

and was first demonstrated in the laboratory in 1979 [33]. It is a variation of the

process of spontaneous parametric down-conversion where a light beam whose

radiance is to be measured (the unknown) is aligned to overlap with one of the out-

put beams, say, the signal beam, of the down-converter as indicated in Fig. 9.16.

The setup constitutes a parametric amplifier where the presence of the unknown

input beam stimulates the production of photon pairs (they must always be
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Appendix A

The density operator, entangled states,
the Schmidt decomposition, and the von
Neumann entropy

A.1 The density operator

Quantum-mechanical state vectors |ψ〉 convey the maximal amount of informa-

tion about a system allowed by the laws of quantum mechanics. Typically, the

information consists of quantum numbers associated with a set of commuting

observables. Futhermore, if |ψ1〉 and |ψ2〉 are two possible quantum states then

so is their coherent superposition

|ψ〉 = c1|ψ1〉 + c2|ψ2〉 (A1)

if the coefficients c1 and c2 are known. If the states |ψ1〉 and |ψ2〉 are orthogonal

(〈ψ2 | ψ1〉 = 0) then we must have |c1|2 + |c2|2 = 1. But there are frequently, in

fact, more often than not, situations where the state vector is not precisely known.

There are, for example, cases where the system of interest is interacting with some

other system, possibly a very large system, e.g. a reservoir, with which it becomes

entangled. It may be possible to write state vectors for the multicomponent system

but not for the subsystem of interest. For example, for a system of two spin-1/2

particles with, the eigenstates of, say, the z-component of the spin denoted |↑〉
for spin up and |↓〉 for spin down, a possible state vector of the combined system

is

|ψ〉 =
1

√
2

[|↑〉1 |↓〉2 − |↓〉1 |↑〉2] , (A2)

the so-called singlet state (total angular momentum zero), also known as one

of the “Bell” states. Equation (A2) is an example of an entangled state. An

entangled state cannot be factored, in any basis, into a product of states of the

two subsystems, i.e.

|ψ〉 
= |spin 1〉 |spin 2〉 (for an entangled two-spin state) . (A3)

Entanglement is, apart from the superposition principle itself, an essential mystery

of quantum mechanics, as was pointed out in 1935 by Schrödinger himself. Note

though that entanglement follows from the superposition principle and is not

something imposed on the theory. So Feynman’s dictum that the superposition

principle contains “the only mystery” is still correct.

294
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Quantum states described by state vectors are said to be pure states. States that

cannot be described by state vectors are said to be in mixed states. Mixed states

are described by the density operator

ρ̂ =
∑

i

|ψi 〉 pi 〈ψi | =
∑

i

pi |ψi 〉 〈ψi |, (A4)

where the sum is over an ensemble (in the sense of statistical mechanics) where

pi is the probability of the system being in the ith state of the ensemble |ψi 〉,
where 〈ψi | ψi 〉 = 1. The probabilities satisfy the obvious relations

0 ≤ pi ≤ 1,
∑

i

pi = 1,
∑

i

p2

i
≤ 1. (A5)

For the special case where all the pi vanish except, say, the jth one, pi = δi j , we

obtain

ρ̂ = |ψ j 〉〈ψ j |, (A6)

the density operator for the pure state |ψ j 〉. Note that the density operator for this

case is just the projection operator onto the state |ψ j 〉, and for the more general

case of Eq. (A4), the density operator is a sum of the projection operators over

the ensemble, weighted with the probabilities of each member of the ensemble.

We now introduce a complete, orthonormal, basis {|ϕn〉} (
∑

n |ϕn〉〈ϕn| = Î ),

eigenstates of some observable. Then for the ith member of the ensemble we may

write

|ψi 〉 =
∑

n

|ϕn〉 〈ϕn | ψi 〉 =
∑

n

c(i)
n |ϕn〉, (A7)

where c
(i)
n = 〈ϕn | ψi 〉. The matrix element of ρ̂ between the n and n′ eigenstates

is

〈ϕn |ρ̂| ϕn′ 〉 =
∑

i

〈ϕn|ψi 〉 pi 〈ψi |ϕn′ 〉 =
∑

i

pi c
(i)
n c

(i)∗

n′ . (A8)

The quantities 〈ϕn|ρ̂|ϕn′〉 form the elements of the density matrix. Taking the

trace of this matrix we have

Trρ̂ =
∑

n

〈ϕn |ρ̂| ϕn〉 =
∑

i

∑

n

〈ϕn|ψi 〉 pi 〈ψi |ϕn〉
(A9)

=
∑

i

∑

n

pi 〈ψi |ϕn〉 〈ϕn|ψi 〉 =
∑

i

pi = 1.

Since ρ̂ is Hermitian (as is evident from its construction in Eq. (A4)), the diagonal

elements 〈ϕn|ρ̂|ϕn〉 must be real, and it follows from Eq. (A9) that

0 ≤ 〈ϕn| ρ̂ |ϕn〉 ≤ 1. (A10)

Now let us consider the square of the density operator: ρ̂2 = ρ̂ • ρ̂. For a pure

state where ρ̂ = |ψ〉〈ψ | it follows that

ρ̂2 = |ψ〉 〈ψ | ψ〉 〈ψ | = |ψ〉 〈ψ | = ρ̂ (A11)
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and thus

Trρ̂2 = Trρ̂ = 1. (A12)

For a statistical mixture

ρ̂2 =
∑

i

∑

j

pi p j |ψi 〉〈ψi |ψ j 〉〈ψ j |. (A13)

Taking the trace we have

Trρ̂2 =
∑

n

〈ϕn| ρ̂2 |ϕn〉

=
∑

n

∑

i

∑

j

pi p j 〈ϕn |ψi 〉〈ψi |ψ j 〉〈ψ j |ϕn〉

=
∑

i

∑

j

pi p j |〈ψi |ψ j 〉|2

≤
[

∑

i

pi

]2

= 1. (A14)

The equality holds only if |〈ψi | ψ j 〉|2 = 1 for every pair of states |ψi 〉 and |ψ j 〉.
This is possible only if all the |ψi 〉 are collinear in Hilbert space, i.e. equivalent

up to an overall phase factor. Thus we have the following criteria for pure and

mixed states:

Trρ̂2 = 1,for a pure state,

Trρ̂2 < 1, for a mixed state.
(A15)

Perhaps a simple example is warranted at this point. Consider a superposition of,

say, the vacuum and one-photon number states

|ψ〉 =
1

√
2

(|0〉 + eiφ |1〉), (A16)

where φ is just some phase. The density operator associated with this state is

given by

ρ̂ψ = |ψ〉 〈ψ | =
1

2
[|0〉 〈0| + |1〉 〈1| + eiφ |1〉 〈0| + e−iφ |0〉 〈1|]. (A17)

On the other hand, the density operator for an equally populated mixture of

vacuum and one-photon states is

ρ̂M =
1

2
[|0〉 〈0| + |1〉 〈1|] . (A18)

The two density operators differ by the presence of the “off-diagonal”, or “coher-

ence”, terms in the former, such terms being absent in the case of the mixture.

The absence of the coherence terms is, of course, what makes the distinction

between a state exhibiting full quantum-mechanical behavior and one that does

not. It is easy to check that Trρ̂2
M = 1/2.

For one of the states of the ensemble |ψi 〉, by itself pure, the expectation value

of some operator Ô is given by

〈Ô〉i = 〈ψi |Ô|ψi 〉. (A19)
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For the statistical mixture, the ensemble average is given by

〈Ô〉 =
∑

i

pi 〈ψi | Ô |ψi 〉, (A20)

which is just the average of the quantum-mechanical expectation values weighted

with the probabilities pi . Formally we may write

〈Ô〉 = Tr(ρ̂ Ô) (A21)

since

Tr(ρ̂ Ô) =
∑

n

〈ϕn| ρ̂ Ô |ϕn〉

=
∑

n

∑

i

pi 〈ϕn | ψi 〉 〈ψi | Ô |ϕn〉

=
∑

i

∑

n

pi 〈ψi | Ô |ϕn〉 〈ϕn | ψi 〉

=
∑

i

pi 〈ψi | Ô |ψi 〉 . (A22)

A.2 Two-state system and the Bloch sphere

For a two-state system, be it a spin-1/2 particle, a two-level atom, or the polariza-

tions of a single photon, there always exists a description in terms of the Pauli

operators σ̂1, σ̂2, σ̂3 satisfying the commutation relations

[σ̂i , σ̂ j ] = 2iεi jk σ̂k . (A23)

In a basis where σ̂3 and σ̂ 2 = σ̂ 2
1 + σ̂ 2

2 + σ̂ 2
3 are diagonal, these operators can be

written in matrix form as

σ1 =
(

0 1
1 0

)

, σ2 =
(

0 −i
i 0

)

, σ3 =
(

1 0
0 −1

)

. (A24)

Any Hermitian 2 × 2 matrix can be expressed in terms of the Pauli matrices and

the 2 × 2 identity matrix Î2, and this includes, of course, the density operator.

That is, we can write

ρ =

(

ρ11 ρ12

ρ21 ρ22

)

=
1

2

(

1 + s3 s1 + i s2

s1 − i s2 1 − s3

)

=
1

2
( Î2 + s · σ ), (A25)

where the vector s = {s1, s2, s3} is known as the Bloch vector. For a pure

state ρ̂ = |�〉〈�|, the Bloch vector has unit length,
∑

i |si |2 = 1, and points

in some direction specified by the spherical coordinate angles θ and φ in a three-

dimensional Euclidean space. The associated quantum state can be represented

in terms of these angles as

|�〉 = cos

(

θ

2

)

e−iφ/2 |↑〉 + sin

(

θ

2

)

eiφ/2 |↓〉 . (A26)

In general, and including the case of mixed states where |s| ≤ 1, the density
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s3

s2

s1

u

s

−u

Fig. A.1. Representation

of the density matrix of a

two-state system in terms

of the Bloch sphere and

Bloch vector. The three

components of the Bloch

vector s = {s1, s2, s3}
specify the density

operator according to

the parameterization of

Eq. (A25). The two

eigenvalues are (1 ± |s|)/2

and the two eigenvectors

are specified by u and −u.

operator of the form of Eq. (A25) has two eigenvalues

g1 =
1

2

[

1 +
√

s2
1 + s2

2 + s2
3

]

=
1

2
[1 + |s|] ,

(A27)

g2 =
1

2

[

1 −
√

s2
1 + s2

2 + s2
3

]

=
1

2
[1 − |s|] ,

and its eigenvectors are determined by the two vectors u and −u shown in the

Bloch sphere in Fig. A.1. For pure states, where |s| = 1, u coincides with s and

its tip lies on the surface of the Bloch sphere. For a mixed state where |s| < 1,

vector u points in the same direction as s but unlike s maintains unit length so

that its tip always lies on the surface of the Bloch sphere. Equation (A26) can be

used to express u and −u in terms of the vectors in state space.

A.3 Entangled states

Let us now consider a two-particle (or two-mode) system (known also as a bipar-

tite system) and, for simplicity, let us assume that each particle can be in either

of two one-particle states |ψ1〉 or |ψ2〉. Using the notation
∣

∣

∣
ψ

(1)
1

〉

, particle 1 in state 1,
∣

∣

∣
ψ

(1)
2

〉

, particle 1 in state 2,
∣

∣

∣
ψ

(2)
1

〉

, particle 2 in state 1,
∣

∣

∣
ψ

(2)
2

〉

, particle 2 in state 2,

we consider a pure two-particle superposition state (in general an entangled state)

|�〉 = C1

∣

∣

∣
ψ

(1)
1

〉

⊗
∣

∣

∣
ψ

(2)
2

〉

+ C2

∣

∣

∣
ψ

(1)
2

〉

⊗
∣

∣

∣
ψ

(2)
1

〉

(A28)

an example of which is given in Eq. (A2). (We have inserted the direct product

symbol here for emphasis, although we generally assume it to be understood
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and clear from context throughout this book.) Clearly, this can be extended for

multiparticle (multipartite) systems. For such multipartite systems, we can define

reduced density operators for each of the subsystems by tracing the density oper-

ator over the states of all the other systems. In the present case, with the density

operator of the two-particle system given by ρ̂ = |�〉〈�|, the reduced density

operator for particle 1 is

ρ̂(1) = Tr2ρ̂ =
〈

ψ
(2)
1

∣

∣

∣
ρ̂

∣

∣

∣
ψ

(2)
1

〉

+
〈

ψ
(2)
2

∣

∣

∣
ρ̂

∣

∣

∣
ψ

(2)
2

〉

= |C1|2
∣

∣

∣
ψ

(1)
1

〉〈

ψ
(1)
1

∣

∣

∣
+ |C2|2

∣

∣

∣
ψ

(1)
2

〉〈

ψ
(1)
2

∣

∣

∣
. (A29)

This has the form for a mixed state for particle 1 as long as Ci 
= 0, i = 1, 2.

Similarly, for particle 2,

ρ̂(2) = Tr1ρ̂ = |C1|2
∣

∣

∣
ψ

(2)
1

〉〈

ψ
(2)
1

∣

∣

∣
+ |C2|2

∣

∣

∣
ψ

(2)
2

〉〈

ψ
(2)
2

∣

∣

∣
. (A30)

Evidently, when one of the particles is considered without regard to the other, it is

generally in a mixed state. Thus one may characterize the degree of entanglement

according to the degree of purity of either of the subsystems. If Tr[ρ̂(2)]2 = 1,

the state |�〉 is not an entangled state; but if Tr[ρ̂(2)]2 < 1 we may conclude that

|�〉 describes an entanglement between subsystems 1 and 2.

A.4 Schmidt decomposition

There is another convenient way to approach the problem of characterizing entan-

glement, at least for cases where there are only two subsystems. We refer to the

von Neumann entropy, which we introduce in the next section. But first, as a pre-

liminary, we introduce the Schmidt decomposition [1, 2]. To keep the discussion

general we do not restrict the dimensions of the Hilbert spaces of the subsystems.

Suppose we let {|ai 〉, i = 1, 2, 3, . . .} and {|b j 〉, j = 1, 2, 3, . . .} form

orthonormal bases for subsystems U and V respectively. If the Hilbert spaces

of these systems are denoted HU and HV respectively, then any state |�〉 ∈ H =
HU ⊗ HV can be written as

|�〉 =
∑

i, j=1

ci j |ai 〉 ⊗ |b j 〉. (A31)

In these bases, the density operator for the composite system is

ρ̂ = |�〉 〈�| =
∑

i, j,k,l

ci j c
∗
k l |ai 〉 〈ai | ⊗

∣

∣b j

〉

〈bl |

=
∑

i, j,k,l

ρi j,kl |ai 〉 〈ai | ⊗
∣

∣b j

〉

〈bl | , (A32)

where the ρi j,kl = ci j c
∗
kl . The density operators of each of the subsystems are
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Quantum measurement theory in a
(very small) nutshell

The following is in no way meant to be an extensive review of the subject of quan-

tum measurement theory. For more details, the reader should consult the bibliog-

raphy. Here we present only those aspects of the theory necessary to understand

the results of state reductive measurements, particularly for situations involving

entangled states.

Suppose the operator Q̂ is a Hermitian operator representing some observable

Q. Further, we let the states {|qn〉; n integer} be the eigenstates of Q̂ with the

eigenvalues being qn : Q̂|qn〉 = qn|qn〉. The eigenstates are complete and resolve

unity according to
∑

n

|qn〉〈qn| = Î . (B1)

Each of the terms |qn〉〈qn| forms a projection operator onto the state with eigen-

value qn, P̂(qn) : = |qn〉〈qn|. A state |ψ〉 (assumed normalized: 〈ψ | ψ〉 = 1) can

be expanded in terms of the eigenstates of Q̂ according to

|ψ〉 = Î |ψ〉 =
∑

n

|qn〉 〈qn | ψ〉 =
∑

n

cn |qn〉 (B2)

where the coefficient cn = 〈qn | ψ〉 is, in general, a complex number, and is known

as a probability amplitude. If |ψ〉 is the state vector just before a measurement

of the observable Q, the probability of obtaining the outcome qn , P(qn), is

P(qn) = 〈ψ |P̂(qn)|ψ〉 = |cn|2. (B3)

According to the orthodox (or Copenhagen) interpretation of quantum mechanics,

the system described by the state vector |ψ〉 is not in one of the eigenstates of

Q̂ prior to the measurement, but rather, the state vector collapses, or reduces, to

one of the eigenstates upon measurement, this processes sometimes represented

by the symbols

|ψ〉 measurement−→
of Q̂

|qn〉. (B4)

Prior to the measurement, the value of the observable associated with the operator

Q̂ in the system described by the state vector |ψ〉 is objectively indefinite. It

is not merely a matter of only knowing what the value of the observable is

304
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with a probability given by Eq. (B3), as would be the case if we were talking

about statistical mechanics, but rather that one cannot assign definite values to

observables for systems in superposition states without leading to conflict with

experimental observations. The state reduction processes throws the system into

a state with a definite value of the observable and subsequent measurements of

that observable will return the same state. The dynamics of state reduction is not

described by the Schrödinger equation. The interaction of the detector with the

particle whose quantum state is being measured may destroy that particle. For

example, when a photo-detector “clicks” it does so because the photon itself has

been destroyed (absorbed).

It is sometimes possible to arrange experiments to perform selective, or filtered,

measurements, sometimes called von Neumann projections. Such measurements

are invoked in the text in Chapter 9 where polarization filters are employed and in

Chapter 10 where field ionization is used in the context of cavity quantum elec-

trodynamics. A projective measurement on one of the eigenstates |qn〉 requires

a filtration of all the other eigenstates of the operator. Mathematically we may

represent this projection as P̂(qn)|ψ〉, which in normalized form reads

|ψ〉 projective
−→

measurement
|qn〉 =

P̂(qn) |ψ〉
〈ψ | P̂(qn) |ψ〉1/2

. (B5)

The filtering need not project onto an eigenstate of Q̂. Suppose we could some-

how filter the system so that the superposition state |ψs〉 = 1√
2
(|q1〉 + |q2〉) is

measured. The projection operator associated with this state is P̂s = |ψs〉〈ψs|
and we have the projection

|ψ〉 projective
−→

measurement onto |ψs〉
eiϕ |ψs〉 =

P̂s |ψ〉
〈ψ | P̂s |ψ〉1/2

, (B6)

where P̂s|ψ〉 = |ψs〉〈ψs | ψ〉 = |ψs〉(|c1 + c2|eiϕ)/
√

2, and 〈ψ |P̂s|ψ〉 =
|c1 + c2|2/2. The phase ϕ is an irrelevant overall phase factor.

As a specific example, consider a single photon in the polarization state

|θ〉 = |H〉 cos θ + |V 〉 sin θ (B7)

where we have used the convention given in Chapter 9. If a Polaroid filter is

placed in the beam and oriented along the horizontal (vertical) direction, the state

vector of Eq. (B7) reduces to |H〉(|V 〉). On then other hand, if we try to project

onto the state

|θ⊥〉 = −|H〉 sin θ + |V 〉 cos θ, (B8)

where θ⊥ = θ + π/2, by orienting the filter along that direction, we find that we

get no photons at all passing through: 〈θ⊥ | θ〉 = 0. But if we orient the filter

along some direction ϑ to the horizontal axis, the photon will be projected onto

the polarization state

|ϑ〉 = |H〉 cos ϑ + |V 〉 sin ϑ, (B9)

as the reader can easily check.
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Let us now turn to the case of two-mode states. If we have two modes labeled

1 and 2, we may write a general two-mode state as

|ψ〉 =
∑

n,m

cn m |qn〉1 |sm〉2 , (B10)

where the states |qn〉1 are eigenstates of Q̂1 defined in the Hilbert space of mode

1 and the states |sm〉 are eigenstates of some operator Ŝ2 defined in the Hilbert

space of mode 2. Certain choices of the coefficients cn m will render the state an

entangled state. In either case, an unfiltered measurement of the observables Q̂1

and Ŝ2 reduces the state vector to

|ψ〉 measurement−→
ofQ̂1 andŜ2

|qn〉1 |sm〉2 , (B11)

whereas, say, a projective measurement onto |qn〉1 reduces the state vector of Eq.

(B10) to

|ψ〉
projection

−→
onto |qn 〉1

|ψ, qn〉 =
P̂1(qn)|ψ〉

〈ψ |P̂1(qn)|ψ〉1/2

= |qn〉1

∑

m

cn m |sm〉
∑

m

|cn m |2
. (B12)

The projection holds whether or not we have an entangled state, as do the more

general projections of the type discussed above. Notice that if the original state is

entangled, the projective measurement creates a factorized state. As an example,

let us consider a state of the form

|ψ〉 =
1

√
2

(|H〉1 |V 〉2 − |V 〉1 |H〉2) , (B13)

one of the Bell states. Suppose that in mode 1 a Polaroid filter is placed

at an angle of π/4 to the horizontal. This causes a projection onto the

state

|π/4〉1 =
1

√
2

(|H〉1 + |V 〉1) (B14)

in that mode and reduces the original state vector to

|ψ〉
projection

−→
onto|π/4〉1

P̂1( π

4
)|ψ〉

〈ψ |P̂1( π

4
)|ψ〉1/2

= |π/4〉1

1
√

2
(|V 〉2 − |H〉2). (B15)

Note that a projective measurement of one part of an entangled system projects

the other part into a particular state in a manner that is entirely predictable. The

correlations exhibited by these projections are of a highly nonclassical nature and

are ultimately responsible for the violations of Bell’s inequalities as described in

Chapter 9.
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Nonlinear optics and spontaneous
parametric down-conversion

Down-conversion results from a nonlinear interaction of pump radiation with

media where the induced polarization is so strongly effected by the radiation

that it deforms beyond the linear response that generates the usual dispersion

and absorption. For our purposes, we can expand the nonlinear polarization in a

power series in the applied radiation field. Crystals commonly used in nonlinear

optics are highly anisotropic and their response is described in tensorial form

according to

P̂i = χ
(1)
i, j Ê j + χ

(2)
i, j,k Ê j Êk + χ

(3)
i, j,k,l Ê j Êk Êl + · · · (D1)

where χ (m) is the mth-order electric susceptibility tensor [1] and where repeated

indices imply a sum. The energy density is then ε0 Ei Pi and thus the second-order

contribution to the Hamiltonian, the interaction Hamiltonian, is

Ĥ (2) = ε0

∫

V

d3
rχ

(2)
i, j,k Êi Ê j Êk, (D2)

where the integral is over the interaction volume. We now represent the compo-

nents of the fields as Fourier integrals of the form

Ê (r, t) =
∫

d3
k

[

Ê (−) (k) e−i[ω(k) t−k·r] + Ê (+) (k) ei[ω(k) t−k·r]
]

, (D3)

where

Ê (−) (k) = i

√

2π hω (k)

V
â† (k) , and Ê (−) (k) = i

√

2π hω (k)

V
â (k) . (D4)

The operators â(k) and â†(k) are the annihilation and creation operators respec-

tively of photons with momentum hk.* If we substitute field expressions of the

above form into Eq. (D2) and retain only the terms important for the case when

the signal and idler modes are initially in vacuum states, we obtain the interaction

Hamiltonian

ĤI (t) = ε0

∫

V

d3
r

∫

d3
ksd3

kiχ
(2)
lmn

×Ê
(+)

pl ei[ωp(kp) t−kp ·r] Ê (−)
sm e−i[ωs (ks ) t−ks ·r] Ê

(−)

in e−i[ωi (ki ) t−ki ·r] + H.c. (D5)

* The commutation relations for these operators where the wave vector is continuous take the form

[â(k), â†(k′)] = δ(3)(k − k
′).
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The conversion rates for the process depend on the second or electric susceptibility

χ (2) but typically have efficiencies in the range 10−7 to 10−11, extremely low rates.

For this reason, in order to obtain significant output in the signal and idler beams

it is necessary to pump the medium with a very strong coherent field which we

can model as a classical field obtained from a laser as long as we are interested

in interactions over a short enough time such that depletion of pump photons

can be ignored – the parametric approximation. The pump laser is usually in the

ultraviolet while the photons arising from the down-conversion are usually in the

visible spectral range.

From time dependent perturbation theory, assuming the initial states of the

signal and idler modes are in vacuum states, which we denote for the moment as

|�0〉, we obtain, to first order, |�〉 ≈ |�0〉 + |�1〉 where [2]

|�1〉 = −
i

h

∫

d t Ĥ (t)|�0〉

= N

∫

d3
ksd

3
kiδ(ωp − ωs(ks) − ωi(ki))

×δ(3)(kp − ks − ki)â
†
s (ks)â

†
i (ki)|�0〉, (D6)

where N is a normalization factor into which all constants have been absorbed.

One sees that the delta functions contain the phase matching conditions

ωp = ωs + ωi,

kp = ks + ki.
(D7)

In the case of type I phase matching, we end up with the state given by Eq. (9.9),

which we arrived at by assuming specific momenta which can be post-selected

by the placement of a screen with properly located holes over the output of the

down-converter.
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Basis 3:
8

<

:

1√
12

(2 |α〉 |β〉 |γ〉 + 2 |β〉 |α〉 |γ〉 − |α〉 |γ〉 |β〉 − |γ〉 |β〉 |α〉
− |γ〉 |α〉 |β〉 − |β〉 |γ〉 |α〉)

1

2
(0 + 0 − |α〉 |γ〉 |β〉 + |γ〉 |β〉 |α〉 + |γ〉 |α〉 |β〉 − |β〉 |γ〉 |α〉)

(1.1.16c)

Basis 4:
8

<

:

1

2
(0 + 0 − |α〉 |γ〉 |β〉 + |γ〉 |β〉 |α〉 − |γ〉 |α〉 |β〉 + |β〉 |γ〉 |α〉)
1√
12

(2 |α〉 |β〉 |γ〉 − 2 |β〉 |α〉 |γ〉 + |α〉 |γ〉 |β〉 + |γ〉 |β〉 |α〉
− |γ〉 |α〉 |β〉 − |β〉 |γ〉 |α〉) .

(1.1.16d)

In the bases 3 and 4, the first of the two functions in each case is even under
P12 and the second is odd under P12 (immediately below we shall call these two
functions |ψ1〉 and |ψ2〉). Other operations give rise to a linear combination of the
two functions:

P12 |ψ1〉 = |ψ1〉 , P12 |ψ2〉 = −|ψ2〉 , (1.1.17a)

P13 |ψ1〉 = α11 |ψ1〉 + α12 |ψ2〉 , P13 |ψ2〉 = α21 |ψ1〉 + α22 |ψ2〉 , (1.1.17b)

with coefficients αij . In matrix form, (1.1.17b) can be written as

P13

„

|ψ1〉
|ψ2〉

«

=

„

α11 α12

α21 α22

« „

|ψ1〉
|ψ2〉

«

. (1.1.17c)

The elements P12 and P13 are thus represented by 2 × 2 matrices

P12 =

„

1 0
0 −1

«

, P13 =

„

α11 α12

α21 α22

«

. (1.1.18)

This fact implies that the basis vectors |ψ1〉 and |ψ2〉 span a two-dimensional repre-
sentation of the permutation group S3. The explicit calculation will be carried out
in Problem 1.2.

1.2 Completely Symmetric and Antisymmetric States

We begin with the single-particle states |i〉: |1〉, |2〉, . . . . The single-particle
states of the particles 1, 2, . . . , α, . . . , N are denoted by |i〉1, |i〉2, . . . , |i〉α,
. . . , |i〉N . These enable us to write the basis states of the N -particle system

|i1, . . . , iα, . . . , iN〉 = |i1〉1 . . . |iα〉α . . . |iN 〉N , (1.2.1)

where particle 1 is in state |i1〉1 and particle α in state |iα〉α, etc. (The
subscript outside the ket is the number labeling the particle, and the index
within the ket identifies the state of this particle.)

Provided that the {|i〉} form a complete orthonormal set, the product
states defined above likewise represent a complete orthonormal system in the
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space of N -particle states. The symmetrized and antisymmetrized basis states
are then defined by

S± |i1, i2, . . . , iN〉 ≡ 1√
N !

∑

P

(±1)P P |i1, i2, . . . , iN〉 . (1.2.2)

In other words, we apply all N ! elements of the permutation group SN of N
objects and, for fermions, we multiply by (−1) when P is an odd permutation.
The states defined in (1.2.2) are of two types: completely symmetric and
completely antisymmetric.

Remarks regarding the properties of S± ≡ 1√
N !

∑

P (±1)P P :

(i) Let SN be the permutation group (or symmetric group) of N quantities.

Assertion: For every element P ∈ SN , one has PSN = SN .
Proof. The set PSN contains exactly the same number of elements as SN and these,

due to the group property, are all contained in SN . Furthermore, the elements of

PSN are all different since, if one had PP1 = PP2, then, after multiplication by

P−1, it would follow that P1 = P2.

Thus

PSN = SNP = SN . (1.2.3)

(ii) It follows from this that

PS+ = S+P = S+ (1.2.4a)

and

PS− = S−P = (−1)P S−. (1.2.4b)

If P is even, then even elements remain even and odd ones remain odd. If
P is odd, then multiplication by P changes even into odd elements and vice
versa.

PS+ |i1, . . . , iN〉 = S+ |i1, . . . , iN〉
PS− |i1, . . . , iN〉 = (−1)P S− |i1, . . . , iN 〉
Special case PijS− |i1, . . . , iN〉 = −S− |i1, . . . , iN〉 .

(iii) If |i1, . . . , iN〉 contains single-particle states occurring more than once,
then S+ |i1, . . . , iN 〉 is no longer normalized to unity. Let us assume that the
first state occurs n1 times, the second n2 times, etc. Since S+ |i1, . . . , iN 〉
contains a total of N ! terms, of which N !

n1!n2!...
are different, each of these

terms occurs with a multiplicity of n1!n2! . . . .

〈i1, . . . , iN |S†
+S+ |i1, . . . , iN 〉 =

1

N !
(n1!n2! . . . )

2 N !

n1!n2! . . .
= n1!n2! . . .
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Thus, the normalized Bose basis functions are

S+ |i1, . . . , iN 〉 1√
n1!n2! . . .

=
1√

N !n1!n2! . . .

∑

P

P |i1, . . . , iN〉 . (1.2.5)

(iv) A further property of S± is

S2
± =

√
N !S± , (1.2.6a)

since S2
± = 1√

N !

∑

P (±1)P PS± = 1√
N !

∑

P S± =
√

N !S±. We now consider

an arbitrary N -particle state, which we expand in the basis |i1〉 . . . |iN〉

|z〉 =
∑

i1,... ,iN

|i1〉 . . . |iN〉 〈i1, . . . , iN |z〉
︸ ︷︷ ︸

ci1,... ,iN

.

Application of S± yields

S± |z〉 =
∑

i1,... ,iN

S± |i1〉 . . . |iN 〉 ci1,... ,iN
=

∑

i1,... ,iN

|i1〉 . . . |iN 〉S±ci1,... ,iN

and further application of 1√
N !

S±, with the identity (1.2.6a), results in

S± |z〉 =
1√
N !

∑

i1,... ,iN

S± |i1〉 . . . |iN〉 (S±ci1,... ,iN
). (1.2.6b)

Equation (1.2.6b) implies that every symmetrized state can be expanded in
terms of the symmetrized basis states (1.2.2).

1.3 Bosons

1.3.1 States, Fock Space, Creation and Annihilation Operators

The state (1.2.5) is fully characterized by specifying the occupation numbers

|n1, n2, . . .〉 = S+ |i1, i2, . . . , iN〉 1√
n1!n2! . . .

. (1.3.1)

Here, n1 is the number of times that the state 1 occurs, n2 the number of
times that state 2 occurs, . . . . Alternatively: n1 is the number of particles in
state 1, n2 is the number of particles in state 2, . . . . The sum of all occupation
numbers ni must be equal to the total number of particles:

∞∑

i=1

ni = N. (1.3.2)
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Apart from this constraint, the ni can take any of the values 0, 1, 2, . . . .
The factor (n1!n2! . . . )

−1/2, together with the factor 1/
√

N ! contained in
S+, has the effect of normalizing |n1, n2, . . .〉 (see point (iii)). These states
form a complete set of completely symmetric N -particle states. By linear
superposition, one can construct from these any desired symmetric N -particle
state.

We now combine the states for N = 0, 1, 2, . . . and obtain a complete
orthonormal system of states for arbitrary particle number, which satisfy the
orthogonality relation6

〈n1, n2, . . . |n1
′, n2

′, . . .〉 = δn1,n1
′δn2,n2

′ . . . (1.3.3a)

and the completeness relation

∑

n1,n2,...

|n1, n2, . . .〉 〈n1, n2, . . .| = 11 . (1.3.3b)

This extended space is the direct sum of the space with no particles (vacuum
state |0〉), the space with one particle, the space with two particles, etc.; it is
known as Fock space.

The operators we have considered so far act only within a subspace of
fixed particle number. On applying p,x etc. to an N -particle state, we obtain
again an N -particle state. We now define creation and annihilation operators,
which lead from the space of N -particle states to the spaces of N ±1-particle
states:

a†
i |. . . , ni, . . .〉 =

√
ni + 1 |. . . , ni + 1, . . .〉 . (1.3.4)

Taking the adjoint of this equation and relabeling ni → ni
′, we have

〈. . . , ni
′, . . .| ai =

√

ni
′ + 1 〈. . . , ni

′ + 1, . . .| . (1.3.5)

Multiplying this equation by |. . . , ni, . . .〉 yields

〈. . . , ni
′, . . .| ai |. . . , ni, . . .〉 =

√
ni δni

′+1,ni
.

Expressed in words, the operator ai reduces the occupation number by 1.
Assertion:

ai |. . . , ni, . . .〉 =
√

ni |. . . , ni − 1, . . .〉 for ni ≥ 1 (1.3.6)

and

ai |. . . , ni = 0, . . .〉 = 0 .

6 In the states |n1, n2, . . .〉, the n1, n2 etc. are arbitrary natural numbers whose
sum is not constrained. The (vanishing) scalar product between states of differing
particle number is defined by (1.3.3a).
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Proof:

ai |. . . , ni, . . .〉 =

∞∑

ni
′=0

|. . . , ni
′, . . .〉 〈. . . , ni

′, . . .| ai |. . . , ni, . . .〉

=

∞∑

ni
′=0

|. . . , ni
′, . . .〉√ni δni

′+1,ni

=

{√
ni |. . . , ni − 1, . . .〉 for ni ≥ 1

0 for ni = 0
.

The operator a†
i increases the occupation number of the state |i〉 by 1, and the

operator ai reduces it by 1. The operators a†
i and ai are thus called creation

and annihilation operators. The above relations and the completeness of the
states yield the Bose commutation relations

[ai, aj] = 0, [a†
i , a

†
j ] = 0, [ai, a

†
j] = δij . (1.3.7a,b,c)

Proof. It is clear that (1.3.7a) holds for i = j, since ai commutes with itself. For
i �= j, it follows from (1.3.6) that

aiaj |. . . , ni, . . . , nj , . . .〉 =
√

ni

√
nj |. . . , ni − 1, . . . , nj − 1, . . .〉

= ajai |. . . , ni, . . . , nj , . . .〉
which proves (1.3.7a) and, by taking the hermitian conjugate, also (1.3.7b).
For j �= i we have

aia
†
j |. . . , ni, . . . , nj , . . .〉 =

√
ni

p

nj + 1 |. . . , ni − 1, . . . , nj + 1, . . .〉
= a

†
jai |. . . , ni, . . . , nj , . . .〉

and
“

aia
†
i − a

†
iai

”

|. . . , ni, . . . , nj , . . .〉 =
`√

ni + 1
√

ni + 1 −√
ni

√
ni

´

|. . . , ni, . . . , nj , . . .〉

hence also proving (1.3.7c).

Starting from the ground state ≡ vacuum state

|0〉 ≡ |0, 0, . . .〉 , (1.3.8)

which contains no particles at all, we can construct all states:
single-particle states

a†
i |0〉 , . . . ,

two-particle states

1√
2!

(

a†
i

)2

|0〉 , a†
ia

†
j |0〉 , . . .
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and the general many-particle state

|n1, n2, . . .〉 =
1√

n1!n2! . . .

(

a†
1

)n1
(

a†
2

)n2

. . . |0〉 . (1.3.9)

Normalization:

a† |n − 1〉 =
√

n |n〉 (1.3.10)

∥
∥a† |n − 1〉

∥
∥ =

√
n

|n〉 =
1√
n

a† |n − 1〉 .

1.3.2 The Particle-Number Operator

The particle-number operator (occupation-number operator for the state |i〉)
is defined by

n̂i = a†
iai . (1.3.11)

The states introduced above are eigenfunctions of n̂i:

n̂i |. . . , ni, . . .〉 = ni |. . . , ni, . . .〉 , (1.3.12)

and the corresponding eigenvalue of n̂i is the number of particles in the state
i.
The operator for the total number of particles is given by

N̂ =
∑

i

n̂i. (1.3.13)

Applying this operator to the states |. . . , n̂i, . . .〉 yields

N̂ |n1, n2, . . .〉 =

(
∑

i

ni

)

|n1, n2, . . .〉 . (1.3.14)

Assuming that the particles do not interact with one another and, further-
more, that the states |i〉 are the eigenstates of the single-particle Hamiltonian
with eigenvalues ǫi, the full Hamiltonian can be written as

H0 =
∑

i

n̂iǫi (1.3.15a)

H0 |n1, . . .〉 =

(
∑

i

niǫi

)

|n1, . . .〉 . (1.3.15b)

The commutation relations and the properties of the particle-number opera-
tor are analogous to those of the harmonic oscillator.



16 1. Second Quantization

We now investigate the action of one term of the sum constituting F :

∑

α�=β

|i〉α |j〉β 〈k|α 〈m|β |. . . , ni, . . . , nj , . . . , nk, . . . , nm, . . .〉

= nknm
1√

nk
√

nm

√
ni + 1

√
nj + 1

|. . . , ni + 1, . . . , nj + 1, . . . , nk − 1, . . . , nm − 1, . . .〉
= a†

ia
†
jakam |. . . , ni, . . . , nj , . . . , nk, . . . , nm, . . .〉 .

Here, we have assumed that the states are different. If the states are identical,
the derivation has to be supplemented in a similar way to that for the single-
particle operators.

A somewhat shorter derivation, and one which also covers the case of
fermions, proceeds as follows: The commutator and anticommutator for
bosons and fermions, respectively, are combined in the form [ak, aj ]∓ = δkj .

∑

α�=β

|i〉α |j〉β 〈k|α 〈m|β =
∑

α�=β

|i〉α 〈k|α |j〉β 〈m|β

=
∑

α,β

|i〉α 〈k|α |j〉β 〈m|β − 〈k|j〉
︸ ︷︷ ︸

δkj

∑

α

|i〉α 〈m|α

= a†
iaka†

jam − a†
i [ak, a†

j ]∓
︸ ︷︷ ︸

aka†
j
∓a†

j
ak

am

= ±a†
ia

†
jakam = a†

ia
†
jamak ,

(1.3.26)

for
bosons
fermions.

This completes the proof of the form (1.3.24).

1.4 Fermions

1.4.1 States, Fock Space, Creation and Annihilation Operators

For fermions, one needs to consider the states S− |i1, i2, . . . , iN 〉 defined in
(1.2.2), which can also be represented in the form of a determinant:

S− |i1, i2, . . . , iN〉 =
1√
N !

∣
∣
∣
∣
∣
∣
∣

|i1〉1 |i1〉2 · · · |i1〉N
...

...
. . .

...
|iN 〉

1
|iN 〉

2
· · · |iN 〉N

∣
∣
∣
∣
∣
∣
∣

. (1.4.1)
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The determinants of one-particle states are called Slater determinants. If any
of the single-particle states in (1.4.1) are the same, the result is zero. This
is a statement of the Pauli principle: two identical fermions must not occupy
the same state. On the other hand, when all the iα are different, then this
antisymmetrized state is normalized to 1. In addition, we have

S− |i2, i1, . . .〉 = −S− |i1, i2, . . .〉 . (1.4.2)

This dependence on the order is a general property of determinants.
Here, too, we shall characterize the states by specifying their occupation

numbers, which can now take the values 0 and 1. The state with n1 particles
in state 1 and n2 particles in state 2, etc., is

|n1, n2, . . .〉 .

The state in which there are no particles is the vacuum state, represented by

|0〉 = |0, 0, . . .〉 .

This state must not be confused with the null vector!
We combine these states (vacuum state, single-particle states, two-particle

states, . . . ) to give a state space. In other words, we form the direct sum
of the state spaces for the various fixed particle numbers. For fermions, this
space is once again known as Fock space. In this state space a scalar product
is defined as follows:

〈n1, n2, . . . |n1
′, n2

′, . . .〉 = δn1,n1
′δn2,n2

′ . . . ; (1.4.3a)

i.e., for states with equal particle number (from a single subspace), it is iden-
tical to the previous scalar product, and for states from different subspaces
it always vanishes. Furthermore, we have the completeness relation

1∑

n1=0

1∑

n2=0

. . . |n1, n2, . . .〉 〈n1, n2, . . .| = 11 . (1.4.3b)

Here, we wish to introduce creation operators a†
i once again. These must

be defined such that the result of applying them twice is zero. Furthermore,
the order in which they are applied must play a role. We thus define the
creation operators a†

i by

S− |i1, i2, . . . , iN〉 = a†
i1

a†
i2

. . . a†
iN

|0〉
S− |i2, i1, . . . , iN〉 = a†

i2
a†

i1
. . . a†

iN
|0〉 .

(1.4.4)

Since these states are equal except in sign, the anticommutator is

{a†
i , a

†
j} = 0, (1.4.5a)
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which also implies the impossibility of double occupation

(

a†
i

)2

= 0. (1.4.5b)

The anticommutator encountered in (1.4.5a) and the commutator of two
operators A and B are defined by

{A, B} ≡ [A, B]+ ≡ AB + BA
[A, B] ≡ [A, B]− ≡ AB − BA .

(1.4.6)

Given these preliminaries, we can now address the precise formulation. If one
wants to characterize the states by means of occupation numbers, one has to
choose a particular ordering of the states. This is arbitrary but, once chosen,
must be adhered to. The states are then represented as

|n1, n2, . . .〉 =
(

a†
1

)n1
(

a†
2

)n2

. . . |0〉 , ni = 0, 1. (1.4.7)

The effect of the operator a†
i must be

a†
i |. . . , ni, . . .〉 = (1 − ni)(−1)

P

j<i
nj |. . . , ni + 1, . . .〉 . (1.4.8)

The number of particles is increased by 1, but for a state that is already
occupied, the factor (1−ni) yields zero. The phase factor corresponds to the

number of anticommutations necessary to bring the a†
i to the position i.

The adjoint relation reads:

〈. . . , ni, . . .| ai = (1 − ni)(−1)
P

j<i
nj 〈. . . , ni + 1, . . .| . (1.4.9)

This yields the matrix element

〈. . . , ni, . . .| ai |. . . , ni
′, . . .〉 = (1 − ni)(−1)

P

j<i
nj δni+1,ni

′ . (1.4.10)

We now calculate

ai |. . . , ni
′, . . .〉 =

∑

ni

|ni〉 〈ni| ai |ni
′〉

=
∑

ni

|ni〉 (1 − ni)(−1)
P

j<i
nj δni+1,ni

′ (1.4.11)

= (2 − ni
′)(−1)

P

j<i
nj |. . . , ni

′ − 1, . . .〉ni
′.

Here, we have introduced the factor ni
′, since, for ni

′ = 0, the Kronecker delta
δni+1,ni

′ = 0 always gives zero. The factor ni
′ also ensures that the right-hand

side cannot become equal to the state |. . . , ni
′ − 1, . . .〉 = |. . . ,−1, . . .〉.

To summarize, the effects of the creation and annihilation operators are

a†
i |. . . , ni, . . .〉 = (1 − ni)(−1)

P

j<i
nj |. . . , ni + 1, . . .〉

ai |. . . , ni, . . .〉 = ni(−1)
P

j<i nj |. . . , ni − 1, . . .〉 .
(1.4.12)
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It follows from this that

aia
†
i |. . . , ni, . . .〉 = (1 − ni)(−1)2

P

j<i
nj (ni + 1) |. . . , ni, . . .〉

= (1 − ni) |. . . , ni, . . .〉 (1.4.13a)

a†
iai |. . . , ni, . . .〉 = ni(−1)2

P

j<i
nj (1 − ni + 1) |. . . , ni, . . .〉

= ni |. . . , ni, . . .〉 , (1.4.13b)

since for ni ∈ {0, 1} we have n2
i = ni and (−1)2

P

j<i
nj = 1. On account

of the property (1.4.13b) one can regard a†
iai as the occupation-number op-

erator for the state |i〉. By taking the sum of (1.4.13a,b), one obtains the
anticommutator

[ai, a
†
i ]+ = 1.

In the anticommutator [ai, a
†
j]+ with i 	= j, the phase factor of the two terms

is different:

[ai, a
†
j]+ ∝ (1 − nj)ni(1 − 1) = 0 .

Likewise, [ai, aj ]+ for i 	= j, also has different phase factors in the two sum-
mands and, since aiai |. . . , ni, . . .〉 ∝ ni(ni−1) = 0, one obtains the following
anticommutation rules for fermions:

[ai, aj]+ = 0, [a†
i , a

†
j ]+ = 0, [ai, a

†
j ]+ = δij . (1.4.14)

1.4.2 Single- and Many-Particle Operators

For fermions, too, the operators can be expressed in terms of creation and
annihilation operators. The form is exactly the same as for bosons, (1.3.21)
and (1.3.24). Now, however, one has to pay special attention to the order of
the creation and annihilation operators.
The important relation

X

α

|i〉
α
〈j|

α
= a

†
iaj , (1.4.15)

from which, according to (1.3.26), one also obtains two-particle (and many-particle)
operators, can be proved as follows: Given the state S− |i1, i2, . . . , iN 〉, we assume,
without loss of generality, the arrangement to be i1 < i2 < . . . < iN . Application
of the left-hand side of (1.4.15) gives

X

α

|i〉
α
〈j|

α
S− |i1, i2, . . . , iN〉 = S−

X

α

|i〉
α
〈j|

α
|i1, i2, . . . , iN〉

= nj(1 − ni)S− |i1, i2, . . . , iN 〉
˛

˛

j→i
.

The symbol |j→i implies that the state |j〉 is replaced by |i〉. In order to bring the
i into the right position, one has to carry out

P

k<j
nk +

P

k<i
nk permutations of

rows for i ≤ j and
P

k<j
nk +

P

k<i
nk − 1 permutations for i > j.
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III.  THE OPTICAL FIBER 

Figure 7-7a shows an optical fiber, which consists of a (cylindrical) central dielectric core clad 

by a material of slightly lower refractive index. The corresponding refractive index distribution 

(in the transverse direction) is given by: 

 n n r a

n n r a

= <

= >
1

2

          

          

for

for
 

 
 (7-4) 

 

where n1 and n2 (< n1) represent respectively the refractive indices of core and cladding and a 

represents the radius of the core. We define a parameter ∆ through the following equations. 

 
∆ ≡ 

n n

n

1

2

2

2

2

2
2

–
 

 
 (7-5) 

 

When ∆ << 1 (as is indeed true for silica fibers where n1 is very nearly equal to n2) we may write 

 
∆ =

+
≈ ≈

( )( – ) ( – ) ( – )n n n n

n

n n

n

n n

n

1 2 1 2

1
2

1 2

1

1 2

22
 

 
 (7-6) 

 

 

(a) 

 

(b) 

Figure 7-7  (a) A glass fiber consists of a cylindrical central core clad by a material of slightly lower 

refractive index. (b) Light rays impinging on the core-cladding interface at an angle greater than the 

critical angle are trapped inside the core of the fiber. 
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From the discussion in the above example it follows that, for a very-high-information-carrying 

system, it is necessary to reduce the pulse dispersion. Two alternative solutions exist—one 

involves the use of near-parabolic-index fibers and the other involves single-mode fibers. We 

look at these next. 

VIII.  PARABOLIC-INDEX FIBERS (PIF) 

In a step-index fiber such as that pictured in Figure 7-7, the refractive index of the core has a 

constant value. By contrast, in a parabolic-index fiber, the refractive index in the core decreases 

continuously (in a quadratic fashion) from a maximum value at the center of the core to a 

constant value at the core-cladding interface. The refractive index variation is given by 

 
n r n

r
a

2

1

2

2

1 2( ) –= F
H
I
K

L
N
MM

O
Q
PP

∆  0 < r < a 

n r n n2

2

2

1
2 1 2( ) –= = ∆c h  r > a 

 core 

 cladding 

 (7-21) 

 

with ∆ as defined in Equation 7-5. For a typical (multimode) parabolic-index silica fiber, 

∆ ≈ 0.01, n2 ≈ 1.45, and a ≈ 25 µm. On the other hand, for a typical plastic fiber (see 

Section XII), n1 ≈ 1.49, n2 ≈ 1.40, and a ≈ 500 µm. 

Since the refractive index decreases as one moves away from the center of the core, a ray 

entering the fiber is continuously bent toward the axis of the fiber, as depicted in Figure 7-12. 

 

Figure 7-12  Different ray paths in a parabolic-index fiber 

This follows from Snell’s law because the ray continuously encounters a medium of lower 

refractive index and hence bends continuously away from the normal. Even though rays making 

larger angles with the fiber axis traverse a longer path, they do so now in a region of lower 

refractive index (and hence greater speed). The longer path length is almost compensated for by 

a greater average speed such that all rays take approximately the same amount of time in 

traversing the fiber. This leads to a much smaller pulse dispersion. The detailed calculations are 
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a bit involved [see, e.g., Chapters 4 and 5, Ghatak and Thyagarajan]. The final result for the 

intermodal dispersion in a parabolic-index fiber (PIF) is given by 

 
τ

im
= ≈ ≈
F
HG

I
KJ

n L

c

n n

n

n L

c

L

cn
NA2 1 2

2

2

2 2

1

3

4

2 2 8

–
∆ b g   Pulse dispersion in multimode PIF  (7-22) 

 

Note that, as compared to a step-index fiber, the pulse dispersion is proportional to the fourth 

power of NA. For a typical (multimode parabolic-index) fiber with n2 ≈ 1.45 and ∆ ≈ 0.01, we 

would get 

 τim ≈ 0.25 ns/km  
 (7-23) 

 

Comparing with Equation 7-20 we find that for a parabolic-index fiber the pulse dispersion is 

reduced by a factor of about 200 in comparison to a step-index fiber. This is why first- and 

second-generation optical communication systems used near-parabolic-index fibers. To further 

decrease the pulse dispersion, it is necessary to use single-mode fibers, which will be discussed 

in Section XI. However, in all fiber optic systems we will have material dispersion (which is a 

characteristic of the material itself and not of the waveguide). We will discuss material 

dispersion in the following section. 

IX.  MATERIAL DISPERSION 

We first define the group index. To do this we return to Equation 7-1 where we noted that the 

velocity of light in a medium is given by 

 v = c/n  
 (7-24) 

 

Here n is the refractive index of the medium, which, in general, depends on the wavelength. The 

dependence of the refractive index on wavelength leads to what is known as dispersion, 

discussed in Module 1.3, Basic Geometrical Optics. In Figure 7-13 we have shown a narrow 

pencil of a white light beam incident on a prism. Since the refractive index of glass depends on 

the wavelength, the angle of refraction will be different for different colors. For example, for 

crown glass the refractive indices at 656.3 nm (orange), 589.0 nm (yellow), and 486.1 nm 

(green) are respectively given by 1.5244, 1.5270, and 1.5330. Thus, if the angle of incidence 

i = 45° the angle of refraction, r, will be r = 27.64°, 27.58°, and 27.47° for the orange, yellow, 

and blue colors respectively. The incident white light will therefore disperse into its constituent 

colors—the dispersion will become more evident at the second surface of the prism as seen in 

Figure 7-13. 
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material dispersion is now negligible in comparison to intermodal dispersion. Thus the total 

dispersion and maximum bit rate are respectively given by 

τ ≈ +0 24 0 05
2 2

. .  ≈  0.25 ns/km;  ⇒   Bmax = 2.8 Gbit-km/s 

 

Example 7-11 

If, in Example 7-10, we replace the LED with a laser diode of spectral width 2 nm, the material 

dispersion becomes 0.17 ns/km, which is now smaller than the intermodal dispersion. The total 

dispersion is 

τ = +0 24 0 17
2 2

. .  = 0.29 ns/km 

giving a maximum bit rate of 

Bmax = 0.7/τ ≈ 2.4 Gbit-km/s 

We should reiterate that, in the examples discussed above, the maximum bit rate has been estimated 

by considering the fiber only. In an actual link, the temporal response of the source and detector 

must also be taken into account. 

 

XI.  SINGLE-MODE FIBERS 

While discussing step-index fibers, we considered light propagation inside the fiber as a set of 

many rays bouncing back and forth at the core-cladding interface (see Figure 7-7). There the 

angle θ could take a continuum of values lying between 0 and cos
–1

(n2/n1), i.e., 

0 < θ < cos
–1

 (n2/n1) 

For n2 = 1.5 and ∆ ≈ n n

n

1 2

1

–
 = 0.01, we would get n2/n1 ~ and cos–1(

n

n

2

1

) = 8.1°, so 

0 < θ < 8.1° 

Now, when the core radius (or the quantity ∆) becomes very small, ray optics does not remain 

valid and one has to use the more accurate wave theory based on Maxwell’s equations. This 

wave theory is fairly involved [see, e.g., Chapters 7 and 8 of Ghatak and Thyagarajan]. Here we 

just give some of the important results for a step-index fiber. 

In wave theory, one introduces the parameter 

 
V a n n an an= = ≈

2 2
2

2
2

0
1
2

2
2

0
1

0
2

π
λ

π
λ

π
λ

– ∆ ∆  
 

 (7-28) 

 

where ∆ has been defined earlier (see Equation 7-5) and n1 ~ n2. The quantity V is often referred 

to as the “V-number” or the “waveguide parameter” of the fiber. It can be shown that, if 

V < 2.4045 
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only one guided mode (as if there is only one discrete value of θ) is possible and the fiber is 

known as a single-mode fiber. Further, for a step-index single-mode fiber, the corresponding 

(discrete) value of θ is approximately given by the following empirical formula 

 
cos – – . –

.
θ ≈ F

H
I
K

L
NM

O
QP

1 1 11428
0 996

2

∆
V

 
 

 (7-29) 

 

We may mention here that because of practical considerations the value of ∆ ranges from about 

0.002 to about 0.008. 

Example 7-12 

Consider a step-index fiber (operating at 1300 nm) with n2 = 1.447, ∆ = 0.003, and a = 4.2 µm. 

Thus, 

V = × × × ≈
2

1 3
4 2 1 447 0 006 2 275

π

µ
µ

. (
. ( ) . . .

m
m

)
 

Thus the fiber will be single moded and the corresponding value of θ—using Equation 7-29—will 

be about θ = 3.1°. It may be mentioned that for the given fiber we may write 

V = × × × ≈
2

4 2 1 447 0 006
2 958

0 0

π

λ µ
µ

λ µ( m)
( m)

( m)
. . .

.
 

Thus, for 

λ0 > 2.958/2.4045 = 1.23 µm 

which guarantees that V < 2.4045, the fiber will be single moded. The wavelength for which 

V = 2.4045 is known as the cutoff wavelength and is denoted by λc. In this example, λc = 1.23 µm 

and the fiber will be single moded for λ0 > 1.23 µm. 

 

Example 7-13 

For reasons that will be discussed later, the fibers used in current optical communication systems 

(operating at 1.55 µm) have a small value of core radius and a large value of ∆. A typical fiber 

(operating at λ0 ≈ 1.55 µm) has n2 = 1.444, ∆ = 0.0075, and a = 2.3 µm. Thus, at λ0 = 1.55 µm, the 

V-number is, 

V = × × × ≈
2

1 55
2 3 1 444 0 015 1 649

π

µ
µ

. (
. ( ) . . .

m)
m  

The fiber will be single moded (at 1.55 µm) with θ = 5.9°. Further, for the given fiber we may write 

V = × × × ≈
2

2 3 1 444 0 015
2 556

00

π

λ µ
µ

λ µ(
. ( ) . .

.

(m)
m

m)
 

and therefore the cutoff wavelength will be λc = 2.556/2.4045 = 1.06 µm. 

 



�

�

�
�

�
��������	�
�������
�����������

�����������	�
�

�

�����������	���������	�������������������
��	������
�

�
�������������

�

���������	��
��	����
���������������
�
������������
����������������
�����
	����
��������
������	���
	�
�	�����
	��	�����������
�����	����
�	�������������������	���
����������
���	�
��������
������
��
���	���
������������	
������������
�������

�
����������	
��

������������������

�

���������	�
����
����������	�������	����	��
��������	
��������
��������������
����������������������������������	�������

�	�������������	���������������	����	������	�������������	�������	�
���������	�������	���������������
��	��������

�������	��������	�
���������	����������������������	�
���������	���	��	�����
����	�����	������� ����������

��������������
�	���������������������������	������
���
	����!����������	��
���
	������	�������	��
���
	������

�����������	���	������"�����������������	�
���������	���������������������������	��������������������
�	��������

��	

��������������������	�
�������������������	�����
����������	��	������������������������	�	�����	������������
�	�����

���#�	����������������$��	��������
���%�$�&�
�	������

�

�

�
����� �����������!���	��
���
�������������

�

�

�

�

�



�

�

�
�

�
��������	�������
�������	�

�

�����	��	������������������������
"���	����
	�
���	���������������������	��
����#
����
	$���
�����������	��	�����
������
������	�������	����
	���
���������
����������%��
���	���	����
������
����
������������
����	����������
#
����
	�������������	����������������������������
	���	���������
���	����������
�������
����������"
	����	��


"�����������&��������	�������������������	����
�������

"���	�
	������
��������������"�����
���
�������	���
�������	����������������%��
���	�����	�
��������������
����
��������"
	����	��

"���

�

�
�������&���'���������
�
��	����
	�
	������
���������
�������������	��������	��������"
	����	��

"���

�

�
(	������!������������������������
�����	���
���
�
������������
����������������	��
	��������
������
�"
	����	��

"���
	�)��
�*�������	��������������	�������������������������
���
��
	�����
	�������	������

	
���������������	���������
	�����
���
������
���
�����
������������	���������(	��
������������
	�
�������	��
	
�����������
���	������	���������
	����������	��	�����	�����������������������
������������

	��������	�����"���
��������������
	����
������
����'������������� ����(������
������������
���������
������	����	���������	���	������
������������
	���������	������
	��
�����
���������	��������	���������������
(��������	���������	�����������������������
������	��	����������	�������	������
����	������������	
���������!��
�������	���������������	�����
	����"�	���
�����
	������
�����
	������
��+���������������
�
�,-%,-����
�
 -%.-�������������
����
�
'��/����	������
���
���
���������	���������0���1��������
���������"�������
�,-%,-����������

�

�
�������0���1� �&����
�&�&����������

�

�



qu2PI – Two-photon Interferometer

or polarization-mode overlap. Therefore the dip with a limited visibility is always recorded
experimentally. The measured visibility corrected for the imperfect splitting ratio gives a
direct measure of indistinguishability of the input photons.

Unlike the interference effects in conventional Mach-Zehnder or Michelson interferometers, the
Hong-Ou-Mandel effect does not require the phase stability of the interferometer arms. The
path differences of the arms need not be kept constant to within a fraction of wavelength, but
only to within a fraction of the photon coherence length. From practical point of view the
Hong-Ou-Mandel effect can be viewed as a method to gauge the femtosecond time intervals
(corresponding to micrometer length scales) between the photons and by implication the length
of the photon wave packets. It is relatively straightforward to calculate the coherence length
of the photon wave packets from the measured interference dip.

1.2 Basic Principles of Operation

As pointed out in the previous section, the qu2PI is not an interferometer in the traditional
sense, i.e. the light is not first split and later recombined like in standard Michelson or
Mach-Zehnder interferometers. Rather the time-correlated photons provided by a photon-pair
source enter the two input ports of the balanced beam-splitter. In the qu2PI, the fused 50:50
polarization maintaining fiber coupler is used as the beam-splitter. This all-fiber solution
ensures a good spatial-mode overlap of the interfering photons, and provided that the linear
polarization with correct orientation is launched into the input fibers of the coupler, also a good
polarization-mode overlap of the photons. The latter is ensured due to the use of polarization-
maintaining fibers, which preserve the linear-polarization of the light that is launched into
the fibers; (for a short introduction to polarization maintaining fiber technology please see
the boxed text on the next page). Moreover, the coupler is designed such that for linear
polarization, which is maintained in the fibers, the splitting ratio is very close to the ideal
50:50 at the operating wavelength.

Either arm of the two-photon interferometer contains a short free-space optical line, i.e. the
fiber-coupled photons coming from the source are collimated using a lens and after a short
free-space transmission collected again into the input fibers of the coupler. The free-space lines
have a double role. First, the two rotatable wave plates inserted in either arm allow to adjust the
polarization of the incoming photon pairs as required. Second, one of the lines has a variable
length, which makes the tuning of the path difference between the two arms possible. The
tuning is controlled by the manual translation stage equipped with the differential micrometer
screw. This enables the required micrometer-resolved steps for achieving the precise time
overlap of the photons and scanning through the interference dip. For maximum spectral
overlap the qu2PI contains two removable interference filters with transmission bandwidth
significantly smaller compared to the natural spectral width of the photons. The insertion of
filters thus leads not only to higher interference visibility but also to a wider interference dip.
This is particularly useful when searching the dip, because larger scanning steps are possible.
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qu2PI – Two-photon Interferometer

Polarization maintaining fiber technology

All standard optical fibers are to some degree birefringent due to manufacturing imperfections,
which break the perfect circular symmetry of the fiber core. Moreover, any mechanical or thermal
stresses exerted on the fibres, change the birefringence within the fiber core. Birefringence means
that the two degenerate, orthogonally polarized modes supported in the fiber propagate with
generally different phase velocities. Therefore, the light launched into the single-mode fiber with
linear polarization quickly evolves into a state of arbitrary polarization. To solve this problem,
the so-called polarization maintaining fibers were developed. They do not aim at suppressing the
birefringence to a maximum degree possible, but on the contrary, they induce a large amount of
birefringence within the fiber core, so that the two polarization eigenmodes effectively decouple.
The two linear polarization directions in question are often referred to as fast and slow axes of
the fiber. These are the only modes to be maintained in the fiber regardless of any external
mechanical or thermal perturabations; all the other polarization states gradually change in an
uncontrolled way during their transmission through the fiber.
The additional birefringence in the fiber is induced by forming a non-circular fiber core (shaped
induced birefringence) or by applying constant stresses within the fiber-core structure (stressed
induced birefringence). The latter type is used in today’s most popular polarization-maintaining
fibers – Panda fibers – which are formed by two stress rods of a modified glass composition on
opposite sides of the core. An advantage of Panda fibers is that their fiber core size and numerical
aperture is compatible with regular single mode fiber, thereby ensuring minimum losses in devices
using both types of fibers. When Panda fibers are connectorized, it is important that the stress
rods are parallel or orthogonal with the connector key. The connector key then gives a reference
direction which coincides with slow or fast axis of
the fiber. The performance of polarization main-
taining fibers or other devices using these fibers are
usually measured in terms of polarization extinc-
tion ratio. This is the ratio (expressed in decibels)
of the optical power in the desired transmitted po-
larization to that in the blocked polarization. Nat-
urally, this ratio is degraded by the angular mis-
alignment between the light polarization axis and
the slow/fast axis of the fiber. If the misalignment
is given by angle α, then the output polarization
extinction ratio is limited to 10 log

(

tan2 α
)

.

2 Getting Started

2.1 Description

This section shows the individual optical components of the qu2PI. The description follows the
notation shown in the photo of the interferometer module in Fig. 2. For additional reference
information on the arrangement of the optical components you can also consult the technical
drawing in Appendix A.
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g(2)(0) of 0, limited by the 0.7 ns timing resolution of the

system, at a temperature of 15 K [86]. Diodes will be

discussed in more detail in a later section. This device was

formed from a 5 × 108 cm−2 density layer of InAs/GaAs

quantum dots embedded in a p–i–n diode structure. The

dot layer was confined between GaAs/AlGaAs distributed

Bragg reflectors (5 on the top and 12 on bottom) forming a

resonant cavity. A micron scale diameter aluminium oxide

aperture inside the cavity above the dot layer allowed a

single quantum dot to be electrically addressed. Such a

device has potential applications in gigahertz clocked quantum

key distribution over metropolitan access networks where the

wavelength is suitably spectrally separated from the upstream

and downstream classical communications [20].

2.5. Heralded photons

Perhaps one of the largest disadvantages of the single-photon

sources described so far is that the emission is random. It

is not possible to tell if a particular excitation pulse has

generated a single-photon emission until that single photon

is detected. It is possible to use parametric down-conversion

to generate a ‘heralded’ source of single photons—‘heralded’

meaning that there is an indication of when a single photon

was generated via detection of its pair photon [87, 88]. As

shown in figure 9 a crystal with an optical nonlinearity (often

of χ (2) type) has a pump laser of a short wavelength (and

therefore, high frequency) passed through it [88]. A beam

dump is used at the far side of the crystal to block any pump

laser photons which are transmitted through the crystal. The

photon may occasionally annihilate to produce a photon pair

at well-defined wavelengths with a total energy (measured as

the sum of the frequencies) which is the same as the pump

laser photons. These photons are emitted in a cone centred

on the pump laser with one photon at a particular wavelength

known as the ‘signal’ and the other the ‘idler’ [87, 88]. The

relationship between the parameters of the signal, idler and

pump photons is given by energy and momentum conservation

and can be expressed as

ES + EI = EP

or νS + νI = νP

or
1

λS

+
1

λI

=

1

λP

(12)

where ES is the energy of the signal photon, EI the energy

of the idler photon and EP the energy of the pump photon.

Similarly, ν denotes frequency and λ wavelength. Since the

signal and idler photons are generated as pairs, if spatial and

spectral filtering is used on each of the two generated photon

streams it is possible to use detection of one (say the ‘idler’)

to confirm, or herald, the existence of the other (the ‘signal’)

[87, 88].

This approach has been used on a number of occasions

to generate heralded single photons for several different

applications. In 2004, Fasel et al reported the generation of

1550 nm wavelength photons (with a 6.9 nm spectral width)

heralded by 810 nm photons from a 532 nm wavelength pump

source in a type I KNbO3 bulk non-linear crystal [89]. The

Figure 9. An example of a heralded photon source. After [88].

1550 nm wavelength photons were heralded with in excess of

60% probability and the probability of multi-photon emission

was reduced by a factor of up to 500 when compared to

Poissonian light. Castelletto et al reported the highly efficient

generation of heralded single photons at a wavelength of

1550 nm and the collection of these into single spatial and

spectral modes [90]. In 2007, Soujaeff et al published details

of a heralded single-photon source producing signal photons

at a wavelength of 1550 nm and herald photons at 521 nm [91].

At an input laser pulse repetition frequency of 82 MHz, the

experiment produced single photons at a mean rate of 216 kHz.

3. Single-photon detection

3.1. Characterization parameters

An important parameter in the choice of detector is the

detection efficiency (ηD) which is the probability that

an incident photon generates a measurable current pulse,

assuming that the time between photon arrivals is greater than

the dead-time of the detection system. The quantum efficiency

(ηq) is the probability that an incident photon generates an

electron–hole pair and is related to ηD by a factor which

depends on the detector. Figure 10 shows a comparison of

the detection efficiency spectra for three detectors of types

which will be described in more detail later.

In photon-counting detectors, events will occur in the

absence of incident radiation, or ‘dark events’. The

origin of these dark counts will vary depending on the

detector types and operating conditions, for example in a

photomultiplier thermionic emission at the photocathode will

give rise to a quantifiable dark count rate. In photon-counting

photomultipliers and avalanche photodiodes, the phenomenon

of afterpulsing also occurs to form a contribution to the dark

count rate. This happens when a detector event generated at

a time t generates a subsequent event at a time t + �t , where

�t is a largely unpredictable unique time difference for each

photo-generated pulse. In addition there are further ‘dark’

(not generated by a photon) events, the exact cause of which

8
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Figure 10. A comparison of the typical detection efficiencies of
three different example detector technologies: a photo-multiplier
tube (PMT) from Hamamatsu cooled to 193 K; an
indium-gallium-arsenide/indium-phosphide (InGaAs/InP)
single-photon avalanche diode (SPAD) cooled to 77 K [143] and a
silicon (Si) SPAD at room temperature (300 K).

Figure 11. A comparison of the typical noise equivalent power
(NEP) of three different detector technologies: a photo-multiplier
tube (PMT) from, Hamamatsu cooled to 193 K; an indium gallium
arsenide/indium-phosphide (InGaAs/InP) single-photon avalanche
diode (SPAD) cooled to 77 K [143] and a silicon (Si) SPAD at room
temperature (300 K).

depends on the configuration of the detector used but are often

triggered by thermal excitation.

In many single-photon experiments, there are advantages

in maintaining a low dark count rate as non-photon generated

events will contribute to the overall error rate in measurements.

A useful quantity in the characterization of single-photon

detectors is the noise equivalent power (NEP), which is defined

as

NEP =

hc

ληq

√

2ND (13)

where λ is the wavelength of the incident photon, ND is the dark

count rate and ηq is the quantum efficiency, as defined before.

The NEP is defined as the signal power required to attain

a unity signal-to-noise ratio within a one second integration

time [92] and is shown in figure 11 for the same three detectors

presented in figure 10.

For many applications, the timing jitter of the detector

is an important characterization parameter. The timing jitter

Figure 12. Schematic of a ‘focused dynode chain’ photomultiplier
tube (PMT); the process of electron multiplication from each
dynode stage causes a measurable current to be detected [72].

is a measure of the degree of variation in the delay between

the arrival time of a photon at the detector and the output

of an electrical pulse. It is common to take many different

measurements of this delay and plot them in a histogram. The

timing jitter is then quoted as being the full-width at half-

maximum of the peak in this histogram. In time-of-flight

laser-ranging, the timing jitter of the detector will affect the

depth resolution of the measurement [93] while in QKD, the

timing jitter can lead to intersymbol interference and increase

the error rate of the key exchange process [94].

3.2. Photomultiplier tubes

Figure 12 shows a representational diagram of the operation

of possibly the earliest form of single-photon detector to be

used in a wide-range of applications; the photomultiplier tube

(PMT) [95–98]. The device is formed from a vacuum tube

with a photocathode at the entrance and a series of following

dynodes arranged prior to an anode at the far end. The

photocathode absorbs the incident photons and emits up to

one electron per incident photon as it does so. Depending

on the material composition of the photocathode, PMTs can

be effective for detection of light at varying wavelengths.

Generally, the photocathode consists of a thin evaporated

layer of alkali metal compounds and one or more group V

elements. Once an electron is emitted from the photocathode,

it is accelerated towards, and collides with, the first positively

charged dynode. This collision releases further electrons

which are then accelerated towards the second dynode. Each

successive dynode in the PMT is charged to a higher positive

potential than the preceding one resulting in amplification as

the increasing number of electrons collide with later dynodes.

When compared to the semiconductor detectors which will be

described later, PMTs have a high internal gain. If N dynodes

are used, each with secondary electron coefficient α, then the

multiplication factor, M, is given by

M = αN (14)

Typical values of α = 4 and N = 10 lead to a multiplication

factor of 106 [99]. Typically, PMTs have multiplication factors

which lie in the range 104–107.

When compared to the smaller active areas of

semiconductor single-photon detectors, the large

9
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Figure 13. Quantum efficiency of three Hamamatsu PMT devices at
−60 ◦C [75].

photocathodes used in PMTs (which can be up to 1000

times larger) are an advantage—facilitating improved optical

collection, especially from extended optical sources [100].

However, the requirement to have several dynodes means

that PMTs are contained in relatively large physical packages

(although there have been advances in miniaturization

[100]), have a poor mechanical stability and require high

bias voltages, typically of the order of 1 kV. Although the

single-photon detection efficiencies of PMTs are generally not

greatly dependent on the wavelength of the incident photons,

they typically exhibit low single-photon detection efficiencies

[101, 102] and their timing jitter (which is mainly dependent

on the fluctuations in transit times from the photocathode

to the anode) is typically in the region of 1 ns [103]. The

combination of these factors means that in applications where

higher detection efficiencies and lower jitter are required,

such as time-of-flight laser ranging [93, 104], PMTs are less

likely to be used. The afterpulsing in PMTs is most likely

caused by ion feedback or by luminescence of the dynode

material and the glass of the tube while the dark counts are

typically induced by thermal excitation [80].

If the photocathode is fabricated from InGaAs, and the

device cooled to 200 K, it is possible to extend the spectrum

of operation for a PMT into the near-infrared wavelengths up

to 1700 nm [105]. The cooling is required to reduce the dark

count rate which is typically around 105 counts per second

at this temperature. Figure 13 shows the quantum efficiency

of three devices manufactured by Hamamatsu; at best their

efficiency is ∼2%. The cathode radiant sensitivity curve shows

the ratio of the current transmitted by the photocathode to the

incident radiant power of a specific wavelength. The quantum

Figure 14. Micro-channel-plate (MCP) schematic and operating
mechanism [106].

efficiencies of the three detectors follow different gradients as

they are related by

ηq = S
hν

e
(15)

where S is the cathode radiant sensitivity, ν is the frequency

of the light incident upon the detector and e is charge on an

electron.

3.3. Microchannel plates

It is possible to consider microchannel plates (MCP) as an

array of devices which operate along principles similar to

those employed in the PMT. A schematic of the structure of

a typical MCP is shown in figure 14, along with the method

of operation. An MCP is assembled from an array of multiple

∼10 μm diameter thin glass capillaries arranged into a disc.

Unlike in the case of the PMT, where there were separate

dynodes positioned along the length of the tube, in an MCP

the inner wall of each capillary is coated with a photo-emissive

material and biased at each end, so that it acts as a continuous

dynode [106]. The single input electron is accelerated by the

positive potential towards the inner wall of the channel where

it collides, releasing secondary electrons which then initiate

further collisions along the length of the channel resulting

in an exponential multiplication of the electron flux. MCP

detectors require a high voltage of the order of 1 to 3 kV to

operate but do not show the same multiplication factors as PMT

detectors. Experiments by Becker indicated that some MCP

devices do not exhibit any afterpulsing effects at timescales of

up to 150 ns [80]. Typically, MCPs will exhibit timing jitters

of approximately 20 to 30 ps [107].

The large 2D arrayed input means that the MCPs are good

candidates to be used as detectors in imaging systems such

as image intensifiers or time-of-flight laser-ranging systems

[108].

3.4. Avalanche photodiodes

During the last 30 or so years, more rugged and efficient

alternatives to dynode-based detectors have become more

widely used: semiconductor detectors known as avalanche

photodiodes. A diode is a device formed by a junction

between a semiconductor with an excess of holes (p-type) and

a semiconductor with an excess of carriers (n-type). These

n-type and p-type regions are formed by the introduction

of immobile dopant centres of opposite polarity within

10
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Figure 15. A schematic diagram of the structure of a diode. At the
junction between the n-type and p-type semiconductor the mobile
charges diffuse and create an electric field which prevents further
charge diffusion. After [27].

Figure 16. The typical structure of a reach through avalanche
photodiode (APD) is shown on the left while the right shows the
electrical field within the device. After [100].

the material. Because of the diffusion of carriers set

up by the discontinuity between the two differently doped

semiconductors, a region of electric field is formed which is

depleted of all free carriers (as shown in figure 15) [100].

When a voltage is applied so that the n-type semiconductor

is at a higher potential than the p-type, the junction is said to

be reverse biased. When the electric field is sufficiently high,

then a drifting electron can gain enough kinetic energy that, on

collision with an atom in the lattice, it can knock an electron

out of its bound state and promote it into the conduction band,

releasing a hole in the valence band. This phenomenon is

known as impact ionization, and a similar effect is seen for

holes drifting in an electric field. These resulting carriers will

then be accelerated in the high electric field and may undergo

further impact ionization events, resulting in an avalanche of

carriers—hence the term avalanche photodiode or APD.

Figure 16 shows a schematic of an example of a silicon

reach-through avalanche photodiode and the corresponding

electric field. The absorption region (in which the energy

of the photon is absorbed) is produced from a thick layer

of an undoped or lightly doped (intrinsic) semiconductor

which is introduced between the p and n layers. This thick

layer is introduced to ensure a high level of absorptance

Figure 17. The process of impact ionization in an avalanche
photodiode (APD). In the top schematic an electron–hole pair is
generated by the absorption of a photon in the depletion region of a
reverse biased APD—a process known as impact ionization. In the
lower schematic the electron causes further impact ionizations,
multiplying the number of electron–hole pairs and producing a
self-sustaining avalanche of carriers.

of incident photons within the depleted region, as well

as ensuring predominantly electron injection into the high-

field multiplication region, the electron impact ionization

coefficient in silicon being higher than the hole impact

ionization coefficient. The use of this thick layer also helps

reduce the capacitance of the device. In the gain region (also

known as the multiplication region) the injected electron drifts

from the point of absorption and undergoes impact ionization,

initiating the avalanche process. This secondary electron–hole

pair can lead to further impact ionization which will generate

another electron–hole pair in a continuing process, as shown

in figure 17 [100].

If the electric field applied across the device is sufficiently

high to be above the avalanche breakdown threshold, it is

possible for a single photo-generated carrier to induce a

self-sustaining avalanche where the positive feedback from

hole and electron impact ionization means that the avalanche

process cannot stop. The point at which this occurs can be

easily seen from the current–voltage characteristics of the

device, as shown in figure 18. As the reverse bias voltage is

increased, the current increases steadily until the voltage

reaches the breakdown voltage where the current increases

11
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Figure 18. An example graph showing the change in photocurrent
and dark current of an avalanche photodiode (APD) as the reverse
bias voltage is increased towards breakdown voltage. This graph is
for an InGaAs device manufactured by Fujitsu for use at a
wavelength of 1300 nm.

rapidly, indicating that the carriers are beginning to multiply;

however, at such a bias level the photocurrent will be linearly

proportional to the incident light level. Above avalanche

breakdown, a single electron (or hole) can initiate a self-

sustaining current, the onset of which will be readily detectable

by external thresholding circuitry. Such a mode of operation

can be regarded as purely digital: the output is the same

whether one or more photons are incident at the same time,

quite different to the linear multiplication region of operation.

When operated in this photon-counting, or Geiger, mode, the

device is termed a single-photon avalanche diode or SPAD

[109]. In order to stop the self-sustaining avalanche, it is

necessary to reset the detector so that it is ready to receive

more photons, i.e. the process of ‘quenching’ the avalanche.

The single-photon detection efficiency increases with the

increasing excess bias voltage above avalanche breakdown

primarily due the increase in the avalanche triggering

probability, and possibly also due to the increase in the

thickness of the depletion region [110]. The dark count rate

also increases with increasing excess bias voltage due to the

increase of both the avalanche triggering probability and the

field-enhanced dark count generation [111, 112]. The rate

of increase of dark count rate is usually greater than the

rate of increase in photon detection efficiency. In addition,

as the excess bias voltage is increased, the FWHM timing

jitter decreases [109]. Consequently, the choice of optimal

excess bias depends on the application to which the detector is

applied. If the contribution of counts from other light sources

is likely to greatly exceed the dark count rate (such as the

solar background in the time-of-flight ranging application)

then it may be preferable to increase the photon detection

efficiency at the cost of increasing the dark count rate. In

the case of quantum key distribution, measurements over

long distances (i.e. high transmission channel losses) will be

dominated by the dark count rate and increased timing jitter can

lead to intersymbol interference. It is therefore necessary to

balance the choice of excess bias to ensure sufficient detection

efficiency, low timing jitter in comparison to the clock period

and a low dark count rate.

3.4.1. Quenching. The process of quenching involves

detecting the leading edge of the avalanche current, then

generating a closely time-correlated electrical pulse, reducing

Figure 19. An example of a circuit used in passive quenching.
When the avalanche photodiode (APD) is biased above the
breakdown voltage by VA an electron–hole pair can generate a
self-sustaining avalanche. The avalanche discharges through the
high resistance of RL and the voltage VA decreases. This is sensed
by a comparator which produces a signal for photon counting and
timing [113].

the bias voltage below breakdown level and finally restoring

the voltage to the original operating level. There are three

main forms of quenching applied to detectors: passive, active

and gated.

A passive quenching circuit is simply a high impedance

load connected in series to the SPAD [109, 113]. As shown

in figure 19, the SPAD is reverse biased through a high ballast

resistor RL, of the order of k
. During a self-sustaining

avalanche, the resistance of the SPAD drops to a few k
 and

the most of the external bias is dropped across R1. Passive

quenching circuits can have a slow recovery time in which no

further photon detection events can be registered (a deadtime),

reducing the maximum count rate possible. The recovery

time depends on the product of the resistor RL and the internal

capacitance of the diode. Although it is possible to reduce both

values to minimize the recovery time, even at small values of

RL (∼500 k
) and internal capacitance (∼1 pF), the recovery

time can be up to ∼1 μs [109].

Active quenching was first developed by a group at

Politecnico di Milano [114] and the basic circuit is shown

figure 20 [115]. The photodiode is biased from the low

impedance (100 
) source. The avalanche current induced by

a photon event triggers a fast comparator which switches the

current in an emitter-coupled transistor pair. A negative pulse

is then superimposed on the bias and rapidly quenches the

avalanche. Due to the additional propagation delays caused by

the path through the comparator, the emitter-coupled transistor

pair and the leads of the feedback loop, the leading edge of

this pulse is delayed with respect to the onset of the avalanche

and the duration of the avalanche current pulse is set by this

delay. The hold-off time after quenching is determined by

the duration of the comparator output pulse and is equal to

that of the avalanche pulse. The deadtime associated with this
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Figure 20. An example of a circuit used to perform active
quenching [115].

technique is the sum of the avalanche and hold-off durations

(approximately twice the duration of the propagation delay

in the feedback loop) and can be of the order of a few

nanoseconds—permitting photon detection rates of the order

of Mbit s−1.

It is important to note that the quenching voltage pulse

induces a capacitive current flow in the diode which can

be comparable to the avalanche current. This means that

the comparator would be retriggered on the trailing edge

of the pulse and the circuit would begin to oscillate. To

alleviate this, the capacitive current peak is cancelled by

a current pulse which has the same shape but opposite

polarity, obtained by coupling the complementary output to the

comparator unit via an adjustable compensating capacitor (CC

in figure 20). A transformer is used to equalize the shapes of

the complementary pulses. This results in a slightly increased

deadtime due to the degradation of the trailing edge of the

pulse at the comparator input and the increased delay of the

feedback loop.

In gated quenching, the bias voltage is only increased

above the breakdown level for the duration of the period in

(a) (b)

Figure 21. Left: a schematic of a thick junction silicon single-photon avalanche diode (Si-SPAD). Right: a schematic of a thin junction
Si-SPAD with [118].

which a photon is expected. A form of gated quenching

is used for most InGaAs/InP SPADs. This approach is

applicable to QKD as the arrival times of the photons at the

detectors, corresponding to the individual binary digits (bits)

sent by Alice, can be predicted with reasonably high accuracy.

However, in other applications such as time-of-flight-ranging,

this technique is less appropriate since the arrival time of the

photons at the detector is dependent on the unknown distance

to the target.

3.4.2. Silicon single-photon avalanche diodes. Silicon

single-photon avalanche diode detectors have been used for

several decades [114, 115], and have become widely used in

a number of photon-counting application areas in the spectral

region 400–1000 nm.

There are two main types of design of Si-SPAD

architecture: thick and thin junction. Both thick [116] and

thin [117] junction Si-SPADs are now commercially available

technologies. As may be guessed from the different terms,

the main difference between the two designs is the thickness

of the depleted region in which photon absorption takes place

(see figure 21) [118]. In the case of a thick junction SPAD

[119] this can be a few tens of μm whereas in the case of the

thin junction it is typically only a few μm [118].

Generally, the thin-junction devices have lower single-

photon detection efficiency (SPDE) than the thick junction,

and the long interaction length of the latter leads to improved

efficiency in the near-infrared. Figure 23 shows a comparison

between the detection efficiencies of typical thick and thin

junction Si-SPADs [109]. It can be seen from figure 22 that a

typical thin junction Si-SPAD has a peak detection efficiency

of ∼52% at a wavelength of ∼525 nm, falling to ∼3% at a

wavelength of 1000 nm. A typical thick junction Si-SPAD

has a peak detection efficiency of ∼70% at a wavelength of

∼800 nm, falling to ∼5% at 1000 nm.

In terms of timing jitter, there have been reports of thin

junction devices having exhibited jitter responses of 20 ps

FWHM, although these were in small area diameter devices

(∼10 μm) [120]. Thick junction devices generally exhibit

timing jitter of the order of 520 ps FWHM in a 200 μm

diameter active area [121]. It should be noted that some

authors have reported much improved timing jitter through

adaptations of read-out electronics [121].
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Figure 22. A comparison of the detection efficiencies of thick (diamonds, �) and thin junction (squares, �) silicon single-photon avalanche
diodes (Si-SPADs) [109].

The reduction in the thickness of the junction leads

to a reduction in the timing jitter but also a reduction in

the detection efficiency. Early designs of thin junction

SPAD exhibited long diffusion tails [122–124] whereby

the instrumental response has a peak followed by a long,

exponential tail caused by photogenerated carriers which are

generated by absorption in the substrate of the device which

then reach the depletion layer by diffusion and generate

further avalanches. At 1
100

th of the maximum, the full-width

(FW1/100M) of the detector response could be as great as

650 ps for comparatively short FWHM of ∼35 ps [125]. Later

version of these devices improved the FW1/100M to 130 ps by

reducing the thickness of the neutral layer beneath the active

junction [125].

Generally, the dark count rate of a thin junction Si-SPAD

depends on the diameter of the active area [125]. Typical

values at 20 ◦C are ∼700 count s−1 for 50 μm, diameter ∼3000

count s−1 for 100 μm diameter and ∼ 40 000 count s−1 for

200 μm diameter [125]. As the device is cooled, the

probability of thermally generated carriers falls and the dark

count rate falls. At a temperature of −25 ◦C the dark count

rates become 5 count s−1, 50 count s−1 and 1500 count s−1

respectively [125]. At a wavelength of 850 nm a typical

commercial thick junction Si-SPAD at a temperature of ∼

−25 ◦C will exhibit an NEP of ∼8 × 10−18 W Hz−1/2 while

a 200 μm diameter active area thin junction at the same

wavelength and a temperature of −25 ◦C will exhibit an NEP

of ∼7 × 10−17 W Hz−1/2 [125], and at room temperature

the higher NEP of ∼7 × 10−16 W Hz−1/2. However, it

should be noted that reduced NEP is readily observed with

smaller diameter devices, for example an NEP of 1.5 × 10−17

W Hz−1/2 was measured using a 50 μm diameter shallow-

junction Si-SPAD at −15 ◦C at a wavelength of 850 nm [126].

At room temperature a 50 μm diameter shallow junction Si-

SPAD has demonstrated an NEP of 4.7 × 10−17 W Hz−1/2

[127] at a wavelength of 850 nm.

Just as in the case of some single-photon sources, it is

possible to use a resonant cavity to increase the efficiency

of SPAD detectors [128]. It is possible to form a cavity of

this type by using a reflector buried in the device and the

air/semiconductor interface at the top [128, 129], leading to

a higher detection efficiency for the same depletion region

thickness. This can be used with thin junction SPADs to

increase the detection efficiency while avoiding an increase

in timing jitter [118]. The introduction of a cavity into a

thin junction Si-SPAD using silicon-on-insulator (SOI) in the

lower mirror was shown by Ghioni et al [125] to increase

the detection efficiency from 10% to 34% at a wavelength of

850 nm. This prototype device has a high room temperature

dark count rate of 100 000 count s−1 for a 50 μm diameter

active area, due to dislocations induced by the SOI layers by

temperature-induced strain relaxation.

As was discussed previously, the main advantage of

PMT detectors is the large active area when compared to Si-

SPADs. One possible solution is to produce a ‘large area’

detector which is a series of interconnected Si-SPADs in a grid

formation. Each element in the grid (or pixel) is a SPAD. The

SPADs are joined together on a common substrate and output

across a common load resistor so that the electrical outputs of

each pixel are summed [130]. Consequently, it is possible

to use these interconnected Si-SPADs in photon number

resolving experiments as, provided the photons are incident

on different pixels, coincident photon events will generate

an electrical output pulse which is correspondingly higher

by a factor depending on the number of pixels which were

illuminated. All of the electrical outputs from the individual

pixels are combined, adding dark count contributions from

each pixel to the total dark count rate. A typical fill factor for

a 1 mm2 SiPM is about 25% [130].

The single-photon detection efficiencies of interconnected

Si-SPADs are, as would be expected, similar to those of single

silicon SPADs. An example interconnected Si-SPAD matrix,
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Figure 23. Plot of single-photon detection efficiencies versus
wavelength for a silicon thick junction single-photon avalanche
diode (SPAD), an InGaAs/InP avalanche photodiode (APD)
operated in Geiger mode, a germanium SPAD, a Hamamatsu
Infrared Photomultiplier Tube (PMT), and a visible wavelength
high-efficiency Hamamatsu PMT.

such as that developed by SensL in 2008, has a single-photon

detection efficiency of the order of 20% at a wavelength of

500 nm, decreasing to approximately 6% at 800 nm [131,

132]. The NEP of a 1 mm2 SensL detector with 620 elements

is ∼9 × 10−15 W Hz−1/2 at a temperature of −4 ◦C [133].

Recent advances in arrayed silicon SPADs [134–136]

also provide possible options as highly sensitive focal plane

arrays, and, in some cases, these arrays permit individual

timing information from each pixel. Arrayed Si-SPADs

consist of a 2D matrix of independently electrically addressed

SPAD detectors covering a large area, typically several mm2.

The addressing and read-out electronics tend to take a high

proportion of the area between pixels, leading to low fill

factors. Arrayed silicon SPADs have found applications in

fields such as 3D imaging [135] and astronomy [134] where

they have the potential to reduce measurement durations.

Niclass et al used a 32 × 32 array of SPADs to demonstrate

a 3D imager based on time-of-flight [135], with each pixel

exhibiting 115 ps timing jitter (FWHM). A separate depth

measurement was performed for each pixel in the array and

the 1024 independent measurements combined to produce a

3D image of the target. The NEP of a typical pixel was ∼6 ×

10−17 W Hz−1/2 at a temperature of 0 ◦C. Zappa et al presented

a 60 pixel array for use in astronomical applications where the

photon numbers involved in measurements can be extremely

low but there is a desire to undertake measurements for only

a short time period due to the rapid nature of the phenomena

under examination [134]. The maximum saturated count rate

of this detector was 30 Mcount s−1 while the minimum was

at the single-photon level. The NEP of a single pixel in this

array was ∼3 × 10−17 W Hz−1/2 at a temperature of −10 ◦C.

3.4.3. Germanium single-photon avalanche diodes. In

the mid-1990s, commercially available linear multiplication

germanium APDs were characterized in Geiger mode

[136, 137], as potential photon-counting detectors in the

infrared. Their quantum efficiency performance compared to

that of other SPADs and two PMTs is displayed in figure 23.

The main problem with Ge SPADs was the high DCR which

was reduced by cryogenic cooling. At room temperature,

Ge would absorb at wavelengths beyond 1550 nm, but at

the temperatures the devices were tested (77 K), the cut-off

was a little under 1500 nm. The SPDE of a Ge SPAD was

measured in gated mode to be a modest ∼10% and sub-100

ps timing jitter. Ge devices also suffered from a high level of

afterpulsing, a phenomenon also apparent in the InGaAs/InP

devices which will be discussed later.

3.4.4. Silicon germanium single-photon avalanche diodes.

One step towards low-noise linear multiplication APDs was the

use of separate absorption and multiplication hetero-structures.

Whilst most progress was made in III–V structures, e.g.

InGaAs/InP as described below, some progress was made in

the use of Ge-containing absorbing layers on Si multiplication

layers. The 1980s saw progress towards the development of

strained layer silicon/silicon germanium (Si/SiGe) absorbing

avalanche diodes grown on Si [138, 139] and used in linear

multiplication mode. The devices were fabricated with the

absorption in the Si/Si1−xGex alloy layers and multiplication

in the Si layers. In 2002, the first attempt at a SPAD grown

using a similar approach was made by Loudon et al [140],

where clear improvements in quantum efficiency were found

in the near infrared over otherwise identical all-Si control

samples. However, such devices used strained SiGe/Si layers

with Si/Si0.7Ge0.3 multiple quantum well material as an

absorber, where the thickness of the Ge-containing layer was

kept low—a total of only 300 nm including the all-Si layers—

in order to keep below the critical thickness of the layer and

inhibit relaxation. Such thin layers meant that the overall

absorptance in the infrared was low. In later work by Carroll

et al [141], a 400 nm thick Ge absorber was grown on Si

to demonstrate linear multiplication and dark counting above

avalanche breakdown.

3.4.5. Indium-phosphide-based single-photon avalanche

diodes. Currently, the most promising candidates for near-

room temperature single-photon counting at a wavelength

of 1550 nm are indium-phosphide (InP)-based separate

absorption and multiplication avalanche diodes, particularly

InGaAs/InP devices [142, 143]. These devices have been

used as linear multiplication devices [144] for many years and

have been more recently used above avalanche breakdown,

in Geiger mode. In the last few years, specific growth and

fabrication programmes aimed at designs for single-photon

operation have yielded devices with improved performance

[145, 146].

Figure 24 illustrates a schematic of a planar geometry

InGaAs/InP SPAD detector, where incident infrared photons

are absorbed in the narrow-gap InGaAs and, the photo-

generated holes drift to the high-field InP, where multiplication

takes place. One potentially important issue in such devices

is a large valence band discontinuity in these devices which

can result in the delay or recombination of devices at the

interface. To combat this, a thin layer (typically 100 nm) of
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Figure 24. Layer structure of planar geometry InGaAs/InP
single-photon avalanche diode. The junction is formed by the
diffusion of zinc (Zn) into n-type InP and typically is fabricated with
multiple diffusion steps and guard rings in order to avoid
preferential edge breakdown.

intermediate gap InGaAsP grading layer is grown between the

InP and InGaAs layers to provide a graded step for the drifting

photogenerated holes to traverse.

Initially, most work using InGaAs/InP SPADs has used

an elementary form of gated quenching operation, typically at

low temperatures to counteract the effects of inherently high

dark count rates. For example, Hiskett et al [143] reported

an NEP of 1 × 10−16 W Hz−1/2 at 77 K with a Fujitsu linear

multiplication device operated in Geiger mode in 1998. By

2001, the same group reported an NEP of 4 × 10−17 W Hz−1/2

at the same temperature with an Epitaxx linear multiplication

avalanche photodiode. At all temperatures, sub-nanosecond

jitter measurements were reported by a number of groups.

Aside from the practicality of low temperature operation,

serious performance issues also occur as a result of the longer

trap lifetimes. Afterpulsing in such a SPAD occurs where an

avalanche current fills mid-band gap trap states in the material

which then emit carriers at a later time causing further ‘dark’

(i.e. not directly induced by a photon) events. The resulting

higher afterpulsing rates can only be reduced by having a bias

below the breakdown threshold after each event, in order that

the traps can be emptied without resulting in an avalanche

pulse. Consequently, only low gating rates are possible

to avoid afterpulsing, where the maximum rate depends on

the temperature, the gate duration as well as the constituent

material properties, but will generally be prohibitively low,

typically in the 1–100 kHz range. Most successful approaches

for the reduction of this phenomenon have relied on improved

quenching methods to reduce the charge flow per event.

Improved quenching approaches, such as very rapid gating

at near 1 GHz or greater [147, 148] have been used to reduce

the effect of afterpulsing at 223 K temperature operation. Yuan

et al [149] used a self-differencing circuit to reduce the charge

required for the recording of each photon event resulting in

reduced afterpulsing and operation at gigahertz clock rates.

These gigahertz gating approaches can work well at near

room temperature operation for the application of quantum

key distribution where the photon events occur in pre-

defined time windows. However, some applications, such as

photon-counting time-of-flight ranging [17] or time-resolved

luminescence ideally require an ungated detection technique

for more efficient data acquisition. Ungated operation has

been realized using rapid active quenching, to permit free-

running operation at 210 K [150]. Recent results with low-bias

passive quenching have shown room temperature operation

with no electrical gating, in a completely free-running mode,

although the sensitivity was ∼1 × 10−14 W Hz−1/2 [151].

Greater understanding of the principal dark count mechanisms,

eg field-assisted tunnelling in the InP, has led to further

improvements in sensitivity via the introduction of longer InP

multiplication region [152, 153]. Use of these devices in

the low-bias regime have led to room temperature operation

with no electrical gating with NEP of ∼1 × 10−15 W Hz−1/2,

reducing to 5 × 10−17 W Hz−1/2 at 210 K [154], with 106

count s per second operation demonstrated.

Other methods of reducing the single-photon induced

avalanche pulse have been used where the feedback layers

have been incorporated within the device structure. An early

example of this uses InGaAs absorber layers and InAlAs

multiplication grown on InP [155], and feedback provided

by the avalanche pulse altering a hetero-barrier height within

the structure, permitting self-quenching and self-recovery.

Despite a number of issues regarding afterpulsing and

dark count rates, InP-based SPADs remain the outstanding

candidate for practical single-photon detection at 1550 nm

wavelength. Although significant improvements have been

reported in terms of quenching approach and structure design,

the major issue of the origin of afterpulsing phenomenon

remains. Although several groups have reported evidence

that the traps responsible for afterpulsing are found in the InP

layers [156, 157], serious attempts at the removal of the defect

complexes have yet to begin. A concentration of research in

this area is likely to yield further improvements, leading to

reduced dark count rates and higher photon counting rates.

3.5. Hybrid photodetector

It is possible to combine avalanche diodes with photomultiplier

tubes to produce hybrid photodetectors (HPDs) [158]. In a

hybrid photodetector, an avalanche diode is placed in a vacuum

tube with a photocathode at the optical input. Photoelectrons

generated at the photocathode are focused onto the smaller

area avalanche diode and undergo avalanche gain to produce

a detectable current pulse. This technique has the advantage

over the PMT that there is a lower spread of transit times for

the electrons and, hence, a lower timing jitter [159]. These

detectors exhibit good sensitivity, and would be particularly

suitable for applications requiring a large detection area.

In 2009 Zhang et al employed an up-conversion assisted

(see later) hybrid photodetector to QKD [160]. The NEP of

the HPD alone was ∼5.9 × 10−17 W Hz−1/2 when illuminated

with photons with a wavelength of 600 nm. The FWHM timing

jitter of the combined up-conversion and hybrid photodetector

was ∼70 ps at a photon count rate of 200 kcount s−1, rising

to ∼120 ps at 10 Mcount s−1 when measured with a 10 ps

input pulse. The FW1/10M were ∼130 ps and ∼190 ps

respectively. The addition of the periodically-poled lithium

niobate waveguide used for up-conversion increased the dark

count rate and reduced the overall quantum efficiency so
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1 Introduction and General System Description

The quED is a complete system for the generation and analysis of polarization-entangled pho-
ton pairs. In its basic version the quED delivers the coincidence counting rate of above 1 kHz
with at least 90% visibility of correlation curves in two complementary bases. These parame-
ters guarantee that the genuine two-particle entanglement can be detected and demonstrated,
e.g. via measurement of Bell inequalities, within few minutes after the start of the system.

The heart of the quED employs a spontaneous parametric down conversion process to generate
polarization-entangled photon pairs. Fiber coupled single photon detectors in connection with
polarizing filters are used to detect the photon pairs, analyze their polarization and verify their
non-classical polarization correlations. The quED control unit features a laser diode driver and
a three-channel counter with integrated coincidence logic electronics, which registers single
photon detections and photon pair detections. The corresponding counting rates are displayed
on an integrated display or can be read out via a USB interface.

This document contains user information for the optical unit of quED, i.e. the source of polar-
ization entangled photon pairs. Please read the manual carefully before operating the source.
Particular attention should be paid to the section of laser safety. For the details on description
and operation of the control and read-out unit users are referred to the corresponding manual.

1.1 Basic Principles of Operation

To generate entangled photon pairs, a second-order nonlinear process, usually referred to as
spontaneous parametric down-conversion (SPDC), is used in the quED. In the SPDC process
photons of an intense laser pump beam spontaneously convert in a nonlinear crystal with a very
low probability (≈ 10−11 for standard materials) into pairs of lower-frequency photons. Due
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Figure 1: Spatial distribution of the down-conversion emission for type I phase matching.
The transverse momentum conservation requires that down-conversion photons have to
emerge from the crystal along the directions lying always on exactly opposite sides of the
cone.

to energy and momentum conservation in the nonlinear interaction the possible wavelengths
and emission directions of the generated photons are severely constrained. Consequently, the
emission pattern is formed by cones, which imprint the characteristic rings in the plane (P)
perpendicular to the pump-beam direction. In type I phase matching the cones are concentric
around the pump direction, as illustrated in Fig. 1. Every cone corresponds to a distinct
emitted wavelength. The opening angles of the emission cones thus depend on the wavelengths
of the emitted photons, but also on the angle Θp between the pump direction and the optical
axis; (the smaller the angle Θp, the smaller the opening of the cone with a given wavelength).
This allows to angle tune the spatial emission of down-conversion photons as required.

To obtain polarization entanglement from SPDC, the quED utilizes a well-known method of
coherent spatial overlap of the emissions from two adjacent type-I crystals. Consider two non-
linear crystals, both operated in type-I phase-matching configuration and pumped with linearly
polarized light.The otherwise identical crystals are oriented such that their optical axes lie in
mutually perpendicular planes. For example, let the optical axis of the first crystal be aligned
in the vertical plane and the axis of the second crystal in the horizontal plane. Due to the type-
I coupling, the down-conversion process occurs only in the crystal, where the pump photon
is extraordinary polarized, emitting two ordinary polarized down-conversion photons into the
characteristic cone. That is, with the vertically-polarized pump the down-conversion process
occurs only in the first crystal emitting pairs of horizontally polarized photons, whereas with
the horizontally-polarized pump it occurs only in the second crystal producing two vertically-
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polarized photons. By pumping the crystals with light, linearly polarized at 45◦ with regard
to horizontal and vertical direction, there is an equal probability that a pump photon will be
down-converted in either crystal. Provided that the two emission processes are coherent with
one another, which is fulfilled as long as there is no way of ascertaining whether a photon pair
was produced in the first or the second crystal, the following entangled state is automatically
generated:

|Φ〉 = 1√
2

[

|H〉1|H〉2 + eiφ|V 〉1|V 〉2
]

.

The symbols |H〉 and |V 〉 represent the horizontal and vertical polarization state of photons
and the labels “1” and “2” correspond to the two spatial modes, which are in practice selected
by e.g. pinholes or fibres. The relative phase φ is determined by the details of the phase
matching and thickness of the crystals, but can be controlled by adjusting the relative phase
between the horizontal and vertical components of the pump light.

The distinguishing information, which might possibly label the emission processes and thereby
reduce their mutual coherence, can be either of temporal or spatial character. The latter case
occurs whenever the emission modes from the two crystals are spatially distinguishable. To
avoid this situation, the nonlinear crystals have to be thin enough and the down-conversion
photons have to be collected into spatially single-mode channels, such as a pair of single-
mode fibres. The use of thin crystals ensures that the emission cones from the two crystals
overlap to a great extent. Moreover, the single-mode nature of the collection modes removes
practically all the spatial information the photons may have carried before entering the fi-
bre. Consequently, there is even in principle no way how to spatially distinguish whether the
down-conversion photons are coming from the first or the second crystal and therefore pure
polarization-entangled photon pairs can be detected.

In the time domain, the crystal birefringence in combination with dispersion lead to an un-
wanted effect as well. The arrival times of photons at the output face of the second crystal
depend on their wavelengths and polarizations, which reveal the actual position of the photon-
pair’s origin. This leads to a partial loss of coherence between the two emission processes,
and thus to the reduced entanglement quality. The detrimental temporal effect is two-fold,
which is illustrated in a simplified fashion in Fig. 2. First, it is primarily the group-velocity
mismatch between the pump and the down-conversion light, which causes the photon pairs
born in the first crystal to be advanced with regard to those originating from the second
crystal. This is usually precluded using a continuous-wave pump laser. Since a (spectrally
broadband) free-running blue laser diode is used as the pump in the quED, a special bire-
fringent crystal has to be included in the path of the pump beam. It introduces a proper
temporal retardation between its horizontally and vertically polarized components and thus
effectively pre-compensates the effect. Second, the dispersive delay of the down-conversion
photons at non-degenerate wavelengths is different for the two emission possibilities, because
the photons generated in the first crystal acquire an extra spread by propagating through the
second crystal; (since the type I SPDC emission is spectrally very broadband, the detection
of photons with very non-degenerate wavelengths is indeed possible in the quED). Therefore,
an additional birefringent crystal has to be put behind the down-conversion crystals to coun-
teract this second effect, too. The described double-crystal compensation technique ensures
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Figure 2: Explanation of the detrimental time effect inherent to SPDC emission in a two-
crystal configuration. Due to crystal birefringence and dispersion, the arrival times of non-
degenerate photons (λ1 6= λ2) at the output face of the second crystal (2) differ in general
for the two emission possibilities. The photon pairs from the first crystal (1) are advanced

with regard to photon pairs from the second (τ
(1)
+ < τ

(2)
+ ). Moreover, the photons originat-

ing from the first crystal experience higher dispersive delay due to their pass through the

second crystal (τ
(1)
−

> τ
(2)
−

). Consequently, a compensation using two additional birefringent
crystals erasing their temporal distinguishability has to be applied.

a complete temporal indistinguishability of the emission processes even though a free-running
laser diode as a pump source is used and no spectral filtering of generated photons is applied
in the quED.

1.2 Description

Referring to Fig. 3, there is shown the source for the generation of polarization-entangled
photon pairs. For convenience, the whole optical set-up mounted on an aluminium breadboard
can be divided into two basic blocks: the pump-beam block and the down-conversion block.

All the components of the pump-beam block are installed on a rectangular pedestal. This
block comprises a laser diode head (1), a mirror (2), beam-shaping optics (3a, 3b, 3c), a half-
wave retarded (4), a pre-compensation birefringent crystal (5), and nonlinear down-conversion
crystals (6). The blue laser diode is built in the laser diode mount (1). The mount features
the protective circuit to maximally eliminate laser diode failures due to electrostatic discharge
and the thermoelectric module to precisely regulate the operating temperature of the diode.
The strongly divergent light from the laser diode is focused using a telescope consisting of the
collimating aspheric lens (3a) and the negative spherical lens (3b). The aspheric lens is included
in the laser diode head (1) and the spherical lens is mounted in a separate variable-angle
mount. The elliptical profile of the laser beam is compensated by the additional cylindrical
lens (3c). The pinhole in the support of the cylindrical lens determines the correct path of
the laser beam. To control the pointing direction of this beam the high-reflection dielectric
mirror (2) is used. The mirror is positioned between the laser diode head and the spherical
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beam path. To do that please switch on the laser diode again and drive the input current
till the pump-beam path is clearly visible. For the sake of safety it is advised to operate
the laser diode below its lasing threshold. Follow the paths of the modes in the region
around the down-conversion crystal with a small piece of (partially transparent) blank
paper. You should observe three spots - the middle one corresponding to the pump beam
and the outer spots corresponding to two coupling modes [please see Fig. 7(b)]. For
any position of the paper, all three spots should lie on an imaginary horizontal line and
the two outer spots must be in equal distance to the middle spot. If any asymmetries in
the positions of the three spots are observed, please try correcting this misalignment by
angle tuning the adjustable collimator and/or the mirror in the corresponding arm of the
source. Yet, the correction of the paths should not result in a strong deviation of the
coupling beams from the control positions given by the adjustable iris and the engraved
pinpoints on the alignment screen.

• Please note that the coupling modes should be focused at the position of the crystal.
This can be easily checked during the full alignment procedure. To do that please follow
the paths of the modes from the collimator towards the down-conversion crystal with a
small piece of blank paper. The diameter of the red laser spot should gradually decrease
and in the region around the down-conversion crystal reach its minimum. At the position
of the support of the cylindrical lens the laser spot should be somewhat larger again.

• If the detected rates do not reach the expected values after the alignment and optimiza-
tion procedure, the angular orientation of the main down-conversion crystals should be
additionally checked. To this end, please first remove the polarizing filters from the op-
tical set-up. Then adjust the pump-beam polarization to horizontal direction by rotating
half-wave retarder. Tilt the down-conversion crystals horizontally (i.e. change the angle
between the down-conversion crystal and the pump beam in the horizontal plane) till
the maximum in the coincidence count rate is reached. The optimum position should be
very close to the initial position. Do not tilt the crystals very much, because the entire
alignment of the source might be easily lost (you can remember the initial tilt of the
crystal by identifying the spot of the back-reflected pump beam at the support of the
cylindrical lens and if no better position is found, please go back to the initial position of
the crystal tilt). The analogous procedure has to be repeated for the vertical direction.

3.6 Checking the Entanglement Quality (quick procedure)

1. If not already inserted, put the polarizing filters into the paths of down-conversion pho-
tons (the filters should be placed approximately perpendicular to the beam directions).
Please make sure that the filters are centered on the paths of down-conversion photons.

2. Verify the existence of correlations in the horizontal-vertical polarization basis (max-
imum coincidence count rates for the filter combinations “horizontal/horizontal” and
“vertical/vertical” and minimum coincidence count rates for the filter combinations
“horizontal/vertical” and “vertical/horizontal”).
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3. Decide which of the Bell states should be prepared - either the Bell state Φ−:

|Φ−〉 = 1√
2

[

|H〉1|H〉2 − |V 〉1|V 〉2
]

,

showing anti-correlations in the diagonal basis or Φ+:

|Φ+〉 = 1√
2

[

|H〉1|H〉2 + |V 〉1|V 〉2
]

,

showing correlations in the diagonal basis.

4. Rotate the polarizing filters to positions corresponding to polarization analysis in the
diagonal basis. Choose the combination of positions, which corresponds to the expected
minimum in coincidence count rate for a chosen Bell state (i.e. combinations “+45◦/-
45◦” or “-45◦/+45◦” for Φ+ state and combinations “+45◦/+45◦” or “-45◦/-45◦” for
Φ− state).

5. Rotate the pre-compensation crystal mounted on the horizontal mini-platform till a
minimum in the coincidence count rate is reached. For higher precision the integration
time might be increased. Please note that usually more local minima can be found
over the full rotation range of the pre-compensation crystal. The user should adjust the
crystal to the positions corresponding to the global minimum.

6. Rotate the polarizing filters to positions corresponding to maximum in coincidence count
rate in diagonal polarization basis.

7. Calculate visibility of the correlations in the diagonal polarization basis according to
(Cmax−Cmin)/(Cmax+Cmin), where Cmax/Cmin is the maximum/minimum coincidence
count rate. If the visibility is lower than expected we refer to section 3.7.

3.7 Improving the Entanglement Quality

In the following you can find a few issues to be addressed in order to reach a high quality of
polarization entanglement.

• It is absolutely necessary that the amount of horizontally-polarized photon pairs detected
during a time unit equals approximately the amount of vertically-polarized photon pairs.
This situation corresponds to the theoretical maximally-entangled state having equal
amplitudes of its two constituting terms, please see also section 1.1. The double-crystal
geometry used to produce entangled photons in quED, however, does not allow the
optimum simultaneous coupling of photons from both crystals. This usually leads to an
imbalance between the detected numbers of horizontally and vertically polarized photon
pairs. E.g. if the fiber coupling is optimized for maximum detection rate of horizontally
polarized photons, the corresponding rate of vertically polarized photons shows to be
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Understanding Correlated-Photon Based Efficiency
Calibration of Photon Counting Detectors

he demand for detectors with photon counting capability grows rapidly. This is driven by advances in 
optical technologies, biophotonics and astronomy, or for example by novel quantum information 
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T
applications. The requirement for simple, but precise, characterization of the photon-counting detectors 
goes hand in hand with this progress.

Conventional approach:
 

All traditional routes to efficiency measurements 
of detectors rely on comparison with externally 
calibrated reference sources or detectors. They 
always involve (i) establishing the primary source 
or primary detector standards, which define the 
radiometric scales at discrete wavelengths, (ii) 
extending the radiometric scales to a spectral 
continuum by characterizing intermediate stan-
dards, and (iii) dissemination of the scales to users. 

The multistep procedure from establishing 
high-accuracy primary radiometric quantities to 
comparison of a tested device with the working   

___

standards is complex, not flexible, and resource-
demanding, making the final costs for the user 
relatively high. Every step adds a calibration 
uncertainty into the entire procedure and thus a 
very high initial accuracy of the primary 
radiometric quantities is inevitably lost in the 
transfer chain of standards. The situation is even 
more complicated, because the present radio-
metric standards are precise at a power range well 
above the operating levels of photon counting 
detectors. Therefore, one needs calibrated 
attenuators, rendering the conventional cali-
bration methods of photon counting detectors 
impractical and barely usable at all.

Correlated two-photon approach:
   
The working principle of this new attractive calibra-
tion method is based on a fundamental property of 
spontaneous parametric downconversion (SPDC) – 
the two-photon correlated emission. In SPDC, the 
photons from a pump laser beam spontaneously 
convert in a nonlinear crystal into a “train” of 
photon pairs. Since the photons are generated at 
random times in pairs like twins, the detection of 
one photon heralds, with certainty, the existence of 
the other. Not only the existence, but also the 
wavelength and the propagation direction of the 
other photon from a pair are accurately known due 
to restrictions of energy and momentum 
conservation,

where and  are the photon frequencies and 
wave vectors and the subscripts ,  and  refer to 
the pump and the two down-conversion photons, 
respectively.

The correlated nature of the two-photon light 
emitted from the SPDC offers a unique resource for 
absolute optical measurements of detector 
efficiency. The basic arrangement of the method is 
sketched in the figure 1. A pair of photon-counting    

w _
w 1 2

___

detectors, a trigger detector (TRIG) and a device 
under test (DUT), are positioned behind the 
nonlinear crystal along the propagation directions 
of correlated photon pairs with given wavelengths. 
Whenever the TRIG registers a photon, the DUT 
should have ideally seen, in coincidence, one as 
well. But due to the finite detection efficiency of 
the DUT detector, only a fraction of TRIG detections 
is accompanied by a coincident detection at the 
DUT. It is just this fraction, which defines the 
efficiency of the DUT detector (assuming the 
detectors fire only due to correlated photon pairs 
and the DUT channel path from the point of SPDC 
emission to the detector is lossless).  

Quantitatively, if  is the total number of 
correlated photon pairs emitted by SPDC in some
___ N

SPDC Emission Characteristics
The emission pattern of SPDC is formed by the cones 
which imprint characteristic rings in a plane perpen-
dicular to the pump-beam direction. Each cone 
corresponds to a different down-conversion wave-
length. If the nonlinear process is tuned to a spectral 
degeneracy, the photons of a pair are always located on 
the opposite sides of the same cone. In the case of 
spectral non-degeneracy the photons belong to diffe-
rent cones, yet they must be located on their opposite 
sides to obey the momentum conservation rule. 

  

1
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arbitrary time unit, then the mean photon 
numbers  and registered by the two 
detectors and the number of detections  
registered in coincidence are given by:

where  and  are the efficiencies of the 
detectors. As a result, the absolute value of   is  

simply detemined by:

Remarkably, to determine the efficiency 
of the DUT detector, the efficiency  of the 
trigger detector need not be known! This makes 
the method inherently absolute. To highlight this 
point, one could even think of a measurement 
system where the DUT holds a role of its own 
trigger. In this measurement scenario the mutually 
delayed photons of a pair would be incident on the 
tested detector, whose time-resolved output 
reveals the efficiency in the same way as with a 
separate trigger detector.

Additional benefit comes from the spectral 
correlation of SPDC photons:  The calibration 
wavelength can be defined by spectral selectivity 
components (with unknown transmission) put into 
the trigger arm. This allows the calibration regime 
to be transferred from some difficult spectral 
region to a more convenient one (e.g. from the 
infrared to visible by using detectors operating at 
widely separated spectral ranges).

Despite the advantages, there are several 
potentially problematic issues, which must be 
carefully considered, in order to turn the operation 
principle of the correlated-photon method into an 
accurate metrological measurement of detector 
efficiency. The issues are: 

1. Any darkcount or count due to back-ground

N NTRIG___ DUT____

NC

n nTRIG ___ DUT___

nDUT__

___ nDUT 
nTRIG

___

___

___

System design considerations
To minimize the calibration uncertainties, ideally all 
the photons correlated to those recorded by the trigger 
detector should reach the DUT detector. To this end, 
one adopts an unbalanced setup geometry, in which all 
the spectral and spatial filtering is concentrated into 
the trigger channel (see fig. 1). Practically, this is 
realized by inserting a narrow-band spectral filter and 
the single-mode fiber into the trigger channel, 
whereas only a pump-blocking filter (with a high 
transmission over the entire spectral band correlated 
to that defined by the narrowband filter) and a large 
collection aperture (letting pass all the correlated 
photons through, while restricting the number of 
uncorrelated photons) is used in the DUT channel. 

FIGURE 1. Basic optical 
arrangement for corre-
lated-photon based effici-
ency calibration of photon-
counting detectors.

2

pump
beam

nonlinear crystal

SPDC cones

single-mode 
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efficiency of DUT:
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TRIG

DUT
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circuit

photons of the trigger detector falsely heralds the 
arrival of the correlated photon at the DUT 
detector. Therefore, the number  of TRIG 
detections has to be subtractively corrected for the 
dark- and background-count rate, which can be 
easily measured.

2. As with false trigger events, a small fraction 
of coincidence detections is not due to correlated 
photons, but rather due to noise of detectors or 
background light. Thus, independent measure-
ment has to be performed to determine the 
number of accidental coincidences.

3. The efficiency  given by the ratio of 
trigger-to-coincidence events includes all the 
losses of the DUT channel from the point of SPDC 
emission to the point of detection. Thus, in 
principle, the correlation method measures the 
efficiency of the entire DUT channel! The losses in 
the DUT path include the finite transmittance of 
the nonlinear crystal from the emission point, the 
transmittance of any pump-blocking filter and 
focusing optics and incomplete collection of the 
correlated photons. To extract the accurate 
efficiency of the detector DUT, all the losses have to 
be individually determined, and appropriate 
corrections performed. 

NTRIG

___

___ nDUT
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