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In isolated-core excited Rydberg systems the destruction of quantum coherence by spontaneous emission of
photons is investigated. For this purpose a theoretical description is developed which is based on a decompo-
sition of the atomic density operator intoN-photon contributions. Using methods from multichannel quantum
defect theory, the relevant atomic transition amplitudes are represented in the form of semiclassical path
representations which are associated with repeated returns of the Rydberg electron to the ionic core. Apart from
numerical advantages, this approach also yields a clear physical picture of the intricate interplay between the
incoherent photon emission process, the coherent laser-modified electron correlation effects, and the semiclas-
sical aspects of the dynamics of the Rydberg electron. Various examples of this interplay are analyzed within
the framework of the developed theoretical tools.@S1050-2947~96!04012-7#

PACS number~s!: 42.50.Ct, 42.50.Lc, 32.80.Rm

I. INTRODUCTION

Electronic Rydberg wave packets are physical objects
which are situated on the border between microscopic and
macroscopic physics. This implies that their dynamical be-
havior shows an interesting interplay between classical and
quantum mechanical aspects. During the past decade, much
effort on both the theoretical and the experimental side has
successfully been invested to shed some light onto this inter-
play in various contexts@1#. In particular, attention was
drawn recently to the study of wave packet dynamics in
isolated-core excited atoms in which the near-classical Ryd-
berg electron interacts with a purely quantum mechanical
object, namely, a Rabi-oscillating two-level atomic core.
This system was shown to display new interesting dynamical
properties@2,3#.

In isolated-core excitation~ICE! processes@4# which pro-
vide the basis for these studies, initially an outer valence
electron is excited to a Rydberg state with one or several
laser pulses. Subsequently, transitions in the positively
charged ionic core are induced with the help of a second
laser. Thereby the Rydberg electron essentially plays the role
of a spectator and is affected by the core transition only
through the process of shakeup, which leads to a change of
its principal quantum number. This shakeup is made possible
by a difference in the quantum defects of the two Rydberg
series involved in the transition. Perturbative isolated-core
excitation processes with a weak laser field driving the core
transition nowadays provide a well-established tool in
frequency-resolved studies of highly excited Rydberg states
in two-electron-like atoms@5# and have also been used as a
means of preparing autoionizing wave packets@6,7#. Nonper-
turbative effects due to ICE or related processes and induced
by a short and strong laser pulse have been investigated by
various groups experimentally in the recent past@8–11#.
Similar studies for an intense continuous-wave laser field
have been performed theoretically in both the energy-
resolved@12–15# and the time-resolved domain@2,3#.

In the context of wave packet dynamics in Rydberg sys-

tems the study of dissipative and stochastic influences which
destroy quantum coherences has not received much attention
so far. This might be attributed to the fact that in general in
systems with a large number of relevant states, as in Rydberg
systems, the solution of the appropriate master equations
constitutes a difficult mathematical and numerical problem.
Such studies, however, would be important from both a fun-
damental and a pragmatic point of view. Motivated by recent
investigations on ICE wave packet dynamics@2,3# in this
article the influence of spontaneous decay processes of a
laser-excited core on an electronic Rydberg wave packet is
investigated. The purpose of the presentation is twofold:~1!
to obtain physical insight into the intricate interplay between
laser-modified electron correlation effects, which take place
inside the core region, the spontaneous emission of photons
by the core, which is of a stochastic nature and tends to
destroy quantum coherence, and the semiclassical aspects of
the dynamics of the excited Rydberg electron and~2! to de-
velop an adequate theoretical approach to this problem,
which is capable of dealing with the difficulties associated
with the description of dissipative phenomena in Rydberg
systems close to a photoionization threshold.

Our theoretical approach is based on the combination of
two efficient theoretical tools, namely, Mollow’s pure state
analysis of resonance fluorescence@16# and multichannel
quantum defect theory~MQDT! @17#. According to Mol-
low’s approach to resonance fluorescence the solution of a
master equation for the reduced atomic density operator,
which describes the decay of coherence due to spontaneous
emission of photons, can be obtained by averaging over an
ensemble of pure atomic states each of which is character-
ized by the number of spontaneously emitted photonsN and
the associated random photon emission timest1<•••<tN .
This pure state approach, which is also the theoretical basis
for recently developed quantum Monte Carlo wave function
approaches to dissipation@18–20#, is expected to offer sig-
nificant advantages over a direct solution of a master equa-
tion, in particular, in cases in which an electronic Rydberg
wave packet is prepared close to a threshold and the number
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of relevant atomic states is large or even infinite. Whereas
Mollow’s approach allows one to express the solution of a
master equation in terms of pure states, MQDT is a powerful
theoretical tool for dealing with threshold phenomena arising
from the presence of infinite many Rydberg and continuum
states. Thus the combination of these two theoretical meth-
ods is expected to offer significant advantages in the treat-
ment of dissipative phenomena in Rydberg systems. Further-
more, with the help of MQDT semiclassical path
representations can be derived for relevant atomic transition
amplitudes which clearly exhibit the intricate relation be-
tween coherent laser-modified electron correlation effects,
the incoherent spontaneous emission of photons by the core,
and the semiclassical aspects of the dynamics of the excited
Rydberg electron in a quantitative and qualitative way.
Though in the following our discussion will concentrate on
Rydberg atoms, the theoretical methods developed are ex-
pected to be applicable to dissipative phenomena of any kind
which affect the dynamics of a Rydberg electron only indi-
rectly through the ionic core and which can be described by
a master equation for the reduced density operator of the
Rydberg system. Furthermore, due to the universal properties
of Rydberg systems which originate from the long-range na-
ture of the Coulomb potential@21# most of our results are not
only valid for atomic but also for molecular@22# Rydberg
systems.

As to the physical applications of the presented theoretical
approach, we consider in particular the influence of sponta-
neous emission on the effect of stabilization of a Rydberg
wave packet against autoionization by synchronizing the
Rabi period of the oscillating core with the orbit time of the
wave packet@3#. Due to the stochastic nature of the sponta-
neous photon emission process, this synchronization will be
disturbed as soon as a photon has been emitted by the core.
The ensuing modifications of the autoionization dynamics
can be well described with the help of the theoretical tools
developed. The effects of spontaneous emission are shown to
be of relevance in certain kinds of experiments studying the
stabilization effect.

This article is organized as follows. In Sec. II the basic
ideas of our theoretical approach are presented and semiclas-
sical path representations for the relevant atomicN-photon
transition amplitudes are derived. For the sake of a clear
presentation our discussion will concentrate on a model
three-channel problem and details of the derivation of the
theoretical results are summarized in the Appendix. In Sec.
III with the help of this theoretical approach characteristic
physical aspects of wave packet dynamics in the presence of
a spontaneously decaying core~in the absence of a core-
dressing laser field! and in the presence of resonance fluo-
rescence of the ionic core are investigated. Besides studying
the interplay between autoionization and spontaneous emis-
sion we also examine the influence of dissipation on the
long-time dynamics of nonautoionizing model systems.

II. RESONANCE FLUORESCENCE IN ISOLATED-CORE
EXCITED RYDBERG SYSTEMS

In this section a theoretical description of electronic
Rydberg wave packet dynamics in isolated-core excited Ryd-
berg systems under the influence of resonance fluorescence

processes is developed which is based on Mollow’s descrip-
tion of resonance fluorescence and MQDT. For the sake of
clarity our discussion will concentrate on a three-channel
model problem which will be introduced in Sec. II A. The
corresponding pump-probe signal with which the wave
packet dynamics can be monitored may be represented as a
sum over contributions of subensembles each of which has
undergone a specific numberN50,1,2, . . . of spontaneous
emission acts. For the relevantN-photon transition ampli-
tudes, semiclassical path expansions are derived in Sec. II B
which yield a clear physical picture of the influence of the
stochastic photon emission process on the semiclassical as-
pects of the dynamics of the Rydberg electron. For the sake
of clarity, details of the derivation of these results will be
presented in the Appendix.

A. Description of the model

The essential features of the problem may be investigated
with the help of an excitation scheme as shown schemati-
cally in Fig. 1~a! ~however, the discussion could immediately
be generalized to more complicated cases!. Atomic units
with e5\5me51 will be used in the following. Initially the
atom is prepared in an energetically low lying bound state
ug& with energy«g . The atom is situated in a cw-laser field

E~ t !5Eee2 ivt1 c.c. , ~1!

with amplitudeE and polarizatione, which is tuned near
resonance with a transitionuF1&→uF2& of the positively
charged ionic core. The field intensityI is assumed to be
small compared to the atomic unit, i.e.,I!1017 Wcm22.
Typically electron correlations imply that as long as the atom
remains in the initial stateug& this laser field is well detuned
from any atomic transition. Therefore, it has a negligible
effect on the atomic dynamics. Around timeta50, a short
and weak pump pulse

E1~ t !5E1~ t ! e1e
2 iv1t1 c.c. , ~2!

with E1(t) denoting the pulse envelope of widtht1, is ap-
plied to the atom which excites Rydberg states in channel 1
close to the photoionization threshold, thus preparing a radial
electronic Rydberg wave packet. As soon as the wave packet
is created the ionic core starts to perform Rabi oscillations
due to the presence of the cw-laser fieldE(t). Whenever the

FIG. 1. Model excitation schemes:~a! three-channel system in-
cluding laser-induced core coupling and autoionization,~b! two-
channel system with channel coupling only through spontaneous
core decay~considered in Sec. III A!.
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ionic core is in the excited stateuF2& the Rydberg state can
autoionize into the~flat! continuum channel 3. In addition to
stimulated processes, the excited core is also allowed to de-
cay to its ground stateuF1& by spontaneous emission of a
photon with a decay rate ofk. The influence of this core
dynamics on the dynamics of the excited electronic Rydberg
wave packet can be investigated with the help of pump-probe
spectroscopy by means of applying a second short and weak
laser pulse~envelopeE2, frequencyv2, polarizatione2, pulse
durationt2) centered around timetb , which induces transi-
tions to an energetically low lying bound stateu f &. For the
sake of simplicity we set«g1v15« f1v25 «̄. In the follow-
ing it is assumed that spontaneous emission of photons dur-
ing the application of the pump and probe pulses can be
neglected, i.e.,

kt1,2!1. ~3!

In this case the pump-probe transition probability, i.e., the
probability of detecting the atom after the interaction with
both laser pulses in stateu f &, is given by@1#

Pg→ f~ tb2ta!5^c f ur~ tb2ta!uc f&. ~4!

It gives a measure for finding the electronic wave packet at
time tb close to the nucleus and the core in stateuF1&.
Thereby, the reduced density operator of the atom is denoted
r(t), and

uc f&5 i Ẽ2~H2 «̄ !d•e2u f & ~5!

designates the atomic state onto which the density operator is
projected by application of the probe pulse@23#. Similarly,
the atomic state prepared by the pump pulse is given by

ucg&5 i Ẽ1~H2 «̄ !d•e1ug&, ~6!

with d denoting the atomic dipole operator,

Ẽ1,2~«!5E
2`

`

dtE1,2~ t !ei«~ t2ta,b!

the Fourier transforms of the envelopes of pump and probe
pulse, andH the Hamiltonian which would describe the sub-
sequent time evolution of the electronic wave packet in the
absence of spontaneous emission processes. In the numerical
examples of Sec. III the envelope function is chosen to be of
the formE1(2)(t)5E1(2)

(0) exp@24 ~ln 2!(t2ta(b))
2/t2#.

The main problem is thus the evaluation of the reduced
density operator of the atomr(t) ~in which the unobserved,
initially unoccupied modes of the radiation field have been
traced out! describing the dynamics of the Rydberg system
under the stochastic influence of the photon emission pro-
cess. This density operator obeys an optical Bloch equation
@16#

ṙ~ t !52 i @H,r~ t !#1 1
2 $@L,r~ t !L†#1@Lr~ t !,L†#%. ~7!

The deterministic part of the atomic dynamics is described
by the Hamiltonian

H5HA1VICE , ~8!

with

HA5(
j51

3

$@hj j1V j j ~r !1«c j#uF j&^F j u%

1V23~r !~ uF3&^F2u1uF2&^F3u! ~9!

and

VICE52 1
2V~ uF2&^F1u1uF1&^F2u!. ~10!

Thereby the radial Hamiltonian of the Rydberg electron in
channel j is given by hj j52 1

2 (d
2/dr2)1 l j ( l j11)/

2r 221/r ( l j is its angular momentum!. The short-
range potentialsV i j (r ) describe electron correlations which
arise from the presence of the residual core electrons. The
relevant threshold energies in the rotating wave approxima-
tion, which are shifted appropriately byv, are denoted
«c j . The Rabi frequencyV characterizes the laser-induced
core coupling between channels 1 and 2 and is assumed to be
real valued for the sake of simplicity.

The stochastic part of the atomic dynamics is described
by the Lindblad operator

L5AkuF1&^F2u, ~11!

which characterizes the spontaneous decay of the ionic core
from stateuF2& to stateuF1& by the spontaneous emission of
a photon.

B. Semiclassical path representation
of N-photon transition amplitudes

The optical Bloch equation, Eq.~7!, may be solved nu-
merically by expanding the density operator into a basis set
of operators constructed from the Rydberg system eigenfunc-
tions. This method, however, is only applicable efficiently in
cases where the number of energy eigenstates involved in the
dynamical process is sufficiently small. Another approach to
the solution of Eq.~7! which was originally proposed by
Mollow @16# is based on a representation of the density op-
erator in terms of a~fictitious! ensemble of wave functions.
Pursuing this approach the appearance of such wave func-
tions allows one to make use of semiclassical methods which
have already proven useful for the description of the dynam-
ics of electronic wave functions and threshold phenomena in
related contexts. On the one hand, from a practical point of
view these methods are particularly useful in situations
where the number of emitted photons is small and the exci-
tation takes place very close to threshold. Examples of such
situations will be given in Sec. III. On the other hand, these
semiclassical methods yield physical insights into aspects of
the photon emission process which are not obtainable from
the direct numerical solution of Eq.~7!.

The starting point for the second approach is a formal
integration and iteration of Eq.~7!. Thereby,r(t) can be
decomposed into a sum ofN-photon contributions, i.e.,
r(t)5(N50

` r (N)(t). In the case of an initially prepared pure
stater(ta50)5ucg&^cgu theN-photon contributionr (N)(t)
can be represented by the statistical mixture of pure states

54 5363SPONTANEOUS PHOTON EMISSION IN ISOLATED- . . .



r~N!~ t !5E
0

t

dtNE
0

tN
dtN21•••E

0

t2
dt1uc~ tutN , . . . ,t1!&

3^c~ tutN , . . . ,t1!u, ~12!

with

uc~ tutN , . . . ,t1!&5e2 iHeff~ t2tN!Q~ t2tN!L

3e2 iHeff~ tN2tN21!Q~ tN2tN21!

3L•••Le2 iHefft1Q~ t1!ucg& ~13!

and Q(t) the unit step function. According to Mollow,
uc(tutN , . . . ,t1)& may be interpreted as describing the state
of the atom at timet afterN photons have been emitted at
times 0<t1<t2<•••<tN . With each emission of a photon
the state of the ionic core is reduced to its ground state by
application of the Lindblad operatorL. The dynamics be-
tween the photon emission processes is described by the ef-
fective ~non-self-adjoint! Hamiltonian

Heff5H2~ i /2!L†L. ~14!

Inserting Eq.~12! into Eq. ~4! it is apparent that the evalua-
tion of Pg→ f(tb2ta) can be reduced to the evaluation of
pump-probe transition amplitudes

Ag→ f
~N! ~ tutN , . . . ,t1!5^c f uc~ tutN , . . . ,t1!&, ~15!

with

Pg→ f~ t !5 (
N50

` E
0

t

dtNE
0

tN
dtN21•••E

0

t2
dt1

3uAg→ f
~N! ~ tutN , . . . ,t1!u2. ~16!

To calculate the pump-probe probability, one has thus finally
to sum over all possible photon emission times and all pos-
sible numbers of emitted photons. In our context this method
is therefore particularly useful if the structure of the problem
or the interaction times are such that the number of emitted
photons is small.

The main problem in this approach is the evaluation of the
time-dependent N-photon transition amplitudes
Ag→ f
(N) (tutN , . . . ,t1). They are related to time-independent

N-photon amplitudesTg→ f
(N) («N11 , . . . ,«1) via Laplace

transform, i.e.,

Ag→ f
~N! ~ tutN , . . . ,t1!5S i

2p D N11E
2`1 i0

`1 i0

d«N11•••

3E
2`1 i0

`1 i0

d«1e
2 i«N11~ t2tN!2•••2 i«1t1

3 Ẽ2* ~«N112 «̄ !Tg→ f
~N! ~«N11 , . . . ,«1!

3 Ẽ1~«12 «̄ !. ~17!

The time-independent amplitudes are given by

Tg→ f
~N! ~«N11 , . . . ,«1!

5^ f ud•e2*
1

«N112Heff
L•••L

1

«12Heff
d•e1ug&. ~18!

For these amplitudes a semiclassical path representation can
be derived with the help of MQDT, which expresses them as
a sum of amplitudes which are associated with repeated re-
turns of the excited Rydberg electron to the core region and
which include effects due to spontaneous emission of pho-
tons by the ionic core between successive returns.

To this end,Tg→ f
(N) («N11 , . . . ,«1) is expressed as a matrix

element involving solutions of inhomogeneous Schro¨dinger
equations, i.e.,

Tg→ f
~N! ~«N11 , . . . ,«1!5^l̄~«N11!uLul~«N , . . . ,«1!&

~19!

for N>1 with

~«12Heff!ul~«1!&5d•e1ug&,

~«n2Heff!ul~«n , . . . ,«1!&5Lul~«n21 , . . . ,«1!&,

~«N11* 2Heff
† !ul̄~«N11!&5d•e2u f &. ~20!

The second of these equations gives a recursive definition of
ul(«N , . . . ,«1)& for N>2. The corresponding zero-photon
amplitude is given by

Tg→ f
~0! ~«1!5^ f ud•e2* ul~«1!&. ~21!

With the help of methods from multichannel quantum defect
theory physical solutions of the inhomogeneous Schro¨dinger
equations~20! can be constructed which are valid for dis-
tances r>r c of the Rydberg electron from the nucleus.
Thereby,r c denotes a typical core radius which is of the
order of a few Bohr radii. These solutions are determined
uniquely by the requirements that they have to remain finite
for r→0 as well as forr→`. Having determined the solu-
tion of Eqs.~20! the matrix element of Eq.~19! can be evalu-
ated with the help of the overlap formula for radial Coulomb
wave functions thereby assuming that the dominant contri-
bution to this matrix element comes from distancesr>r c .
Details of this derivation will be outlined in the Appendix.
At this point we only want to mention that in contrast to the
first and third of Eqs.~20!, which have short-ranged inhomo-
geneities and can be solved with methods derived previously
@1,24#, the second one has an inhomogeneous term which is
nonzero even for large distances of the Rydberg electron
from the ionic core. Despite this complication this equation
can be solved as this inhomogeneity is a Coulomb function
for r>r c .

Thus using Eqs.~19!–~21! as a final result the following
semiclassical path representations are obtained which are
valid for Im«n.0, n51, . . . ,N11:

Tg→f
~0! («1)5Tg→f

~s! 12pi D̃fe2
~1 ! (

M150

`

e2p i ñ1~ x̃e2ip ñ1!M1D̃ge1
~2 ! ,

~22!
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Tg→ f
~1! ~«2 ,«1!52p iD̃fe2

~1 ! (
M250

`

(
M150

`

~e2p i ñ2x̃!M2

3S̃2,1~ x̃e2p i ñ1!M1D̃ge1
~2 ! , ~23!

and

Tg→ f
~N! ~«N11 , . . . ,«1!

52p iD̃fe2
~1 ! (

~kp , . . . ,k1!
(

MN1150

`

(
Mkp

50

`

•••

3 (
Mk1

50

`

(
M150

`

~e2p i ñN11x̃!MN11

3S̃N11,kp
x̃~e2p i ñkpx̃!Mkp

3S̃kp ,kp21
. . . x̃~e2ip ñk1x̃!Mk1

3S̃k1,1~ x̃e2p i ñ1!M1D̃ge1
~2 ! ~24!

for N>2. These general semiclassical path representations
of the time-independentN-photon amplitudes are a main re-
sult of this article.

All matrices with a tilde refer to components in the basis
of photon-dressed core statesuF̃i& @2,12#. In the case of a
real-valued Rabi frequency these photon-dressed core states
are related to the bare core statesuF j& by an orthogonal
transformation O with complex matrix elements, i.e.,
uF̃i&5( j51,2,3Oi j

T uF j&. The orthogonal transformationO di-
agonalizes the laser-induced coupling of the ionic core, i.e.,

OT@«c2 ik/2uF2&^F2u2
1
2V~ uF2&^F1u1uF1&^F2u!]O

5«̃c . ~25!

The diagonal matrix«̃c contains the complex energies of the
dressed states of the ionic core. The~energy-normalized!
photoionization and recombination dipole matrix elements
into these dressed channels are denoted by the column vec-
torsD̃ge1

(2)5OTDge1
(2) andD̃fe2

(1)T5OTDfe2
(1)T . For the excita-

tion scheme of Fig. 1~a! the bare dipole matrix elements are
given byDge1

(2)T5(Dge1
(2),0,0) andDfe2

(1)5(Dfe2
(1),0,0).

The scattering matrix is determined byx̃5OTxO and de-
scribes the laser-assisted scattering between the dressed
channels which takes place inside the core region. The bare
channel scattering matrix is defined as the unitary symmetric
matrix

x5S e2p im1 0 0

0 e2p im2 x23

0 x32 x33

D . ~26!

In the case considered here, the matrix elementsx1 j and
x j1, j52,3 are equal to zero, as channel 1 and channels
2,3 are of opposite parity, respectively, and cannot be
coupled by electron correlation effects. The matrix elements
x23 andx32 characterize the extent of configuration interac-
tion between channels 2 and 3 leading to autoionization of
channel 2. Due to unitarity, the quantum defectm2 has a

positive imaginary part, in general, which is related to the
autoionization rate of the mean excited Rydberg state by
G n̄ 54p Im(m2)/Torb @17#. The mean wave packet orbit time
is denoted byTorb52pn̄3 with the mean excited quantum
number n̄5@2(«12 «̄)#21/2 and the threshold of the bare
channel 1«1. As the pump-probe and continuous-wave–
laser interactions merely affect channels 1 and 2, only the
parametersm1 andm2 of the scattering matrix enter explic-
itly into calculations of the pump-probe signal.

The smooth part of the zero-photon amplitude is denoted
by Tg→ f

(s) and is essentially given byipD̃fe2
(1)x̃21D̃ge1

(2) . The

diagonal 333 matrixe2p i ñk has elements

~e2p i ñk! j j5exp$2p i @2~ «̃c j2«k!#
21/2%.

The matricesS̃m,k are defined in Eq.~A17! of the Appendix.
Their physical significance and the definition of the first sum
of Eq. ~24! are explained below.

In the spirit of recently developed semiclassical path rep-
resentations the expressions~22!–~24! for theN-photon tran-
sition amplitudes may be interpreted as describing the time
evolution of the Rydberg wave packet in terms of repeated
returns to the nucleus. Thereby, all the various possibilities
are taken into account by whichN photons can be emitted
spontaneously by the ionic core with respect to the course of
the wave packet returns as explained below.

The physical contents of Eq.~22! are already well known
from previous work@2#: after the initial excitation those frac-
tions of the wave packet which are excited into closed chan-
nels perform repeated orbital round-trips around the nucleus.
On each complete round-trip such a fraction acquires a phase
of magnitude 2p(n1) j j . Thereby, the quantity 2p(n1) j j is
equal to the classical action of motion along a purely radial
Kepler orbit with zero angular momentum and energy
«2 «̃c j,0. At each return to the core, the wave packet can
be scattered into other channels due to electron correlation
effects. This is described by the matrixx̃. Alternatively, it
may be deexcited to the final stateu f &. An emission of spon-
taneous photons does not occur.

The case in which one photon is emitted during the time
evolution of the wave packet is described by Eq.~23!. This
transition amplitude is represented as a sum over all different
ways in which the initially prepared wave packet first per-
forms M1>0 complete round-trips, then experiences the
spontaneous photon emission by the ionic core during the
next round-trip and subsequently performs againM2>0
complete round-trips before it is deexcited to the final state
u f &. The effect of the photon emission process by the ionic
core is described by the matrixS̃2,1. To a very good degree
of approximation it is given by

S̃2,1.E
0

T

dt8e2p i ñ2~12t8/T!~e2 ip/2L̃ !e2p i ñ1t8/T, ~27!

where T has to be taken equal to (tb2ta)/(M21M111)
when performing the Laplace transform of Eq.~17!. In this
physically transparent description it is taken into account that
the photon emission may take place at any time 0<t8<T
between two successive returns of the wave packet
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to the core. At this time the electron has acquired a phase of
magnitude@2pñ1t8/T#. The effect of the spontaneous emis-
sion is then described through the action of the Lindblad
operatorL̃5OTL O , whereL125Ak, L i j5O otherwise. In
addition, the emission is accompanied by a phase change of
magnitude (2p/2). After the emission the wave packet ac-
cumulates a further phase of magnitude (2pñ2(12t8/T))
during its subsequent way to the core. As the photon emis-
sion process can take place at any time between two succes-
sive returns to the core the amplitudes associated with all
possible values of the effective jump timet8 have to be
added coherently as described by Eq.~27!.

Equation~24! for theN-photon amplitude may be inter-
preted analogously. The first sum has to be carried out over
all p-tuples (kp , . . . ,k1) with N>kp.•••.k1>2 and
N21>p>1 which can be formed from all possible subsets
of $N, . . . ,2% and over the empty set which corresponds to
the terms containingS̃N11,1 only. Every single summand
then describes a process in which the wave packet first per-
forms M1 complete round-trips, during the next round-trip
experiences (k121)>1 spontaneous photon emissions
~characterized byS̃k1,1), then again performsM2 complete

round-trips followed by the emission of (k22k1)>1 pho-
tons during the next one, and so on. Before the deexcitation
the wave packet finally performsMN11 complete round-trips
following the emission of (N112kp)>1 photons during
the preceding round-trip. This physical interpretation of the
quantitiesS̃m,k follows from their approximate representation
as

S̃m,k.E
0

T

dtkE
tk

T

dtk11•••E
tm22

T

dtm21e
2p i ñm~T2tm21!/T

3~e2 ip/2L̃ !e2p i ñm21~tm212tm22!/T

3~e2 ip/2L̃ !•••~e2 ip/2L̃ !e2p i ñk11~tk112tk!/T

3~e2 ip/2L̃ !e2p i ñktk /T, ~28!

which is an immediate generalization of Eq.~27! to the case
of the emission of (m2k)>1 spontaneous photons during
one round-trip. By the first sum of Eq.~24! all different ways
of emitting N photons during the evolution of the wave
packet with respect to its returns to the nucleus are combined
coherently. In analogy to Eq.~27!, T has to be taken equal to
tb2ta divided by the total number of wave packet revolu-
tions between excitation and detection.

Inserting Eqs.~22–24! into Eq. ~17! the time dependent
N-photon pump-probe transition amplitudes are obtained
from which the pump-probe signal can be evaluated by Eq.
~16!. This method of solution is particularly useful in cases
in which only a few photon emission processes are relevant.

The actual numerical calculation ofN-photon contribu-
tions with the help of these semiclassical path representa-
tions is especially convenient if the excitation takes place in
the immediate vicinity of the threshold so that a very large or
even infinite number of energy eigenstates is involved in the
wave packet dynamics. It has to be noted, however, that for
accurate calculations also the contributions of the integration
in the lower complex half planes~where the integration paths
have to be chosen from̀ to2` below all branch cuts! have
to be taken into account@25#. These contributions have been

omitted in the above discussion for the sake of clarity. An-
other way of calculating theN-photon contributions starts
from the alternative representation~A14! of the N-photon
amplitudes which is derived in the Appendix. The time-
dependent amplitudes are obtained from this representation
in the usual way in terms of residue and branch cut contri-
butions@24#. In cases in which the wave packet is confined
energetically to a region well below the thresholds all terms
containing branch cut contributions can be neglected and the
time-dependent amplitudes are calculated as a sum over resi-
dues which is determined by the (p5N21)-tuple contribu-
tion to the sum in Eq.~A14!.

III. TIME EVOLUTION OF RYDBERG WAVE PACKETS
UNDER THE INFLUENCE OF SPONTANEOUS

EMISSION PROCESSES

In this section the influence of spontaneous photon emis-
sion processes by the ionic core on the time evolution of
Rydberg wave packets is studied with the help of the theo-
retical methods developed in Sec. II. In order to demonstrate
characteristic physical effects first of all a simple case is
considered in Sec. III A in which the laser-induced core cou-
pling is turned off and two channels are coupled only by the
spontaneous decay of the core. In Sec. III B the influence of
resonance fluorescence of the ionic core on the dynamics of
an electronic Rydberg wave packet is discussed. Results on
the influence of spontaneous photon emission on laser-
induced suppression of autoionization and the long-time-
behavior of an electronic Rydberg wave packet are pre-
sented.

A. Wave packet dynamics and spontaneously decaying core

In this subsection we consider the simplified excitation
scheme of Fig. 1~b!. There, the laser-induced core coupling
is turned off and autoionization is neglected. The wave
packet is prepared in channel 2 from which it can only make
a transition to channel 1, where it is detected, through the
spontaneous decay of the ionic core. This pump-probe detec-
tion scheme is particularly sensitive to the details of the
photon-emission process of the ionic core and its influence
on the dynamics of the initially prepared electronic Rydberg
wave packet. The pump-probe probability is given exclu-
sively by the one-photon contribution in Eq.~16!. From the
discussion in Sec. II together with Eq.~A17!, it follows that
in this case the relevant time-dependent transition amplitude
can be written as

Ag→ f
~1! ~ tut1!52

1

2p i (
M2 ,M150

`

e2p i ~M2m21M1m1!

3E
2`1 i0

`1 i0

d«2E
2`1 i0

`1 i0

d«1E2* ~«22 «̄ !

3Dfe2
~1 !e2p iM 2n2

e2p in22e2p in1

«22«T21 ik/22«11«T1

3e2p iM 1n1Dge1
~2 !E1~«12 «̄ !e2 i«2~ t2t1!2 i«1t1,

~29!
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where the notation with normal characters without tilde re-
fers to the corresponding individual bare channel quantities.
The bare channel thresholds are denoted«T1 and «T2. The
semiclassical path representation is now particularly helpful
to explain some characteristic features of the combined in-
fluence of the spontaneous decay of the initially excited core
and the shakeup process on the electronic Rydberg wave
packet.

The effect of this influence is illustrated in Fig. 2 where
the pump-probe probability for the excitation scheme de-
scribed above is shown for two examples which are distinct
only in the difference between the quantum defects of the
two channels involved. In Fig. 2~a! the two quantum defects
are equal. It can be shown that the one-photon transition
amplitudeAg→ f

(1) (tut1) is then given by the product of the
zero-photon amplitude at timet describing the detection of
the wave packet if it was prepared in channel 1 and an en-
velope factore2kt1/2 characterizing the decay of the excited
core. This implies that for timeskt@1, i.e., after the spon-
taneous decay of the core, the wave packet has simply passed
from channel 2 to channel 1 without any further modifica-
tion. In particular, its initial coherence is completely main-
tained.

In the presence of shakeup processes the coherence of the
wave packet after the core decay is diminished. This is
shown in Fig. 2~b! where the difference in quantum defects
is maximal, i.e.,m22m150.5. The diminution of coherence
can be inferred from the decrease of the amplitudes of the

recurrence contributions in the pump-probe signal. It may be
explained with the help of the semiclassical path representa-
tion by the following picture: according to Eq.~16! the
pump-probe probability, and in analogy the wave packet, at
time t may be partitioned into contributions from all sponta-
neous emission timest1 with 0<t1<t. Each of these contri-
butions is represented by Eq.~29! as a sum of terms describ-
ing wave packet fractions after a total number of
M1111M2 complete orbital round-trips and spontaneous
photon emission during the (M111)th round-trip. The
shakeup effects are incorporated into these terms only
through a global phase of magnitude 2p(M2m21M1m1)
which arises because of the core scatterings. At given times
(t;t1) several different (M1 ,M2) terms will contribute to the
sum of Eq.~29!, in general. Only in the case of equal quan-
tum defects are the phase relationships between all wave
packet fractions such that their superposition describes a co-
herent wave packet through Eqs.~16! and ~29!. In the pres-
ence of shakeup the phase relationships are disturbed so that
the decoherence of the wave packet can be attributed to in-
terference effects between wave packet fractions having ex-
perienced different numbers of core scatterings in the excited
and the unexcited channel. As a consequence the decoher-
ence is the more pronounced the larger the number of core
scatterings in the excited channel before the spontaneous
emission, i.e., the smallerk.

To illustrate these considerations, in Fig. 3 the conditional
one-photon pump-probe probability Pg→ f

(1) (tut1)
5uAg→ f

(1) (tut1)u2 is shown for the examples of Fig. 2 at time
t54 Torb as a function oft1. In this case only terms with
M1111M254 contribute significantly to the sum of Eq.
~29!. At times t1 aroundnTorb the terms withM15n21 and
M15n interfere constructively in the case of equal quantum
defects and destructively form22m150.5.

B. Wave packet dynamics and resonance fluorescence
of the ionic core

1. Spontaneous emission and autoionization

In this subsection we discuss a slightly different experi-
mental setup which is particularly sensitive to effects of

FIG. 2. Scaled pump-probe probabilityP̃g→ f5Pg→ f /
uDfe2

(1)E2(0)Dge1
(2)E1(0)tu2 as a function of the time delay (tb2ta) for the

excitation scheme of Fig. 1~b! and m15m250.0 ~a!; m150.0,
m250.5 ~b!. The other parameters arekTorb51/15, n̄25119
(Torb5256 ps!, t50.3Torb. The revival timeTrev5

2
3n̄2Torb is also

indicated in~a!.

FIG. 3. Scaled conditional one-photon pump-probe probability
P̃g→ f
(1) (tb2taut1)5Pg→ f

(1) (tb2taut1)/(uDfe2
(1)E2(0)Dge1

(2) E1(0)tu2/Torb) as
a function of t1 for the parameters of Fig. 2 andtb2ta54 Torb.
Dotted curve:m15m250.0; full curve: m150.0, m250.5. The
dashed curves show the contributions toPg→ f

(1) (tb2taut1) from
spontaneous emission during theM th round-trip of the wave packet
(M51,2,3,4) as evaluated from Eq.~29!.
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spontaneous photon emission and which could be realized on
the basis of present-day technology. It is shown that the ef-
fects can be analyzed efficiently with the help of the theo-
retical methods developed in Sec. II.

In the excitation scheme of Fig. 1~a! the lifetime of a
Rydberg wave packet evolving in channels 1 and 2 is of the
order of the inverse autoionization rateG n̄

21, in general.
However, as it was shown recently@3#, it is possible to in-
crease this lifetime by orders of magnitude if one synchro-
nizes core and wave packet dynamics by choosing the orbit
time Torb equal to an integer multiple of the Rabi period
TRabi. If initially the wave packet is prepared with the core in
its ground state, in the course of its successive returns to the
nucleus the Rydberg electron will always encounter an un-
excited core so that the wave packet is virtually stable and
autoionization occurs only with a very small rateGs!G n̄ . If
now spontaneous photon emission by the excited core is pos-
sible, in the simplest case, i.e.,Torb5TRabi, the first sponta-
neous photon will predominantly be emitted~thus reducing
the core to the ground state! when the wave packet is at its
outer turning point because the core is then in its excited
state. This means that at its subsequent returns to the nucleus
the wave packet will face an excited core so that it will decay
rapidly on a time scale of the order ofG n̄

21. In the case of
Gs!k the overall decay of the Rydberg population which is
reflected in the decay of the pump-probe signal therefore
occurs on a time scale given byk21. As typicallyk!G n̄ , it
is rather improbable that a second photon is emitted sponta-
neously before autoionization takes place. The relevant
physical processes are therefore very well described by tak-
ing into account the zero- and one-photon contributions only.

The manifestation of spontaneous photon emission effects
through enhancement of the decay of the Rydberg population
would still be difficult to observe under realistic conditions
in conventional pump-probe experiment due to the smallness
of typical spontaneous emission ratesk. Therefore in the
following we turn to the discussion of the time-dependent
autoionization rateg(t) of the Rydberg atom. This quantity
is much more sensitive to the effects of spontaneous photon
emission. Furthermore, a streak-camera technique for the
measurement of ionization rates such asg(t) was developed
recently by Lankhuijzen and Noordam@26#.

In the three-channel model of Fig. 1~a! the time-
dependent autoionization rate is given by the change of the
population of channel 3, i.e.,

g~ t !5
d

dt
P3~ t !52

d

dt
@P1~ t !1P2~ t !#, ~30!

with Pi(t) the total population of channeli at time t. A
straightforward way to determine this rate would consist in
calculating the populationsP1(t) andP2(t) by solving the
master equation~7! by means of a finite basis set expansion.
For this purpose the influence of the~flat! autoionization
continuum on the bound channels 1 and 2 can be described
by an optical potential@15,27#. It should be mentioned that
this approach is only valid as long as the initial wave packet
is exclusively prepared in the bound channels and the Lind-
blad operator~11! acts within channels 1 and 2 only.

However, the autoionization rateg(t) may also be deter-
mined in a way which is often computationally more effi-

cient and which also yields a clear physical picture of the
physical processes involved by making use of the methods
derived in Sec. II. In the framework of Mollow’s approach
the total rateg(t) may be decomposed into a sum of
N-photon contributionsg (N)(t) which in turn can be repre-
sented as integrals over conditional autoionization rates
g (N)(tutN , . . . ,t1), i.e.,

g~N!~ t !5E
0

t

dtN•••E
0

t2
dt1g

~N!~ tutN , . . . ,t1!. ~31!

Approximating the continuum channel population by the part
outside the core region the conditional autoionization rate is
given by

g~N!~ tutN , . . . ,t1!

5
1

2i
W@c3

~N!* ~r ,tutN , . . . ,t1!, c3
~N!~r ,tutN , . . . ,t1!# r c,

~32!

with W@f,c# the Wronskian off andc andc3
(N) the con-

ditional continuum electron wave function. Thus with the
help of MQDT and the results of the Appendix one obtains
from the above expression for the case that in channels 1 and
2 only bound states are populated significantly the result

g~N!~ tutN , . . . ,t1!5S 1

2p D 2N11

~12e24p Imm2!

3U E
2`1 i0

`1 i0

d«N11•••d«1

3e2 i«N11~ t2tN!2•••2 i«1t1~0,1,0!O

3~e22p i ñN112x̃!21W̃N11,N

3~e22p i ñN2x̃!21
•••W̃2,1

3~e22p i ñ12x̃!21D̃ge1
~2 !Ẽ1~«12 «̄ !U2.

~33!

The matricesW̃m,n are defined in Eq.~A15!. The integra-
tions over«N11 , . . . ,«1 may be performed with the theorem
of residues. It should be mentioned that Eq.~33! is of a form
very similar to the corresponding expression for the pump-
probe probability from which it only differs by the replace-
ment of Ẽ2*Dfe2

(1) by the vector (0,1,0)O times a constant

because only channel 2 is autoionizing. Similar expressions
may also be obtained for the populations of channels 1 and 2.

In Fig. 4~a! ~full curve! g(t) is shown for an example
with parametersn̄1573, m150.0, m250.501 i0.10, and a
spontaneous lifetime ofk2157 ns5118Torb which is a
typical value for alkaline earth atoms. Comparison with the
autoionization rate fork50 in Fig. 4~a! ~dotted curve!
shows the significant influence of spontaneous emission on
the behavior ofg(t) which is manifest already for times of
the order ofTorb. This means that these effects might be
observed not only when the core transition is driven by a
cw-laser pulse but also in the case of a core excitation with a
ns pulse as discussed in Ref.@3#. Further calculations show
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that, as expected, the total autoionization rate is accurately
described by the sum of the zero- and one-photon contribu-
tions up to times of the order of severalk21. The reason for
the sensitivity of the autoionization rate to spontaneous emis-
sion effects is the fact that before the photon emission the
probability of autoionization is rather low because of the
described stabilization effect while after the emission the
atom autoionizes very rapidly so thatg (1)(t) may become
comparable tog (0)(t) even if the spontaneous emission rate
is small. The notion of rapid autoionization after spontaneous
emission is confirmed by the inset in Fig. 4~c! which shows
the conditional autoionization rateg (1)(tut1) as a function of
t.t1 for fixed t1. It should also be noted that the autoioniz-
ation rate of an excited wave packet scales with the inverse
of its mean orbit time while the spontaneous emission rate is
independent of it. This means that the importance of sponta-
neous emission effects, i.e., the contribution ofg (1)(t) rela-

tive to g (0)(t), can easily be varied by altering the mean
excited quantum number.

A further confirmation for the above discussion of the
ionization dynamics is obtained from the time evolution of
the zero- and one-photon autoionization ratesg (0)(t) and
g (1)(t) which are depicted in Figs. 4~b! and 4~c!. The zero-
photon rate is always very small exactly at timesnTorb as the
core is then deexcited. However, for the first few round-trips
g (0)(t) is peaked in the vicinity of timesnTorb whereas later
on peaks appear at times (n1 1

2)Torb. The pattern is repeated
after approximately 25 periods due to quantum mechanical
revival effects. A detailed discussion of the wave packet dy-
namics is given in@28#. The behavior of the one-photon rate
is less complicated. The autoionization displays distinct
maxima and minima at timesnTorb and (n1 1

2)Torb, respec-
tively, according to whether the core is excited or unexcited.

2. Long-time behavior of atomic dynamics

The emission of more than one spontaneous photon is
rather unlikely in a typical pump-probe experiment due to
the inevitable autoionization processes. Nevertheless, from a
more theoretical point of view it might well be worthwhile to
study on a longer time scale the effect of spontaneous emis-
sion on the Rydberg wave packet dynamics in situations
where autoionization is neglected in order to get a more thor-
ough understanding of the influence of this dissipative pro-
cess on the time evolution of the atomic system. As is al-
ready apparent from the discussion in Sec. III A, the
interplay between spontaneous emission and shakeup pro-
cesses is crucial in this context. Modifications of the short-
time behavior due to spontaneous emission are discussed in
Ref. @25#.

In the absence of shakeup processes, i.e., form15m2, the
optical Bloch equations can easily be decoupled into a set of
two-state-like Bloch equations each describing the time evo-
lution of the 434 subdensity matrix belonging to a pair of
Rydberg states. When the system has settled to the steady
state, i.e.,k(tb2ta)@1, the pump-probe signal for resonant
core excitation («T11v5«T2) is given by the expression

Pg→ f~ tb2ta!5 1
2 ~M11M11* 1M22M22* 1M21M21*

1M12M12* !

1
2x222ix

412x2
~M12M11* 1M22M21* !

1
2x212ix

412x2
~M11M12* 1M21M22* !,

~34!

with x5k/V and

Mbb85(
l

^ f ud•ef* u lb&Ẽb* ~« l
b2 «̄ !e2 i« l ~ tb2ta!Ẽa~« l

b82 «̄ !

3^ lb8ud•egug&.

Thereby,b denotes one of the dressed channels (1 or 2),
and the summation extends over all Rydberg statesu lb& and

FIG. 4. Autoionization under the condition of period matching
of orbit time and Rabi period in the presence of spontaneous emis-
sion for parametersTRabi5Torb, kTorb51/118, n̄1573 (Torb559
ps!, m150.0, m250.501 i0.10, t50.4Torb, D5«T22«T1

2v50 with the bare channel thresholds«T1 ,«T2. ~a! Total scaled
autoionization rateg̃5gTorbt/uDge1

(2)E1(0)u2 as obtained from the op-
tical Bloch equations~full curve!, total rate fork50 ~dotted!. ~b!
and ~c! Zero- and one-photon contributionsg̃ (0) and g̃ (1). Inset in
~c!: conditional autoionization rateg (1)(tut1520.5Torb).
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u lb8& in the dressed channelsb and b8, respectively. The
energies are given by« l521/@2(l2m)2# and « l

65« l
6V/2.

Expression~34! for the long-time behavior of the pump-
probe signal may be interpreted as follows: the dressed states
of the system consisting of the atom and the cw-laser field
are given byuk6&51/A2(uk1&6uk2&) with uk1(2)& denot-
ing the eigenstates of the bare atomic channels with principal
quantum numberk. The initial ~coherent! Rydberg wave
function created by the first short laser pulse is a superposi-
tion of states$uk1&% and$u l2&% where the setsK andL of
relevant principal quantum numbersk andl may be different
from each other due to the Rabi splitting of the core states.
The spontaneous emission processes now lead to a popula-
tion transfer from states$uk1&% to states$uk2&% and from
$u l2&% to $u l1&%, respectively, as there are no shakeup pro-
cesses. The result of this population transfer is described by
the amplitudesMbb8. Equation ~35! for the amplitudes
shows that the internal coherence of the wave packet frac-
tions which change or remain in their dressed channels is
completely maintained. This is due to the fact that the spon-
taneous emission does not destroy the basic phase relation-
ship between Rydberg states of different principal quantum
numbers m,n which is given by the factor
exp@2i(«m2«n)t#.

As an example of the consequences of this time evolution,
consider a case in whichV@k,1/t ~with t the temporal
width of the laser envelope!. Under these conditions the
terms in the third and fourth lines of Eq.~34! which express
interference effects between the wave packet fractions cre-
ated in different dressed channels and detected in either the
1 or 2 channel can be neglected. If pump and probe signal
are centered at the same mean energy«̄ one obtains a signal
Pg→ f(t)5

1
2(M11M11* 1M22M22* ), i.e., an incoherent

sum of wave packet contributions prepared and detected in
channels1 and2. However, if pump and probe pulses are
centered at energies«̄ and «̄1V ( «̄2V) the signal is given
by 1

2M12M12* ( 12M21M21* ), i.e., one observes the wave
packets which are created through the spontaneous emission
processes. These wave packets have the same orbit time as
the faster~slower! of the wave packets initially created.

In situations where the Rydberg electron evolves under
the simultaneous influence of spontaneous emission and
shakeup processes simple analytic expressions for the pump-
probe signal are not available. Numerical studies indicate
that the presence of shakeup processes leads to profound
changes in the long-time behavior of the atomic dynamics in
comparison with the situation in which such processes are
absent. As discussed above in the latter case the atomic
population is distributed even under steady-state conditions
only over a finite number of states and the initial coherence
of the Rydberg states is preserved to a high degree. In con-
trast to this behavior the influence of shakeup processes leads
to a spreading of the atomic population over a continually
growing number of Rydberg states while the initial coher-
ence is destroyed. To exemplify these observations Fig. 5
shows the pump-probe signal for the parameters
m22m150.5, TRabi53Torb, kTorb51/5, andn̄15171. The
loss of coherence in the atomic system is reflected in the
diminution of the wave packet recurrence structures in the

pump-probe signal, the gradual decline of the mean signal
~averaged over several orbit times! is due to the spreading of
the population. The physical process which is responsible for
this spreading appears to consist in the fact that in the course
of successive spontaneous emission events the atom can go
over from one dressed eigenstate to any other one due to the
shakeup couplings. This notion is corroborated by the obser-
vation that the spread is accelerated ifV or k is increased,
both of which lead to an enhanced spontaneous emission.
However, a similar reasoning could also be applied in situa-
tions where spontaneous emission is absent. It could be ar-
gued that the stimulated absorption and emission processes
should also lead to a spread of the wave function. The fact
that such a spread does not occur suggests that the atomic
system in this case is in a kind of dynamical balance which
prevents it from spreading and which is destroyed by spon-
taneous emission.

IV. SUMMARY AND CONCLUSION

Motivated by the recent interest in ICE processes in in-
tense laser fields@2,3,12–15# the decohering influence of the
spontaneous emission of photons by the ionic core on ICE
wave packet dynamics has been investigated.

For this purpose a theoretical approach has been devel-
oped which is based on Mollow’s pure state analysis of reso-
nance fluorescence and on MQDT. In this way it is possible
to obtain semiclassical path representations for atomic tran-
sition amplitudes which clearly exhibit the interplay between
classical and quantum mechanical aspects of wave packet
dynamics in the presence of dissipation. The presented theo-
retical approach which relies on a decomposition of the rel-
evant transition amplitudes intoN-photon contributions is
particularly useful in situations in which the number of spon-
taneously emitted photons is small. For such cases it allows
us to circumvent mathematical and numerical problems
which arise from the solution of the relevant master equation
in Rydberg systems close to a photoionization threshold.
Furthermore, eachN-photon contribution has physical sig-
nificance as it can be observed in a coincidence experiment
in which not only the time evolution of the Rydberg wave
packet but also the number of spontaneously emitted photons
is measured.

The presented physical examples demonstrate the intricate

FIG. 5. Scaled pump-probe probabilityP̃g→ f for m150.0,
m250.5,TRabi53Torb, kTorb51/5, n̄15171 (Torb5760 ps!, D50,
andt50.3Torb.
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interplay between the~coherent! laser-modified electron cor-
relation effects, such as shakeup and autoionization, which
take place inside the core region of the Rydberg system, and
the classical aspects of the dynamics of the excited Rydberg
electron outside the core region which is interrupted by the
~stochastic! spontaneous decay process of the ionic core. In
particular, these examples show that the decoherent influence
of the stochastic photon emission process on the dynamics of
an electronic Rydberg wave packet is the more pronounced
the more important shakeup processes are. In the framework
of the semiclassical path approach this observation could be
explained to arise from modifications of interference effects
due to core scattering. Furthermore, it was shown that effects
of spontaneous emission can play a significant role in ioniza-
tion experiments in connection with a recently discussed~co-
herent! mechanism of laser-induced suppression of autoion-
ization @3#. The analysis of these experiments is performed
efficiently in terms of zero- and one-photon contributions
which can be obtained directly from our general theoretical
results. Thus in view of recent experimental developments
@26# besides conventional pump-probe experiments time-
dependent studies of ionization rates might also become a
valuable experimental tool for studying ICE wave packet
dynamics and its modification by stochastic influences.
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APPENDIX

In this Appendix the derivation of the semiclassical path
representations for the time-independentN-photon transition
amplitudes of Eqs.~22!–~24! is outlined@25#. As for the case
N50 the derivation of the semiclassical path representation
starting from Eq.~21! has already been worked out in detail
elsewhere@1,2,24# we concentrate in the following on cases
with N>1. The relevantN-photon transition amplitudes are
then defined by Eqs.~19! and ~20!.

First, we describe the solution of the inhomogeneous
Schrödinger equations~20!. Using the notation of Sec. II and
adopting the channel expansion@2#

^X,r ul~ . . . !&5(
j51

3

^XuF j&^r uF ~ j !~r ; . . . !&/r ~A1!

they can be rewritten in the form~with «1 , . . . ,«N11 arbi-
trary complex!

$«12@h1«̃c1Ṽ~r !#%F̃~r ;«1!5D̃g~r !, ~A2!

$«n2@h1«̃c1Ṽ~r !#%F̃~r ;«n , . . . ,«1!

5L̃ F̃~r ;«n21 , . . . ,«1! ~N>n>2! ~A3!

and

$«N112@h1«̃c1Ṽ~r !#%F̃* ~r ;«N11!5D̃f* ~r !. ~A4!

The channel coordinatesX represent all coordinates of the
core electrons and the angular momentum and spin of the
excited Rydberg electron@17#. The radial-dependent column

vectors F̃(r ;«1), F̃(r ;«n , . . . ,«1), and F̃(r ;«N11) are
formed by the components of the statesul(«1)&,
ul(«n , . . . ,«1)&, and ul̄(«N11)& in the photon-dressed core
channels whose relation to the bare core channels is defined
by Eq. ~25!. The square matrixṼ(r )5OTV(r )O describes
the correlation-induced coupling between the photon-dressed
core states which takes place at distancesr<r c inside the
ionic core. Therebyr c denotes the core radius which has a
typical value of a few Bohr radii. It is assumed that the
angular momentum of the Rydberg electron is not changed
by a radiative transition of the core@2#. Therefore the
diagonal square matrixh commutes with the orthogonal
~nonunitary! matrix O. The radial-dependent column
vectors D̃k(r )5OTDk(r ) (k5g, f ) with compo-
nents (Dg) j (r )5r*dXF j* (X)d•e1^X,r ug& and (Df) j (r )
5r*dXF j* (X)d•e2^X,r u f & describe the initial excitation
and final deexcitation of the Rydberg electron in the photon-
dressed core channels.

In Eqs. ~A2! and ~A4! the terms on the right hand
sides vanish approximately forr>r c . The physical solu-
tions of these inhomogeneous Schro¨dinger equations,
which remain finite for bothr→0 and r→`, can be
constructed as described in detail in Refs.@2,12,25#. For
r>r c they are given by F̃(r ;«1)5C(r ;«1)Ṽ1 and
F̃* (r ;«N11)5C(r ;«N11)ŨN11 with

Ṽ152p i ~12x̃e2p i ñ1!21D̃ge1
~2 ! ,

ŨN1152p i ~12x̃Te2p i ñN11!21D̃fe2
~1 !T , ~A5!

and

C~r ;«!5 1
2 @F~2 !~r ;«!e2p i ñ2F~1 !~r ;«!#. ~A6!

Thereby,F(6)(r ;«) denote the diagonal matrices of~energy-
normalized! incoming- and outgoing-wave Coulomb func-
tions of complex energy« ~incorporating the thresholds
«̃c), i.e., @F (6)(r ;«)# i i5f (6)(r ;«2 «̃ci)]. Coulomb func-
tions of complex energy are discussed in Ref.@29#, for ex-
ample. Except for« lying on the branch cuts ofñ ~defined in
the usual way! the functionsC(r ;«) converge to zero for
r→`.

The column vectors of the~energy-normalized! photoion-
ization and recombination dipole matrix elements are given
by

D̃ge1
~2 !5E

0

`

drF̃~2 !†D̃g , D̃fe2
~1 !5E

0

`

drD̃f
†F̃~1 !. ~A7!

Thereby the energy-normalized regular solutions of the ho-
mogeneous part of Eq.~A2! are defined by

F̃~2 !~r ;«!5 1
2 @F~1 !~r ;«!2F~2 !~r ;«!x̃* # ~A8!

andF̃(1)(r ;«)52F̃(2)(r ;«)x̃.
The construction of the solutions of Eqs.~A3! for r>r c is

complicated by the fact that the inhomogeneous term on the
right hand side of Eq.~A3! is nonzero even at distances very
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far from the ionic core. Nevertheless, this solution can be
constructed by starting from the observation that forr>r c a
particular solution of an equation of the form
$«n2@h1«̃c1Ṽ(r )#%G̃(r ;«n)5MC (r ;«m) with an arbitrary
matrix M and C(r ;«m) defined by Eq.~A6! is given by
@M #nmC(r ;«m). Thereby, the matrix elements (i j ) of
@M #nm are defined by

~@M #nm! i j5M i j ~«n2 «̃ci2«m1 «̃c j!
21. ~A9!

Thus by induction it follows that forr>r c a solution of Eq.
~A3! which remains finite at least forr→` is given by

F̃~r ;«n , . . . ,«1!5 (
k51

n

$L̃ %nkC~r ;ek!Ṽk . ~A10!

Thereby, the matrices$L̃ %nk are defined recursively in terms
of the matrices@ L̃ # jk by the relations

$L̃ %kk51,

$L̃ % jk5@ L̃ $L̃ % j21,k# jk ~ j>k11!. ~A11!

The still unknown column vectorsṼk with 2<k<n are de-
termined uniquely by the requirement thatF̃(r ;«n , . . . ,«1)
has to remain finite also forr<r c . This requirement can be
imposed onF̃(r ;«n , . . . ,«1) by assuming that due to the
long range of the inhomogeneous term on the right hand side
of Eq. ~A3! its influence can be neglected forr<r c . Thus
F̃(r ;«n , . . . ,«1) can only remain finite forr<r c if it is pro-
portional to the regular solution of the homogeneous part of
Eq. ~A3! which is given by Eq.~A8!. At r5r c this require-
ment implies the relation

Ṽk5~12x̃e2p i ñk!21 (
k851

n21

~ x̃$L̃ %kk8e
2p i ñk82$L̃ %kk8!Ṽk8

~A12!

for n>k>2. This equation can be solved recursively for
k>2 starting withṼ1 as given by Eq.~A5!.

From the knowledge of the behavior of the solutions of
the inhomogeneous Schro¨dinger equations forr>r c and ar-
bitrary values of the photon numberN the matrix element of
Eq. ~19! can be evaluated. Thereby it is assumed that the
dominant contribution to this matrix element comes from
distancesr>r c outside the core region. This assumption is
justified as long as the states involved in the matrix element
of Eq. ~19! extend over distances which are large in compari-
son with the core radiusr c because in this case the neglected
contribution is expected to be small. Thus, using the known
relation for matrix elements of radial Coulomb functions
@30,31#, i.e.,

E
r c

`

drC~r ;«2!MC ~r ;«1!

5
1

2p i
~@M #21e

2p in12e2p in2@M #21!, ~A13!

with M denoting an arbitrary square matrix andC(r ;«) the
Coulomb functions of Eq.~A6!, one obtains the result

Tg→ f
~1! ~«2 ,«1!52p iD̃fe2

~1 !~e22p i ñ22x̃!21

3W̃2,1~e
22p i ñ12x̃!21D̃ge1

~2 ! ,

Tg→ f
~N! ~«N11 , . . . ,«1!52p iD̃fe2

~1 !~e22p i ñN112x̃!21

3S (
~kp , . . . ,k1!

W̃N11,kp

3~e22p i ñkp2x̃!21

3W̃kp ,kp21
•••

3~e22p i ñk22x̃!21W̃k2 ,k1

3~e22p i ñk12x̃!21W̃k1,1D
3~e22p i ñ12x̃!21D̃ge1

~2 ! ~N>2!.

~A14!

Thereby, the matricesW̃m,n are given by

W̃m,n5(
l5n

m

~21!n2 l11$L̃ %m,le
22ip ñl^L̃ & ln, ~A15!

with 1<n<m21 and the matriceŝL̃ & ln being defined re-
cursively in terms of the matrices@ L̃ # jk by

^L̃ &kk51,

^L̃ & jk5@^L̃ & j ,k11L̃ # jk ~ j>k11!. ~A16!

The matriceŝ L̃ & jk and$L̃ % lm are related via

(
k51

n

~21!k$L̃ %nk^L̃ &k15 (
k51

n

~21!k^L̃ &nk$L̃ %k150.

For N>2 the sum in Eq.~A14! extends over all possible
p-tuples of integers (kp ,kp21 , . . . ,k1) with N21>p>1,
N>kp.kp21.•••.k1>2, and$kp , . . . ,k1% being one of
the possible subsets of the set of numbers$N, . . . ,2% and
over the empty set which corresponds to the term containing
W̃N11,1 only.

It can be shown that theN-photon amplitudes as given by
Eqs.~A14! are as a function of each«k analytic on the whole
complex plane, except for poles and branch cuts, the loca-
tions of which are determined by those of the function
det(e22p i ñ2x̃). In particular, this implies that the singulari-
ties which seem to be introduced by the matricesW̃m,n are
removable. Furthermore, the expressions~A14! remain
bounded, i.e., do not become exponentially large, if one or
several«k approach a branch cut. This observation justifies
the calculation of bounded wave packet dynamics only with
residue contributions as it was mentioned at the end of Sec.
II B.

The expressions~A14! for the N-photon amplitudes are
valid on the whole complex~product! planeCN apart from
the singularities and branch cuts. The semiclassical path rep-
resentation of Eqs.~A14!, which is only valid in a region of
the complex plane bounded from below by the branch cuts,
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is derived by expanding the factors of the type
(12x̃e22p i ñ)21 into geometric series and reorganizing the
resulting sums, which finally leads to Eqs.~23! and~24! @25#.
The exact definition of the matricesS̃m,k is given by

S̃m,k5e2ip ñmĨmk~t50!, ~A17!

with

Ĩmk~t!5(
l5k

m

~21! l2ke22ip ñm$L̃ %mle
2ip ñl ~12t/T!

3^L̃ & lke2ip ñkt/T. ~A18!

For the physical interpretation of the quantitiesS̃m,k it is
convenient to rewrite Eq.~A18! as a recursive integral equa-
tion

Ĩmk~t!5E
t

T

dtkĨm,k11~tk!e
22ip ñk11tk /T~e2 ip/2L̃ !

3e2ip ñktk /T ~1<k,m!, ~A19!

which is valid under the approximation that the relation be-
tween energy and effective quantum numbersñ j is approxi-
mately linear, i.e.,

@« l2 «̃c j2~«k2 «̃ci!#
21.

T

2p@~ ñl ! j j2~ ñk! i i #
. ~A20!

Solving Eq. ~A19! iteratively Eq. ~28! of Sec. II B is ob-
tained. When performing the Laplace transform the linear
approximation in Eq.~A20! has to be applied at those ener-
gies which contribute the most for giventb2ta andMi lead-
ing to the determination ofT mentioned in Sec. II.
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