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Abstract – The finite time end of entanglement between two decohering qubits can be modified
by local, unitary actions performed during the decoherence process. Depending on the time when
such action is taken, the end can be speeded up or slowed down, or even averted all together.
This phenomenon offers practical applications for the stabilization of entangled quantum states.
Details concerning hastening or delaying the finite-time end of entanglement are presented for two
qubits which decay spontaneously into statistically independent reservoirs.
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Entanglement is a key feature of the quantum physics of
more than one particle. From its historical beginnings [1]
to the current practical interest in it as a core resource for
the field of quantum information sciences [2], this property
of quantum systems continues to fascinate and to shed
new light onto the nature of our quantum world. The
fields of quantum computing, quantum cryptography and
key distribution [3], and quantum teleportation [4] all rely
on having entangled states of two qubits. Since each qubit
is inevitably subject to decoherence and decay processes,
no matter how much they may be screened from the
external environment, it is important to consider possible
degradation of any initially established entanglement. In
particular, there has been increasing discussion of what
has been called “sudden death”, a finite time when the
entanglement disappears even under decoherence mecha-
nisms which may be only asymptotic in time [5–7]. Clearly,
such finite-time disappearance of entanglement can seri-
ously affect its application in any of the above fields.
It is well known in the context of spontaneous-emission

processes [8] or delayed-choice experiments [9], for exam-
ple, that characteristic quantum phenomena and effects
of decoherence can be influenced significantly by suitable
actions, such as measurements. Therefore, it would be of
interest if A(lice) and B(ob), the two members of the
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entangled pair, can take suitable individual actions when
faced with the prospect of loss of entanglement to post-
pone that end. Some studies on changing the initial state
into an equivalently entangled but more robust state have
been carried out [10]. In this letter, we deal with the more
direct question: even given an initial state and a setup
which will end in disentanglement at finite time, can they
themselves take suitable actions later to change the fate
of their entanglement? We answer in the affirmative. In
particular, it is shown that simple local unitary opera-
tions can alter the time of disentanglement. This is even
possible if these local operations are separated space-likely
so that they are not connected by any causal relation. The
operations we consider can either hasten or delay that time
depending on its time of application. A suitable window
for this application can even avert completely the finite or
sudden death. In that case, entanglement will persist and
decay only asymptotically just as do the decoherences for
both qubits. While our discussion will be for two qubits, it
is clear that similar results will apply also to other systems
such as qubit-qutrit [11] and qutrit-qutrit [12,13] where
also questions of the finite end of entanglement have been
considered. We will present such results elsewhere.
We consider the model of two two-level atoms, and

“amplitude damping” in the form of spontaneous (pure
exponential) decay into statistically independent reser-
voirs from the excited to the ground state being the
only postulated dynamics [6]. Whatever the initial
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state, whether pure or mixed, and whether entangled
(non-separable) or not, the final state reached in asymp-
totic time is clearly one of both atoms in the ground
state, that is, a product state of the two ground-state
atoms/qubits with no entanglement. It is also a pure
state with zero entropy. The much discussed model [6]
considers mixed states with a density matrix of the form

ρ(t) =
1

3

⎛

⎜

⎜

⎝

a(t) 0 0 0
0 b(t) z(t) 0
0 z(t) c(t) 0
0 0 0 d(t)

⎞

⎟

⎟

⎠

. (1)

The coefficients (a, b, c, d, z) may be considered real, and
Tr ρ= (a+ b+ c+ d)/3 = 1. The four states are described
as usual by (|++〉, |+−〉, | −+〉, | − −〉) with Alice and
Bob’s states shown as the first and second entries, respec-
tively, in the ket, and +/− denoting excited/ground state.
The initial condition chosen, of b(0) = c(0) = z(0) = 1,
along with the only evolution, that + decays to − at a
steady rate exp(−Γt/2)| in amplitude, keeps b(t) = c(t)
throughout.
The form of ρ(t) in eq. (1) is preserved by time evolu-

tion. The off-diagonal density matrix element is given by
ż(t) =−Γz(t) (an overhead dot indicates differentiation
with respect to time) and the diagonal ones by

d

dt

⎛

⎜

⎜

⎝

ρ++
ρ+−
ρ
−+

ρ
−−

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎝

−2Γ 0 0 0
Γ −Γ 0 0
Γ 0 −Γ 0
0 Γ Γ 0

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

ρ++
ρ+−
ρ
−+

ρ
−−

⎞

⎟

⎟

⎠

. (2)

No elaborate derivation is necessary, these equations
having an obvious structure dictated by the “decay” from
+ to “feed” into −. Their solutions are also immediate.
In terms of a logarithmic, dimensionless time parameter,
γ = exp(−Γt/2), we have

ρ++(t) = a(t) = a(0)γ
4,

ρ+−(t) = ρ−+(t) = b(t) = [b(0)+ a(0)]γ
2− a(0)γ4,

ρ
−−
(t) = d(t) = 3+ a(0)(γ4−γ2)−[3−d(0)]γ2,
z(t) = z(0)γ2. (3)

Were (b, c, z) to be the only non-zero elements in eq. (1),
we would have an entangled pure state (|+−〉+ | −+〉).
The coefficients would all decay with a factor γ2,
and so would the entanglement only asymptotically. The
additional choice of either (a(0) = 1, d(0) = 0) or (a(0) = 0,
d(0) = 1) gives a mixed state which is non-separable. Both
choices give the same entropy, defined as −∑ ρi ln ρi in
terms of the eigenvalues of ρ. This value is ln(3/41/3)
at t= 0 and decreases to 0 asymptotically when the
system is in the pure state |– –〉. But their evolution of
entanglement or separability is very different [6,14].
Various measures of entanglement all coincide in their

conclusion that the second choice of d(0) = 1 leads to
non-separability only asymptotically at infinite time
whereas the first choice with a(0) = 1 leads to a finite

time for the end of entanglement, the “sudden death” [6].
Concurrence [15] having been discussed in previous
papers, we choose negativity as a more easily measurable
quantity in terms of the partially transposed density
matrix [16] as an indicator of non-separability.
The negativity is defined as the sum of the absolute

values of all the negative eigenvalues of the partially
transposed density matrix [17] for a quantum state. For
the 2⊗ 2 system, there can be at most one such possible
negative eigenvalue [18]. Viewing eq. (1) in terms of
2× 2 blocks and transposing the off-diagonal blocks to
define such a partial transpose, its eigenvalues contain
one that can possibly be negative. This eigenvalue, or
alternatively, six times that value, is given by a(t)+
d(t)−

√

[a(t)− d(t)]2+4z2(t) , and it can take negative
values so long as ad < z2. When a(0) = 0, since a(t) from
eq. (3) remains zero at all times, the system retains
non-separability for all finite t’s. However, for the choice
(d(0) = 0, a(0) = 1), the system starts as non-separable or
entangled but when a(t)d(t) crosses z2(t) during the
subsequent evolution, the entanglement is lost. It can
be seen that the time t0 at which this happens is

Γt0 = ln(1/γ
2
0) = ln(1+1/

√
2). (4)

This is the time of “sudden death” [6]. At this point, we
have a= 6− 4

√
2, b= 2

√
2− 2, d= 1, z = 2−

√
2 .

Previous papers have examined the evolution of
entanglement for different initial choices of the above
parameters [6,14]. The evolution of Werner states [19],
with a form slightly different from the one in eq. (1)
with non-zero entries in the other two corners as well,
has also been studied [14]. It has also been noted that
different “initializations”, wherein an initial given state
such as in eq. (1) is switched to another with equivalent
entanglement, can lead to a change in the time of non-
separability [10]. A recent paper has collected compactly
necessary and sufficient conditions for this under both
amplitude and phase damping [20].
Another observation, with multimode radiation fields,

is that spontaneous emission can also lead to a revival
of entanglement from a separable configuration [21]. In
three-level atoms or qutrits, finite end of entanglement for
pairs and abrupt changes in lower bounds on entangle-
ment have been noted [12], as also quantum interference
between different decay channels creating an asymptotic
entanglement [13]. The finite-end phenomenon has also
been noted for mixed qubit-qutrit states [11] and it seems
to be a generic phenomenon for all entangled-pair systems.
We turn, however, to a different question, whether,

given the qubit-qubit system above and initial conditions
that lead to separability in finite time, a suitable interven-
tion may alter that time. Such a question is clearly even of
practical interest because, as noted in [22], “finite end may
affect the feasibility of solid-state–based quantum comput-
ing”. Therefore, a simple intervention that prolongs the
entanglement resource can be of broad interest. Indeed,
the above discussion and, especially, the asymmetry noted
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Fig. 1: Evolution of negativity N with time for an initial mixed
state in eq. (1) with a(0) = b(0) = c(0) = z(0) = 1, d(0) = 0. The
solid line shows the undisturbed evolution, with sudden death
at Γt0 ≈ 0.5348. Other dotted and dashed lines show the effect
of switching the values of a and d at different times. Those
after ΓtA ≈ 0.2877 hasten, and those before delay, the sudden
death. Switches earlier than ΓtB ≈ 0.1293 avoid sudden death
altogether, negativity vanishing only asymptotically in time.

between the two choices of whether it is a or d that is
initially zero, suggests a way for such an intervention.
When a(t) = 0, the non-separability in the mixed state
because of the presence of d simply continues as the states
that are entangled “decay down” to enhance d. The other
situation of a(0) = 1 and, therefore, a non-zero a(t) is quite
different, because it feeds into the entangled sector “from
above”. At a crucial point/time when ad> z2, which, as is
especially clear from the partial transposed density matrix
(see eq. (1)), has to do with the (|++〉, | − −〉) sector, it
is this feed which swamps the entangled sector and makes
the mixed state separable.
The above diagnosis of which aspect of the asymme-

try between a and d is responsible for the separability
suggests a “switch” between them. Such a switch, which
leaves the other coefficients (b, c, z) unchanged, amounts
to interchanging + and − for both qubits. This is a local
unitary transformation that both Alice and Bob can easily
implement, by individual σx operations for spins or laser
coupling of the excited and ground states for two-level
atoms. Consider the same initial condition as before, with
(a(0) = 1, d(0) = 0), which leads to sudden death. Before
the time t0 corresponding to the end of entanglement,
consider such local unitary operations that merely inter-
change a and d. If this is done at the time tA when a= d,
which happens when exp(−ΓtA)≡ γ2A = 3/4, clearly there
will be no effect upon the subsequent evolution, the end
still coming at time t0. See figs. 1 and 2. If the switch
is made at any time intermediate between tA and t0 (see
fig. 2), separability occurs earlier, a minimum being at the
switch time Γt1 ≈ 0.357.
More interestingly, a switch earlier than tA prolongs the

entanglement as shown in the figures. Moreover, switch
times before tB with ΓtB ≈ 0.1293 avoid the finite-time
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Fig. 2: The time for the end of entanglement is plotted against
the time of switching + and − in eq. (1). Starting on the right
at switching times of Γt0 ≈ 0.5348, the curve has a broad and
small dip before rising rapidly to infinite time at ΓtB ≈ 0.1293.
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Fig. 3: As in fig. 2 when the switch is done at only one end.
Note that the maximum delay, which occurs at tsw = 0, is now
finite.

end all together, leading to separability only asymptoti-
cally. As a practical matter, therefore, when Alice and Bob
separate at t= 0 and know that they face an end to their
entanglement at t0, they can agree beforehand to make the
local unitary switch between + and − at a certain time as
desired to alter that end.
In fig. 1, negativity is plotted against the parameter Γt.

The solid line corresponds to a situation when no switch
is made and the sudden death happens at Γt0 ≈ 0.5348.
If the switch is made at Γt1 ≈ 0.357 (dot-dashed line), the
sudden death reaches a minimum value of Γt< ≈ 0.48. Any
switch made earlier than tA leads to a delay in sudden
death in comparison with t0. Two instances are shown
in the upper curves. If the switch is made at Γt≈ 0.223
(dashed line), the negativity comes to an end at Γt≈ 0.716.
Any switch made earlier than ΓtB ≈ 0.1293 avoids a finite
end, leading only to asymptotic decay of entanglement.
Figure 2 displays the time of sudden death tend against

the time of switching tsw. The earlier the switch is made
than ΓtA ≈ 0.2877, the more the end of entanglement is
delayed. Sudden death is avoided completely when the
switch takes place earlier than ΓtB ≈ 0.1293.
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Interestingly, switching + and − at only one end,
that is, either Alice or Bob makes the local unitary σx
transformation, also alters the end of entanglement. Now,
a and c in the density matrix in eq. (1) are interchanged,
as also b and d, while z moves to the corners of the
anti-diagonal. The roles of (a, d) and (b, c) in eq. (3) are
interchanged and we find that sudden death is hastened or
delayed depending on the time of switching but it is now
no longer averted indefinitely. Figure 3 shows the results
to be contrasted with those in fig. 2. A maximum, but still
finite, delay is obtained for the earliest switch at Γtsw = 0,
its value Γtend = ln(3+

√
5)/2≈ 0.9624 being a little less

than double that of Γt0. A simple, analytical expression
describes the curve in fig. 3. With x= exp(−Γtsw),
y= exp(−Γtend), we have

y(x) =
3−
√
9− 24x+20x2
2(2−x) . (5)

The value of Γt0 in eq. (4) corresponds to the root
y= x= 2−

√
2 .

In summary, we have shown that a simple local unitary
operation that can be carried out on both qubits of an
entangled pair changes the subsequent evolution of their
entanglement. For mixed states under conditions which
lead to a loss of that entanglement at finite time, termed
sudden death, such an operation can either hasten or delay
that death, depending on the time at which it is carried
out. There is a critical time before which the operation can
even completely avert the sudden death of entanglement.
When the local transformation is done at only one of
the qubits, sudden death is hastened or delayed but not
averted completely.
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