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The structure is investigated of all completely positive quantum operations that transform pure two-qubit
input states of a given degree of entanglement in a covariant way. Special cases thereof are quantum NOT

operations which transform entangled pure two-qubit input states of a given degree of entanglement into
orthogonal states in an optimal way. Based on our general analysis all covariant optimal two-qubit quantum
NOT operations are determined. In particular, it is demonstrated that only in the case of maximally entangled
input states can these quantum NOT operations be performed perfectly.
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I. INTRODUCTION

The current interest in processing quantum information
�1� has also revived the interest in fundamental limitations of
quantum theory �2�. It is well known, for example, that an
arbitrary quantum state cannot be copied perfectly �3�. Simi-
lar no-go theorems are also known for other elementary tasks
of quantum-information processing �2�. One of these tasks,
for example, concerns the problem of transforming an arbi-
trary quantum state into an orthogonal one. It is well ac-
cepted that for arbitrary �unknown� pure quantum states such
a quantum NOT operation cannot be performed perfectly due
to its antilinear character �4,5�. In view of such no-go theo-
rems it is natural to investigate to what extent such elemen-
tary tasks of quantum-information processing can be per-
formed in an optimal way. In this context quantum
operations that treat all possible input states of interest in a
covariant way have received considerable attention �5�. Such
a covariant behavior guarantees that the quantum process
under consideration achieves its goal for all input states of
interest with the same quality.

Recently, the problem of optimizing quantum NOT opera-
tions with respect to arbitrary one-qubit input states stimu-
lated both theoretical �4� and experimental investigations �6�.
By now many aspects of optimal quantum NOT operations
are well understood at least as far as general one-qubit input
states are concerned �4�. Nevertheless, much less is known
about optimal quantum NOT operations for entangled input
states. In particular, if one is interested in constructing quan-
tum NOT operations that are optimal for entangled input
states of a particular degree of entanglement only, the general
no-go theorem for quantum NOT operations does not apply
because the input states form a restricted subset and not a
linear subspace of the Hilbert space.

Motivated by these developments in this paper the prob-
lem of constructing optimal quantum NOT operations for en-
tangled quantum states is addressed. In order to obtain a
detailed first understanding of this still open problem we
concentrate our discussion on the simplest possible input
states, namely, pure two-qubit states of a given degree of
entanglement. The main aim of this paper is twofold. First,
the general structure is investigated of completely positive

quantum processes that transform all possible pure two-qubit
inputs states of a given degree of entanglement in a covariant
way. Surprisingly it turns out that all these processes can be
represented in a systematic way by convex sums of four
special quantum processes, some of which have already been
discussed previously in the literature. Second, based on this
general analysis the structure is discussed of two-qubit quan-
tum processes that transform an arbitrary pure two-qubit in-
put state of a given degree of entanglement into an orthogo-
nal quantum state in an optimal way. It is shown that in the
special case of maximally entangled pure input states such
quantum NOT operations can be performed perfectly and the
general structure of these perfect quantum NOT operations is
presented. These optimal quantum NOT operations may have
interesting future applications in the context of other primi-
tives of quantum-information processing, such as remote
state preparation �7�. Finally, our work analyzes some of the
problems studied for a single qubit �8� in the case of two
qubits.

This paper is organized as follows. In Sec. II the most
general structure is discussed of completely positive two-
qubit quantum processes that treat pure two-qubit input
states of a given degree of entanglement in a covariant way.
The construction of optimal covariant quantum NOT opera-
tions and of perfect NOT operations for maximally entangled
input states is discussed in Sec. III. In Sec. IV the general
representation of all possible completely positive covariant
two-qubit processes is discussed once again. Thereby, it is
demonstrated that all these processes are convex sums of
four special quantum operations whose physical significance
is apparent from the results obtained in Sec. III.

II. COMPLETELY POSITIVE COVARIANT TWO-QUBIT
QUANTUM PROCESSES

In this section the general structure is investigated of all
completely positive quantum processes that transform pure
two-qubit input states of a given degree of entanglement in a
covariant way.

Let us start by considering a general quantum operation
�1� � that maps an arbitrary two-qubit mixed input state �in
onto a mixed two-qubit output state �out, i.e.,
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�: �in → �out. �1�

If this is to treat pure two-qubit input states of a given degree
of entanglement in a covariant way it has to satisfy the co-
variance condition �9,10�

��U1 � U2�inU1
†

� U2
†� = U1 � U2���in�U1

†
� U2

†. �2�

This requirement has to be satisfied for arbitrary unitary one-
qubit transformations U1,U2�SU�2� �11�. The restriction of
the quantum map �1� to quantum operations reflects the
physical requirement that � should be implementable by a
unitary transformation possibly involving also additional
quantum systems but under the constraint that initially the
two-qubit system of interest and these additional ancillary
systems are uncorrelated �1�. As will be seen later, the cova-
riance condition �2� implies the requested independence of
the quality of performance of this quantum operation on the
possible input states �12,13�.

For implementing the covariance condition �2� on the
quantum process of �1�, it is convenient to decompose the
input state �in into its angular-momentum irreducible tensor
components T� 1

2 , 1
2

�
K,q �14�, i.e.,

�in = �
K,q;K�,q�
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†
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�3�
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2
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1
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I, T�1
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1,1
= − ��x + i�y�/2,

T�1

2
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1,0
= �2�z/2, T�1

2
,
1

2
	

1,−1
= ��x − i�y�/2, �4�

and with K� 
0,1� and −K ,−K+1, . . . �q� . . . ,K−1,K.

Thereby, �i with i=x ,y ,z are the three orthogonal compo-
nents of the Pauli spin operators with respect to fixed or-
thogonal xyz axes. �For the sake of convenience some basic
facts about angular-momentum tensor operators are summa-
rized in Appendix A.� The corresponding most general linear
covariant output state has the form �12,15�

�out = �
K,q;K�,q�

��K,K��

�Tr��T�1

2
,
1
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K,q

†

� T�1
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,
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�in�
�T�1
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,
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2
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. �5�

According to Eq. �3� the most general two-qubit input
state can be written in the form

�in�P� ,Q� ,M� =
1

4�I � I + �
i=x,y,z

Pi�i � I + �
i=x,y,z

QiI � �i

+ �
i,j=x,y,z

Mij�i � � j	 �6�

with the aid of the two local vectors of coherence, P�

= �Px , Py , Pz� and Q� = �Qx ,Qy ,Qz�, and with the correlation
tensor M= �Mij�i,j=x,y,z �16�. Because we are looking for
trace-preserving maps, we obtain the condition ��0,0�=1.
Using the notation V=��1,0�, X=��0,1�, Y =��1,1� the cor-
responding output state of �5� is given by

�out =
1

4�I � I + �
i=x,y,z

�VPi��i � I + �
i=x,y,z

�XQi�I � �i

+ �
i,j=x,y,z

�YMij��i � � j	 � �in�VP� ,XQ� ,YM� . �7�

In the special case of a normalized pure input state ���
=� � ↑ ↑ �+	 � ↓ ↓ � which is quantized in the z direction this
yields the explicit matrix representation

�out

=�
1 + Y

4
+

X + V

4
����2 − �	�2� 0 0 Y�	*

0
1 − Y

4
+

V − X

4
����2 − �	�2� 0 0

0 0
1 − Y

4
+

X − V

4
����2 − �	�2� 0

Y�*	 0 0
1 + Y

4
−

X + V

4
����2 − �	�2�

�
�8�

NOVOTNÝ, ALBER, AND JEX PHYSICAL REVIEW A 73, 062311 �2006�

062311-2



in the eigenbasis of �z � �z. Therefore, an arbitrary triple
�X ,V ,Y� defines the most general covariant map between an
input state �6� and an output state �7�. Further restrictions are
imposed on these parameters by complete positivity �8�. As
shown in detail in Appendix B, complete positivity requires
that all components of the triple �X ,V ,Y� have to be real
valued and they have to satisfy the relations

1 + 3X + 3V + 9Y 
 0, 1 + 3X − V − 3Y 
 0,

1 − X + 3V − 3Y 
 0, 1 − X − V + Y 
 0, �9�

or equivalently

−
1

3
� X,V � 1, max�−

1 + 3X + 3V

9
,− 1 + X + V�

� Y �
1 + 3min
X,V� − max
X,V�

3
. �10�

Thus, provided these relations are satisfied the process de-
fined by the covariant output state �7� is completely positive.
A Kraus representation of this deterministic quantum opera-
tion is given by

�out = �V,X,Y„�in�P� ,Q� ,M�… = �
i,j=0,x,y,z

Kij�in�P� ,Q� ,M�Kij
†

= �in�VP� ,XQ� ,YM� �11�

with

K00= 1 � 4 �1+3X+3V+9Y�1/2I � I,

Ki0 =
1

4
�1 + 3X − V − 3Y�1/2�i � I ,

K0i= 1 � 4 �1−X+3V−3Y�1/2I � �i,

Kij =
1

4
�1 − X − V + Y�1/2�i � � j, i, j � 
x,y,z� . �12�

Trace preservation is implied by the relation

�
i,j=0,x,y,z

Kij
† Kij = I . �13�

The set of all possible completely positive universal quan-
tum operations characterized by triples �V ,X ,Y� is repre-
sented by the convex tetrahedron ABCD of Fig. 1. The
physical significance of the extremal points of this tetrahe-
dron is discussed in Sec. IV.

III. OPTIMAL QUANTUM NOT OPERATIONS FOR PURE
ENTANGLED QUBIT PAIRS

Starting from the general results of Sec. II we can specify
different types of completely positive covariant quantum
processes. In the following we determine quantum processes
that describe a quantum NOT operation acting on arbitrary
pure two-qubit states of a given degree of entanglement in an
optimal way.

Let us first of all summarize the basic problems that arise
if one wants to construct a quantum NOT operation for arbi-
trary input states of a complex Hilbert space H. Such a quan-
tum NOT operation has to map an arbitrary pure input state
����H onto another pure orthogonal state �����H in such
a way that �� ����=0 holds. An ideal quantum NOT opera-
tion has to be antilinear �5� and hence it is not possible to
represent its operation by a complete positive quantum op-
eration. In view of this no-go property of quantum mechan-
ics it is of interest to construct quantum operations which
approximate quantum NOT operations in the best possible
way only for a restricted class of input states.

One of the simplest examples in this context is the con-
struction of an optimal quantum NOT operation for pure two-
qubit states of a given degree of entanglement. For this pur-
pose it is convenient first of all to decompose the relevant
four-dimensional Hilbert space H of two qubits into the pos-
sible classes of pure two-qubit states


� = 
�U1 � U2����↑� � �↑� + 	�↓� � �↓���U1,U2 � SU�2��
�14�

with the same degree of entanglement. Thereby, the param-
eter � �0���

1
�2

,	=�1−�2� characterizes the degree of en-
tanglement of the pure states in a given class 
� �10,15�.
Note that in the special case �=0 the two-qubit state is sepa-
rable �SEP� whereas in the opposite extreme case �=1/�2 it
is maximally entangled �ME�. We are interested in construct-
ing linear and completely positive quantum processes U�

which map an arbitrary pure input state, say ����
�, in an

FIG. 1. The parameter space of points �V ,X ,Y� for which the
covariant process �V,X,Y is completely positive forms the tetrahe-
dron ABCD.
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optimal way onto its orthogonal complement, i.e.,

U�: �in = ������ Þ �out. �15�

For the solution of this optimization problem a measure is
needed that quantifies how close the output state �out is to the
orthogonal complement of the input state ���. Definitely, the
Hilbert space of two qubits H is the direct sum of two Hil-
bert spaces, namely, the span of the vector ���, say H�, and
its three-dimensional orthogonal complement H�

�. Therefore,
a convenient measure is given by the minimal distance be-
tween the output state �out and all mixed states contained in
the orthogonal complement of the input, i.e.,

D��out���� = min
����H�

��
Tr��out − ��2. �16�

Thereby, ��H�
�� denotes the linear convex set of all density

operators formed by convex sums of pure states of the Hil-
bert space H�

�. This measure is based on the well-known
Hilbert-Schmidt norm for Hilbert-Schmidt operators A and
B, i.e., �A−B � =�Tr�A−B�2. We omitted the square root as it
is unimportant for our purposes. As shown in Appendix C 1,
the minimal distance of �16� can also be expressed in the
more convenient form

D��out���� = 2����out
2 ��� −

2

3
����out���2. �17�

Correspondingly, the largest achievable distance, i.e.,

��U�� = sup
��
�

D��out���� = sup
��
�

�2����out
2 ���

−
2

3
����out���2� , �18�

is a convenient error measure characterizing the quality of
the NOT operation for a given class of input states with a
given degree of entanglement. This error measure has two
important properties �for details see Appendix C 2�. First, the
positivity of density operators implies that it is zero if and
only if the NOT operation is ideal for all input states ���
�
�, i.e.,

��U�� = 0 Û sup
����
�

����out��� = 0. �19�

Second, this error measure is invariant under the unitary
group U�4�. For the covariant processes of �11� this implies
that the distance D��out ,�

�� is unbiased with respect to all
states from the class 
�. Thus, for these processes we can
omit the supremum in �18� and we can calculate the error as
the distance �17� associated with an arbitrarily chosen state
of the class 
�.

Therefore, in general the construction of an optimal quan-
tum NOT operation is equivalent to minimizing the error
measure ��U�� over all possible processes. In the following
the resulting optimal error measure will be denoted by ��

=infU�
��U��.

1. Noncovariant quantum NOT operations for maximally
entangled qubit pairs

Before dealing with the general case let us focus on quan-
tum NOT operations for the special class of maximally en-
tangled pure input states 
1/�2. In this special case one is
able to construct even perfect quantum NOT operations which
map an arbitrary pure input state onto a pure output state but
which are typically not covariant.

In order to determine the general structure of all physi-
cally feasible quantum NOT operations U for ME states let us
impose the natural additional requirement that, if the quan-
tum NOT operation U is applied twice the resulting operation
is proportional to the identity operator. Therefore, the quan-
tum NOT operation U we are looking for should satisfy the
following requirements:

�1� Orthogonality: It maps an arbitrary pure state onto a
pure state according to

���U��� = 0 " ��� � 
1/�2; �20�

�2� unitarity,

UU† = I; �21�

�3� cyclic property

U2 = �I where � � C . �22�

For our analysis we take advantage of the special basis
states �sometimes referred to as the magic base� �13�

�e1� =
1
�2

��00� + �11��, �e2� =
i

�2
��00� − �11��,

�e3� =
i

�2
��01� + �10��, �e4� =

1
�2

��01� − �10�� , �23�

in which all maximally entangled two-qubit states can be
written as real-valued linear combinations of these basis
states. Clearly, the concurrence of an arbitrary normalized
two-qubit superposition state ���=�i�i �ei� with complex val-
ues of �i is given by

C�������� = ��
i

�i
2� . �24�

Hence, for ME states this concurrence has to be equal to
unity. This happens if and only if all coefficients �i are real
valued. In this sense all ME states form a four-dimensional
real Hilbert space. Expressing condition �20� in this magic
base it turns out that all possible quantum NOT operations
form a vector space of real-valued 4�4 antisymmetric ma-
trices. The dimension of this vector space equals 6 and a
possible basis is given by the matrices
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U1 =�
0 1 0 0

− 1 0 0 0

0 0 0 1

0 0 − 1 0
�,

U2 =�
0 0 0 1

0 0 1 0

0 − 1 0 0

− 1 0 0 0
�,

U3 =�
0 0 1 0

0 0 0 − 1

− 1 0 0 0

0 1 0 0
� , �25�

V1 =�
0 1 0 0

− 1 0 0 0

0 0 0 − 1

0 0 1 0
�,

V2 =�
0 0 0 1

0 0 − 1 0

0 1 0 0

− 1 0 0 0
�,

V3 =�
0 0 1 0

0 0 0 1

− 1 0 0 0

0 − 1 0 0
� . �26�

This set of matrices has the following interesting algebraic
properties:


Ui,Uj
†� = − 
Ui,Uj� = 2�ijI, Ui

T = − Ui,

UiUj = − �ijI + �ijkUk,


Vi,Vj
†� = − 
Vi,Vj� = 2�ijI, Vi

T = − Vi,

ViVj = − �ijI + �ijkVk, �Ui,Vj� = 0. �27�

As a consequence every linear operation with the property
�20� is a linear superposition of Ui, Vi, i.e.,

U = �
i=1

3

�iUi + 	iVi, �i,	i � R . �28�

The property �27� and requirement �21� imply the relation

I = UU† = �
i=1

3

�i
2UiUi

† + 	i
2ViVi

† + �
�ij�

��i� j�UiUj
† + Uj

†Ui�

+ 	i	 j�ViVj
† + Vj

†Vi�� + �
i,j=1

3

�i	 j�UiVj
† + VjUi

†�

= ��
i=1

3

�i
2 + 	i

2	I − 2 �
i,j=1

3

�i	 jUiVj . �29�

Taking into account the structure of the matrices UiVj this
yields the conditions

�i	 j = 0 Þ ��i = 0 Ù �
i=1

3

	i
2 = 1,

	i = 0 Ù �
i=1

3

�i
2 = 1.� �30�

The quantum NOT operation satisfying requirements
�20�–�22� has the general structure

�U = �
i=1

3

�iUi with �
i=1

3

�i
2 = 1, �i � R	

Ú �U = �
i=1

3

	iVi with �
i=1

3

	i
2 = 1,	i � R	 . �31�

In both cases the condition �22� is satisfied automatically,
i.e.,

U2 = − I . �32�

Therefore, for maximally entangled two-qubit states the ideal
quantum NOT operation is not unique. Its most general form
is given by �31�.

2. Optimal covariant quantum NOT operations

Let us construct optimal quantum NOT operations for ar-
bitrary classes of pure two-qubit input states of a given de-
gree of entanglement 
�. In this case a similar strategy can
be used as the one used for the construction of optimal uni-
versal quantum copying processes �12�. Similarly, it can be
shown �for details, see Appendix C 2� that for any optimal
quantum NOT operation U�, always an equivalent covariant

quantum process �11�, say U�̂, can be found which satisfies
the covariance condition �2�. Thus, this latter quantum NOT

process yields the same optimal error measure �� for all
possible two-qubit input states ����
�. This basic observa-
tion allows us to restrict our search for the optimal quantum
NOT operation for an arbitrary class 
� to covariant quantum
processes of the form of �11� which minimize the error mea-
sure �18�.

The error measure of the output state �8� with respect to
the normalized pure two-qubit input state ���=� � ↑ ↑ �
+	 � ↓ ↓ � is given by

��Z = V + X,Y� =
1

12

�1 + Z�1 − 4�2	2� + Y�1 + 8�2	2��2

+ 6�2	2�1 − 4�2	2��Z − 2Y�2� . �33�

In Appendix D it is shown that for all classes of states 
� all
optimal quantum NOT processes are determined by points
�V ,X ,Y� of the triangle ABC of Fig. 1. Therefore, for an
optimal quantum NOT process the operator K00 of the Kraus
representation �11� vanishes. Thus, minimizing the quantity
�33� with respect to points of the triangle ABC yields the
final solution. Depending on the value of � two cases can be
distinguished. For ���0 with �0
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=��1−�1−4K� /2�0.1836 and K= �8−3�6� /20 the mini-
mal error

�� =
1

243
�4 + 160�2	2 − 128�4	4� �34�

is obtained. The resulting optimal quantum NOT operation is
independent of the parameter � and is characterized by the
point �V=− 1

3 ,X=− 1
3 ,Y = 1

9
�. It turns out that this particular

optimal quantum NOT process USEP consists of two one-qubit
optimal covariant universal-NOT �UNOT� processes u1 applied
to each of the qubits separately, i.e., USEP=u1 � u1 with

u1��� =
1

3
�2I − �� . �35�

These latter optimal one-qubit UNOT quantum processes were
studied in detail in �5�. According to �11� a Kraus represen-
tation of the optimal two-qubit quantum NOT operation USEP
is given by

USEP��in� = �
i,j=1

3

Kij�inKij
† with Kij =

1

3
�i � � j . �36�

Optimal quantum NOT processes with �
�0 yield an error
of magnitude

�� =
4�2	2�1 − 4�2	2�

2 + 35�2	2 − 100�4	4 �37�

and they are characterized by points �V ,X ,Y� on the straight
line

Y = −
1

3

2 − 31�2	2 + 20�4	4

− 2 − 35�2	2 + 100�4	4 ,

X + V = Z =
2

3

4 − 29�2	2 − 20�4	4

− 2 − 35�2	2 + 100�4	4 , X,V 
 −
1

3
.

�38�
Each triple of parameters �V ,X ,Y� from this one-parameter
line segment defines the Kraus representation �11� of the

optimal two-qubit quantum NOT operation U�̂�V� for a par-
ticular class of states 
�.

These considerations show that an ideal covariant two-

qubit quantum NOT process with zero-valued error measure
can only be obtained for maximally entangled states. Such a
process is characterized by any point �V ,X ,Y� satisfying the
conditions Y =− 1

3 ,X+V=Z= 2
3

�X ,V
− 1
3

�. Therefore, ideal
covariant two-qubit quantum NOT processes form a one-
parameter family. This reflects the fact that there is a huge
class of noncovariant ideal quantum NOT operations �31�.
Each element U of this class corresponds to some covariant

counterpart Û with the same error �18� �see Appendix C 2�.
Thus, for maximally entangled states the ideal covariant two-
qubit NOT operations are characterized by the parameter
range − 1

3 �V�1. A Kraus representation of these processes
is given by

UME�V���in� = �
i=1

3

�K0i�inK0i
† + Ki0�inKi0

† � , �39�

with

K0i =
1

2
�1

3
+ V	1/2

�i � I, Ki0 =
1

2
�1 − V�1/2I � �i.

�40�

The error �� achieves its maximal value for �2	2= 1
10,

i.e., �max=�1
2 −� 3

20 . The corresponding maximal error is
given by ��max

= 4
75 and its associated quantum processes are

characterized by the points �V ,X ,Y� with Y =− 1
15 and X+V

=Z=− 2
15

�X ,V
− 1
3

�. One of the processes satisfying these
conditions is the four-dimensional covariant UNOT process
GNOT introduced in Ref. �4�. This particular covariant two-
qubit UNOT process minimizes the error with respect to all
possible two-qubit pure input states independent of their de-
gree of entanglement. This special process is characterized
by the parameters X=V=Y =− 1

15 and it maps an arbitrary
two-qubit input state � onto the output state

�out = GNOT��� =
1

15
�4I − �� . �41�

In summary, the smallest achievable errors �� for these

optimal covariant two-qubit quantum NOT processes U�
ˆ are

given by

�� =�
1

243
�4 + 160�2	2 − 128�4	4�, USEP = u1

� u1 for � � �0,

4�2	2�1 − 4�2	2�
2 + 35�2	2 − 100�4	4 , U�̂�V� for � 
 �0,

4

75
, U�max

= GNOT for � = �max,

0, UME�V� for � =
1
�2

.

� �42�
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Their dependence on the degree of entanglement � is de-
picted in Fig. 2.

The optimal way to complement two-qubit pure separable
states with �=0 is to perform one-qubit covariant UNOT

quantum operations on each qubit independently. The result-
ing minimum error for separable states is given by �0= 4

243.
This quantum process also yields the minimal error for two-
qubit pure states with ���0. But the minimum error ��

increases monotonically with the degree of entanglement up
to the critical value �0�0.1836 with ��0

�0.0373. For �


�0 the covariant processes U�̂�V� are optimal. These pro-

cesses reach their maximum error at �max=�1
2 −� 3

20 and for
maximally entangled states with �=1/�2 the error vanishes.

These results demonstrate that only in the case of ME
states is one able to construct ideal covariant quantum NOT

processes. This implies that there are no noncovariant ideal
quantum NOT processes for nonmaximally entangled pure
states. This can be proved indirectly. Suppose that such pro-
cesses existed. In this case we were able to construct to each
ideal noncovariant quantum NOT process a corresponding co-
variant process �compare with Appendix C 2�. However, this
is in direct contradiction with our findings. Moreover, this
fact also tells us that there is no magic base for sets of states

� ��� 1

�2
�. Only maximally entangled states make up a real

subspace of the Hilbert space of two qubits. This emphasizes
once more the special character of the set of maximally en-
tangled states in comparison with all other pure entangled
states.

IV. GENERAL REPRESENTATION OF UNIVERSAL TWO-
QUBIT PROCESSES

Based on the results of Sec. III all possible completely
positive covariant two-qubit processes as defined by �11� can
be represented by convex combinations of four basic quan-
tum processes which correspond to the corners of the tetra-
hedron ABCD of Fig. 1. For this purpose let us briefly sum-
marize the graphical representation of these completely
positive covariant quantum maps. According to the results of
Appendix D all optimal two-qubit quantum NOT operations
have to be presented by points of the triangle ABC. Thereby,
point B= �V=− 1

3 ,X=− 1
3 ,Y = 1

9
� characterizes a quantum NOT

operation minimizing the error �18� for classes of states 
�

with ���0. Points on straight lines specified by the param-
eters �38� characterize optimal quantum NOT processes mini-
mizing the error �18� for the classes of states 
� with �

�0. In particular, points with Y =− 1

3 , X+V=Z= 2
3

�X ,V

− 1

3
� define optimal quantum NOT processes for maximally

entangled states. The line segments AD and CD correspond
to the restrictions V=1 and X=1. Therefore, they specify
completely positive covariant processes which do not change
the reduced density operator of the first or the second qubit.
The process corresponding to the point D leaves both re-
duced density operators unchanged. So it represents the iden-
tity operations. Furthermore, the processes represented by
the points �A=V=1,X=− 1

3 ,Y =− 1
3

� and �C=V=− 1
3 ,X=1,Y

=− 1
3

� are ideal covariant quantum NOT operations for maxi-
mally entangled states and moreover they do not change the

reduced density operators of the first and second qubits.
Therefore, we have the correspondences

UME
�1� ↔ A, USEP ↔ B, UME

�2� ↔ C, I ↔ D . �43�

In terms of these special quantum processes all possible
completely positive covariant two-qubit processes can be
represented as convex combinations. Thus, a two-qubit quan-
tum operation �1� is completely positive and satisfies the
covariance condition �2� if and only if it can be expressed as
a linear convex combination of these basic quantum opera-
tions, i.e., �43�,

�a1,a2,a3,a4
= a1I + a2USEP + a3UME

�1� + a4UME
�2� ,

ai 
 0 and �
i=1

4

ai = 1. �44�

V. CONCLUSION

A classification was presented of all possible completely
positive covariant two-qubit quantum processes which sat-
isfy the covariance condition �2�. It could be shown that any
of these processes can be represented by a convex sum of
four special covariant two-qubit quantum processes some of
which had already been discussed in the literature previously.
On the basis of this general classification all possible com-
pletely positive covariant quantum processes were con-
structed that describe quantum NOT operations acting on pure
two-qubit states of a particular degree of entanglement in an
optimal way. It was shown that for maximally entangled pure

FIG. 2. The minimum error �18� and the errors of the three
relevant UNOT processes and their dependence on the degree of
entanglement �. The solid line represents the optimal minimum
error. The dashed line USEP corresponds to an independent applica-
tion of two one-qubit covariant UNOT operations u1 to each qubit
from the entangled pair. The dash-dotted line UME corresponds to
the ideal covariant UNOT map for maximally entangled states. The
dotted line represents the minimum achievable error for an un-
known two-qubit pure state if its degree of entanglement is
unknown.
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two-qubit input states even an ideal covariant quantum NOT

operations can be constructed. Furthermore, for this particu-
lar class of input states it is possible to find the general struc-
ture of all possible ideal quantum NOT operations.
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APPENDIX A: IRREDUCIBLE TENSOR OPERATORS

In this appendix basic properties of irreducible tensor op-
erators of the group SU�2� are summarized. These irreduc-
ible tensor operators are convenient tools for implementing
the covariance condition �2�.

Rotation properties of quantum states described by the
continuous group O�3� or its universal covering group SU�2�
are conveniently analyzed by representing the density opera-
tor of this quantum state in irreducible tensor components. In
terms of orthonormal angular momentum eigenstates �Jm�
�with −2J ,−2J+1, . . . �m� . . . ,2J−1,2J and J being half
integer or integer� a set of irreducible tensor operators
T�J1J2�KQ �with �J1−J2 � �K�J1+J2 and −K ,−K+1, . . .
�q� . . . ,K−1,K� is defined by �11,14�

T�J1,J2�Kq = �
m1m2

�− 1�J1−m1�2K + 1� J1 J2 K

m1 − m2 − q
	

��J1m1� � �J2m2� . �A1�

The orthogonality and completeness relations of the 3j sym-
bol appearing in �A1� imply the orthonormality relations

Tr�T�J1,J2�KqT�J1�,J2��K�q�
† � = �J1J1�

�J2J2�
�KK��qq�. �A2�

Here, Tr denotes the trace over the Hilbert space spanned by
the direct sum of the angular momentum subspaces involved.
Therefore, the irreducible tensor operators of �A1� may be
viewed as special examples of complete orthogonal sets of
operators which have particularly simple transformation
properties with respect to the rotation group. These transfor-
mation properties are described by the relation

UT�J1J2�KQU† = �
q

T�J1J2�KqD�U�qQ
�K�, �A3�

with D�U�qQ
�K� denoting rotation matrix elements �14�. These

latter matrix elements satisfy the orthogonality relation

� D��	��mm�
�j�* D��	��MM�

�J� sin 	 d	 d� d�

=
8�2

2J + 1
� jJ�mM�m�M�. �A4�

Here, �, 	, and � denote the Euler angles characterizing a
particular rotation. According to �A3� the quantum numbers
J1, J2, and K characterize a particular irreducible representa-
tion of the rotation group.

As the tensor operators of �A1� form a complete set any
operator including the density operator � can be decomposed
according to

� = �
J1J2Kq

Tr
T�J1J2�Kq
† ��T�J1J2�Kq. �A5�

In the special case of two qubits with angular momenta J
= 1

2 , for example, in such a decomposition the irreducible
tensor operators T� 1

2 , 1
2

�
Kq �with K� 
0,1� and −K�q�K�

appear for each qubit. Their explicit form is given by �4�.
Obviously, the set of tensor products of irreducible tensor
operators is also a complete set of operators on the two-qubit
Hilbert space and we can express an arbitrary two-qubit den-
sity operator in the form of �3�. With the help of the relation
�A4�, finally, it is straightforward to prove that the most gen-
eral form of an output state satisfying the covariance condi-
tion �2� is given by �5�.

APPENDIX B: COMPLETE POSITIVITY

In this appendix the basic steps imposed on covariant
two-qubit quantum processes by complete positivity are dis-
cussed. This can be done in a convenient way with the help
of the theorem of Jamiolkovski and Choi �17–19� whose
contents is summarized in the following.

Let H be an n-dimensional Hilbert space with an inner
product, say �·� · �, and let B�H� be the associated
n2-dimensional Hilbert space of linear operators on H whose
inner product �· , · � is defined by the relation �A ,B�
=Tr�A†B� for all A ,B�B�H�. Furthermore, let L�H1 ,H2� be
the vector space of linear transformations from an
n1-dimensional Hilbert space H1 to an n2-dimensional Hil-
bert space H2 and let I�L�B�H� ,B�H�� denote the linear
identity operation acting on B�H�. A linear transformation
T�L�B�H1� ,B�H2�� is called completely positive if the ten-
sor product T � I maps an arbitrary positive operator A
�B�H1 � H� onto a positive operator B�B�H2 � H� �1�.

The problem of answering the question whether a given
linear operation is completely positive or not can be solved
with the help of a theorem due to Jamiolkovski and Choi
�17–19�. This theorem states the following.

Theorem 1. Let 
�ui�� be an arbitrary orthonormal basis in
the Hilbert space H1 and Pij = �ui��uj� be the corresponding
standard orthonormal basis in the Hilbert space B�H1�. Then
a linear operation T�L(B�H1� ,B�H2�) is completely posi-
tive if and only if the linear operator J�T�=�ijT�Pij� � Pij is
positive.

With the help of this theorem we can determine for which
parameters �V ,X ,Y� the covariant quantum process �V,X,Y is
completely positive. The covariance condition �2� associates
an arbitrary input state �6� with the output state �7�. We can
express this relation between the input and output states by
the linear transformation

�out = �V,X,Y„�in�P� ,Q� ,M�… = �
i,j=0

3

lijLij�in�P� ,Q� ,M�Lij
†

�B1�

with
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l00 =
1

16
�1 + 3X + 3V + 9Y�, li0 =

1

16
�1 + 3X − V − 3Y� ,

l0i =
1

16
�1 + 3V − X − 3Y�, lij =

1

16
�1 − X − V + Y� ,

�B2�

and with

L00 = I � I, Li0 = �i � I ,

L0i = I � �i, Lij = �i � � j . �B3�

If lij 
0 for all i , j� 
x ,y ,z� the covariant process �V,X,Y is
completely positive and the Kraus operators can be written in
the form �11�. Therefore the conditions �9� are sufficient to
guarantee the complete positivity of the operator �V,X,Y. That
these conditions are also necessary follows from Theorem 1.
With the aid of �B1� one can check easily that the eigenvalue
spectrum of the operator J��V,X,Y�=�ij=1

4 �V,X,Y�Pij� � Pij is
given by

�„J��V,X,Y�… = �1

4
�1 + 3X + 3V + 9Y�,

1

4
�1 + 3X − V

− 3Y�,
1

4
�1 + 3V − X − 3Y�,

1

4
�1 − X − V

+ Y�� . �B4�

Hence, the covariant process �V,X,Y is completely positive if
and only if the conditions �9� are satisfied.

APPENDIX C: THE ERROR MEASURE AND ITS
COVARIANT OPTIMALITY

In this appendix the relation �17� is proved for the error
measure and it is shown that this error measure does not
depend on the pure two-qubit input state selected but only on
its degree of entanglement. Furthermore, for the sake of
completeness we recapitulate the proof that whenever there
is an optimal quantum NOT operation at all, then there exists
also an associated covariant one.

1. Basic properties of the error measure

Let us first of all prove Eq. �17�. We start from an arbi-
trary two-qubit density operator �. Let us denote the eigen-
vectors of its restriction onto the three-dimensional subspace
orthogonal to ���, H�

�, by ��1�, ��2�, and ��3�. The orthonor-
mal vectors ���, ��1�, ��2�, and ��3� form an orthonormal
basis in which this density operator takes the form

� =�
�1 �2 �3 �4

�2
* 	1 0 0

�3
* 0 	2 0

�4
* 0 0 	3

�
with �1 + �

i=1

3

	i = 1, �1,	i 
 0. �C1�

The coefficients �i and 	i are restricted by the requirement of
positivity of �. In this base an arbitrary quantum state that is
located entirely in the orthogonal subspace spanned by the
states ��1�, ��2�, and ��3� can be represented by a matrix of
the form

� =�
0 0 0 0

0 �11 �12 �13

0 �12
* �22 �23

0 �13
* �23

* �33

�
with �

i=1

3

�ii = 1, �ii 
 0. �C2�

Again the coefficients �ij have to be consistent with the posi-
tivity of �. In this notation the measure D�� ���� assumes
the form

D������ = min
����H�

��
Tr�� − ��2 = min

����H�
��

�Tr��2� − 2Tr����

+ Tr��2�� = min
����H�

��
�Tr��2� − 2�

i=1

3

	i�ii + �
i=1

3

�ii
2

+ 2 �
i,j=1;i�j

3

��ij�2	 = min
��diag��H�

��
�Tr��2�

− 2�
i=1

3

	i�ii + �
i=1

3

�ii
2	 . �C3�

In the last equation we used the fact that the minimum is
achieved on the set of density matrices ��H�

�� which are
diagonal in the base ���, ��1�, ��2�, ��3�. The set of these
density operators we denoted by diag��H�

��. Therefore, the
quantity �C3� has to be minimized with respect to nonnega-
tive coefficients �ii constrained by the condition �i=1

3 �ii=1.
Using the method of Lagrangian multipliers one obtains the
minimum at the point �ii=	i+

1
3�1 and its value is given by

D������ = 2�
i=2

4

��i�2 +
4

3
�1

2 = 2�
i=2

4

�������i��2 +
4

3
�������2.

�C4�

This expression can also be rewritten in the equivalent form
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D������ = 2��
i=2

4

������i���i����� + ��������������	
−

2

3
�������2 = 2����2��� −

2

3
�������2. �C5�

This form �compare with �17�� explicitly exhibits the inde-
pendence of this measure on the diagonalization procedure
used in its derivation.

From Eq. �17� it is straightforward to prove that the dis-
tance D�� ���� for covariant processes �11� is unbiased with
respect to all states from a given class 
�. Suppose we have
an arbitrary covariant process � and an input state ���
�
�. We denote its associated output state by �� ���

=������� � ��. Let us now take another input state ����
�

connected with the state ��� by a unitary transformation U
=U1 � U2 �U1 ,U2�SU�2��. The distance D��� ,��� between
this state and its associated output state ��=������� � � is
given by

D���,��� = 2�����
2 ��� −

2

3
��������2

= 2������������2��� −
2

3
���������������2

= 2���U†��U������U†�2U���

−
2

3
���U†��U������U†�U���2. �C6�

With the help of the covariance condition �2� this expression
can be rewritten in the form

D���,��� = 2���U†U���������2U†U��� −
2

3
���U†U�����

�����U†U���2 = D���,��� . �C7�

Hence, a covariant quantum operation yields the same error
�17� for all states of a given entanglement class 
�.

2. Optimality of covariant maps

Let us prove the statement that an optimal quantum NOT

operation can always be represented by a corresponding co-
variant quantum map with the same error. This proof is based
on the well-known approach used by Werner �12� in the con-
text of optimal cloning of arbitrary d-dimensional quantum
states. The crucial point of this proof is the fact that for an
arbitrary and in general noncovariant quantum NOT operation
U� acting on two qubits one can define its associated average

U�̂ over all group operations

U�̂��� =� dU1dU2�U1
†

� U2
†�U��U1 � U2�U1

†
� U2

†��U1

� U2� , �C8�

where dU1dU2 denotes the normalized left invariant Haar
measure of the group SU�2� � SU�2�. The resulting quantum
operation is also an admissible NOT operation and, in addi-

tion, it also satisfies the covariance condition �2�. For a quan-
tum NOT operation U� our error measure reads

��U�� = sup
����
�

D��out���� = sup
����
�

�2����out
2 ���

−
2

3
����out���2	 . �C9�

This error is a convex function of the quantum operation U�.
This can be seen by considering a convex combination of
two arbitrary two-qubit quantum operations, say V1 and V2,
and an arbitrary two-qubit pure input state, say �= ������.
The distance D��out ���� satisfies the inequality

D„�V1��� + �1 − ��V2������
… = �D„V1������

… + �1

− ��D„V2������
… − ��1 − ��D„V1��� + V2������

…

� �D„V1������
… + �1 − ��D„V2������

… �C10�

and is therefore convex. Our error measure � is defined as
the supremum of a set of convex expressions in U� and
hence is also convex. This implies the inequality

��U�̂� � ��U�� . �C11�

Therefore, optimal quantum NOT operations which minimize
the error can always be found in the form of covariant quan-
tum processes satisfying �2�.

APPENDIX D: DETERMINATION OF THE OPTIMAL
TWO-QUBIT QUANTUM NOT OPERATION

In this appendix the optimal two-qubit quantum NOT op-
erations are determined for all values of the entanglement
parameter 0���1/�2. For this purpose we have to mini-
mize the error of �33� under the constraints of complete posi-
tivity as given by the relations �9�.

Let us first of all consider the case of nonentangled states,
i.e., �=0. The lower bound of the error �33� can be derived
with the help of inequality �9�, i.e., Y 
− 1

9 − 1
3 �X+V�, which

yields

��Z = V + X,Y� 

4

3
�1

6
�Z��1 − 10�2	2� +

2

9
�1 − �2	2�	2

.

�D1�

Minimizing the right-hand side of inequality �D1� with re-
spect to the parameters X and V yields the minimal error

�0 =
4

243
�D2�

for X=V=− 1
3 . Hence, from relations �9� we obtain the result

Y = 1
9 .
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The same approach can be used for maximally entangled
states with �=1/�2. Now, an estimation of a lower bound
can be based on inequality �9� rewritten in the form X+V

− 1

3 −3Y. The resulting lower bound is given by

��Z = V + X,Y� 

4

3
�1

6
�1 + 2�2	2� +

1

2
Y�− 1 + 10�2	2�	2

.

�D3�

The minimization of this lower bound leads to the minimal
error

�1/�2 = 0. �D4�

It is achieved for quantum processes characterized by param-
eters �V ,X ,Y� which are elements of the line segment Y =
− 1

3 , X+V=Z=− 1
3 , and X+V= 2

3 .
Let us now consider the general case �� �0,1 /�2�. Local

extrema of relation �33� are determined by the conditions

���Z = V + X,Y�
�Z

= 0 Ù
���Z = V + X,Y�

�Y
= 0

Þ V = X = Y = −
1

3
. �D5�

The point V=X=Y =−1/3 at which this local minimum is
reached is not contained in the tetrahedron ABCD. There-
fore, the minimum error has to be attained at points of the
triangles which form the surface of the tetrahedron ABCD. It
can be checked in a straightforward way that the minima for
all values of �� �0,1 /�2� are contained in the triangle ABC.
This latter triangle is defined by the relation Z=X+V=−3Y
− 1

3 with − 1
3 �Y �

1
9 and − 1

3 �X ,V�1. With the help of the
substitution Z=−3Y − 1

3 in �33� we obtain a quadratic func-
tion of Y which is minimal at the point

Ymin = −
1

3

2 − 31�2	2 + 20�4	4

− 2 − 35�2	2 + 100�4	4 . �D6�

This condition is valid for all values of �� �0,1 /�2�. How-
ever, the relation Y �1/9 is valid only as long as �
�0 with
�0=��1−�1−4K� /2 and K= �8−3�6� /20. The minimal er-
ror in the range ���0 is achieved by the largest Y value
satisfying the condition Y �1/9, i.e., by Y =1/9. As a result
we obtain the relation

�� = �
1

243
�4 + 160�2	2 − 128�4	4�, Y =

1

9
, X = V = −

1

3
, X + V = − 3Y −

1

3
for � � �0,

4�2	2�1 − 4�2	2�
2 + 35�2	2 − 100�4	4 , Ymin,X + V = − 3Y −

1

3
, for � 
 �0. � �D7�

From �D7� we can easily determine the value of � for which
�� is maximal. This happens at �max=�1/2−�3/20. The
corresponding maximum error is given by ��max

= 4
75 and the

associated optimal quantum NOT operation is characterized
by the parameter range Y =−1/15, X+V=−2/15 with −1/3
�X ,V�1.
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